
Isaac Gym: High Performance GPU Based Physics
Simulation For Robot Learning

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey,

Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, Gavriel State

NVIDIA
{vmakoviychuk, lwawrzyniak, kellyg, michellel, kstorey, mmacklin,

dhoeller, nrudin, aallshire, ahanda, gstate}@nvidia.com

Abstract

Isaac Gym offers a high performance learning platform to train policies for a
wide variety of robotics tasks entirely on GPU. Both physics simulation and
neural network policy training reside on GPU and communicate by directly pass-
ing data from physics buffers to PyTorch tensors without ever going through
CPU bottlenecks. This leads to blazing fast training times for complex robotics
tasks on a single GPU with 2-3 orders of magnitude improvements compared
to conventional RL training that uses a CPU based simulator and GPUs for
neural networks. We host the results and videos at https://sites.google.
com/view/isaacgym-nvidia and Isaac Gym can be downloaded at https:
//developer.nvidia.com/isaac-gym. The benchmark and environments are
available at https://github.com/NVIDIA-Omniverse/IsaacGymEnvs.

1 Contributions
• Development of high-fidelity GPU-accelerated robotics simulator for robot learning tasks.

With tools to load commonly used robot description formats - URDF and MJCF. A Tensor
API in Python providing direct access to physics buffers by wrapping them into PyTorch
tensors without going through any CPU bottlenecks.

• We achieve significant speed-ups in training various simulated environments: Ant and
Humanoid environments can achieve performant locomotion in 20 seconds and 4 minutes
respectively, ANYmal [9] in under 2 minutes, Humanoid character animation using AMP
[23] in 6 minutes and cube rotation with Shadow Hand in 35 minutes all on a single NVIDIA
A100 GPU. Additionally, we reproduce OpenAI Shadow Hand cube training setup and
show that we can achieve 20 consecutive successes with feed forward and 40 consecutive
successes with LSTM networks with a success tolerance of 0.4 rad in about 50 minutes and
3 hours on average respectively on A100. In contrast, OpenAI effort required 30 hours and
17 hours respectively on a combination of a CPU cluster (384 CPUs with 16 cores each) and
8 NVIDIA V100 GPUs with MuJoCo [30] using a conventional RL training setup.

• Recent successful sim-to-real transfer results on ANYmal and TriFinger further showcase
the ability of our simulator to perform high-fidelity contact rich manipulation.

2 Introduction

In recent years, reinforcement learning (RL) has become one of the most promising research areas in
machine learning and has demonstrated great potential for solving sophisticated decision-making

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.

https://sites.google.com/view/isaacgym-nvidia
https://sites.google.com/view/isaacgym-nvidia
https://developer.nvidia.com/isaac-gym
https://developer.nvidia.com/isaac-gym
https://github.com/NVIDIA-Omniverse/IsaacGymEnvs


Figure 1: Isaac Gym allows high performance training on a variety of robotics environments. We benchmark on
8 different environments that offer a wide range of complexity and show the strengths of the simulator in blazing
fast policy training on a single GPU. Top: Ant, Humanoid, Franka-cube-stack, Ingenuity. Bottom: ShadowHand,
ANYmal, Allegro, TriFinger.

problems. Simulators play a key role in training robots improving both the safety and iteration speed
in the learning process. To date, most researchers have relied on a combination of CPUs and GPUs to
run reinforcement learning system [21]. Different parts of the computer tackle different steps of the
physics simulation and rendering process. CPUs are used to simulate environment physics, calculate
rewards, and run the environment, while GPUs are used to accelerate neural network models during
training and inference as well as rendering if required.

Popular physics engines like MuJoCo[30], PyBullet[6], DART[12], Drake[28], V-Rep[25] etc. need
large CPU clusters to solve challenging control tasks naturally. For instance, in [2], almost 30,000
CPU cores (920 worker machines with 32 cores each) were used to train a robot to solve the Rubik’s
Cube task using RL. One way to speed-up simulation and training is to make use of hardware
accelerators. GPUs have enjoyed enormous success in computer graphics are also naturally suited for
highly parallel simulations. This approach was taken by [13], and showed very promising results
running simulation on GPU, proving that it is possible to greatly reduce both training time as well
as computational resources required to solve very challenging tasks using RL. However, some
bottlenecks were still not addressed in the work – simulation was on GPU but physics state was
copied back to CPU. There, observations and rewards were calculated using optimized C++ code and
later copied back to GPU where policy and value networks ran.

PhysX

1 
G

PU

IsaacGym Tensor API

Environment Logic
(Observation, reward, non-physics logic)

action, config
tensors

environment
states

Result:
Learn on 1000s of realistic robots in parallel

step command,
action tensors

observation
tensors

Learning Framework
Load Existing Robot Models

Figure 2: An illustration of the Isaac Gym pipeline. The Tensor API
provides an interface to Python code to step the PhysX backend, as
well as get and set simulator states, directly on the GPU, allowing
a 100-1000x speedup in the overall RL training pipeline while
providing high-fidelity simulation and the ability to interface with
existing robot models.

To address these bottlenecks, we
present Isaac Gym - an end-to-end
high performance robotics simula-
tion platform. It runs an end-to-
end GPU accelerated training pipeline,
which allows researchers to overcome
the aforementioned limitations and
achieves 100x-1000x training speed-
up in continuous control tasks. Isaac
Gym leverages NVIDIA PhysX [18]
to provide a GPU-accelerated simula-
tion back-end, allowing it to gather ex-
perience data required for robotics RL
at rates only achievable using a high
degree of parallelism. It supports a Py-
Torch tensor-based API to access the
results of physics simulation natively
on the GPU. Observation tensors can
be used as inputs to a policy network
and the resulting action tensors can be
directly fed back into the physics sys-

2



tem. We note that others [8] have recently begun attempting an approach similar to Isaac Gym with
respect to running end-to-end training on hardware accelerators. Isaac Gym provides a straightfor-
ward API for creating and populating a scene with robots and objects, supporting loading data from
the common URDF and MJCF file formats. Each environment is duplicated as many times as needed,
while preserving the ability for variations between copies (e.g. via Domain Randomization [29]).
Environments are simulated simultaneously in parallel without interaction with other environments.
Using a fully GPU-accelerated simulation and training pipeline can help lower the barrier for research,
enabling solving of tasks with a single GPU that were previously only possible on massive CPU
clusters. We provide training examples with highly optimized Proximal Policy Optimization (PPO).
While the included examples use PyTorch, users should also be able to integrate with TensorFlow
training libraries with further customization. An overview of the system is provided in Figure 2.

3 Physics Simulation

Robots are simulated using PhysX [18] reduced coordinate articulations. Any individual rigid bodies
may be simulated using either maximal coordinate rigid bodies or single-link reduced coordinate
articulations. Articulations with a single link and rigid bodies are equivalent and interchangeable.We
use the Temporal Gauss Seidel (TGS) [14] solver to compute the future states of objects in our
physics simulation. More detailed description can be found in: A.1

4 Environments

We implemented a diverse set of environments covering different application areas. Here we describe
a subset of representative examples and key points related to the training. Benchmark results
on the simulation performance and training results are presented in the subsequent sections. All
environments are trained using the Proximal Policy Optimization algorithm [27], using rl_games,
a highly-optimized GPU end-to-end implementation from [15]. This implementation vectorizes
observations and actions on GPU allowing us to take advantage of the parallelization provided by the
simulator. We list the environments used in our experiments below:

1. Locomotion Environments: Ant, Humanoid, Ingenuity, ANYmal
2. Franka Cube Stacking
3. Humanoid Character Animation
4. Robotic Hands: Shadow, Allegro, Trifinger

Unless stated otherwise, all experiments are done on a single A100 GPU. All training runs for each
environment are averaged over 5 seeds. The reward curves are plotted with µ ± � regions. All the
environments by default follow symmetric actor-critic approach with shared observations as well as
shared network for policy and value functions. Sharing the network allows faster forward passes and
improves training. Moreover, for Shadow Hand and TriFinger, we also use an asymmetric actor critic
approach [24] with policy observations that are closest to real world settings while value function
receives privileged state information from simulation as well as the observations received by the
policy. This approach is naturally suited for sim-to-real transfers. Detailed hyper-parameters for each
training task are in Table 14. Rewards and observations for each environment can be found in A.2.

5 Characterising Simulation Performance

We first characterise the simulation performance as a function of number of environments. As we
vary this number, we aim to keep the overall experience an RL agent observes constant by decreasing
the horizon length proportionally (i.e. number of steps in PPO) for a fair comparison. While we
provide detailed training studies for many environments later, we characterise simulation performance
only for Ant, Humanoid and Shadow Hand as they are sufficiently complex to test the limits of the
simulation and also represent a gradual increase in the complexity. All three environments use feed
forward networks for training.

5.1 Ant

3



Environment Control Type Sim dt Control dt Action Dims
Ant Joint Torques 1/120 s 1/60 s 8
Humanoid Joint Torques 1/120 s 1/60 s 21
Ingenuity Rigid Body Forces 1/200 s 1/200 s 6
ANYmal Joint Position Targets 1/200 s 1/50 s 12
Franka Cube Stacking Operation Space Control 1/60 s 1/60 s 7
Shadow Hand Standard Joint Position Targets 1/120 s 1/60 s 20
Shadow Hand OpenAI Joint Position Targets 1/120 s 1/20 s 20
Allegro Hand Joint Position Targets 1/120 s 1/20 s 16
TriFinger Joint Torques 1/200 s 1/50 s 9

Table 1: Simulation setup for the environments.

100 101 102 103

Time (sec)

0

2000

4000

6000

8000

R
ew

ar
d

0 2 4 6
Training Steps ⇥107

200000

400000

600000

FP
S

on
A

10
0

(256, 512)
(512, 256)
(1024, 128)
(2048, 64)
(4096, 32)
(8192, 16)
(16384, 8)

(a) Rewards (b) FPS

Figure 3: Rewards and effective FPS for the Ant environ-
ment with respect to number of parallel environments.
Best training time is achieved with 8192 environments
and a horizon lengths of 16.

We first experiment with the standard Ant envi-
ronment where the agent is trained to run on a
flat ground. We find that as the number of agents
is increased, the training time, as expected, is re-
duced i.e. changing the number of environments
from 256 to 8192 — an increase by 5 orders of
magnitude — leads to a reduction in training
time to reach 7000 reward by an order of magni-
tude from 1000 seconds (~16.6 minutes) to 100
seconds (~1.6 minutes). However, note that
Ant reaches performant locomotion at 3000
reward in just 20 seconds on a single GPU.
Since Ant is one of the simplest environments
to simulate, the number of parallel environment steps per second as depicted in the Figure 3(b) can
go as high as 700K. We do not observe gains when increasing the number of environments from 8192
to 16384 due to reduced horizon length.

5.2 Humanoid

100 101 102 103 104

Time (sec)

0

2000

4000

6000

8000

R
ew

ar
d

0 1 2 3
Training Steps ⇥108

50000

100000

150000

200000

250000

300000

FP
S

on
A

10
0

(256, 512)
(512, 256)
(1024, 128)
(2048, 64)
(4096, 32)
(8192, 16)
(16384, 8)

(a) Rewards and FPS for Experience Collection 1.

100 101 102 103 104

Time (sec)

0

2000

4000

6000

8000

R
ew

ar
d

0 2 4 6
Training Steps ⇥108

100000

200000

300000

FP
S

on
A

10
0

(256, 1024)
(512, 512)
(1024, 256)
(2048, 128)
(4096, 64)
(8192, 32)
(16384, 16)

(b) Rewards and FPS for Experience Collection 2.

Figure 4: Rewards and FPS with respect to number of parallel
environments for the Humanoid. Best training time is achieved with
4096 environments and a horizon lengths of 32.

The Humanoid environment has more
degrees of freedom and requires the
agent to discover the gait that lets it-
self balance on two feet and walk on
the ground. As observed in Figure 4,
the training times are increased by an
order of magnitude compared to the
Ant in Figure 3.

We also note in Figure 4 that as the
number of agents is increased, in this
case, from 256 to 4096, the training
time needed to reach the highest re-
ward of 7000 is reduced by an or-
der of magnitude from 104 seconds
(~2.7 hours) to 103 seconds (~17 min-
utes). However, performant loco-
motion starts happening at around
a reward of 5000 at a training time
of just 4 minutes. Going beyond 4096 environments for this set up resulted in no further gains and
in fact led to both increase in training time and sub-optimal gaits. We attribute this to the complexity
of the environment that makes it challenging to learn walking at such small horizon lengths.

We verified this by training on another set of environment and horizon length combinations where
horizon length was increased by a factor of 2 compared to Figure 4(a). As shown in the Figure 4(b),
the humanoid is able to walk even with 8192 and 16384 environments which have small horizon

4



lengths of 32 and 16 respectively but sufficiently long to enable learning. Also worth noting that due
to the increased degrees of freedom the number of parallel environment steps per second is reduced
from 700K for Ant to 200K for Humanoid as shown in Figure 4.

5.3 Shadow Hand

100 101 102 103 104 105

Time (sec)

0

2000

4000

6000

R
ew

ar
d

0 2 4 6
Training Steps ⇥108

50000

100000

150000

FP
S

on
A

10
0

(256, 512)
(512, 256)
(1024, 128)
(2048, 64)
(4096, 32)
(8192, 16)
(16384, 8)

(a) Rewards. (b) FPS

Figure 5: Rewards and effective FPS with respect to number of
parallel environments for the shadow hand environment. Best train-
ing time is achieved with both 8192 and 16384 environments and
horizon lengths of 16 and 8 respectively.

Lastly, we experiment with Shadow
Hand [21] to learn to rotate a cube
resting on the palm to a target orienta-
tion using the fingers and the wrist.
This task is challenging due to the
number of DoFs involved and the con-
tacts that are made and broken during
the process of rotation. Our results
with Shadow Hand environment fol-
low similar trends. As the number of
agents is increased, in this case, from
256 to 16384, the training time is re-
duced by an order of magnitude from

5 ⇥ 104 seconds (~14 hours) to 3 ⇥ 103 seconds (~1 hour). We find that the environment reaches
performant dexterity of 10 consecutive successes at reward of 3000 in just 5 minutes.1 Further
performance improvements continue to happen as more experience is collected. Additionally, we find
that the horizon length of 8 for 16384 agents still allows learning re-posing the cube. The maximum
effective frame-rate of 150K number of parallel environment steps per second was achieved with
16384 agents.

6 Experiments with RL Training

We provide details and performance metrics for environments mentioned in Section 4 trained using a
PPO implementation that operates on vectorised environments.

6.1 Locomotion environments

Ant The Ant [19] model has four legs with two degrees of freedom per leg. On A100 with 4096
agents simulated in parallel we find that ant can learn to run and achieve a reward above 3000 in just
20 seconds, and fully converge in under 2 minutes. The average simulation performance achieved
during training is 540K environment steps per second. The results are shown in Figure 6(a). For
details of the reward function and the observations used, we refer to Appendix A.2.1.

Humanoid The Humanoid environment [7] has 21 DOFs and on a A100 with 4096 agents simulated
in parallel we can train it to run — a reward threshold of 5000 — in less than 4 minutes. This is 4x
faster than our previous results in [13] obtained using the same threshold. As shown in Figures 4,
we achieve peak performance for this environment at 4096 agents. Figure 6(b) shows the evolution
of reward as a function of time. The reward function and the observations used are described in
Appendix A.2.1.

Ingenuity We train a simplified model of NASA’s Ingenuity helicopter [17] to navigate to a target
that periodically teleports to different locations. The environment with trained with 4096 agents and
achieves a reward of 5000 in just under 30 seconds. Forces are applied directly to the two rotors on
the chassis, rather than simulating aerodynamics. We use a martian gravity of -3.721 m/s2.

ANYmal Robot Locomotion ANYmal [5] is a four-legged dog-like robot, and has been used for
experiments on navigation of rough and variable terrain. The task is to follow target X, Y, and yaw
base velocities while minimizing joint torques. The target velocities are randomized at each reset and
are provided as observations alongside the positional and angular velocities of the base, the measured
gravity vector, most recent actions, and DOF positions and velocities. With 4096 agents simulating in
parallel, we can train robot in under 2 minutes. The reward function is defined in A.2.2

1The experiments used Shadow Hand Standard variant as explained in Section 6.4.1.

5



0 25 50 75 100 125
Time (sec)

0

2000

4000

6000

8000

R
ew

ar
d

Steps (millions)0 65

(a) Ant

0 500 1000 1500
Time (sec)

0

2000

4000

6000

8000

R
ew

ar
d

Steps (millions)0 327

(b) Humanoid

0 20 40 60
Time (sec)

0

1000

2000

3000

4000

5000

R
ew

ar
d

Steps (millions)0 32

(c) Ingenuity

0 50 100 150 200
Time (sec)

0

5

10

15

R
ew

ar
d

Steps (millions)0 65

(d) ANYmal

Figure 6: Locomotion environments and the corresponding reward curves.

ANYmal Sim-to-real on Uneven Terrain In addition to the simple flat terrain environment, we
have developed a rough terrain locomotion task for ANYmal and transferring trained policies to the
real robot. The robot learns to walk on uneven surfaces, slopes, stairs and obstacles.

Figure 7: Trained policy for ANYmal on rough terrain
tested in simulation and on the real robot.

In addition to the observations of the flat terrain,
it receives terrain height measurements around
the robot’s base. For sim-to-real transfer we
extend the reward function, add noise to the ob-
servations, randomize the friction coefficient of
the ground, randomly push the robots during the
episode and add an actuator network to the simu-
lation. Following the approach used in [10], the
actuator network is trained to model the com-
plex dynamics of the series elastic actuators of

the real robot. We used curriculum - the robots start to learn on simple versions of the terrains,
and when they are able to solve a certain level the difficulty is automatically increased. With 4096
environments, we can train the full task and transfer to the real robot in under 20 minutes.

6.2 Humanoid Character Animation

We evaluate the performance of Isaac Gym on adversarial imitation learning tasks using an imple-
mentation of adversarial motion priors (AMP) [23]. This technique enables physically simulated
humanoid character to imitate complex behaviors from reference motion data. Instead of a manually
engineered imitation objective, as is commonly used in prior systems [22],

Figure 8: Humanoid character trained using AMP to
imitate a spin-kick.

AMP learns an imitation objective using an ad-
versarial discriminator trained to differentiate
between motion from the dataset and motions
produced by the policy. Our character is mod-
elled as a 34-DOF humanoid, and all motion
clips are recorded from human actors using mo-
tion capture. Table 8 in Section A.2.2 details the
observation features.

The adversarial training process enables the char-
acter to closely imitate a diverse corpus of mo-
tions, ranging from common locomotion behav-
iors, such as walking and running, to more ath-
letic behaviors, such as spin-kicks and dancing.
Effective policies can be learned with approx-

imately 39 million samples, requiring approximately 6 minutes with 4096 environments. The
implementation provided by Peng et al., 2021 [23] requires about 1 day (30 hours) on on 16 CPU

6



cores to simulate a similar number of samples in PyBullet. Therefore, Isaac Gym provides 300x or
2.48 orders of magnitude improvement in the training time.

6.3 Franka Cube Stacking

0 1000 2000
Time (sec)

0

1000

2000

3000

R
ew

ar
d

Steps (millions)0 786

Figure 9: The Franka Cube Stacking environment and
the corresponding reward curves.

We use 16384 agents to train a Franka robot to
stack a cube on top of an other. In this envi-
ronment, we use a slightly different choice of
action space, Operation Space Control (OSC),
for learning. OSC [11] is a task-space com-
pliant controller that has been shown to enable
faster policy learning compared to joint-space
controllers [33] and learn contact-rich tasks
[16]. We obtain convergence with this controller
in under 25 minutes. Figure 9 shows the training

results. More details about using (differentiable) OSC control for solving challenging robotics tasks
can be found in [31]

6.4 Robotic Hands

Figure 10: Three in-hand manipulators implemented in Isaac Gym: Shadow Hand, Trifinger, and Allegro

Large-scale simulation has the ability to solve not just individual instances but whole classes of
problems in robotics, by leveraging the generality of the model-free reinforcement learning frame-
work. Dexterous manipulations is one of the most challenging problems in robotics. To show the
performance of our simulator and the ability to realistically model contact we implemented 3 different
hand training environments. Firstly, the Shadow Dexterous Hand[20]. We follow the standard formu-
lation where policy and value function both receive the same input as well as OpenAI observations
with asymmetric formulation and domain randomisation from [21]. Secondly, the TriFinger robot
[32], which shows the ability to do 6-DoF manipulation by reposing the cube to a desired position
and orientation, a task which has previously shown to be challenging for model-free reinforcement
learning [4]. We use asymmetric actor-critic and domain randomisation for TriFinger and demonstrate
sim-to-real transfer on a real robot. Finally, we reuse system from the Shadow Hand to the Allegro
hand [26] with minimal changes to show the generality of our approach. These three environments
are depicted in Figure 10 and the corresponding reward curves in Figure 11.

6.4.1 Shadow Hand

As mentioned, the task with Shadow Hand is to manipulate the cube to achieve a specific target
orientation and is inspired by OpenAI et al. [21]. We train with multiple variants on the Shadow
Hand environment and describe them below:

Shadow Hand Standard In this setting, we use a standard formulation for training where the
policy and the value function use feed forward networks and receive the same input observations.
The default observations we used for the Shadow Hand Standard include joint position, velocities,
forces, force-torque sensors reading from each fingertip, manipulated object position and orientation,
linear and angular velocities, goal orientation, relative rotation between the current object and target
rotations, actions applied on the previous step. For a detailed overview of observation and reward,
see Appendix A.4. Also note that this variant does not use any randomizations.

Shadow Hand OpenAI We also reproduce results with OpenAI Shadow Hand experiments in
Isaac Gym with observations used in dexterity work from OpenAI et al. [21]. A key difference

7



0 2000 4000 6000
Time (sec)

0

2000

4000

6000

8000

R
ew

ar
d

Steps (millions)0 393

(a) SH OpenAI FF

0 1000 2000 3000 4000
Time (sec)

0

2000

4000

6000

R
ew

ar
d

Steps (millions)0 655

(b) SH Standard

0 1000 2000 3000
Time (sec)

0

1000

2000

3000

4000

R
ew

ar
d

Steps (millions)0 655

(c) Allegro

0 25000 50000 75000
Time (sec)

2500

5000

7500

10000

12500

15000

R
ew

ar
d

Steps (millions)0 4194

(d) TriFinger

Figure 11: Reward curves for the three in-hand manipulation environments implemented in Isaac Gym. These
results are obtained with (a) Showdow Hand OpenAI FF (b) Shadow Hand Standard (c) Allegro and (d) TriFinger.
Shadow Hand OpenAI and TriFinger are trained with asymmetric actor-critic and domain radomisation while
Shadow Hand Standard and Allegro are trained with standard observations and symmetric actor-critic with no
domain randomisation.

between this and the Shadow Hand Standard variant is that it uses asymmetric observations. The
policy receives only the input observations that are possible to obtain in the real world settings while
the value function receives the same observations in addition to the other privileged information
available from the simulator. This variant should make it possible to transfer the policy to the real
world, mimicking the setup in [21]. The observations for the policy and value function are provided
in Table 11. We experiment with both feed forward networks (SH OpenAI FF) and LSTMs (SH
OpenAI LSTM). The LSTM networks are trained with a sequence length of 4. It is worth noting
that only networks trained with OpenAI observations use domain randomisation to closely match the
results in OpenAI dexterity work [21].

0 10000 20000
Time (sec)

0

10

20

30

40

C
on

se
cu

tiv
e

Su
cc

es
s

Steps (millions)0 1054

(a) SH OpenAI LSTM

0 2000 4000 6000
Time (sec)

0

10

20

30

C
on

se
cu

tiv
e

Su
cc

es
s

Steps (millions)0 393

(b) SH OpenAI FF

0 1000 2000 3000 4000
Time (sec)

0

5

10

15

20

25

C
on

se
cu

tiv
e

Su
cc

es
s

Steps (millions)0 655

(c) SH Standard

0 1000 2000 3000
Time (sec)

0.0

2.5

5.0

7.5

10.0

12.5

C
on

se
cu

tiv
e

Su
cc

es
s

Steps (millions)0 655

(d) Allegro Hand Standard

Figure 12: Consecutive successes per episode for (a) Shadow Hand with OpenAI observation and LSTMs, (b)
Shadow Hand with OpenAI observation and feed forward networks (c) Shadow Hand with Standard observations
and (d) Allegro Hand with Standard observations. Shadow Hand Standard and Allegro Hand Standard both use
feed forward networks for policy and value functions.

Randomizations For domain randomization we closely followed the approach proposed in [21]
and applied correlated and uncorrelated noise to observations, actions, as well as randomized cube
size and all the key physics properties – masses, inertia tensors, friction, restitution, joint limits,
stiffness and damping. Full details of these are available in Appendix A.4.1.

Figure 11(a), (b) and (c) show the reward curves for various settings we used for Shadow Hand.
Shadow Hand Standard — trained with no randomization and uses symmetric actor critic setting
with a feed forward network — is the fastest to reach a reward of 6000. This setting achieves 20
consecutive successes in under 35 minutes. Important to remember that this setting is not suitable
for sim-to-real transfer as it includes some observations that may not be directly available in the
real world. We now focus on experiments with OpenAI observations and asymmetric feed-forward
actor-critic. This setting is suited for sim-to-real transfer and the policy uses only the observations
that are possible to obtain in the real world. As shown in Figure 12(b), we achieved more than 20
consecutive successes in less than 1 hour. In contrast, for the same performance it takes 30 hours
on the OpenAI setup consisting of CPU based simulation and training setup running MuJoCo [30]
simulator on a cluster of 384 16-core CPUs with 6144 CPU cores in total and using 8 NVIDIA V100
GPUs for training. In Figure 12(a) we show that using LSTM networks, the performance increases
and we can reach 40 consecutive successes within 3 hours while OpenAI et al. [21] achieve same

8



performance in ~20 hours. Since OpenAI et al. [21] show results only with 1 seed, comparing their
result with our best seed we note that 40 consecutive successes with LSTM experiments can be
achieved in just 2.5 hours. We provide the results for Shadow Hand OpenAI experiment with success
tolerance of 0.1 in the Appendix A.4.

6.4.2 TriFinger

0 25000 50000 75000
Time (sec)

2500

5000

7500

10000

12500

15000

R
ew

ar
d

Steps (millions)0 4194

(a) Reward

0 20000 40000 60000 80000
Time (sec)

0

20

40

60

Su
cc

es
s

R
at

e
(%

)

Steps (millions)0 4194

(b) Success Rate

Figure 13: TriFinger reward and success rate.

The TriFinger manipulation task, originating in
[32], involves picking a cube lying on a flat sur-
face and repositioning it to a desired 6-degrees-
of-freedom pose. The manipulator has 3 fingers
each with three degrees of freedom. In [3], it
was shown that Isaac Gym training combined
with Domain Randomization allows sim-to-real
transfer. The environment is shown in Figure
10. We show the reward and success rate in sim-
ulation in Figure 13. [3] transfer results from
simulation to the real world and note that suc-

cess rate in the real world is 55%. We refer to [3] for more detailed analysis. In particular, this
example shows the ability of policies learned using Isaac Gym’s physics to generalize to the real
world. It is worth noting that the robot is situated in a different location and therefore the sim-to-real
transfer was done remotely.

6.4.3 Allegro Hand

We learn cube orientation with Allegro Hand and use the same reward as for the Shadow Hand as well
similar observation scheme, with the only difference — smaller number of observations because of
the different number of fingers in Allegro Hand — that it has 4 fingers instead of 5 and fewer degrees
of freedom as a result, shown in Appendix A.2.3. Figure 11(d) shows the reward curves for Allegro
Hand and Figure 12(d) shows consecutive successes achieved. Interestingly, despite having fewer
degrees of freedom this hand does not achieve as high consecutive successes as Shadow hand. This is
because the wrist is fixed and fingers are slightly longer. We observed in Shadow hand experiment
that having a movable wrist allows for better manipulation when reorienting the cube.

7 Limitations

A number of limitations and constraints exist with our current implementation. Maximum acceleration
of the training process can be achieved only when simulating thousands of environments in parallel for
challenging tasks. For simpler tasks or fewer environments, GPU accelerated end-to-end simulation
may provide only a minor performance improvement, or none at all.

Also, in some cases, fully deterministic simulation of all environments may not be possible. While
the experiments we describe above are deterministic on the same system across multiple runs, we
have observed non-deterministic training when changing scale and mass at run-time in the Shadow
Hand environment. Due to GPU work scheduling, some run-time changes to simulation parameters
can alter the order in which operations take place, as environment updates can happen while the
GPU is doing other work. Because of the nature of floating point numeric storage, any alteration
of execution ordering can cause small changes in the least significant bits of output data, leading to
divergent execution over the simulation of thousands of environments and simulation frames. To
avoid this limitation, we randomize scale and mass at startup, but do not re-randomize these specific
parameters at reset. We still have excellent coverage of the randomization range due to the fact that
many thousands of environments are used. Finally, using our current tensor API it’s not possible to
add new actors into an already-running simulation. We expect to address many of these constraints in
the future.

8 Social Impact

Isaac Gym enables researchers with only a local workstation to run experiments that were previously
possible only with expensive, energy intensive clusters. We hope that the acceleration it enables

9



for RL training will lower barriers to entry for RL research, allowing for wider participation by
previously underrepresented groups. Energy usage for training existing environments should also
decrease dramatically. By our estimates, training the OpenAI ShadowHand task on GPU with Isaac
Gym consumes about 1/300 the electricity required to train vs OpenAI’s CPU version. The downside
risk of efficiency improvements is that we may encourage increased use of energy for training more
complex RL tasks, or through greater uptake of RL research in the research community. We also
need to consider the long term impact that improved robotics may have on the automation of tasks
previously only possible with human labour. We hope that these efforts will reduce the need to
put humans in dangerous situations, ultimately saving lives, but there is also potential for worker
displacement.

Acknowledgments and Disclosure of Funding

We would like to thank the following for additional hard work helping us with this work.

Jonah Alben, Rika Antonova, Ayon Bakshi, Dennis Da, Shoubhik Debnath, Clemens Eppner, Animesh
Garg, Renato Gasoto, Isabella Huang, Andrew Kondrich, Rev Lebaredian, Qiyang Li, Jacky Liang,
Denys Makoviichuk, Brendon Matusch, Hammad Mazhar, Mayank Mittal, Adam Moravansky,
Yashraj Narang, Fabio Ramos, Andrew Reidmeyer, Philipp Reist, Tony Scudiero, Mike Skolones,
Balakumar Sundaralingam, Liila Torabi, Cameron Upright, Zhaoming Xie, Winnie Xu, Yuke Zhu,
and the rest of the NVIDIA PhysX, Omniverse, and robotics research teams. We also thank Jason
Peng and Josiah Wong for the help in AMP and Franka Cube Stacking experiments.

This work was fully funded by NVIDIA Corporation.

References
[1] O. Ahmed, F. Träuble, A. Goyal, A. Neitz, M. Wüthrich, Y. Bengio, B. Schölkopf, and S. Bauer.

CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning.
CoRR, abs/2010.04296, 2020. URL https://arxiv.org/abs/2010.04296.

[2] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al. Solving Rubik’s Cube with a Robot Hand. arXiv
preprint arXiv:1910.07113, 2019.

[3] A. Allshire, M. Mittal, V. Lodaya, V. Makoviychuk, D. Makoviichuk, F. Widmaier, M. Wuthrich,
S. Bauer, A. Handa, and A. Garg. Transferring Dexterous Manipulation from GPU Simulation
to a Remote Real-World TriFinger. CoRR, 2021.

[4] Anonymous. Transferring dexterous manipulation from GPU simulation to a remote real-
world trifinger. In Submitted to 5th Annual Conference on Robot Learning, 2021. URL
https://openreview.net/forum?id=faXIE2kpfrv. under review.

[5] Anybotics. Anymal model, 2019. URL https://www.anybotics.com.

[6] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning, 2016. URL http://pybullet. org, 2016.

[7] Deepmind. Humanoid model, 2020. URL https://github.com/deepmind/dm_control/

blob/master/dm_control/suite/humanoid.xml.

[8] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax - A
Differentiable Physics Engine for Large Scale Rigid Body Simulation, 2021. URL http:

//github.com/google/brax.

[9] M. Hutter, C. Gehring, D. Jud, A. Lauber, D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie,
P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, and M. Höpflinger. Anymal
- a highly mobile and dynamic quadrupedal robot. (IROS), 2016.

[10] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learning
Agile and Dynamic Motor Skills for Legged Robots. Science Robotics, Jan 2019.

10

https://arxiv.org/abs/2010.04296
https://openreview.net/forum?id=faXIE2kpfrv
https://www.anybotics.com
https://github.com/deepmind/dm_control/blob/master/dm_control/suite/humanoid.xml
https://github.com/deepmind/dm_control/blob/master/dm_control/suite/humanoid.xml
http://github.com/google/brax
http://github.com/google/brax


[11] O. Khatib. A unified approach for motion and force control of robot manipulators: The
operational space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 1987.
doi: 10.1109/JRA.1987.1087068.

[12] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa, M. Stilman, and C. K. Liu.
Dart: Dynamic animation and robotics toolkit. Journal of Open Source Software, 2018.

[13] J. Liang, V. Makoviychuk, A. Handa, N. Chentanez, M. Macklin, and D. Fox. Gpu-accelerated
robotic simulation for distributed reinforcement learning. In Conference on Robot Learning.
PMLR, 2018.

[14] M. Macklin, K. Storey, M. Lu, P. Terdiman, N. Chentanez, S. Jeschke, and M. Müller. Small
steps in physics simulation. In Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’19, New York, NY, USA, 2019. Association for
Computing Machinery. doi: 10.1145/3309486.3340247. URL https://doi.org/10.1145/

3309486.3340247.

[15] D. Makoviichuk and V. Makoviychuk. RL Games, 2021. URL https://github.com/

Denys88/rl_games/.

[16] R. Martín-Martín, M. A. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg. Variable impedance
control in end-effector space: An action space for reinforcement learning in contact-rich tasks,
2019.

[17] NASA. Ingenuity helicopter visual 3d model courtesy of nasa, 2020. URL https://mars.

nasa.gov/resources/25043/mars-ingenuity-helicopter-3d-model/.

[18] NVIDIA. Nvidia PhysX, 2020. URL https://developer.nvidia.com/physx-sdk.

[19] OpenAI. Ant model, 2020. URL https://github.com/openai/gym/blob/master/gym/

envs/mujoco/assets/ant.xml.

[20] OpenAI. Shadow hand, 2020. URL https://github.com/openai/robogym/tree/

master/robogym/assets/xmls/robot/shadowhand.

[21] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. W. Pachocki,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin,
P. Welinder, L. Weng, and W. Zaremba. Learning dexterous in-hand manipulation. CoRR,
abs/1808.00177, 2018. URL http://arxiv.org/abs/1808.00177.

[22] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne. Deepmimic: Example-guided deep
reinforcement learning of physics-based character skills. ACM Trans. Graph., 37(4), July 2018.
doi: 10.1145/3197517.3201311.

[23] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa. AMP: Adversarial Motion Priors
for Stylized Physics-Based Character Control. ACM Trans. Graph., 2021.

[24] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric actor critic
for image-based robot learning. CoRR, 2017. URL http://arxiv.org/abs/1710.06542.

[25] E. Rohmer, S. P. Singh, and M. Freese. V-rep: A versatile and scalable robot simulation
framework. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1321–1326. IEEE, 2013.

[26] ROS. Allegro hand, 2020. URL http://wiki.ros.org/allegro_hand_ros.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms, 2017.

[28] R. Tedrake and the Drake Development Team. Drake: Model-based design and verification for
robotics, 2019. URL https://drake.mit.edu.

[29] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for
transferring deep neural networks from simulation to the real world. CoRR, abs/1703.06907,
2017. URL http://arxiv.org/abs/1703.06907.

11

https://doi.org/10.1145/3309486.3340247
https://doi.org/10.1145/3309486.3340247
https://github.com/Denys88/rl_games/
https://github.com/Denys88/rl_games/
https://mars.nasa.gov/resources/25043/mars-ingenuity-helicopter-3d-model/
https://mars.nasa.gov/resources/25043/mars-ingenuity-helicopter-3d-model/
https://developer.nvidia.com/physx-sdk
https://github.com/openai/gym/blob/master/gym/envs/mujoco/assets/ant.xml
https://github.com/openai/gym/blob/master/gym/envs/mujoco/assets/ant.xml
https://github.com/openai/robogym/tree/master/robogym/assets/xmls/robot/shadowhand
https://github.com/openai/robogym/tree/master/robogym/assets/xmls/robot/shadowhand
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1710.06542
http://wiki.ros.org/allegro_hand_ros
https://drake.mit.edu
http://arxiv.org/abs/1703.06907


[30] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012.

[31] J. Wong, V. Makoviychuk, A. Anandkumar, and Y. Zhu. Oscar: Data-driven operational space
control for adaptive and robust robot manipulation. In arXiv preprint arXiv:2110.00704, 2021.

[32] M. Wüthrich, F. Widmaier, F. Grimminger, J. Akpo, S. Joshi, V. Agrawal, B. Hammoud,
M. Khadiv, M. Bogdanovic, V. Berenz, J. Viereck, M. Naveau, L. Righetti, B. Schölkopf, and
S. Bauer. TriFinger: An Open-Source Robot for Learning Dexterity. CoRR, abs/2008.03596,
2020. URL https://arxiv.org/abs/2008.03596.

[33] Y. Zhu, J. Wong, A. Mandlekar, and R. Martín-Martín. robosuite: A modular simulation
framework and benchmark for robot learning, 2020.

12

https://arxiv.org/abs/2008.03596

	Contributions
	Introduction
	Physics Simulation
	Environments
	Characterising Simulation Performance
	Ant
	Humanoid
	Shadow Hand

	Experiments with RL Training
	Locomotion environments
	Humanoid Character Animation
	Franka Cube Stacking
	Robotic Hands
	Shadow Hand
	TriFinger
	Allegro Hand


	Limitations
	Social Impact
	Appendix
	Physics Simulation
	Tendons
	Fixed Tendons

	Observations & Rewards
	Ant and Humanoid environments
	Locomotion environments
	Robotic Hands

	Hyperparamters for Training PPO
	Shadow Hand Details
	Randomizations
	OpenAI Observations



