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Abstract

Isaac Gym offers a high performance learning platform to train policies for a
wide variety of robotics tasks entirely on GPU. Both physics simulation and
neural network policy training reside on GPU and communicate by directly pass-
ing data from physics buffers to PyTorch tensors without ever going through
CPU bottlenecks. This leads to blazing fast training times for complex robotics
tasks on a single GPU with 2-3 orders of magnitude improvements compared
to conventional RL training that uses a CPU based simulator and GPUs for
neural networks. We host the results and videos at https://sites.google.
com/view/isaacgym-nvidia and Isaac Gym can be downloaded at https:
//developer.nvidia.com/isaac-gym. The benchmark and environments are
available at https://github.com/NVIDIA-Omniverse/IsaacGymEnvs.

1 Contributions

* Development of high-fidelity GPU-accelerated robotics simulator for robot learning tasks.
With tools to load commonly used robot description formats - URDF and MJCF. A Tensor
API in Python providing direct access to physics buffers by wrapping them into PyTorch
tensors without going through any CPU bottlenecks.

* We achieve significant speed-ups in training various simulated environments: Ant and
Humanoid environments can achieve performant locomotion in 20 seconds and 4 minutes
respectively, ANYmal [9] in under 2 minutes, Humanoid character animation using AMP
[23] in 6 minutes and cube rotation with Shadow Hand in 35 minutes all on a single NVIDIA
A100 GPU. Additionally, we reproduce OpenAl Shadow Hand cube training setup and
show that we can achieve 20 consecutive successes with feed forward and 40 consecutive
successes with LSTM networks with a success tolerance of 0.4 rad in about 50 minutes and
3 hours on average respectively on A100. In contrast, OpenAl effort required 30 hours and
17 hours respectively on a combination of a CPU cluster (384 CPUs with 16 cores each) and
8 NVIDIA V100 GPUs with MuJoCo [30] using a conventional RL training setup.

* Recent successful sim-to-real transfer results on ANYmal and TriFinger further showcase
the ability of our simulator to perform high-fidelity contact rich manipulation.

2 Introduction

In recent years, reinforcement learning (RL) has become one of the most promising research areas in
machine learning and has demonstrated great potential for solving sophisticated decision-making
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Figure 1: Isaac Gym allows high performance training on a variety of robotics environments. We benchmark on
8 different environments that offer a wide range of complexity and show the strengths of the simulator in blazing
fast policy training on a single GPU. Top: Ant, Humanoid, Franka-cube-stack, Ingenuity. Bottom: ShadowHand,
ANYmal, Allegro, TriFinger.

problems. Simulators play a key role in training robots improving both the safety and iteration speed
in the learning process. To date, most researchers have relied on a combination of CPUs and GPUs to
run reinforcement learning system [21]. Different parts of the computer tackle different steps of the
physics simulation and rendering process. CPUs are used to simulate environment physics, calculate
rewards, and run the environment, while GPUs are used to accelerate neural network models during
training and inference as well as rendering if required.

Popular physics engines like MuJoCo[30], PyBullet[6], DART[12], Drake[28], V-Rep[25] etc. need
large CPU clusters to solve challenging control tasks naturally. For instance, in [2], almost 30,000
CPU cores (920 worker machines with 32 cores each) were used to train a robot to solve the Rubik’s
Cube task using RL. One way to speed-up simulation and training is to make use of hardware
accelerators. GPUs have enjoyed enormous success in computer graphics are also naturally suited for
highly parallel simulations. This approach was taken by [13], and showed very promising results
running simulation on GPU, proving that it is possible to greatly reduce both training time as well
as computational resources required to solve very challenging tasks using RL. However, some
bottlenecks were still not addressed in the work — simulation was on GPU but physics state was
copied back to CPU. There, observations and rewards were calculated using optimized C++ code and
later copied back to GPU where policy and value networks ran.

To address these bottlenecks, we
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Figure 2: An illustration of the Isaac Gym pipeline. The Tensor API
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tem. We note that others [8] have recently begun attempting an approach similar to Isaac Gym with
respect to running end-to-end training on hardware accelerators. Isaac Gym provides a straightfor-
ward API for creating and populating a scene with robots and objects, supporting loading data from
the common URDF and MJCEF file formats. Each environment is duplicated as many times as needed,
while preserving the ability for variations between copies (e.g. via Domain Randomization [29]).
Environments are simulated simultaneously in parallel without interaction with other environments.
Using a fully GPU-accelerated simulation and training pipeline can help lower the barrier for research,
enabling solving of tasks with a single GPU that were previously only possible on massive CPU
clusters. We provide training examples with highly optimized Proximal Policy Optimization (PPO).
While the included examples use PyTorch, users should also be able to integrate with TensorFlow
training libraries with further customization. An overview of the system is provided in Figure 2.

3 Physics Simulation

Robots are simulated using PhysX [18] reduced coordinate articulations. Any individual rigid bodies
may be simulated using either maximal coordinate rigid bodies or single-link reduced coordinate
articulations. Articulations with a single link and rigid bodies are equivalent and interchangeable.We
use the Temporal Gauss Seidel (TGS) [14] solver to compute the future states of objects in our
physics simulation. More detailed description can be found in: A.1

4 Environments

We implemented a diverse set of environments covering different application areas. Here we describe
a subset of representative examples and key points related to the training. Benchmark results
on the simulation performance and training results are presented in the subsequent sections. All
environments are trained using the Proximal Policy Optimization algorithm [27], using rl_games,
a highly-optimized GPU end-to-end implementation from [15]. This implementation vectorizes
observations and actions on GPU allowing us to take advantage of the parallelization provided by the
simulator. We list the environments used in our experiments below:

1. Locomotion Environments: Ant, Humanoid, Ingenuity, ANYmal
2. Franka Cube Stacking

3. Humanoid Character Animation

4. Robotic Hands: Shadow, Allegro, Trifinger

Unless stated otherwise, all experiments are done on a single A100 GPU. All training runs for each
environment are averaged over 5 seeds. The reward curves are plotted with p £ o regions. All the
environments by default follow symmetric actor-critic approach with shared observations as well as
shared network for policy and value functions. Sharing the network allows faster forward passes and
improves training. Moreover, for Shadow Hand and TriFinger, we also use an asymmetric actor critic
approach [24] with policy observations that are closest to real world settings while value function
receives privileged state information from simulation as well as the observations received by the
policy. This approach is naturally suited for sim-to-real transfers. Detailed hyper-parameters for each
training task are in Table 14. Rewards and observations for each environment can be found in A.2.

5 Characterising Simulation Performance

We first characterise the simulation performance as a function of number of environments. As we
vary this number, we aim to keep the overall experience an RL agent observes constant by decreasing
the horizon length proportionally (i.e. number of steps in PPO) for a fair comparison. While we
provide detailed training studies for many environments later, we characterise simulation performance
only for Ant, Humanoid and Shadow Hand as they are sufficiently complex to test the limits of the
simulation and also represent a gradual increase in the complexity. All three environments use feed
forward networks for training.

5.1 Ant



Environment Control Type Sim dt Control dt | Action Dims
Ant Joint Torques 1/120's 1/60 s 8

Humanoid Joint Torques 1/120 s 1/60 s 21

Ingenuity Rigid Body Forces 17200 s 17200 s 6

ANYmal Joint Position Targets 17200 s 1/50 s 12

Franka Cube Stacking | Operation Space Control | 1/60 s 1/60 s 7

Shadow Hand Standard | Joint Position Targets 1/120 s 1/60 s 20

Shadow Hand OpenAl | Joint Position Targets 1/120 s 1/20°s 20

Allegro Hand Joint Position Targets 1/120 s 1/20 s 16

TriFinger Joint Torques 1/200 s 1/50 s 9

Table 1: Simulation setup for the environments.
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Since Ant is one of the simplest environments

to simulate, the number of parallel environment steps per second as depicted in the Figure 3(b) can
go as high as 700K. We do not observe gains when increasing the number of environments from 8192
to 16384 due to reduced horizon length.
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in fact led to both increase in training time and sub-optimal gaits. We attribute this to the complexity
of the environment that makes it challenging to learn walking at such small horizon lengths.
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We verified this by training on another set of environment and horizon length combinations where
horizon length was increased by a factor of 2 compared to Figure 4(a). As shown in the Figure 4(b),
the humanoid is able to walk even with 8192 and 16384 environments which have small horizon



lengths of 32 and 16 respectively but sufficiently long to enable learning. Also worth noting that due
to the increased degrees of freedom the number of parallel environment steps per second is reduced
from 700K for Ant to 200K for Humanoid as shown in Figure 4.

5.3 Shadow Hand
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Figure 5: Rewards and effective FPS with respect to number of
parallel environments for the shadow hand environment. Best train-
ing time is achieved with both 8192 and 16384 environments and
horizon lengths of 16 and 8 respectively.

Lastly, we experiment with Shadow
Hand [21] to learn to rotate a cube
resting on the palm to a target orienta-
tion using the fingers and the wrist.
This task is challenging due to the
number of DoFs involved and the con-
tacts that are made and broken during
the process of rotation. Our results
with Shadow Hand environment fol-
low similar trends. As the number of
agents is increased, in this case, from
256 to 16384, the training time is re-

duced by an order of magnitude from
5 x 10* seconds (~14 hours) to 3 x 10 seconds (~1 hour). We find that the environment reaches
performant dexterity of 10 consecutive successes at reward of 3000 in just 5 minutes.! Further
performance improvements continue to happen as more experience is collected. Additionally, we find
that the horizon length of 8 for 16384 agents still allows learning re-posing the cube. The maximum
effective frame-rate of 150K number of parallel environment steps per second was achieved with
16384 agents.

6 Experiments with RL Training

We provide details and performance metrics for environments mentioned in Section 4 trained using a
PPO implementation that operates on vectorised environments.

6.1 Locomotion environments

Ant The Ant [19] model has four legs with two degrees of freedom per leg. On A100 with 4096
agents simulated in parallel we find that ant can learn to run and achieve a reward above 3000 in just
20 seconds, and fully converge in under 2 minutes. The average simulation performance achieved
during training is 540K environment steps per second. The results are shown in Figure 6(a). For
details of the reward function and the observations used, we refer to Appendix A.2.1.

Humanoid The Humanoid environment [7] has 21 DOFs and on a A100 with 4096 agents simulated
in parallel we can train it to run — a reward threshold of 5000 — in less than 4 minutes. This is 4x
faster than our previous results in [13] obtained using the same threshold. As shown in Figures 4,
we achieve peak performance for this environment at 4096 agents. Figure 6(b) shows the evolution
of reward as a function of time. The reward function and the observations used are described in
Appendix A.2.1.

Ingenuity We train a simplified model of NASA’s Ingenuity helicopter [17] to navigate to a target
that periodically teleports to different locations. The environment with trained with 4096 agents and
achieves a reward of 5000 in just under 30 seconds. Forces are applied directly to the two rotors on
the chassis, rather than simulating aerodynamics. We use a martian gravity of -3.721 m/s2.

ANYmal Robot Locomotion ANYmal [5] is a four-legged dog-like robot, and has been used for
experiments on navigation of rough and variable terrain. The task is to follow target X, Y, and yaw
base velocities while minimizing joint torques. The target velocities are randomized at each reset and
are provided as observations alongside the positional and angular velocities of the base, the measured
gravity vector, most recent actions, and DOF positions and velocities. With 4096 agents simulating in
parallel, we can train robot in under 2 minutes. The reward function is defined in A.2.2

'The experiments used Shadow Hand Standard variant as explained in Section 6.4.1.
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Figure 6: Locomotion environments and the corresponding reward curves.

ANYmal Sim-to-real on Uneven Terrain In addition to the simple flat terrain environment, we
have developed a rough terrain locomotion task for ANYmal and transferring trained policies to the
real robot. The robot learns to walk on uneven surfaces, slopes, stairs and obstacles.

In addition to the observations of the flat terrain,
it receives terrain height measurements around
the robot’s base. For sim-to-real transfer we
extend the reward function, add noise to the ob-
servations, randomize the friction coefficient of
the ground, randomly push the robots during the
episode and add an actuator network to the simu-
Figure 7: Trained policy for ANYmal on rough terrain  |ation. Following the approach used in [10], the
tested in simulation and on the real robot. actuator network is trained to model the com-
plex dynamics of the series elastic actuators of
the real robot. We used curriculum - the robots start to learn on simple versions of the terrains,
and when they are able to solve a certain level the difficulty is automatically increased. With 4096
environments, we can train the full task and transfer to the real robot in under 20 minutes.

6.2 Humanoid Character Animation

We evaluate the performance of Isaac Gym on adversarial imitation learning tasks using an imple-
mentation of adversarial motion priors (AMP) [23]. This technique enables physically simulated
humanoid character to imitate complex behaviors from reference motion data. Instead of a manually
engineered imitation objective, as is commonly used in prior systems [22],

AMP learns an imitation objective using an ad-

] ‘ ] versarial discriminator trained to differentiate

Samete i ==== between motion from the dataset and motions
. . produced by the policy. Our character is mod-

elled as a 34-DOF humanoid, and all motion

Time: 2 min -
Samples: 13 mil

clips are recorded from human actors using mo-

Tine:4min tion capture. Table 8 in Section A.2.2 details the
Samples: 26 mil % .
’ observation features.
T i===== The adversarial training process enables the char-
: acter to closely imitate a diverse corpus of mo-

Figure 8: Humanoid character trained using AMP to FIODS, ranging fron} common IO.COIIIOthH behav-
imitate a spin-kick. iors, such as walking and running, to more ath-

letic behaviors, such as spin-kicks and dancing.
Effective policies can be learned with approx-
imately 39 million samples, requiring approximately 6 minutes with 4096 environments. The
implementation provided by Peng ef al., 2021 [23] requires about 1 day (30 hours) on on 16 CPU




cores to simulate a similar number of samples in PyBullet. Therefore, Isaac Gym provides 300x or
2.48 orders of magnitude improvement in the training time.

6.3 Franka Cube Stacking
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2000 We use 16384 agents to train a Franka robot to
stack a cube on top of an other. In this envi-
2000 ronment, we use a slightly different choice of

action space, Operation Space Control (OSC),

for learning. OSC [11] is a task-space com-

pliant controller that has been shown to enable

0 e ey faster policy learning compared to joint-space

Figure 9: The Franka Cube Stacking environment and controllers [.33] and learn antaCF_IICh tasks

the corresponding reward curves. [16]. We obtain convergence with this controller

in under 25 minutes. Figure 9 shows the training

results. More details about using (differentiable) OSC control for solving challenging robotics tasks
can be found in [31]

6.4 Robotic Hands

Figure 10: Three in-hand manipulators implemented in Isaac Gym: Shadow Hand, Trifinger, and Allegro

Large-scale simulation has the ability to solve not just individual instances but whole classes of
problems in robotics, by leveraging the generality of the model-free reinforcement learning frame-
work. Dexterous manipulations is one of the most challenging problems in robotics. To show the
performance of our simulator and the ability to realistically model contact we implemented 3 different
hand training environments. Firstly, the Shadow Dexterous Hand[20]. We follow the standard formu-
lation where policy and value function both receive the same input as well as OpenAl observations
with asymmetric formulation and domain randomisation from [21]. Secondly, the TriFinger robot
[32], which shows the ability to do 6-DoF manipulation by reposing the cube to a desired position
and orientation, a task which has previously shown to be challenging for model-free reinforcement
learning [4]. We use asymmetric actor-critic and domain randomisation for TriFinger and demonstrate
sim-to-real transfer on a real robot. Finally, we reuse system from the Shadow Hand to the Allegro
hand [26] with minimal changes to show the generality of our approach. These three environments
are depicted in Figure 10 and the corresponding reward curves in Figure 11.

6.4.1 Shadow Hand

As mentioned, the task with Shadow Hand is to manipulate the cube to achieve a specific target
orientation and is inspired by OpenAl ez al. [21]. We train with multiple variants on the Shadow
Hand environment and describe them below:

Shadow Hand Standard In this setting, we use a standard formulation for training where the
policy and the value function use feed forward networks and receive the same input observations.
The default observations we used for the Shadow Hand Standard include joint position, velocities,
forces, force-torque sensors reading from each fingertip, manipulated object position and orientation,
linear and angular velocities, goal orientation, relative rotation between the current object and target
rotations, actions applied on the previous step. For a detailed overview of observation and reward,
see Appendix A.4. Also note that this variant does not use any randomizations.

Shadow Hand OpenAI We also reproduce results with OpenAl Shadow Hand experiments in
Isaac Gym with observations used in dexterity work from OpenAl et al. [21]. A key difference



0 Steps (millions) 393 0 Steps (millions) 655 0 Steps (millions) 655 0 Steps (millions) 4194

8000 4000 15000
6000 12500
6000 3000
] 2 4000 E] g 10000
£ 4000 z £ 2000 H
2 = & 2 7500
2000 2000 1000 -
0= 2000 2000 6000 0500003000 3000 4000 °5 1000 2000 3000 250055 25000 50000 75000
Time (sec) Time (sec) Time (sec) Time (sec)
(a) SH OpenAl FF (b) SH Standard (c) Allegro (d) TriFinger

Figure 11: Reward curves for the three in-hand manipulation environments implemented in Isaac Gym. These
results are obtained with (a) Showdow Hand OpenAlI FF (b) Shadow Hand Standard (c) Allegro and (d) TriFinger.
Shadow Hand OpenAl and TriFinger are trained with asymmetric actor-critic and domain radomisation while
Shadow Hand Standard and Allegro are trained with standard observations and symmetric actor-critic with no
domain randomisation.

between this and the Shadow Hand Standard variant is that it uses asymmetric observations. The
policy receives only the input observations that are possible to obtain in the real world settings while
the value function receives the same observations in addition to the other privileged information
available from the simulator. This variant should make it possible to transfer the policy to the real
world, mimicking the setup in [21]. The observations for the policy and value function are provided
in Table 11. We experiment with both feed forward networks (SH OpenAl FF) and LSTMs (SH
OpenAl LSTM). The LSTM networks are trained with a sequence length of 4. It is worth noting
that only networks trained with OpenAl observations use domain randomisation to closely match the
results in OpenAl dexterity work [21].
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Figure 12: Consecutive successes per episode for (a) Shadow Hand with OpenAl observation and LSTMs, (b)
Shadow Hand with OpenAl observation and feed forward networks (¢) Shadow Hand with Standard observations
and (d) Allegro Hand with Standard observations. Shadow Hand Standard and Allegro Hand Standard both use
feed forward networks for policy and value functions.

Randomizations For domain randomization we closely followed the approach proposed in [21]
and applied correlated and uncorrelated noise to observations, actions, as well as randomized cube
size and all the key physics properties — masses, inertia tensors, friction, restitution, joint limits,
stiffness and damping. Full details of these are available in Appendix A.4.1.

Figure 11(a), (b) and (c) show the reward curves for various settings we used for Shadow Hand.
Shadow Hand Standard — trained with no randomization and uses symmetric actor critic setting
with a feed forward network — is the fastest to reach a reward of 6000. This setting achieves 20
consecutive successes in under 35 minutes. Important to remember that this setting is not suitable
for sim-to-real transfer as it includes some observations that may not be directly available in the
real world. We now focus on experiments with OpenAl observations and asymmetric feed-forward
actor-critic. This setting is suited for sim-to-real transfer and the policy uses only the observations
that are possible to obtain in the real world. As shown in Figure 12(b), we achieved more than 20
consecutive successes in less than 1 hour. In contrast, for the same performance it takes 30 hours
on the OpenAl setup consisting of CPU based simulation and training setup running MuJoCo [30]
simulator on a cluster of 384 16-core CPUs with 6144 CPU cores in total and using § NVIDIA V100
GPUs for training. In Figure 12(a) we show that using LSTM networks, the performance increases
and we can reach 40 consecutive successes within 3 hours while OpenAl et al. [21] achieve same



performance in ~20 hours. Since OpenAl et al. [21] show results only with 1 seed, comparing their
result with our best seed we note that 40 consecutive successes with LSTM experiments can be
achieved in just 2.5 hours. We provide the results for Shadow Hand OpenAl experiment with success
tolerance of 0.1 in the Appendix A.4.

6.4.2 TriFinger

p Sepsimiliory 4134+ 2 Sep(miins 424 The TriFinger manipulation task, originating in
[32], involves picking a cube lying on a flat sur-
face and repositioning it to a desired 6-degrees-
of-freedom pose. The manipulator has 3 fingers
each with three degrees of freedom. In [3], it
was shown that Isaac Gym training combined
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(a) Reward (b) Success Rate 10. We show the reward and success rate in sim-

ulation in Figure 13. [3] transfer results from
simulation to the real world and note that suc-
cess rate in the real world is 55%. We refer to [3] for more detailed analysis. In particular, this
example shows the ability of policies learned using Isaac Gym’s physics to generalize to the real
world. It is worth noting that the robot is situated in a different location and therefore the sim-to-real
transfer was done remotely.

Figure 13: TriFinger reward and success rate.

6.4.3 Allegro Hand

We learn cube orientation with Allegro Hand and use the same reward as for the Shadow Hand as well
similar observation scheme, with the only difference — smaller number of observations because of
the different number of fingers in Allegro Hand — that it has 4 fingers instead of 5 and fewer degrees
of freedom as a result, shown in Appendix A.2.3. Figure 11(d) shows the reward curves for Allegro
Hand and Figure 12(d) shows consecutive successes achieved. Interestingly, despite having fewer
degrees of freedom this hand does not achieve as high consecutive successes as Shadow hand. This is
because the wrist is fixed and fingers are slightly longer. We observed in Shadow hand experiment
that having a movable wrist allows for better manipulation when reorienting the cube.

7 Limitations

A number of limitations and constraints exist with our current implementation. Maximum acceleration
of the training process can be achieved only when simulating thousands of environments in parallel for
challenging tasks. For simpler tasks or fewer environments, GPU accelerated end-to-end simulation
may provide only a minor performance improvement, or none at all.

Also, in some cases, fully deterministic simulation of all environments may not be possible. While
the experiments we describe above are deterministic on the same system across multiple runs, we
have observed non-deterministic training when changing scale and mass at run-time in the Shadow
Hand environment. Due to GPU work scheduling, some run-time changes to simulation parameters
can alter the order in which operations take place, as environment updates can happen while the
GPU is doing other work. Because of the nature of floating point numeric storage, any alteration
of execution ordering can cause small changes in the least significant bits of output data, leading to
divergent execution over the simulation of thousands of environments and simulation frames. To
avoid this limitation, we randomize scale and mass at startup, but do not re-randomize these specific
parameters at reset. We still have excellent coverage of the randomization range due to the fact that
many thousands of environments are used. Finally, using our current tensor API it’s not possible to
add new actors into an already-running simulation. We expect to address many of these constraints in
the future.

8 Social Impact

Isaac Gym enables researchers with only a local workstation to run experiments that were previously
possible only with expensive, energy intensive clusters. We hope that the acceleration it enables



for RL training will lower barriers to entry for RL research, allowing for wider participation by
previously underrepresented groups. Energy usage for training existing environments should also
decrease dramatically. By our estimates, training the OpenAl ShadowHand task on GPU with Isaac
Gym consumes about 1/300 the electricity required to train vs OpenAI's CPU version. The downside
risk of efficiency improvements is that we may encourage increased use of energy for training more
complex RL tasks, or through greater uptake of RL research in the research community. We also
need to consider the long term impact that improved robotics may have on the automation of tasks
previously only possible with human labour. We hope that these efforts will reduce the need to
put humans in dangerous situations, ultimately saving lives, but there is also potential for worker
displacement.
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