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Abstract
The idea of value-aware model learning, that mod-
els should produce accurate value estimates, has
gained prominence in model-based reinforcement
learning. The MuZero loss, which penalizes a
model’s value function prediction compared to
the ground-truth value function, has been utilized
in several prominent empirical works in the liter-
ature. However, theoretical investigation into its
strengths and weaknesses is limited. In this paper,
we analyze the family of value-aware model learn-
ing losses, which includes the popular MuZero
loss. We show that these losses, as normally
used, are uncalibrated surrogate losses, which
means that they do not always recover the cor-
rect model and value function. Building on this
insight, we propose corrections to solve this is-
sue. Furthermore, we investigate the interplay
between the loss calibration, latent model architec-
tures, and auxiliary losses that are commonly em-
ployed when training MuZero-style agents. We
show that while deterministic models can be suf-
ficient to predict accurate values, learning cali-
brated stochastic models is still advantageous.

1. Introduction
In model-based reinforcement learning, an agent collects in-
formation in an environment and uses it to learn a model of
the world. This model is used to improve value estimation
and policy learning (Sutton, 1990; Deisenroth & Rasmussen,
2011; Hafner et al., 2020; Schrittwieser et al., 2020). How-
ever, as environment complexity increases, learning a model
becomes more and more challenging. This leads to model
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errors which propagate to value function learning (Schnei-
der, 1997; Kearns & Singh, 2002; Talvitie, 2017; Lambert
et al., 2020). In such cases, deciding what aspects of the
environment to model is crucial.

The paradigm of value-aware model learning
(VAML) (Farahmand et al., 2017) and value-
equivalence (Grimm et al., 2020; 2021) addresses
this by training models that lead to accurate value estima-
tion. Prominent value-aware model learning approaches are
MuZero (Schrittwieser et al., 2020) and IterVAML (Farah-
mand, 2018). The MuZero loss has been shown to perform
well in discrete (Schrittwieser et al., 2020; Ye et al., 2021)
and continuous control tasks (Hansen et al., 2022; 2024),
but has received little theoretical investigation. On the other
hand, IterVAML is a theoretically motivated algorithm
but not commonly used in empirical work. We show
that MuZero and IterVAML can be unified in a family
of losses, which we term (m, b)-Value-Aware Model
Losses ((m, b)-VAML). The name stresses the two core
hyperparameters: the model rollout steps, m, and steps
used to estimate the bootstrapped value function target, b.

The (m, b)-VAML losses are used as surrogate losses in
place of other value- or model learning losses. Therefore, it
is important to ask whether they are calibrated (Steinwart
& Christmann, 2008). A calibrated loss does not lead to
suboptimal minima when the function class includes optimal
functions for the original target loss.

Research question: This paper has two parts, each with a
theoretical and empirical section. We answer two questions
about the (m, b)-VAML family: (a) What variants of the
(m, b)-VAML losses are well-calibrated to recover correct
models and value functions? (b) Do we observe problems
with uncalibrated losses when using standard architectures,
especially deterministic latent-space models?

Contributions: As our main theoretical contribution, we
mathematically analyze the family of (m, b)-VAML algo-
rithms. We prove that all sampled-based loss variants from
this family are uncalibrated when used with a stochastic
environment model. Minimizing the losses with regard to
data samples will result in value functions and models with
lower variance than the correct ground-truth functions, even
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if the dataset adequately covers the state-action space. To
counter this issue, we derive a novel loss variant.

In the second part, we address issues arising from the way
current algorithms in the (m, b)-VAML family are com-
monly implemented. We prove that a stochastic model class
is not necessary to learn a single-step decision-equivalent
model in stochastic environments. This validates the prac-
tice of primarily using deterministic models in empirical
work (Oh et al., 2017; Schrittwieser et al., 2020; Hansen
et al., 2022). Empirically we find that using stochastic mod-
els can still lead to improved performance, although this is
environment-dependent.

2. Background
Reinforcement Learning: We consider a standard Markov
Decision Process (MDP) (Puterman, 1994) (X ,A,P, r, γ),
with state space X , action space A, transition kernel
P(x′|x, a), reward function r : X × A −→ R, and
discount factor γ ∈ [0, 1). A policy π(a|s) maps a
state to a distribution over actions. The goal of a re-
inforcement learning agent is to find a policy maximiz-
ing the expected discounted infinite horizon reward, i.e.,
maxπ Eπ,P [

∑∞
t=0 γ

tr(xt, at) |x0].
The value function is defined as the expected return of
the policy π: V π(x) = Eπ,P

[∑
t≥0 γ

tr(xt, at)|x0 = x
]
.

The policy-conditioned transition kernel is Pπ(x′|x) =∫
P(x′|x, a)π(a|x)da. The value is the unique fixed point

of the Bellman operator

[TPπV ](x) = Eπ [r(x0, a0) + γEPπ [V (x1)] |x0 = x] .

This operator can be extended to a multi-step version as

[T b
PπV ](x) = Eπ,P

[
b−1∑
n=0

γnr(xn, an) + γbV (xb)
∣∣∣x0 = x

]
.

We also define [T 0
PπV ](x) = V (x).

Model-based RL: An environment model is a function that
approximates the transition kernel.1 Learned models are
used to augment RL algorithms in several ways. For a
comprehensive survey, refer to Moerland et al. (2023). In
this paper, we focus on value learning with model data,
which is commonly referred to as Dyna (Sutton, 1990).

We use p̂ to refer to a stochastic model, and f̂ for determinis-
tic models. When a model is used to predict the observation
x′ from x, a (such as the model used in MBPO (Janner
et al., 2019) we call it an observation-space models. Alter-
natively, latent-space models of the form p̂(z′|z, a) are used,

1In this paper, we will generally use the term model to refer to
an environment model, not to a neural network, to keep consistent
with the reinforcement learning nomenclature.

where z ∈ Z is a representation of a state x ∈ X given by
φ : X → Z . Observation-space models predict next states
in the representation of the environment, while latent-space
models reconstruct learned features of these states.

The notation x(n) refers to the n-th step in a rollout starting
in state x in the environment. We will use x̂(n) to refer
to samples from the n-th step model prediction and write
Ep̂m [·] as a shorthand for Ex(m)∼p̂(m)(·|x) [·].

3. The Value-Aware Model Learning
framework

The losses of the decision-aware learning framework share
the goal of finding models that provide good value func-
tion estimates. Instead of simply learning a model using
maximum likelihood estimation, the losses are based on
differences in value prediction.

3.1. Iterative Value Aware Model Learning

Iterative Value Aware Model Learning (IterVAML) (Farah-
mand, 2018) computes the difference between the expected
value under the model and samples in the environment

LPπ

IterVAML,m (p̂, V |x)

=

∣∣∣∣Ep̂m

[
V
(
x̂(m)

)]
−
[
EPπ

[
V
(
x(m)

)]]
sg

∣∣∣∣2
≈
∣∣∣∣ 1K

K∑
k=1

[
V
(
x̂
(m)
k

)]
−
[
V
(
x(m)

)]
sg

∣∣∣∣2.
(1)

We will use LIterVAML,m to refer to the expectation-based
version, and L̂k

IterVAML,m to refer to the sampling-based
version. [·]sg denotes the stop-gradient operation. To re-
duce notational complexity, we drop the action dependence
in all following propositions; all results hold without loss
of generality for the action-conditioned case as well. The
expectation-based version of the IterVAML loss has an im-
portant relationship to the error of computing the model’s
Bellman operator compared to the true environments Bell-
man operator.

Proposition 1. Farahmand (2018) Let Pπ be the policy-
conditioned transition kernel of an MDP and let V :
X → R be a function. Let p̂(·|x) be a model so that
LPπ

IterVAML,1 (p̂, V |x) = 0. Then [TPπV ] (x) = [Tp̂V ] (x).

We give a short proof in Subsection A.1

Intuitively, a model achieving 0 loss can be used instead of
the ground truth environment when computing the Bellman
operator. The set of models that achieve 0 IterVAML error
is equal to the set of value-equivalent models for the value
estimate V̂ (Grimm et al., 2021).
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...

... Model trajectory

Environment trajectory
L̂Pπ

m,b

(
p̂, V̂ |x

)
=

∣∣∣∣V̂ (x̂(m)
)

︸ ︷︷ ︸
model

−
[
[T b

Pπ V̂ ]
(
x(m)

)
︸ ︷︷ ︸

environment

]
sg

∣∣∣∣2

Figure 1. Sketch of (m, b)-VAML. The loss is computed from an m-step model and a (m + b)-step environment trajectory. It is the
difference between the estimated value of the m-th model state, and the b-step Bellman operator starting from the m-th environment state.

3.2. The (m,b)-VAML Family

The MuZero loss (Schrittwieser et al., 2020) was introduced
to unify the value function and model learning components
of an MBRL algorithm. It can be interpreted as a variation
of the IterVAML loss that uses a single sample estimate of
the Bellman Operator and a bootstrapped target estimate. To
unify the losses, we present them in a single equation with
two important hyperparameters: m, the number of steps
in the trajectory that the loss is computed over, and b, the
number of steps for the multi-step Bellman operator. We
refer to this unified family of losses as (m, b)-Value Aware
Model Losses (VAML)

L̂Pπ

m,b

(
p̂, V̂ |Vtar, x

)
= E

[∣∣∣∣V̂ (x̂(m)
)
−
[
[T b

PπVtar]
(
x(m)

)]
sg

∣∣∣∣2
∣∣∣∣∣x
]

(2)

where Vtar is a target network (Mnih et al., 2013) and x(m)

and x̂(m) are sampled independently from Pπ and p̂ respec-
tively. Note that samples from the real environment are used
to approximate [T b

PπVtar]. The loss function and the rela-
tion of the model and environments rollout are visualized in
Figure 1.

Several works use variations of this loss: The original
MuZero algorithm (Schrittwieser et al., 2020) and follow-up
work (Ye et al., 2021; Antonoglou et al., 2022) use m ≥ 1
and b ≥ 1. In continuous control, m ≥ 1, b = 1 has been
used in the TD-MPC line of work (Hansen et al., 2022;
2024). When using only a single sample k = 1, the sample-
based IterVAML loss is equal to L̂Pπ

m,0. Note that the (m, b)-
loss can easily be extended to a k sample variant analogous
to the IterVAML loss, which we will use later. We dropped
the summation over k samples here to simplify the (already
dense) notation. Finally, regular model-free TD learning
corresponds to m = 0, b ≥ 1.

4. Analysis of decision-aware losses in
stochastic environments

The goal of learning in MBRL is to recover an (approxi-
mately) optimal model and to learn a correct value function.
As we have shown, minimizing the IterVAML loss perfectly
results in a model that leads to a correct Bellman Operator.
However, in practice, the inner expectation of the IterVAML
loss has to be replaced by a sampling-based approximation.
In addition, (m, b)-VAML is used in the MuZero algorithm
to update the value function directly in addition to the model.
We show when this leads to learning correct models and
value functions asymptotically. An overview of our conclu-
sions can be found in Table 1.

4.1. Calibration of surrogate loss functions

Formally, we ask whether the surrogate (m, b)-VAML is
calibrated. Intuitively, a calibrated surrogate loss does not
select a suboptimal function for the target loss. Formally,
we require that the surrogate loss is not perfectly minimized
by a function that does not perfectly minimize the target
loss. Therefore, we call losses that do not have this prop-
erty minimum-uncalibrated losses, or simply uncalibrated
outside of formal statements. We borrow the concept from
Steinwart & Christmann (2008), however, we use a slightly
more restricted definition of uncalibrated here. This means
that all losses which we consider uncalibrated are also un-
calibrated in the definition given in Steinwart & Christmann
(2008), but not vice versa.

Definition 1 (Minimum-uncalibrated surrogate losses). Let
Ltar(f, x, x

(m)) be a loss function defined over samples
from an MDP. Let L̂sur be a surrogate function for the
loss. Let F∗ be a set of (perfect) minima of Ltar so that
Ltar(f

∗, x, x(m)) = 0 for all f∗ ∈ F∗. A surrogate func-
tion is minimum-uncalibrated for the target loss if there
exists an MDP, a function class F with F∗ ⊆ F , and a state
x so that

argmin
f∈F

Ex(m)∼Pπ(·|x)

[
Lsur(f, x, x

(m))
]
̸⊆ F∗.
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An example of minimum-uncalibrated-ness is the double
sampling issue in Bellman Residual Minimization (BRM).
While the target loss is minimized by the ground truth value
function, BRM actually chooses a function that minimizes
the Bellman error and and additional variance term.

We will show that some issues introduced by naively using
(m, b)-VAML can be fixed with a tractable modification to
the loss. We call such cases resolvable.

4.2. Model learning bias with stochastic models

Most prior work uses (m, b)-VAML with deterministic mod-
els. Exceptions are Voelcker et al. (2022) and Antonoglou
et al. (2022), but neither changes the loss functions to
account for the model parametrization. For a stochastic
model class, (m, 0)-VAML is uncalibrated for the target
loss LIterVAML.

We begin with analyzing the loss for m ≥ 1 and b = 0. For
simplicity we assume that Vtar = V̂ .

Proposition 2. Let L̂Pπ

m≥1,0(p̂, V |x, x(m)) be the surrogate
loss for LPπ

IterVAML,m(p̂, V |x). Let P∗ be the set of all dis-
tributions p for which Ep

[
V (x̂(m))

]
= EPπ

[
V (x(m))

]
.

There exist an MDP and a class of distributions P with
Pπ ∈ P∗ ⊆ P so that

Argmin
p̂∈P

Ep̂

[
L̂Pπ

m≥1,0(p̂, V |x, x(m))
]
̸⊆ P∗.

Therefore, L̂model is minimum-uncalibrated.

Proofs for this section can be found in subsubsection A.2.2.
When using samples from a stochastic model to compute the
loss function in Equation 2, we are left with a variance error
term that is closely related to the double-sampling problem

Ep̂[L̂Pπ

1,0 (p̂, V |x)]
= LPπ

IterVAML,1 (p̂, V |x, x′) + Varp̂ (V (x̂)) . (3)

In the classic double-sampling problem, we cannot correct
the variance term as we do not have oracle access to the en-
vironment. Here the issue is our model, and we can generate
multiple samples from it. Therefore, we can estimate this
variance term from samples and correct the loss. This cor-
rection is reminiscent of Antos et al. (2008) but is simpler
to obtain as we only need model samples.

To obtain the correction, we define µ̂m,k
p̂ =

1
k

∑k
i=1 V (x̂

(m)
i ), the empirical estimator of the ex-

pected return in Equation 1. The variance of this estimator

can be estimated as V̂ar
m,k

p̂ = 1
k

∑k
i=1(V (x̂

(m)
i )− µm,k

p̂ )2.
With this we can define a new loss which can be computed
with at least two samples from the model

L̂k
CVAML,m = L̂k

IterVAML,m − V̂ar
i,k

p̂ .

We refer to the loss as Calibrated VAML (CVAML).

Proposition 3. The variance-corrected loss
L̂k
CVAML,m(P̂ , V |x, x(m)) is a calibrated surrogate

loss for LPπ

IterVAML,m(P̂ , V |x, x(m)).

Analogous to the IterVAML case, the sample-based (m, b ≥
1)-VAML loss is an uncalibrated loss for learning a model.

4.3. Value learning bias in stochastic models

We now show that this issue also affects the value function
learning with the MuZero loss. The problem here lies in the
use of the bootstrapped Bellman target together with a multi-
step value rollout. In an MDP, the values of two states x and
y are not guaranteed to be equal (or even particularly close)
just because they share an ancestor state, unless we make
assumptions about the variance of the value function over
successor states. However, the MuZero loss still minimizes
the difference in value functions between these two states.

We show that the MuZero loss therefore is not guaranteed
to recover the correct value function, even when we have
a perfect (stochastic) model. To formalize the issue, we
compare the solution found with (m, b)-VAML with the
regular TD loss function. Note that for this loss, we assume
that x(m) is a fixed sample from the environment, not a
random variable like x(m), with x(m+1) being its successor
state in the ground truth environment. This distinction is
important, as it is exactly what leads to the bias in the
(m, b ≥ 1) loss.

LTD(V̂ |Vtar, x(m), x(m+1), r(m))

=
(
V̂ (x(m))−

[
r(m) + γVtar(x

(m+1))
])2

. (4)

To drive home that this problem is independent of the model
error, we show that the (m, b ≥ 1)-VAML loss is uncali-
brated even if we substitute the ground truth environment
for the learned model, and focus solely on the value learning
component.

Proposition 4. Let LTD(V |Vtar, x(m)) be the target loss,
and let L̂Pπ

m,1(Pπ, V |Vtar, x, x(m),r(m)

) be the surrogate
loss. There exists a set of functions V for any Vtar that
is not a constant function, for which two conditions hold:

1. The set is complete, meaning that [TPπVtar] ∈ V for
some target function Vtar,

2. and,

Argmin
V̂ ∈V

EPπ

[
L̂Pπ

m,1(Pπ, V̂ |Vtar, x, x(m))
]
̸⊆ [TPπVtar].

Therefore, L̂Pπ

m,1 is minimum-uncalibrated.
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IterVAML MuZero Model-free TD
Model Env. (m ≥ 1, b = 0) (m ≥ 1, b ≥ 1) (m = 0, b ≥ 1)
Det. model, det. env calibrated calibrated calibrated
Stoch. model, det. env uncalibrated (resolvable) uncalibrated (for VF updates) calibrated
Det. model, stoch. env calibrated calibrated calibrated
Stoch. model, stoch. env uncalibrated (resolvable) uncalibrated (for VF updates) calibrated
Can update model ✓ ✓ X
Can update VF X ✓ (for det. model) ✓

Table 1. Comparison of the major design choices in the (m, b)-VAML framework. IterVAML and MuZero can be used to update the
model, while MuZero and Model-free TD learning can be used to update the value function. All model-based losses are uncalibrated
when applied to stochastic model classes. In addition, MuZero suffers a bias when used for value function prediction which cannot be
surmounted with an easy modification to the loss function.

The problem in the loss function again depends on the vari-
ance of the value function with regard to the model. Proofs
for this section can be found in subsubsection A.2.3.

To overcome this issue, we can introduce another variance
correction term, similar to L̂CVAML. This retains the advan-
tage that the MuZero loss is used for both model and value
updates. However, as we average over the value prediction
from the model, we only guarantee that

Ep̂

[
V (x̂(m))

]
≈ EPπ

[
[T b

PπVtar](x
(m))

]
, (5)

not that the values for each state are correct. However, these
are necessary for accurate planning or policy improvement.
Therefore, it is still important to use a loss variant with
m = 0 for learning accurate values for each state.

4.4. Discussion of theoretical results

While the problem resulting from the use of stochastic mod-
els is resolvable, the MuZero loss is still insufficient for
learning per state value function with stochastic models.
We observe issues with learning accurate value functions
with the (m ≥ 1, b ≥ 1)-VAML loss even after correctly
calibrating it. If the calibrated loss is used to update the
model, and a standard model-free or model-based value
estimate is used as the value function learning target, the
correct value function can be learned.

Insight 1 (Calibrated losses). To obtain a calibrated
loss, we propose using L̂CVAML to update the model
and a regular model-based or model-free TD loss to
update the value function.

5. Calibration impact on finite state MDPs
To test our findings, we run the (m, b)-VAML losses on
small, finite state Garnet problems (Bhatnagar et al., 2007).
We use the MuZero-style (1, 1)-VAML loss to update both
model and value function, while the IterVAML-style (1, 0)-
VAML loss is only used to train the model, and we use a

regular model-based TD loss to update the value function.
For the baseline, we similarly use a model-based TD loss
together with a KL-based loss.

We use n to denote the size of the state space, k for the
number of successor states in the garnet, and j for the rank
of the model. Every problem is generated by sampling k
successor states for each state xi, and parameterizing the
transitions with weights ωi,j sampled iid from a standard
normal distribution for all successor states xj . The transi-
tion distribution is given by p(x′i|xl) = eωi,l/τ/

∑
i e

ωi,l/τ .
Varying the temperature τ we can interpolate between a
deterministic transition and a uniform one.

The models are parameterized with two learnable matri-
ces φ ∈ Rj×n and ψ ∈ Rj×n so that p̂k(xi|xl) =
softmax(ω̂i,l) = softmax(φ⊤

i ψl). By varying j we create
a low-rank constraint. As Farahmand et al. (2017) shows,
(m, b)-VAML should be used when the model has insuffi-
cient capacity to represent the environment. As a baseline,
we use the model p̂KL,k ∈ argminp̂ KL(p||p̂), which we
approximate with gradient descent. The matrices φ and ψ
are initialized by drawing weights randomly from a normal
distribution with a very small standard deviation.

We focus solely on value estimation in the Garnet MDPs
with a fixed policy to simplify the experimental setup. We
also use the ground truth reward function.

Results: The numerical results are graphed in Figure 2. For
the near-deterministic ground truth environment, we see no
benefit from using a calibrated (m, b)-VAML. We find that
the algorithms are able to exploit the non-linear softmax
function to achieve very accurate models in deterministic
environments. However, even small amounts of stochasticity
prevent this solution.

As the stochasticity increases, we see an advantage for cal-
ibrated losses. (1, 1)-VAML is not able to achieve good
results even in a deterministic environment. As we initial-
ize the models with high entropy, (1, 1)-VAML is unable
to learn a correct value function. This corroborates the
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1Figure 2. Results for the Garnet experiments. In the top row, we show the mean squared error of the value function prediction using
different latent sizes k, over three different temperatures. In the bottom row, we vary the temperature and show results for three values of
k. Shaded regions are bootstrapped confidence intervals of the mean at 95% over 1000 independent problems. With the exception of
deterministic problems (left), the CVAML loss reliably results in the lowest value prediction error.

theoretical finding that the error depends on the model’s
stochasticity and not on the environment.

Calibrated (1, 1)-VAML still struggles in environments with
low stochasticity. We find that the model is prone to get
stuck in local plateaus as it reduces the value function dif-
ference per state faster than the model predictive variance.
This suggests that a (m ≥ 1, 0)-CVAML loss is preferable
with stochastic environments.

6. Stochasticity and auxiliary models
All previous results hold independent of the model archi-
tecture. However, in practice, most implementations of
decision-aware models use deterministic latent model struc-
tures (Schrittwieser et al., 2020; Ye et al., 2021; Hansen
et al., 2022; Antonoglou et al., 2022).

In general, deterministic function approximations cannot
capture the full transition distribution in stochastic envi-
ronments. However, it is an open question whether a de-
terministic latent model can be sufficient for learning a
value-equivalent model, as conjectured by Oh et al. (2017).
We settle this question now.

6.1. Deterministic models for stochastic environments

Showing the existence of a deterministic value-aware model
relies on the continuity of the transition kernel and involved
functions φ and V . These are standard assumptions that

are necessary to prove the existence and measurability of
standard functions such as the value function (Bertsekas &
Shreve, 1978).

Proposition 5. Let X be a compact, connected, metrizable
space. Let p be a continuous kernel from X to probability
measures over X . Let Z be a metrizable space. Consider a
bijective latent mapping ϕ : X → Z and any V : Z → R.
Assume that they are both continuous. Denote VX = V ◦ ϕ.

Then there exists a measurable function f∗ : Z → Z such
that we have V (f∗(ϕ(x))) = Ep

[
VX (x(1))

]
for all x ∈ X .

Furthermore, the same f∗ is a minimizer of the expected
IterVAML loss over any distribution x ∼ ρ

f∗ ∈ argmin
f̂

Eρ,Pπ

[
LIterVAML,1(f̂ , VX |VX , x)

]
.

Proofs for this section can be found in Subsection A.3.

We can conclude that given a sufficiently flexible function
class F , (1, b)-VAML can recover an optimal deterministic
model for value function prediction. Note that our condi-
tions solely ensure the existence of a measurable function;
the learning problem might still be very challenging.

Note that the conditions for our proof here are slightly dif-
ferent than those for our definition of an uncalibrated loss.
Here we show that given a flexible enough function class,
a deterministic model can sufficiently minimize the Iter-
VAML loss. In the previous section, we showed that if the
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function class admits a perfect stochastic model, but not a
perfect deterministic one, the (m, b)-VAML loss will incur a
calibration error. Here we show the conditions under which
a perfect deterministic model exists.

Therefore, it is still important to have a calibrated surro-
gate loss for stochastic models, as many use cases make
stochastic models attractive. For example, a pre-trained
LLM backbone might be used, which is naturally stochastic
due to the sampling strategies used to query it.

6.2. Auxiliary losses for latent-space models

While the original MuZero algorithm only uses the MuZero
loss to update the latent embedding, dynamics model, and
value function estimation, several more recent works add
auxiliary stabilizing losses (Ye et al., 2021; Hafner et al.,
2021; Hansen et al., 2024; Voelcker et al., 2025). These
allow the model to learn meaningful transitions even before
the value function is properly approximated, which helps
e.g. in sparse-reward environments.

Most prior works use some form of Bootstrap-your-own-
latent (BYOL) (Grill et al., 2020) loss, which minimizes
the difference between the next states encoding φ(x(m))
and the model prediction fm(x(0)). In the following we
write (f̂ , φ) = p̂ when we want to highlight the different
components of the learned model.

In the case of linear features, models, and value functions,
recent works have shown that such a loss can greatly aid in
learning meaningful features for value function prediction
(Lyle et al., 2021; Tang et al., 2023; Ni et al., 2024; Voelcker
et al., 2024). When the difference is computed with an L2,
the auxiliary loss is

L̂Pπ

aux,m

(
(f̂ , φ)|x

)
=

∥∥∥∥f̂m(φ(x))−
[
φ(x(m))

]
sg

∥∥∥∥2. (6)

The introduction of a stabilizing loss poses a challenge for
the result in Proposition 5. For a flexible enough model and
embedding function class, the perfect model f∗aux would
predict EPπ [φ(x′)|x]. However, f∗aux only coincides with
the optimal model under the VAML loss if

EPπ

[
V̂ (φ(x(1)))

]
= V̂

(
EPπ

[
φ(x(1))

])
. (7)

This is the case if and only if the value function is affine
in the embedding features φ, which is also referred to as
a linear expectation model (Wan et al., 2019). However,
learning an embedding in which the value function is linear
can be difficult and may not lead to stable model predictions
in complex, high-dimensional environments.

An exception to the use of deterministic models is the ar-
chitecture proposed by Antonoglou et al. (2022). However,

their model and auxiliary loss rely on a biased straight-
through gradient estimation. This introduces complications
for finding the optima of the loss function and model class.

7. Experiments with latent-space models
We examine the impact of the calibrated losses on a sub-
set of DMC environments (Tunyasuvunakool et al., 2020)
encompassing 7 total tasks across the humanoid and dog
domains. These two domains are the most challenging in
the DMC suite, and the standard comparison for current
methods (Voelcker et al., 2025; Nauman et al., 2024).

Architecture and Setup: We present a comparison between
(m, b)-CVAML and (m, b)-VAML families of losses. To
conduct our experiments we use two neural network archi-
tectures for the model, a stochastic and a deterministic latent
model, while keeping the rest of the training setup consistent
for a clean comparison. All experiments are conducted with
latent model architectures composed of an encoder, a latent
dynamics model, and a value and policy function head.

For the stochastic case, the latent models are multivariate,
diagonal Gaussian distributions where mean and variance
are parameterized by the latent network (Chua et al., 2018;
Janner et al., 2019; Paster et al., 2021). In the deterministic
case we simply use a feed-forward network.

Model rollouts are produced by sequentially sampling latent
states from the model conditional on the initial state and an
action sequence using the reparametrization trick.

p̂(ẑ′|z, a) = µ̂(z, a) + σ̂(z, a) · ε, ε ∼ N (0, I) (8)

The auxiliary loss for stochastic models is computed as a
negative log-likelihood of the next states’ latent representa-
tions under the current dynamics model.

Laux,m

(
p̂, φ

∣∣∣x, a(0:m−1), x(m)
)

= − log p̂m
(
φ(x(m))

∣∣∣φ(x), a(0:m−1)
)
, (9)

where a(0:m−1) is a sequence of actions of length m start-
ing from state x(0). In the case of deterministic models,
the auxiliary loss is simply the MSE version introduced in
Equation 7.

The full model loss used is

L̂Pπ

model,m

(
(f̂ , φ), V̂ |x

)
= L̂Pπ

m,b

(
(f̂ , φ), V̂ |x

)
︸ ︷︷ ︸

(m,b)−VAML

+ L̂Pπ

aux,m

(
(f̂ , φ)|x

)
︸ ︷︷ ︸

auxiliary

, (10)

replacing f̂ with p̂ for the stochastic model version.

For training the policy and value function, we follow the
data-mixing protocol suggested by Voelcker et al. (2025).
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Figure 3. Results for the latent-space model experiments. We show the aggregate metrics of the final performance on dog (left) and
humanoid (right) environments, following (Agarwal et al., 2021). Calibrating (1, 1)-VAML leads to a clear improvement in performance
in the humanoid environment, while for (1, 0)-(C)VAML the difference is less noticeable. This is consistent with our theoretical findings
as learning a smaller variance model can be sufficient, but wrong value functions will be learned with a stochastic model when b ≥ 1.

We use both model-generated on-policy and real environ-
ment data from the replay buffer to train a value and policy
head using the (m, b)-VAML loss with a twinned critic
parametrization similar to TD3 (Fujimoto et al., 2018b). At
every timestep, half of the next states in the minibatch are re-
placed with model-simulated states resulting from on-policy
actions, the other half ground-truth environment data. This
means the model influences the value function both through
the encoder and through on-policy model-generated data.

The actions for environment interactions are obtained from
the actor and the environment model using MPC (Hansen
et al., 2022): initialized at the action produced by the ac-
tor for the current state, this algorithm iteratively refines
the action to maximize the expected return. In total our
setup uses the model for training the shared encoder, gener-
ating data for value and policy improvement, and for online
model-based search.

For (m, b)-CVAML, the calibration term is computed by
sampling multiple trajectories from the model and calculat-
ing the means and variances of next-state values produced
by the critic across the different samples. Additional imple-
mentation details are provided in Appendix C.

Results: We plot aggregated performance over 20 random
seeds with 95% CI, estimated with stratified percentile boot-
strap (Patterson et al., 2024). Aggregations of final perfor-
mance over several environments are visualized using the
RLiable library (Agarwal et al., 2021).

The difference in performance is most noticeable between
the (1, 1)-VAML and -CVAML losses on the humanoid
benchmark, as the uncalibrated loss impacts both model
and value function learning in this case. This effect is less
prominent but a trend is still visible with (1, 0)-CVAML,
where only the model learning is affected.

In the humanoid domain, we observe a performance im-
provement when using the calibration with the MuZero-

style loss. The dog domain is less affected by the difference
in the calibration.

In addition to the calibration effect, we observe that prob-
abilistic models outperform deterministic ones in the dog
domain, even though the simulator is deterministic. This
is in line with previous work (Chua et al., 2018; Janner
et al., 2019), as stochastic models can reduce the tendency
of the critic to exploit model errors. However, this advan-
tage seems to be domain-specific and is less pronounced
in the humanoid suite, where deterministic models with a
(1, 0)-VAML loss perform best overall.

Finally, we observe an advantage of (1, 0)-updates over the
(1, 1)-updates. While previous work claimed that IterVAML
is unstable (Lovatto et al., 2020; Voelcker et al., 2022), com-
parisons were not made with SOTA model architectures and
auxiliary tasks. As additional experiments (see Figure 8)
show, the IterVAML loss is stable even without additional
auxiliary losses, although adding the BYOL loss is neces-
sary to achieve non-trivial performance in humanoid tasks.

Insight 2 (Remarks for practitioners). While deter-
ministic models are theoretically sufficient for learn-
ing value-equivalent models, we observe benefits in
some benchmarks from the use of stochastic models.
Using calibrated losses is empirically especially im-
portant for MuZero-style model and value updates.

8. Related work
VAML and MuZero: Farahmand (2018) established Iter-
VAML based on earlier work (Farahmand et al., 2017).
Several extensions have been proposed, such as a VAML-
regularized MSE loss (Voelcker et al., 2022) and a policy-
gradient aware loss (Abachi et al., 2020). Combining Iter-
VAML with latent spaces was first explored by Abachi
et al. (2022), but no experimental results were provided.
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1Figure 4. Sample efficiency curve for both dog (left) and humanoid (right). Per-task normalized return is aggregated over 30 seeds per
environment and 3 tasks for the humanoid domain, and 4 – for the dog domain, with 95% bootstrapped confidence intervals shaded. In
addition to a higher final return, we observe significantly earlier learning for the (1, 0)-(C)VAML on the dog task.

MuZero (Schrittwieser et al., 2020; Ye et al., 2021) is built
based on earlier works that introduce the ideas of learning
a latent model jointly with the value function (Silver et al.,
2017; Oh et al., 2017). However, none of these works in-
vestigate the calibration of the loss function. Antonoglou
et al. (2022) propose an extension to MuZero in stochastic
environments but focus on the model architecture, not the
value function loss. Hansen et al. (2022) and Hansen et al.
(2024) adapted the MuZero loss to continuous control envi-
ronments but did not extend their formulation to stochastic
models. Grimm et al. (2020) and Grimm et al. (2021) con-
sider how the set of value equivalent models relates to value
functions. They are the first to show the close connection
between the notions of value-awareness and MuZero.

Other decision-aware algorithms: Several other works
propose decision-aware model learning algorithms that do
not directly minimize a value function difference. D’Oro
et al. (2020) weigh the samples used for model learning by
their impact on the policy gradient. Nikishin et al. (2021)
uses implicit differentiation to obtain a loss for the model
function with regard to the policy performance measure. To
achieve the same goal, Eysenbach et al. (2022) and Ghugare
et al. (2023) choose a variational formulation. Modhe et al.
(2021) proposes to compute the advantage function resulting
from different models instead of using the value function.
Ayoub et al. (2020) presents an algorithm for selecting mod-
els based on their ability to predict value function estimates
and provide regret bounds with this algorithm.

Learning with suboptimal models: Several works have
focused on the broader goal of using models with errors
without addressing the loss functions of the model. Among
these, some attempt to correct models using information
obtained during exploration (Joseph et al., 2013; Talvitie,
2017; Modi et al., 2020; Rakhsha et al., 2022; 2024), or to

limit interaction with wrong models (Buckman et al., 2018;
Janner et al., 2019; Abbas et al., 2020). Several of these
techniques can be applied together with (m, b)-CVAML
to improve the model and value function learning further.
Finally, we do not focus on exploration, but Guo et al. (2022)
show how auxiliary losses can be used not only to stabilize
learning but also to improve exploration.

9. Conclusions
We theoretically analyze commonly used value-aware losses
such as the MuZero and IterVAML loss and show that
they are uncalibrated surrogate losses. When using (m, b)-
VAML losses, such as the popular IterVAML and MuZero
algorithms, with stochastic environment models, the loss
learns low variance models, even if those do not recover the
correct value function. Building on our proofs, we propose a
novel variant of the loss to stabilize learning with stochastic
environments and evaluate its efficacy in practice.

Our experiments further show that the calibration of the
(m, b)-VAML losses is important for obtaining strong learn-
ing with stochastic environment models. In addition, while
previous papers showed that IterVAML losses can be unsta-
ble in practice (Lovatto et al., 2020; Voelcker et al., 2022),
we find that this can be overcome by adopting the latent
model architecture used by Schrittwieser et al. (2020) and
the auxiliary losses established by Li et al. (2023); Hansen
et al. (2022). When combined with a suitable value learn-
ing procedure, IterVAML performs on par with or better
than MuZero in continuous control tasks. Finally, while
(m, b)-VAML losses have mostly been used with determin-
istic environments, our work enables the community to use
stochastic models with a calibrated loss and shows the po-
tential merits of this approach in a number of environments.
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A. Proofs and mathematical clarifications
We provide helper lemmata for Section 4 and Section 6 in this section.

All of our proofs rely heavily on a standard expansion technique which is used to prove that sample-based losses correctly
approximate population losses. This is found in standard textbooks on learning theory such as Györfi et al. (2002).

It proceeds by expanding a loss Ex∼p,y∼q(·|x)

[
|f(x)− y|2

]
with an expected target f∗(x). In our case, this is mostly the

minimizer of the target loss when evaluating surrogate losses. Then we obtain

Ex∼p,y∼q(·|x)

[
|f(x)− y|2

]
= Ex∼p,y∼q(·|x)

[
|f(x)− f∗(x) + f∗(x)− y|2

]
,

and continue expanding from there. Issues generally arise when y depends on f(x) in some way, or when f(x) itself
involves a sampling procedure.

A.1. Main propositions: Section 3

Proposition 1. Farahmand (2018) Let Pπ be the policy-conditioned transition kernel of an MDP and let V : X → R be a
function. Let p̂(·|x) be a model so that LPπ

IterVAML,1 (p̂, V |x) = 0. Then [TPπV ] (x) = [Tp̂V ] (x).

Proof. Assume p̂ fulfills LPπ

IterVAML,1

(
p̂, V̂ |x

)
= 0. Then Ep̂

[
V
(
x̂(1)

)]
= EPπ

[
V
(
x(1)

)]
. By definition of the Bellman

operator, we have

[T Pπ

V ](x) = r(x) + γEx(1)∼Pπ(·|x)[V (x(1))] = r(x) + γEx(1)∼p̂(·|x)[V (x(1))] = [T p̂V ](x). (11)

A.2. Main propositions: Section 4

A.2.1. HELPER LEMMATA

For the following results, we will use the following notation. Let X be a discrete sample space and p a distribution over it. Let
f : X → R be a random variable. Let P∗ be the set of distributions for which both P∗ = Argminp′ Varp′ [f(x)], and for all

p∗ ∈ P∗ Ep∗ [f(x)] = Ep [f(x)]. Let k be an integer. Finally, let g(ξ) = Ex∼p

[
(Ey∼ξ [f(y)]− f(x))

2
]
+ 1

kVarξ[f(x)].

We assume the following condition on a distribution p and a function f for all the lemmata in this section.

Assumption 1. Let p be a probability distribution over X with Ep [f(x)], for which no x exists so that f(x) = Ep [f(x)].
This is an assumption on both f and p.

This is an important assumption as it guarantees that there is no distribution q with 0 variance such that Eq [f(x)] =
Ep [f(x)] . This excludes a corner case of our proof, as fully deterministic environments and models do not lead to an
uncalibrated IterVAML loss.

We now obtain three simple lemmata about the minima of the function g.

Lemma 1. There does not exist a distribution p′ such that p′ ̸∈ P∗, Ep′ [f(x)] = Ep [f(x)], and g(p′) ≤ g(p∗) for any
p∗ ∈ P .

Proof. To prove the lemma, we first evaluate g for any distribution ξ∗ with Eξ∗ [f(x)] = Ep [f(x)]

g(ξ∗) = Ex∼p

[
(Ey∼ξ∗ [f(y)]− f(x))

2
]
+

1

k
Varξ∗ [f(x)] (12)

= Ex∼p

[
(Ey∼p [f(y)]− f(x))

2
]
+

1

k
Varξ∗ [f(x)] (13)

= Varp(f(x)) +
1

k
Varξ∗ [f(x)]. (14)

As we constructed the set P∗ so that all members have equal (minimum) variance, we obtain the same g(p∗) for all p∗ ∈ P∗.
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We now set up a contradiction by assuming p′ exists. By this assumption

g(p′) < g(p∗) (15)

Varp(f(x)) +
1

k
Varp′ [f(x)] < Varp(f(x)) +

1

k
Varp∗ [f(x)] (16)

Varp′ [f(x)] < Varp∗ [f(x)] (17)

For the function p′ to exist so that g(p′) < g(p∗), we would therefore require Varp′ [f(x)] < Varp∗ [f(x)], which is
impossible by the definition of P∗. This is a contradiction with the requirements for p′ in the lemma, which concludes our
proof.

In the following lemma, we show that under some conditions a distribution q exists which has g(q) < g(p∗) and for which
Ep [f(x)] ̸= Eq [f(x)]. We can rewrite g as

g(q) = Ep

[
(Eq [f(y)]− f(x))

2
]
+

1

k
Varq[f(x)] (18)

= Ep

[
f(x)2

]
− 2Ep [f(x)]Eq [f(x)] + Eq [f(x)]

2
+

1

k
Varq[f(x)] (19)

≤ Ep

[
f(x)2

]
− 2Ep [f(x)]Eq [f(x)] + Eq

[
f(x)2

]
+

1

k
Varq[f(x)] (20)

= Varp[f(x)] +
k + 1

k
Varq[f(x)] + (Ep [f(x)]− Eq [f(x)])

2 (21)

Equation 20 follows from Jensen’s inequality. Intuitively, the function g depends on the squared deviation of the expectation
and the variance of both p and q. If the variance of q can be reduced more than the squared deviation of the means, then P∗

will not contain the minimum of g.

Note that the conditions on q are sufficient but not necessary, as we use Jensen’s inequality to obtain our bound. In
addition, to simplify the proof, we assume that q is a distribution with zero variance. In practice, any distribution with
k+1
k Varq[f(x)] + (Ep [f(x)]− Eq [f(x)])

2 < Varp∗ [f(x)] and Eq [f(x)] ̸= Ep [f(x)] will suffice, but this requirement is
somewhat less intuitive to grasp. As our definition of calibration does not require us to exhaustively characterize all cases
for p, p∗, and q, we have chosen this set of conditions which simplifies the proof. As our Garnet experiments show, many
randomly generated transition distributions admit distributions where the minimizer of g does not match p in expectation.
Lemma 2. If there exists a distribution q with (Eq [f(x)] − Ep [f(x)])

2 < 1
kVarp∗ [f(x)], and Varq[f(x)] = 0, then

g(q) < g(p∗) for all p∗ and, by the assumptions on p and f , Ex∼q [f(x)] ̸= Ex∼p [f(x)].

Proof. Choose any p∗ ∈ P∗. As Varq[f(x)] = 0, g(q) = Ex∼p [(Ey∼q [f(y)]− f(x))]. We can now decompose g(q) as

g(q) = Ep

[
(Eq [f(y)]− f(x))

2
]
= Ep

[
f(x)2

]
− 2Ep [f(x)]Eq [f(x)] + Eq [f(x)]

2 (22)

= Varp[f(x)] + (Ep [f(x)]− Eq [f(x)])
2 (23)

< Varp[f(x)] +
1

k
Varp∗ [f(x)] = g(p∗). (24)

Equation 24 follows from the assumption on q.

By the assumptions on p and f there does not exist a x ∈ X so that f(x) = Ep [f(x)]. However, as Varq[f(x)] = 0,
Eq [f(x)] = f(xi) for some xi ∈ X . Therefore, Eq [f(x)] ̸= Ep [f(x)], which concludes the proof.

As a consequence, we obtain the following, final lemma.
Lemma 3. Let PE be the set of all distributions ξ so that Ep [f(x)] = Eξ [f(x)] . Assume q satisfying Lemma 2 exists.

Then argminξ g(ξ) ̸⊆ PE.

Proof. The lemma is a direct consequence of Lemma 1 and Lemma 2. By Lemma 1, for all p′ ∈ PE g(p′) ≥ g(p∗). As
a consequence of Lemma 2, there exists at least one q with g(q) < g(p∗) and that q has Eq [f(x)] ̸= Ep [f(x)] . Then the
statement follows directly as q ̸∈ PE.
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A.2.2. MAIN RESULTS: ITERVAML

Proposition 2. Let L̂Pπ

m≥1,0(p̂, V |x, x(m)) be the surrogate loss for LPπ

IterVAML,m(p̂, V |x). Let P∗ be the set of all distribu-
tions p for which Ep

[
V (x̂(m))

]
= EPπ

[
V (x(m))

]
. There exist an MDP and a class of distributions P with Pπ ∈ P∗ ⊆ P

so that
Argmin

p̂∈P
Ep̂

[
L̂Pπ

m≥1,0(p̂, V |x, x(m))
]
̸⊆ P∗.

Therefore, L̂model is minimum-uncalibrated.

Proof. Expanding the empirical IterVAML loss with k samples, obtain

EPπ

[
L̂Pπ

m≥1,0

(
p̂, V |x, x(m)

)]
(25)

= Ep̂,Pπ

[(
V
(
x̂(m)

)
− V

(
x(m)

))2]
(26)

= Ep̂,Pπ

[(
V
(
x̂(m)

)
− Ep̂

[
V
(
x̂(m)

)]
+ Ep̂

[
V
(
x̂(m)

)]
− V

(
x(m)

))2]
(27)

= Ep̂,Pπ

[(
V
(
x̂(m)

)
− Ep̂

[
V
(
x̂(m)

)])2]
+ (28)

2Ep̂,Pπ

[(
V
(
x̂(m)

)
− Ep̂

[
V
(
x̂(m)

)])(
Ep̂,Pπ

[
V
(
x̂(m)

)]
− V

(
x(m)

))]
︸ ︷︷ ︸

=0

+ (29)

Ep̂,Pπ

[(
Ep̂

[
V
(
x̂(m)

)]
− V

(
x(m)

))2]
(30)

= Ep̂,Pπ

[(
V
(
x̂(m)

)
− Ep̂

[
V
(
x̂(m)

)])2]
︸ ︷︷ ︸

=Var

+Ep̂,Pπ

[(
Ep̂

[
V
(
x̂(m)

)]
− V

(
x(m)

))2]
︸ ︷︷ ︸

(2)

(31)

Equation 29 is 0 since Ep̂,Pπ

[
V
(
x̂(m)

)
− Ep̂

[
V
(
x̂(m)

)]]
= 0, and samples from p̂ and Pπ are independent. Note that

we can separate the first factor and the second factor since the first one only contains X̂(m) as a random variable, and the
second one only contains x(m). The second factor only includes x̂(m) inside of an expectation, and the expected value is not
a random varaible anymore.

The final term can again be decomposed as

Ep̂,Pπ

[(
Ep̂

[
V
(
x̂(m)

)]
− V

(
x(m)

))2]
(32)

= Ep̂,Pπ

[(
Ep̂

[
V
(
x̂(m)

)]
− EPπ

[
V
(
x(m)

)]
+ EPπ

[
V
(
x(m)

)]
− V

(
x(m)

))2]
(33)

= Ep̂,Pπ

[(
Ep̂

[
V
(
x̂(m)

)]
− EPπ

[
V
(
x(m)

)])2]
︸ ︷︷ ︸

=IterVAML

+Ep̂,Pπ

[(
EPπ

[
V
(
x(m)

)]
− V

(
x(m)

))2]
︸ ︷︷ ︸

independent of p̂

. (34)

The middle term of the binomial expansion again vanishes as EPπ

[
EPπ

[
V
(
x(m)

)]
− V

(
x(m)

)]
= 0, and samples from p̂

and Pπ are independent.

When we drop the term that is independent of the model, the loss has the form of g in Lemma 3

EPπ

[
L̂Pπ

m≥1,0

(
p̂, V |x, x(m)

)]
(35)

= Ep̂,Pπ

[(
V
(
x̂(m)

)
− Ep̂

[
V
(
x̂(m)

)])2]
︸ ︷︷ ︸

=Var

+Ep̂,Pπ

[(
Ep̂

[
V
(
x̂(m)

)]
− EPπ

[
V
(
x(m)

)])2]
︸ ︷︷ ︸

=IterVAML

. (36)
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Let Pπ(·|x) be a distribution so that Lemma 3 holds. Then there exists a p̂ with L̂Pπ

m≥1,0

(
p̂, V |x, x(m)

)
<

L̂Pπ

m≥1,0

(
Pπ, V |x, x(m)

)
and Ep̂

[
V
(
x̂(m)

)]
̸= EPπ

[
V (x(m))

]
.

If we use the k sample version of the empirical IterVAML loss instead, we obtain the following decomposition

EPπ

[
L̂Pπ

m≥1,0

(
p̂, V |x, x(m)

)]
(37)

=
1

k
Ep̂,Pπ

[(
V
(
x̂(m)

)
− Ep̂

[
V
(
x̂(m)

)])2]
︸ ︷︷ ︸

= 1
kVar

+Ep̂,Pπ

[(
Ep̂

[
V
(
x̂(m)

)]
− V

(
x(m)

))2]
︸ ︷︷ ︸

IterVAML

. (38)

The only difference when using more samples is that the variance term is scaled by the factor 1
k , as the variance of the mean

estimator
∑k

i=1 V
(
x
(m)
i

)
decreases. Consequently, for larger values of k, the condition in Lemma 2 for g becomes stricter.

As k → ∞, the condition becomes unfulfillable. This is also intuitive, as 1
k

∑k
i=1 V

(
x
(m)
i

)
→ Ep̂

[
V
(
x(m)

)]
as k → ∞

almost surely (assuming standard conditions hold).

Proposition 3. The variance-corrected loss L̂k
CVAML,m(P̂ , V |x, x(m)) is a calibrated surrogate loss for

LPπ

IterVAML,m(P̂ , V |x, x(m)).

Proof. Reusing the previous derivation, we obtain

EPπ

[
L̂k
var,m(P̂ , V |x, x(m))

]
= EPπ

[
L̂Pπ

i≥1,0

(
p̂, V |x, x(m)

)]
− 1

k
Ex̂,Pπ

[(
V
(
x̂(m)

)
− Ep̂

[
V
(
x̂(m)

)])2]
︸ ︷︷ ︸

=Var

(39)

=Ep̂,Pπ

[(
Ep̂

[
V
(
x̂(m)

)]
− EPπ

[
V
(
x(m)

)])2]
︸ ︷︷ ︸

IterVAML

(40)

Therefore, the surrogate loss and target loss are equivalent in expectation.

A.2.3. MAIN RESULTS: MUZERO

The following lemma shows that a function that minimizes a quadratic and a variance term cannot be the minimum function
of the quadratic. This is used to show that the minimum of the MuZero value function learning term is not the same as
applying the model-based Bellman operator.

Lemma 4. Let g : X → R be a function that is not constant and let µ be a non-degenerate probability distribution over X .
Let L (f) = Ex∼µ

[
(f(x)− g(x))

2
]
+ Ex∼µ [f(x)g(x)] − Ex∼µ [f(x)]Eµ [g(x)]. There exists a function space F with

g ∈ F so that g /∈ argminf∈F L(f).

Proof. The proof follows by showing that there is a descent direction from g that improves upon L. For this, we construct
the auxiliary function ĝ(x) = g(x)− εg(x). Evaluating L(ĝ) yields

ε2Eµ

[
g(x)2

]
+ Eµ [(g(x)− εg(x)) g(x)]

− Eµ [(g(x)− εg(x))]Eµ [g(x)]

= ε2Eµ

[
g(x)2

]
+ (1− ε)Eµ

[
g(x)2

]
− (1− ε)Eµ [g(x)]

2
.

Taking the derivative of this function wrt to ε yields

d

dε
ε2Eµ

[
g(x)2

]
+ (1− ε)Eµ

[
g(x)2

]
− (1− ε)Eµ [g(x)]

2

= 2ε Eµ

[
g(x)2

]
− Eµ

[
g(x)2

]
+ Eµ [g(x)]

2
.
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Setting ε to 0, we obtain

Eµ [g(x)]
2 − Eµ

[
g(x)2

]
= Varµ [g(x)]

By the Cauchy-Schwarz inequality, the variance is only 0 for a g(x) constant almost everywhere. However, this violates the
assumption. Therefore there exists an ε > 0 so that L (ĝ) ≤ L (g). We now can construct the function space F so that it
includes at least g and g + εg.

Proposition 4. Let LTD(V |Vtar, x(m)) be the target loss, and let L̂Pπ

m,1(Pπ, V |Vtar, x, x(m),r(m)

) be the surrogate loss.
There exists a set of functions V for any Vtar that is not a constant function, for which two conditions hold:

1. The set is complete, meaning that [TPπVtar] ∈ V for some target function Vtar,

2. and,

Argmin
V̂ ∈V

EPπ

[
L̂Pπ

m,1(Pπ, V̂ |Vtar, x, x(m))
]
̸⊆ [TPπVtar].

Therefore, L̂Pπ

m,1 is minimum-uncalibrated.

Proof. By assumption, let p̂ in the MuZero loss be the true transition kernel p. Expand the MuZero loss by
[
TPπVtar

] (
x̂(m)

)
and take its expectation:

EPπ

[
L̂Pπ

m,b(Pπ, V |Vtar, x, x(m))
]

(41)

= Ep̂,Pπ

[[
V̂
(
x̂(m)

)
−
[
r
(
x(m)

)
+ γVtar

(
x(m+1)

)]]2]
(42)

= Ep̂,Pπ

[[
V̂
(
x̂(m)

)
−
[
TPπVtar

] (
x̂(m)

)
+
[
TPπVtar

] (
x̂(m)

)
−
[
r
(
x(m)

)
+ γVtar

(
x(m+1)

)]]2]
(43)

= Ep̂,Pπ

[(
V̂
(
x̂(m)

)
−
[
TPπVtar

] (
x̂(m)

))2]
+ (44)

2 Ep̂,Pπ

[(
V̂
(
x̂(m)

)
−
[
TPπVtar

] (
x̂(m)

))([
TPπVtar

] (
x̂(m)

)
−
[
r
(
x(m)

)
+ γVtar

(
x(m+1)

)])]
+ (45)

Ep̂,Pπ

[([
TPπVtar

] (
x̂(m)

)
−
[
r
(
x(m)

)
+ γVtar

(
x(m+1)

)])2]
(46)

We aim to study the minimizer of this term. The first term (Equation 44) is the bootstrapped Bellman residual with a target
Vtar. The third term (Equation 46) is independent of V̂ , so we can drop it when analyzing the minimization problem.

The second term (Equation 45) simplifies to

Ep̂,Pπ

[
V̂
(
x̂(m)

)([
TPπVtar

] (
x̂(m)

)
−
[
r
(
x(m)

)
+ γVtar

(
x(m+1)

)])]
(47)

as the remainder is independent of V̂ again.

This remaining term however is not independent of V̂ and not equal to 0 either. Instead, it decomposes into a variance-like
term, using the conditional independence of x̂(1) and x(1) given x(0):

Ep̂,Pπ

[
V̂
(
x̂(m)

)([
TPπVtar

] (
x̂(m)

)
−
[
r
(
x(m)

)
+ γVtar

(
x(m+1)

)])]
(48)

= Ep̂

[
V̂
(
x̂(m)

) [
TPπVtar

] (
x̂(m)

)]
− Ep̂,Pπ

[
V̂
(
x̂(1)

) [
r
(
x(m)

)
+ γVtar

(
x(m+1)

)]]
(49)

= Ep̂

[
V̂
(
x̂(m)

) [
TPπVtar

] (
x̂(m)

)]
− Ep̂

[
V̂
(
x̂(m)

)]
EPπ

[[
r
(
x(m)

)
+ γVtar

(
x(m+1)

)]]
. (50)
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Combining this with Equation 44, we obtain

Ep̂,Pπ

[
L̂Pπ

m,b(Pπ, V |Vtar, x, x(m))
]

(51)

= Ep̂,Pπ

[(
V̂
(
x̂(m)

)
− (TPπVtar)

(
x̂(m)

))2]
+ (52)

Ep̂

[
V̂
(
x̂(m)

) [
TPπVtar

] (
x̂(m)

)]
− Ep̂

[
V̂
(
x̂(m)

)]
EPπ

[[
r
(
x(m)

)
+ γVtar

(
x(m+1)

)]]
. (53)

The first summand is the Bellman residual, for which the only minimizer is TPπVtar. However, by Lemma 4, we can
construct a function class so that ArgminEPπ

[
L̂Pπ

m,b(Pπ, V |Vtar, x, x(m))
]
̸⊆ {TPπVtar}

While our proof only discusses the case b = 1, the same issue also appears with larger b. In many cases, the problem will be
exacerbated by longer rollout horizons m and b, as the variance of all functions involved grows with the time horizon.

A.3. Main propositions: Section 6

A.3.1. PROPOSITIONS FROM BERTSEKAS & SHREVE (1978)

For convenience, we quote some results from Bertsekas & Shreve (1978). These are used in the proof of Lemma 5. While
some of the definitions are rather technical, it is mostly sufficient to see a stochastic kernel as the continuous generalization
of the transition matrix in finite MDPs. The projection used in Proposition 2 is simply a restriction of a set of tuples (x, y)
on the x values. Other topological statements are standard and can be found in textbooks such as Munkres (2018). In the
following C refers to sets of continuous functions.

Proposition 1 (Proposition 7.30). Let X and Y be separable metrizable spaces and let q(dy|x) be a continuous stochastic
kernel on Y given X . If f ∈ C(X × Y), the function λ : X → R defined by

λ(x) =

∫
f(x, y)q(dy|x)

is continuous.

Proposition 2 (Proposition 7.33). Let X be a metrizable space, Y a compact metrizable space, D a closed subset of X ×Y ,
Dx = {y|(x, y) ∈ D}, and let f : D → R∗ be lower semicontinuous. Let f∗ : projX (D) → R∗ be given by

f∗(x) = min
y∈Dx

f(x, y).

Then projX (D) is closed in X , f∗ is lower semicontinuous, and there exists a Borel-measurable function φ : projX (D) → Y
such that range(φ) ⊂ D and

f [x, φ(x)] = f∗(x), ∀x ∈ projX (D).

In our proof, we construct f∗ as the minimum of an IterVAML style loss and equate φ with the function we call f in our
proof. The change in notation is chosen to reflect the modern notation in MBRL – in the textbook, older notation is used.

A.3.2. HELPER LEMMA

The first proposition relies on the existence of a deterministic mapping, which we prove here as a lemma.

Lemma 5 (Deterministic Representation Lemma). Let X be a compact, connected, metrizable space. Let p be a continuous
kernel from X to probability measures over X . Let Z be a metrizable space. Consider a bijective mapping φ : X → Z and
any V : Z → R. Assume that they are both continuous. Denote VX = V ◦ φ.

Then there exists a measurable function f∗ : Z → Z such that we have V (f∗(φ(x))) = Ep [VX (x′)|x] for all x ∈ X .

Proof. Since φ is a bijective continuous function over a compact space and maps to a Hausdorff space (Z is metrizable,
which implies Hausdorff), it is a homeomorphism. The image of X under φ, ZX is then connected and compact. Since X
is metrizable and compact and φ is a homeomorphism, ZX is metrizable and compact. Let θV,X (x) = Ex′∼p(·|x) [V (x′)].
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Then, θV,X is continuous (Proposition 1). Define θV,X = θV,Z ◦ φ. Since φ is a homeomorphism, φ−1 is continuous. The
function θV,Z can be represented as a composition of continuous functions θV,Z = θV,X ◦ φ−1 and is therefore continuous.

As ZX is compact, the continuous function V takes a maximum and minimum over the set ZX . This follows from the
compactness of ZX and the extreme value theorem. Furthermore Vmin ≤ θV,Z(z) ≤ Vmax for every z ∈ ZX . By the
intermediate value theorem over compact, connected spaces, and the continuity of V , for every value Vmin ≤ v ≤ Vmax,
there exists a z ∈ ZX so that V (z) = v.

Let h : ZX ×ZX → R be the function h(z, z′) = |θV,Z(z)− V (z′)|2. As h is a composition of continuous functions, it is
itself continuous. Let h∗(z) = minz′∈ZX h(z, z

′). For any z ∈ ZX , by the intermediate value argument, there exist z′ such
that V (z′) = v. Therefore h∗(z) can be minimized perfectly for all z ∈ ZX .

Since ZX is compact, h is defined over a compact subset of Z . By Proposition 2, there exists a measurable function f∗(z)
so that minz′ h(z, z′) = h(z, f∗(z)) = 0. Therefore, the function f∗ has the property that V (f∗(z)) = Ep [V (z′)|z], as
this minimizes the function h.

Now consider any x ∈ X and its corresponding z = φ(x). As h(z, f∗(z)) = |θV,Z(z)− V (f∗(z))|2 = 0 for any z ∈ ZX ,
V (f∗(φ(x))) = θv,Z(z) = Ep [VX (x′)|x] as desired.

A.3.3. MAIN RESULT: DETERMINISTIC MODEL

Proposition 5. Let X be a compact, connected, metrizable space. Let p be a continuous kernel from X to probability
measures over X . Let Z be a metrizable space. Consider a bijective latent mapping ϕ : X → Z and any V : Z → R.
Assume that they are both continuous. Denote VX = V ◦ ϕ.

Then there exists a measurable function f∗ : Z → Z such that we have V (f∗(ϕ(x))) = Ep

[
VX (x(1))

]
for all x ∈ X .

Furthermore, the same f∗ is a minimizer of the expected IterVAML loss over any distribution x ∼ ρ

f∗ ∈ argmin
f̂

Eρ,Pπ

[
LIterVAML,1(f̂ , VX |VX , x)

]
.

Proof. As we only deal with single steps here, we use x(1) and x′ interchangeably as the latter is simpler and more common
nomenclature. The statement of the proposition itself is written with the x(1) notation to remain consistent with the main
body of the paper.

The existence of f∗ follows under the stated assumptions (compact, connected, and metrizable state space, metrizable latent
space, continuity of all involved functions) from Lemma 5.

First, expand the equation to obtain:

EPπ

[
L̂IterVAML,1(f, V |VXx, x′

]
(54)

= EPπ

[
[V (f (φ(x)))− VX (x′)]

2
]

(55)

= EPπ

[(
V (f (φ(x)))

]
− EPπ

[
VX (x(1))

]
+ EPπ

[
VX (x′ − VX (x(n))

)2]
. (56)

After expanding the square, we obtain three terms:

Ep̂,Pπ

[
L̂IterVAML,1(f, V |VXx, x′

]
=Ep̂,Pπ

[
|V (f (φ(x)))− EPπ [VX (x′)]|2

]
(57)

+ 2EPπ [[V (f (φ(x)))− EPπ [VX (x′)]] [EPπ [VX (x′)]− VX (x′)]] (58)

+ EPπ

[
|EPπ [VX (x′)]− VX (x′)|2

]
(59)
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Apply the tower property to the inner term to obtain:

2EPπ [[V (f (φ(x)))− EPπ [VX (x′)]] [EPπ [VX (x′)]− VX (x′)]] (60)

= 2EPπ

[V (f (φ(x)))− E [VX (x′)]]EPπ [EPπ [VX (x′)]− VX (x′)|x′]︸ ︷︷ ︸
=0

 = 0. (61)

Since the statement we are proving only applies to the minimum of the IterVAML loss, we will work with the argmin of
the loss function above. The resulting equation contains a term dependent on f and one independent of f :

argmin
f

EPπ

[
|V (f (φ(x)))− EPπ [VX (x′)]|2

]
+ EPπ

[
|EPπ [VX (x′)]− VX (x′)|2

]
(62)

= argmin
f

EPπ

[
|V (f (φ(x)))− EPπ [VX (x′)]|2

]
. (63)

Finally, it is easy to notice that V (f∗ (φ(x))) = EPπ [VX (x′)] by the definition of f∗. Therefore f∗ minimizes the final
loss term and, due to that, the IterVAML loss.

Comparing these results to Lemma 3, we can clarify one potential confusion about our results. The assumptions which
are required for Proposition 5 ensure that the condition in Lemma 2 cannot be fulfilled in a continuous space, as there
always exists a single point y for which f(y) = Ep [f(x)]. In this case, the optimal deterministic IterVAML model f∗ and
the minimum variance distribution p∗ coincide. However, our definition of calibration requires the loss to recover optimal
minima for any function class that includes them.

20



Calibrated Value-Aware Model Learning with Probabilistic Environment Models

Hyperparameter Value
Batch size 128
Discount γ 0.99
Actor learning rate απ 0.0003
Critic learning rate αQ 0.0003
Model learning rate αp̂ 0.0003
Encoder learning rate αφ 0.0001

Hyperparameter (cont.) Value (cont.)
Model rollout depth m 1
Model bootstrap depth b Varied (0 and 1)
Model samples k Varied (1 and 4)
Proportion real ρ 0.9
Latent dimension 512
Gradient clipping 10

Table 2. Hyperparameter of the deep learning experiments. Aside from the (m, b)-(C)VAML relevant hyperparameters, we keep all others
consistent across environments and algorithms.

B. Implementation Details – Section 5: Garnet
Each Garnet is defined by a randomly generated transition matrix and a random reward function. Across all experiments we
use state spaces of size |X | = 50. For each state xi, we sample k = 10 successor states at random without replacement.
Then we assign each successor state xj a weight ωij ∼ N (0, 1) and set the weight of all non-successor states to the floating
point minimum. The transition matrix is computed via the softmax function. The reward is sampled as r(xi) ∼ N (0, 1).

This setup allows us to vary the stochasticity of the environment naturally. The softmax temperature parameter τ controls the
stochasticity. As τ → ∞, the problem becomes deterministic with p(xj |xi) = 1 for the state xj with ωij = argmaxj ωi,j .

For τ → ∞, the probabilities for all successor states become equal p(xj |xi) = 1
k . In our experiments, we vary τ such that

for almost all Garnets we obtain full determinism and equal transition probabilities, which empirically happens in the range
τ ∈ [0.001, 10.0].

C. Implementation Details – Section 7: DM Control
C.1. Architecture

The original MuZero paper (Schrittwieser et al., 2020) provides large-scale experiments on the ALE benchmark (Bellemare
et al., 2013). However, the original algorithm and the ALE suite are computationally extremely expensive to run. In
addition, to the best of our knowledge, no reliable open-source replication of the closed-source MuZero and Probabilistic
MuZero models and algorithms exists. Instead, we use the TD-MPC architecture and algorithm (Hansen et al., 2022) as our
main reference. This implementation uses the MuZero loss but is significantly cheaper and faster to run in a small-scale
experimental setting, while still solving non-trivial control tasks.

We adopt the architecture and model-based MPC search procedure of Hansen et al. (2022) as our baseline model. In addition
to the L2 based deterministic latent setup, we also use a Gaussian latent model as our stochastic environment model. This
implementation follows similar ideas used in observation-space models, such as Chua et al. (2018); Janner et al. (2019).
While the stochastic environment models used in Dreamer (Hafner et al., 2021) would have been an alternative, it has not
shown strong performance in continuous control tasks and is significantly more expensive to run. In addition, Voelcker et al.
(2024) shows that observation-space reconstruction can be a suboptimal auxiliary task for aligning a latent space with value
function prediction. Finally, we adopt the joint model-free and model-based training proposed in Voelcker et al. (2025). For
the MuZero setting (b = 1) we update the value function both for the state and the predicted latent state. In the IterVAML
setting, there is no meaningful way to update the model’s predicted value function, and therefore we only update the current
state’s value function.

Code is provided in https://github.com/adaptive-agents-lab/CVAML.

Hyperparameters can be found in Table 2.

C.2. Environment

As several recent papers have shown, the vast majority of environments in the DM Control suite are effectively saturated. We,
therefore, restrict our experiments to the most difficult domains, humanoid and dog, on which large performance differences
still appear (Nauman et al., 2024; Voelcker et al., 2025; Fujimoto et al., 2025).
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C.3. Additional results

In addition to the raw performance graphs in the main paper, we present the average model entropy and VAML loss curves
in Figure 5. As expected, we find that the CVAML loss leads to a higher entropy model compared to the VAML loss. We
compute the empirical differential entropy of the model prediction over the replay buffer as

−
∑

x,a∈D
p(z′|φ(x), a) log p(z′|φ(x), a),

with z′ sampled from the latent model. This however does not lead to a noticeable difference in the VAML error itself. We
also present the individual reward curves for each task in both domains in Figure 6.
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Figure 5. Model entropy (left) and loss value for the VAML-losses (right) aggregated across all environments. The model entropy of
(1, 0)-CVAML differs significantly. However, this does not translate to a pronounced difference in the VAML error itself. Therefore, while
the calibration term does lead to a higher variance, this does not necessarily translate into an improvement in performance. In (1, 1)-VAML
compared with the calibrated version, the model entropy does not differ significantly. However, without calibration, the VAML error
seems to be growing slightly stronger. Given the large deviation in performance we observe in the main results for (1, 1)-VAML, we
conjecture that correcting the value function learning term is significantly more important for performance.
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C.4. Ablations

We provide additional ablations on the model loss here.

In the first set of experiments (Figure 7), we remove the CVAML loss from the model. We observe deteriorating agent
performance, especially with the stochastic models, and in the humanoid tasks. In addition, we compare against a model-free
TD3 baseline that uses the same architecture as our model based versions.

In the second set (Figure 8), we ablate the auxiliary loss. Again, we find that the auxiliary loss helps especially in
the humanoid experiments. In addition, the (1, 1)-CVAML baseline suffers significantly more from the removal of the
auxiliary loss than the (1, 0)-CVAML loss. Upon further investigation we observe that the bootstrapped TD target of the
(1, 1)-CVAML loss leads to less stable learning compared to the value function target.
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1Figure 7. Performance of a model-free baseline (Fujimoto et al., 2018a), and the model-based algorithm using only the auxiliary loss for
model training (No VAML), compared to (1,0)-CVAML. The model-free baseline fails to achieve strong returns on any problem. The No
VAML baseline achieves slightly better returns on the dog run task, but is unable to achieve any performance in the humanoid tasks.

0

250

500

750

1000

R
ew

ar
d

dog stand dog walk dog trot

0 1 2

Step ×106

dog run

0 1 2

Step ×106

0

250

500

750

1000

R
ew

ar
d

humanoid stand

0 1 2

Step ×106

humanoid walk

0 1 2

Step ×106

humanoid run

(1,0)-CVAML, No Aux Loss (Stoch.)

(1,1)-CVAML, No Aux Loss (Stoch.)

(1,0)-CVAML (Stoch.)
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(1, 0)-CVAML trained with the auxiliary BYOL-style loss. The inclusion of the auxiliary loss is crucial for performance, both (1, 0)-
CVAML and (1, 1)-CVAML without the auxiliary struggle on all the dog tasks, compared to the agent trained with both losses, the effect
is even more pronounced for the (1, 1)-CVAML variant. On the humanoid task both variants without the auxiliary loss exhibit a complete
failure, which further exemplifies the importance of this loss.
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C.5. Garnet Policy Iteration

Here we extend the Garnet experiments in Section 5 to the control case. In each iteration, the policy’s value function
is estimated with the model-based losses, following the Garnet experiments in the main paper. The policy is improved
in a greedy fashion. The problem is a modified 5x5 cliffwalk environment https://gymnasium.farama.org/
environments/toy_text/cliff_walking/ where the likelihood of moving in the intended direction is given by
temp. Results are presented in Figure 9

Results are consistent with the garnet experiments in the main paper, except for the surprising outlier of the uncalibrated
(1, 1)-VAML loss in the almost-deterministic case. This might be due to the different structures of the cliffwalk environment
compared to the more diverse Garnet environments. However, this only holds for low rank deterministic case (top right
corner).
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1Figure 9. Return curves for cliffwalk policy iteration. Each curve shows confidence intervals over 1000 seeds. Each row is a different
model rank (see description in the main paper), each column a different temperature.
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