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a b s t r a c t 

In this paper, we propose a new uncertainty set for robust models of linear optimization problems. We 

first study data-free and distribution-free statistical properties of continuous and independent random 

variables using the Probability Integral Transform. Based on these properties, we construct a new un- 

certainty set by placing constraints on the order statistics of random variables. We utilize the quantiles 

of random variables to depict the uncertainties and then adopt the formulation of the assignment prob- 

lem to develop a tractable formulation for the order statistic uncertainty set. We show that the robust 

optimization models with the interval uncertainty set, the budget uncertainty set, and the demand un- 

certainty set can be obtained as special cases of the robust optimization model with the order statistic 

uncertainty set. Finally, using a robust portfolio construction problem as an example, we show via numer- 

ical experiments that the order statistic uncertainty set has better performance than other uncertainty 

sets when the sample size is small and the correlation between random variables is low. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

In many optimization problems, the decision maker needs to 

ake decisions in the presence of uncertainty. Stochastic optimiza- 

ion has long been used to find optimal solutions in such settings. 

pecifically, the random quantities are assumed to follow some 

robability distributions, which leads to either a random objective 

unction, or random constraints, or both. Stochastic optimization 

odels can impose significant computational burden, and as a re- 

ult, approximation procedures are often used — see Birge & Lou- 

eaux (2011 , Chapter 8–10). 

Another popular approach is robust optimization, which has 

rawn increasingly more attention in recent years. Rather than 

odel random quantities as having known distributions, the robust 

ptimization model aims to find a solution that achieves the best 

bjective performance while remaining feasible for any realization 

scenario) of the uncertain quantities within an uncertainty set. If 

he solution is not feasible for some scenarios excluded from the 

ncertainty set, then the decision maker may find it more econom- 

cal to develop contingency plans to deal with those scenarios. Ro- 

ust Optimization (RO) is particularly attractive when uncertainty 

haracterization via a probability distribution is unreliable. In this 
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aper, we focus on robust optimization and propose a new uncer- 

ainty set. 

.1. The robust optimization model 

Consider the standard deterministic linear optimization prob- 

em given below: 

ax 
x 

c ′ x (1a) 

.t. 
∑ 

j∈ J i 
a i j x j ≤ b i , ∀ i ∈ I (1b) 

 ≤ x ≤ x , (1c) 

here J i is the index set of x j ’s for the i th constraint, and the car-

inality of the set J i is denoted as | J i | . The set of indexes for con-

traints is denoted as I, which is assumed to be a finite set. In the

bove model, each coefficient a i j is known and fixed. Suppose now 

he decision maker is uncertain about the values of a i j ’s, and mod- 

ls them by random variables A i j ’s. The decision maker aims to 

nd a solution that not only has a high objective value but also 

nsures the feasibility of constraint (1b) with a particular proba- 

ility as specified by the following chance constraint. 

rob 

( ∑ 

j∈ J i 
A i j x j ≤ b i 

) 

≥ p i , ∀ i. (2) 
ith order statistic uncertainty set, European Journal of Operational 
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Table 1 

Summary of uncertainty sets. 

Uncertainty set Definition Distributional information Parameter to control the size 

Interval uncertainty set U I = 

{
Z : 0 ≤ Z j ≤ 1 , ∀ j} range None 

Budget uncertainty set U B = 

{ 
Z : 

∑ | J| 
j=1 

Z j ≤ �, 0 ≤ Z j ≤ 1 , ∀ j 
} 

range �

Ellipsoidal uncertainty set U Q = 

{
Z ∈ R | J| : Z ′ �−1 Z ≤ �2 

}
variance & covariance �

Demand uncertainty set U D = 

{ 
Z : 

∣∣∣ ∑ 

j∈ S Z j 
| S| 1 /α

∣∣∣ ≤ γ , ∀ S ⊆ J 

} 
variance α, γ

Tail uncertainty set U T = 

{ 
Z : ∃ q ∈ R N + s.t. Z = 

∑ N 
n =1 q n z 

n , 

1 ′ q = 1 , q n ≤ 1 
N(1 −α′ ) , n = 1 , . . . , N 

} 
tail average α′ 
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he optimization problem involving chance constraints is generally 

ard to solve (see Yang & Xu, 2016 ). The probabilistic feasibility of 

onstraints can also be achieved with the RO model – see Ben-Tal 

 Nemirovski (20 0 0) and Bertsimas et al. (2011) . 

Uncertainty modelling in the RO model . As in the robust op- 

imization framework presented in Bertsimas & Sim (2004) , we 

ssume that the random variable A i j follows an unknown but 

ymmetric distribution, and A i j can take any value in the range 

 a i j − ˆ a i j , a i j + ˆ a i j ] . We transform the random variable A i j into the

andom variable Z i j ∈ [0 , 1] such that Z i j = | A i j − a i j | / ̂  a i j , and we let

 i = (Z i 1 , . . . , Z iJ ) . Henceforth, whenever random variables are men-

ioned, we mean the random variables Z i j ’s. 

The robust model that guarantees feasibility of the constraint i 

or any realization of Z i that lies within the uncertainty set U i can 

e written as follows: 

ax 
x 

c ′ x (3a) 

s.t. 
∑ 

j∈ J i 
a i j x j + max 

Z i ∈U i 

∑ 

j∈ J i 
ˆ a i j · | x j | · Z i j ≤ b i , ∀ i ∈ I (3b)

x ≤ x ≤ x , (3c) 

We denote the subproblem max Z i ∈U i 
∑ 

j∈ J i ˆ a i j · | x j | · Z i j as 

i (x , U i ) . We have assumed that the uncertainty sets in the above

odel to be “constraint-wise”. Note that this is without loss of 

enerality because we can always reformulate a joint uncertainty 

et U across constraints to be “constraint-wise” (see Section 1.2.1 

n Ben-Tal et al., 2009 ). Therefore, we will drop the constraint 

ndex i and focus on an arbitrary constraint. As we will discuss in 

ection 3.1 , the above robust formulation (3) is consistent with the 

ramework presented in Bertsimas & Sim (2004) . In the following, 

e review previous works on uncertainty set characterization, and 

hen discuss uncertainty set design and our contribution. 

.2. Common uncertainty sets 

The uncertainty set is an essential component of the RO ap- 

roach. Table 1 summarizes some of the most common uncertainty 

ets that have been studied in the RO literature. The table also in- 

ludes the distributional information that each uncertainty set uti- 

izes and the parameter of each uncertainty set that may be used 

o adjust its size. We briefly discuss each of the uncertainty sets in 

he following. 

The interval uncertainty set (also known as the box uncertainty 

et) can be found in Ben-Tal & Nemirovski (20 0 0) . It offers a high

rotection level, but tends to be conservative because it finds the 

est solution for the worst possible realization of the unknown pa- 

ameters, i.e., all the random variables Z j ’s in the optimal solution 

re set to 1. The budget uncertainty set, introduced in Bertsimas & 

im (2004) , is the first polyhedral uncertainty set that can control 

he level of conservativeness for the RO model. The idea is to im- 

ose the budget constraint on the sum of all random variables Z j ’s, 
2

hich prevents all random variables from taking the extreme value 

f 1. The ellipsoidal uncertainty set ( Ben-Tal & Nemirovski, 1998; 

l Ghaoui et al., 1998 ) is motivated by the standard deviation for- 

ula, which results in the quadratic form. The matrix �−1 is the 

ariance-covariance matrix for random variables Z j ’s. The demand 

ncertainty set is inspired by the generalized central limit theorem 

 Bandi et al., 2015; Bandi & Gupta, 2020 ). In Table 1 , the parameter

is the tail coefficient, and | S| stands for the cardinality of the set 

, which is an arbitrary subset of the set J. Note that if we impose

onstraints on all possible subsets of J, then there will be 2 | J| − 1 

onstraints for | J| random variables. The tail uncertainty set con- 

ists of the convex hull of all the centroids of any N(1 − α′ ) points

ut of N points in the sampled data z 1 , z 2 , . . . , z N ( Bertsimas et al.,

011 ). The tail uncertainty set is an attractive way to characterize 

ncertainty when the decision maker’s risk preference corresponds 

o the conditional value-at-risk measure. 

In addition to the above-mentioned linear or quadratic uncer- 

ainty sets, there are other data-driven approaches to design un- 

ertainty sets. Bertsimas et al. (2018) construct uncertainty sets 

sing statistical hypothesis tests in a data-driven manner. Shang 

t al. (2017) propose a novel data-driven uncertainty set for solving 

obust optimization problems based on a piecewise linear kernel. 

heramin et al. (2021) propose data-driven polyhedral uncertainty 

ets, which can capture correlation information between uncertain 

ariables using principal component analysis. 

.3. The trade-off between the objective value and constraint 

easibility 

The choice of the uncertainty set is a key consideration in uti- 

izing the RO approach. The uncertainty set in the RO model de- 

ermines the trade-off between two conflicting goals: good objec- 

ive performance and a high probability of constraint feasibility. 

he balance between the objective value and probability of con- 

traint feasibility depends on two aspects of the uncertainty set. 

he first aspect is the size of the uncertainty set, which is cho- 

en by the decision maker depending on his level of conservatism. 

or a particular uncertainty set, if its size gets smaller, then the 

bjective value improves but the probability of constraint feasibil- 

ty declines; the improvement in one is always at the expense of 

he other. The second aspect of the uncertainty set is the geomet- 

ic flexibility . We may be able to improve the performance of both 

he objective value and constraint protection if the uncertainty set 

ontains regions of more likely uncertain scenarios and excludes 

he extremely unlikely ones. To achieve this, we need to design 

he uncertainty set with greater geometric flexibility so that we 

an adjust its shape to contain regions of high probability. 

Besides having the uncertainty set that possesses geometric 

exibility, we also need to identify characterizations of uncertain- 

ies that can guide us to adjust the shape of the uncertainty set. 

uch characterization may stem from two sources. One source 

an be the data-free and distribution-free properties of random 
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ariables. Typically, the properties emanate from general statistical 

nowledge of random variables, which requires no input from any 

ample data, and as few assumptions as possible about the data 

enerating process. The second source is the specific information 

elevant to the particular problem setting, which may be derived 

rom either historical data or institutional knowledge. Existing un- 

ertainty sets have utilized different kinds of information, which 

ften appear as parameters in the formulations; for example, the 

ange in the budget uncertainty set, or the mean and covariance 

n the ellipsoidal uncertainty set. However, these statistics contain 

imited information and may lose some useful distributional infor- 

ation. Therefore, it is important to conceive uncertainty sets that 

an incorporate richer information from data. 

.4. Our contribution 

The focus of this study is to explore the characterization of ran- 

om variables and utilize it to design a new uncertainty set. We 

eek to answer the following questions: What are the data-free 

nd distribution-free statistical characteristics of the collective be- 

avior of random variables that may be utilized to refine the un- 

ertainty set? How can we design an uncertainty set that captures 

ich distributional information while still resulting in a tractable 

inear programming formulation? Is it possible to construct an un- 

ertainty set that offers the ability to adjust the level of uncer- 

ainty in each dimension separately rather than a single parameter 

hat affects all dimensions in the same way? If we can construct 

 new uncertainty set, then under what conditions can the new 

ncertainty set outperform other existing approaches? Our main 

esults are as follows: 

1. We use the Probability Integral Transform to show that if 

the random variables Z j ’s are continuous and mutually in- 

dependent of each other, then the order statistics of the cu- 

mulative distribution functions (CDFs) of Z j ’s follow the Beta 

distribution. For a given probability, each order statistic of 

the CDFs of random variables Z j ’s has a high-density interval 

within the range [0,1]. Based on this data-free distribution- 

free property of CDFs of random variables Z j ’s, we construct 

an order statistic uncertainty set by imposing constraints on 

order statistics of the CDFs of random variables Z j ’s. 

2. To embed the CDFs of random variables in the RO model 

with the order statistic uncertainty set, we utilize the quan- 

tiles of random variables, which carry rich distributional in- 

formation of random variables. Because the order statistics 

of the CDFs of Z j ’s have | J| ! possible outcomes, the con- 

straints for them imply | J| ! implicit linear constraints. In or- 

der to develop a tractable linear formulation for the | J| ! im- 

plicit linear constraints, we adopt the formulation of the as- 

signment problem. 

3. We demonstrate the geometric flexibility of the order statis- 

tic uncertainty set and prove that the RO model with the 

order statistic uncertainty set reduces to the RO model with 

the interval uncertainty set, or the budget uncertainty set, 

or the demand uncertainty set if its parameters are selected 

suitably. This shows that the order statistic uncertainty set 

has a greater modeling power because the RO model with 

the order statistic uncertainty set provides a framework that 

incorporates these three uncertainty sets as special cases. 

4. The order statistic uncertainty set captures rich informa- 

tion about distributions because it utilizes the quantiles of 

distributions to characterize uncertainties. Different quan- 

tile values for different random variables are used in the 

uncertainty set, and the uncertainties for different random 

variables can be depicted separately. The quantile levels in 

the order statistic uncertainty set determine the probabilis- 
3 
tic guarantee for the constraint feasibility. We illustrate how 

we can achieve different trade-offs between the objective 

performance and constraint feasibility by choosing different 

quantile levels. 

5. We apply the order statistic uncertainty set and several com- 

peting characterizations of the uncertainty set to a robust 

portfolio construction problem and compare and contrast 

their relative performance. Results of our numerical experi- 

ments show that when the correlation of portfolio returns is 

low, the order statistic uncertainty set outperforms the bud- 

get uncertainty set, the interval uncertainty set and the con- 

vex hull uncertainty set. Additionally, if the correlation of 

portfolio returns is low and the sample size is small, then 

the order statistic uncertainty set has better performance 

than the tail uncertainty set and the ellipsoidal uncertainty 

set as well. 

The outline of the paper is as follows. In Section 2 , we present

he motivation to construct the order statistic uncertainty set and 

rovide a linear formulation of the RO model with the order statis- 

ic uncertainty set. In Section 3 , we show that the RO models with

he interval uncertainty set, or the budget uncertainty set, or the 

emand uncertainty set can be obtained as special cases of the 

O model with the order statistic uncertainty set. In Section 4 , 

e derive the probabilistic bound for constraint feasibility for the 

O model with the order statistic uncertainty set, and discuss 

ow to determine the parameters for the order statistic uncer- 

ainty set. In Section 5 , we solve a robust portfolio construction 

roblem with the order statistic uncertainty set and other existing 

ncertainty sets, and compare their relative performance. Finally, 

ection 6 summaries our results. 

. The order statistic uncertainty set 

In this section, we use the Probability Integral Transformation 

o derive a distribution-free and data-free property of random vari- 

bles Z j ’s, and then use the property to construct the order statis- 

ic uncertainty set. In Section 2.2 , we present a linear formulation 

f the RO model with the new uncertainty set. All mathematical 

roofs can be found in the appendix. 

.1. Motivation: order statistics 

Suppose the random variables Z j ’s are continuous and inde- 

endently distributed in the range [0,1], each following an arbi- 

rary continuous distribution with an unknown cumulative distri- 

ution function F j . Denote random variables U j = F j ( Z j ) , ∀ j ∈ J, and

ach U j can be shown to be uniformly distributed over [0,1] (see 

oussas, 1997 , Section 9.4). Denote the order statistics of U j ’s as 

 (1) , . . . , U (| J| ) , which is the rearranged sequence of U j ’s with the

 -th order statistic U (k ) being the k -th smallest among them. Dif- 

erent from the random variable U j ’s, the order statistic random 

ariable U (k ) follows Beta (k, | J| + 1 − k ) distribution (see Gut, 2009 ,

hapter 4.1) instead of the uniform distribution. The mapping from 

 Z 1 , . . . , Z | J| } to { U (1) , . . . , U (| J| ) } is illustrated in Fig. 1 . 

To motivate our approach, we discuss an example with | J| = 20 

andom variables. Fig. 2 shows the Beta (k, | J| + 1 − k ) distribution 

f different U (k ) ’s, ∀ k = 1 , . . . , 20 . There are two observations worth

oting. 

1. If k is small, the distribution of U (k ) tends to be right 

skewed, which means the U (k ) variable tends to be small. As 

k increases, the distribution of U (k ) gets more skewed to the 

left. Most U (k ) ’s are extremely unlikely to be either 0 or 1. 

2. Each order statistic U (k ) has a high-density interval strictly 

smaller than [0,1], over which the area under its probabil- 

ity density function is close to 1. For example, the area un- 
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Fig. 1. Transformations of variables. 

Fig. 2. Probability density functions of order statistics U (k ) ’s for | J| = 20 . 
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der the 8th order statistic’s probability density function (the 

solid line) over the interval [0.05,0.85] is 0.999997, which is 

almost 1. This illustrates that the uncertainty characteriza- 

tion with either the box or the budget uncertainty sets may 

be too extreme because in the robust solution with these 

two uncertainty sets, at least | J| − 1 random variables Z j ’s 

are equal to either 0 or 1 and such scenarios are not con- 

tained in the high-density interval [0.05,0.85]. 

From above, we see that regardless of the unknown cumula- 

ive distributions F j of the random variable Z j , the order statistics 

f F j (Z j ) ’s always follow the Beta distribution. Denote the cumu- 

ative distribution function for Beta (k, | J| + 1 − k ) distribution as 

 t (k, | J| + 1 − k ) , and its quantile function Q 

t 
k 

= inf { τ : I τ (k, | J| + 1 −
 ) = t} . Therefore, given any ε ′ 

k 
∈ [0 , 1] , we can find the lower limit

 

ε ′ 
k 

k 
for U (k ) such that P rob(U (k ) ≤ Q 

ε ′ 
k 

k 
) = ε ′ 

k 
. Similarly, we can find

he upper limit Q 

1 −ε k 
k 

for U (k ) such that P rob(U (k ) ≤ Q 

1 −ε k 
k 

) = 1 −
 k . Denote ε ′ as the vector of values ε ′ 

1 
, ε ′ 

2 
, . . . , ε ′ | J| , and ε of values

 1 , ε 2 , . . . , ε | J| , where 0 ≤ ε ′ 
j 
, ε j ≤ 1 , ∀ j ∈ J. We then construct the

ncertainty set U ′ ( ε ′ , ε ) based on the order statistics of the CDFs

f random variables as follows: 

 

′ ( ε 

′ , ε ) = 

{ 

Z : F j ( Z j ) = U j , ∀ j ∈ J, and Q 

ε ′ 
k 

k 

≤ U (k ) ≤ Q 

(1 −ε k ) 
k 

, ∀ k ∈ J 

} 

. (4) 

n the above uncertainty set, the random variables Z j ’s are re- 

tricted so that the order statistics U (k ) ’s belong to the high- 

ensity regions. Note that U (1) ≤ U (2) ≤ . . . ≤ U ( | J| ) is always im- 

lied by definition. Although ε ′ 
k 

can be any value in the range 

0,1], we only need to consider ε ′ 
k 
’s such that Q 

ε ′ 
k −1 

k −1 
≤ Q 

ε ′ 
k 

k 
, for

 = 2 , 3 , . . . , | J| . To argue for this, we first assume that there ex-
4

sts a k 0 such that Q 

ε ′ 
k 0 −1 

k 0 −1 
> Q 

ε ′ 
k 0 

k 0 
. Then for any U (k 0 ) 

that sat-

sfies Q 

ε ′ 
k 0 

k 0 
≤ U (k 0 ) 

≤ Q 

(1 −ε k 0 
) 

k 0 
and U (k 0 ) 

< Q 

ε ′ 
k 0 −1 

k 0 −1 
, we would have 

 (k 0 −1) ≥ Q 

ε ′ 
k 0 −1 

k 0 −1 
> U (k 0 ) 

, which violates U (k 0 −1) ≤ U (k 0 ) 
. For a sim- 

lar reason, we also assume Q 

(1 −ε k −1 ) 

k −1 
≤ Q 

(1 −ε k ) 

k 
, for k = 2 , 3 , . . . , | J| .

We emphasize that all the properties that we have utilized 

bove only rely on the assumption that the continuous distribu- 

ions of Z j ’s are independent. These properties are distribution-free 

ecause they hold regardless of the distributions F j ’s of the random 

ariables of Z j ’s. These properties are also data-free because they 

re not based on any information extracted from data. 

.2. Robust model with order statistic uncertainty set 

To use the uncertainty set U ′ ( ε ′ , ε ) in the robust model 

3) , we need to study the subproblem β(x , U ′ ( ε ′ , ε )) , which

s max Z ∈U ′ ( ε ′ , ε ) 
∑ 

j∈ J ˆ a j · | x j | · Z j . The following characterization of 

 

′ ( ε ′ , ε ) helps to reformulate the subproblem β(x , U ′ ( ε ′ , ε )) . 

roposition 2.1. Given ε ′ , ε , and a fixed x , U (k ) = Q 

(1 −ε k ) 

k 
, ∀ k hold

n the optimal solution to β(x , U ′ ( ε ′ , ε )) . 

Proposition 2.1 states that the order statistics of F j ( Z j ) ’s 

re equal to their upper bounds in the optimal solution to 

(x , U ′ ( ε ′ , ε )) . Note that in the optimal solution to β(x , U ′ ( ε ′ , ε )) ,
he variable Z j should be as large as possible because Z j ’s coeffi- 

ient ˆ a j · | x j | is non-negative. Because F j is non-decreasing, then 

 j ( Z j ) should also be as large as possible. As a result, each or-

er statistic U (k ) of F j ( Z j ) ’s should be as large as its upper bound 

 

(1 −ε k ) 

k 
. Based on Proposition 2.1 , we know that the uncertainty set 

 

′ ( ε ′ , ε ) can be substituted by the following order statistic uncer- 

ainty set. 

 

OS ( ε ) = 

{ 

Z : F j ( Z j ) = U j , ∀ j ∈ J, and U (k ) ≤ Q 

(1 −ε k ) 
k 

, ∀ k ∈ J 

} 

. 

(5) 

Proposition 2.1 shows that the lower bounds in U ′ ( ε ′ , ε ) are ir-

elevant to the optimal solution for β(x , U ′ ( ε ′ , ε )) , and the lower

ounds can be dropped in the definition of U ′ ( ε ′ , ε ) . In the op-

imal solution for β(x , U OS ( ε )) , we must also have U (k ) = Q 

(1 −ε k ) 

k 
.

herefore, we know the optimal objective value for β(x , U ′ ( ε ′ , ε )) 
ust be equal to the optimal objective value for β(x , U OS ( ε )) . 

The order statistic uncertainty set U OS ( ε ) is intractable in its 

urrent form for three reasons. The first reason is that the uncer- 

ainty set U OS ( ε ) is not directly defined on the random variable 

 j , but is constructed with constraints on the cumulative distribu- 

ion functions of Z j ’s. Another reason is that there are | J| ! permu- 

ations of F j (Z j ) ’s for all possible outcomes of U (k ) ’s, which makes

eformulating β(x , U OS ( ε )) challenging. The third reason has to do 
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ith the nonconvexity of the order statistic uncertainty set U OS ( ε ) 
s stated in the following proposition. 

roposition 2.2. If there exist k 1 and k 2 ( 1 ≤ k 1 < k 2 ≤ | J| ) such that

 

(1 −ε k 1 
) 

k 1 

 = Q 

(1 −ε k 2 
) 

k 2 
, then the uncertainty set U OS ( ε ) is not convex. 

To overcome the difficulty in reformulating β(x , U OS ( ε )) , we 

tilize the assignment formulation. The technique that we use is 

imilar to the averaging function for the ordered weighted av- 

raging approach (see Chassein & Goerigk, 2015 ). Let q jk be Z j ’s 

uantile of order Q 

(1 −ε k ) 

k 
, i.e., q jk = inf { x : F j (x ) ≥ Q 

(1 −ε k ) 

k 
} , ∀ j, k ∈ J.

he following proposition provides a tractable formulation for the 

roblem β(x , U OS ( ε )) . 

roposition 2.3. For a fixed x , the optimal objective value for (
x , U OS ( ε ) 

)
is equal to the optimal objective value for the follow-

ng linear optimization problem: 

ax 
η

∑ 

j∈ J 
ˆ a j | x j | ·

( ∑ 

k ∈ J 
q jk η jk 

) 

(6a) 

.t. 
∑ 

k 

η jk = 1 , ∀ j ∈ J (6b) 

 

j 

η jk = 1 , ∀ k ∈ J (6c) 

jk ≥ 0 , ∀ j, k ∈ J. (6d) 

The problem (6) in Proposition 2.3 is the linear relaxation of the 

aximum weight assignment problem, which is known to have 

n integer optimal solution. If η jk = 1 , then ˆ a j | x j | is assigned to

 jk , which implies Z j = q jk and F j (Z j ) = Q 

(1 −ε k ) 

k 
. The integer opti-

al solution of problem (6) will map the set { F j (Z j ) , ∀ j ∈ J} to the

et { Q 

(1 −ε k ) 

k 
, ∀ k ∈ J} . 

The RO Model (3) with uncertainty set U OS ( ε ) becomes the fol- 

owing problem (7) . We follow the procedure in Bertsimas & Sim 

2004) to reformulate the following model to a linear optimization 

odel (we add back the index i for the constraints). 

ax 
x 

c ′ x (7a) 

.t. 
∑ 

j∈ J i 
a i j x j + max 

Z i ∈U OS 
i 

( ε ) 

∑ 

j∈ J i 
ˆ a i j · | x j | · Z i j ≤ b i , ∀ i ∈ I (7b)

 ≤ x ≤ x . (7c) 

heorem 2.4. Model (7) is equivalent to the following linear pro- 

ramming problem: 

ax 
∑ 

j 

c j x j (8a) 

.t. 
∑ 

j∈ J i 
a i j x j + 

∑ 

j∈ J i 
(θi j + φi j ) ≤ b i , ∀ i ∈ I (8b) 

y j ≤ x j ≤ y j , ∀ j (8c) 

 j ≤ x j ≤ x j , ∀ j (8d) 

i j + φik ≥ ˆ a i j q i jk y j , ∀ j, k ∈ J i , ∀ i ∈ I (8e)

 j ≥ 0 , ∀ j (8f) 
5 
We leverage the strong duality to obtain the linear formulation 

8) by replacing the maximizing problem in constraints (7b) with 

he dual of problem (6) . Because Model (8) has more variables 

nd constraints than the Model (7) in Bertsimas & Sim (2004) , the 

omputational complexity of the RO Model (8) is generally higher 

han the RO model with the budget uncertainty set. 

. Special cases 

Using the order statistic uncertainty set in the RO model has 

everal advantages. First, the quantile in the order statistic uncer- 

ainty set is a robust statistic and is less sensitive to extreme ob- 

ervations. The quantiles also contain richer information about the 

ncertainty of a random variable than some other statistics, e.g., 

he range. 

In the following, we demonstrate the modeling power of the 

rder statistic uncertainty set by showing that the RO model with 

he order statistic uncertainty set incorporates three existing un- 

ertainty sets as special cases. Specifically, we show that with suit- 

ble parameters, the RO model with the order statistic uncertainty 

et reduces to the RO models with the interval uncertainty set, the 

udget uncertainty set, and the demand uncertainty set. 

.1. Special cases: the interval and the budget uncertainty set 

Although motivated by different statistical properties, the order 

tatistic uncertainty set has a close relationship with the interval 

nd the budget uncertainty sets. We illustrate it with a numerical 

xample with | J| = 7 . The typical structures of the Z j values in the

ptimal solutions for different uncertainty sets are shown in Fig. 3 . 

n each figure, the values of Z j ’s are ordered from the smallest to 

he largest. In the optimal solution of the RO model with the inter- 

al uncertainty set, all Z j ’s are equal to 1. In the optimal solution 

f the RO model with the budget uncertainty set, up to one of Z j ’s

s fractional and all others are either 0 or 1. 

In the optimal solution of the RO model with the or- 

er statistic uncertainty set, the values of Z j ’s are fractions 

 j 1 , 1 
, q j 2 , 2 , . . . , q j | J| , | J| , where j 1 , j 2 , . . . , j | J| is a permutation of

 , 2 , . . . , | J| . Each of the quantile values determines the level of un-

ertainty for the corresponding random variable. The | J| fractional 

alues q j 1 , 1 , q j 2 , 2 , . . . , q j | J| , | J| can be completely different from each 

ther. Moreover, for any particular k , the fractional value q j k ,k has 

p to | J| possible outcomes because it depends on the index j k . The 

alues of q j 1 , 1 , q j 2 , 2 , . . . , q j | J| , | J| altogether have up to | J| ! outcomes, 

epending on the sequence j 1 , j 2 , . . . , j | J| . The geometric shape of

he order statistic uncertainty set can be flexibly adjusted by the 

 J| 2 parameters. 

The RO models with the interval and the budget uncertainty 

ets are both special cases of the RO model with the order statis- 

ic uncertainty set. If we choose suitable values for the parameters 

n the RO model with the order statistic uncertainty set, we can 

btain the RO models with the other two uncertainty sets. 

1. The RO model with the order statistic uncertainty set re- 

duces to the RO model with the interval uncertainty set if 

we choose q jk = 1 , ∀ k, j ∈ J. The shape of the interval uncer-

tainty set is not adjustable. 

2. The RO model with the order statistic uncertainty set re- 

duces to the RO model with the budget uncertainty set 

with budget � if we choose q jk as follows: q jk = 0 , if 1 ≤
k ≤ | J| − � �� − 1 , ∀ j ∈ J; q jk = � − � �� , if k = | J| − � �� , ∀ j ∈
J ; q jk = 1 , if | J | − � �� + 1 ≤ k ≤ | J| , ∀ j ∈ J. In Appendix E , we

prove that the RO model with the order statistic uncertainty 

set with such a choice of q jk values is equivalent to the RO 

model with the budget uncertainty set with budget � (the 
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Fig. 3. Order statistics of Z j ’s for different uncertainty sets — (a) interval uncertainty set, (b) budget uncertainty set, (c) order statistic uncertainty set. 
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Problem (4) in Bertsimas & Sim, 2004 ). In the optimal so- 

lution of the RO model with the budget uncertainty set, at 

most one of Z j ’s can be a fraction, and all other Z j ’s are ei-

ther 0 or 1 ( Bertsimas & Sim, 2004 , Section 3). The geomet-

ric flexibility of the budget uncertainty set is limited because 

a small change in the value of the budget will only change 

the value of the fractional Z j , but not any other Z j ’s. 

.2. Special case: the demand uncertainty set 

Next, we show that the RO model with the demand uncertainty 

et that has 2 | J| − 1 constraints for the Z j ’s can be obtained from

he RO model of the order statistic uncertainty set. Recall that the 

emand uncertainty set is as follows: 

 

D = 

{
Z : 

∣∣∣∣∑ 

j∈ S Z j 

| S| 1 /α
∣∣∣∣ ≤ γ , ∀ S ⊆ J 

}
. (9) 

In the literature, α is often assumed to be in the range (1,2], 

nd γ ≥ 0 . The following proposition characterizes the optimal so- 

ution to the problem β(x , U D ) and connects the demand uncer- 

ainty set with the order statistic uncertainty set. 

roposition 3.1. For a fixed x , Z ∗
(k ) 

= γ · ( | J| + 1 − k ) 1 /α − γ · ( | J| −
 ) 1 /α, ∀ k ∈ J hold in the optimal solution for β(x , U D ) . 

We explain the key idea of the above result. Notice that the ob- 

ective function of β(x , U D ) is the sum of the pairwise products 

f two sequences ˆ a j | x j | ’s and Z j ’s. Because of the rearrangement

nequality (see Cvetkovski 2012 , Theorem 6.1), in the optimal so- 

ution of β(x , U D ) , the two sequences should be in the same or-

er (both non-decreasing or non-increasing). Thus the largest ˆ a j | x j | 
hould be paired with the largest Z j , and the second largest of the

wo sequences should also be paired with each other, and so on. 

ecause the ˆ a j | x j | ’s are non-negative, Z j ’s should be as large as

ossible in the optimal solution for β(x , U D ) . Moreover, we should 

ake the largest Z j to be as large as possible because it is paired

ith the largest ˆ a j | x j | . The largest of Z j is restricted by the con-

traints with | S| = 1 , so the largest of Z j should be equal to γ . The

econd largest Z j is restricted by the constraints with | S| = 2 , so

he second largest Z j should be equal to γ · (2 1 /α − 1) . The remain- 

ng Z j ’s can be analyzed similarly. 

For the demand uncertainty set, the value of Z ∗
(k ) 

= γ · ( | J| + 

 − k ) 1 /α − γ · ( | J| − k ) 1 /α only depends on the index k for the or-

er statistic but does not depend on the index j of Z j ’s. In con-

rast, the values of Z j ’s for the order statistic uncertainty set (i.e., 

 j 1 , 1 
, q j 2 , 2 , . . . , q j | J| , | J| ) depend on both indices. This shows that the

emand uncertainty set has less geometric flexibility than the or- 

er statistic uncertainty set because it does not capture the poten- 

ial heterogeneity of different distributions of Z j ’s. 

The following corollary provides an equivalent formulation for 

he demand uncertainty set. It requires | J| 2 continuous variables, 

nd | J| 2 + 2 · | J| constraints, which is much less than the 2 | J| − 1 

onstraints in U D if | J| is large. 
6 
orollary 3.2. For a fixed x , the optimal objective value for problem (
x , U D 

)
is equal to the optimal objective value for the following lin- 

ar optimization problem: 

ax 
η

∑ 

j∈ J 
ˆ a j | x j | ·

( ∑ 

k ∈ J 
γ ·

(
k 1 /α − (k − 1) 1 /α

)
· η jk 

) 

(10a) 

.t. 
∑ 

k 

η jk = 1 , ∀ j ∈ J (10b) 

 

j 

η jk = 1 , ∀ k ∈ J (10c) 

jk ≥ 0 , ∀ j, k ∈ J (10d) 

For the problem β(x , U D ) , we need to find the maximum sum 

f the pairwise products of the sequence ˆ a j | x j | , ∀ j ∈ J and the se-

uence γ · (k 1 /α − (k − 1) 1 /α ) , ∀ k ∈ J. Corollary 3.2 ensures that the

lements of the two sequences are one-to-one paired with the as- 

ignment formulation, and the two sequences must be paired in 

he same order in the optimal solution of the problem (10) . The 

obust optimization model with the demand uncertainty set, i.e., 

odel (3) with U D 
i 

(instead of U i ), can be reformulated by taking 

uality of Model (10) . The reformulated model is as follows: 

ax 
∑ 

j 

c j x j (11a) 

.t. 
∑ 

j∈ J i 
a i j x j + 

∑ 

j∈ J i 
(θi j + φi j ) ≤ b i , ∀ i (11b) 

y j ≤ x j ≤ y j , ∀ j (11c) 

 j ≤ x j ≤ x j , ∀ j (11d) 

i j + φik ≥ ˆ a i j · y j · γ ·
(
k 1 /α − (k − 1) 1 /α

)
, ∀ j, k ∈ J i , ∀ i (11e) 

 j ≥ 0 , ∀ j. (11f) 

. Further analysis of the order statistic uncertainty set 

In this section, we first derive the probabilistic guarantee of 

he order statistic uncertainty set to ensure the constraint feasi- 

ility under uncertainty. We then discuss how one may estimate 

he quantile values ( q jk ’s) that we introduced in Section 2.2 from 

vailable data. 
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.1. Probability of constraint feasibility 

Denote the optimal solution to Model (7) as x ∗; the constraint 

ndex i is dropped in this section for the ease of exposition, i.e., we 

tudy a single constraint in (3b) . We are interested in the prob- 

bilistic guarantee of constraint feasibility that the order statistic 

ncertainty set can provide, i.e., Prob 
(∑ 

j∈ J A j · x ∗
j 
≤ b 

)
. In the fol- 

owing, we prove a probabilistic guarantee for the case when the 

andom variables are independently and symmetrically distributed. 

he probabilistic guarantee is expressed by a formula derived in 

teck (1971) , which gives the probability of order statistics of the 

niform distribution lying in a multi-dimensional rectangle. 

roposition 4.1 (This is a restatement of the first theorem in Steck, 

971 ) . Let � be the | J| × | J| matrix whose (i, j) th element is given as:

i j = 

{(
Q 

(1 −ε i ) 
i 

)
j−i +1 / ( j − i + 1)! , j − i + 1 ≥ 0 

0 , j − i + 1 < 0 . 
(12) 

e have 

rob 

(
U (k ) ≤ Q 

(1 −ε k ) 
k 

, k = 1 , . . . , | J| 
)

= | J| ! det [�] . (13) 

heorem 4.2. If the continuous variable A j is independently and 

ymmetrically distributed in [ a j − ˆ a j , a j + ˆ a j ] , ∀ j ∈ J, then the or-

er statistic uncertainty set U OS ( ε ) implies a probabilistic guaran- 

ee of at least 1 
2 + 

1 
2 · | J| ! det [�] for the constraint feasibility, i.e., 

rob ( 
∑ 

j∈ J A j · x ∗
j 
≤ b) ≥ 1 

2 + 

1 
2 · | J| ! det [�] . 

According to the above result, the upper limits of the order 

tatistics of the CDFs of random variables Q 

(1 −ε k ) 

k 
’s determine the 

robabilistic guarantee of the order statistic uncertainty set. If we 

eed a high probabilistic guarantee, then we should set ε k ’s to be 

mall because smaller ε k ’s lead to larger Q 

(1 −ε k ) 

k 
values, which in- 

reases Prob (U (k ) ≤ Q 

(1 −ε k ) 

k 
, k = 1 , . . . , | J| ) . 

.2. Estimating parameters in the order statistic uncertainty set 

The RO model (8) with the order statistic uncertainty set re- 

uires the quantiles q jk ’s as inputs. In practice, if there is no his-

orical data, decision makers may choose these parameters based 

n institutional knowledge. If there is data, then the quantiles q jk ’s 

an be specified based on data with the following procedure. 

We first need to specify the values of ε 1 , . . . , ε | J| in (5) . For con-

enience, we can let all ε k ’s be equal to each other and denote

hem as ε 1 = . . . = ε | J| = ε, which can range between 0 and 1. As

e will show in our numerical experiments, such parameter con- 

guration can lead to good performance. The ε value controls the 

ize of the uncertainty set, which then determines the trade-off

etween the objective value and the probability of constraint fea- 

ibility. If ε is large (small), then the size of the uncertainty set 

s small (large, respectively), and consequently, we would get a 

arge (small, respectively) objective value and low (high, respec- 

ively) probability of constraint feasibility. With the trial-and-error 

earch, we can find an ε value such that the corresponding opti- 

al solution achieves a particular target probability of constraint 

easibility. 

For a given ε value, we can determine Q 

1 −ε 
1 

, Q 

1 −ε 
2 

, . . . , Q 

1 −ε 
| J| 

ased on the quantile function Q 

t 
k 

= inf { τ : I τ (k, | J| + 1 − k ) =
} . Then we can estimate each random variable Z j ’s quantile 

f order Q 

(1 −ε k ) 

k 
according to the definition q jk = inf { x : F j (x ) ≥

 

(1 −ε k ) 

k 
} , ∀ j, k ∈ J. Suppose we have N samples of Z j denoted as

 j1 , . . . , z jN , and we can use the simple random sampling to get
7

he following estimation of q jk ’s. 

 jk = min 

{
z jm 

: 

∑ N 
n =1 1 z jn ≤z jm 

N 

≥ Q 

(1 −ε) 
k 

, ∀ m ∈ N 

}
. (14) 

he simple random sampling estimator is asymptotically normal, 

nd the asymptotic variance could be reduced by various vari- 

nce reduction approaches (see Glasserman et al., 20 0 0 ), including 

tratified sampling, importance sampling, etc. Note that the above 

ethod provides quantile estimations with discontinuities. To re- 

olve this issue, we can apply interpolation or smoothing tech- 

iques (see Dielman et al., 1994 ). 

. Numerical experiments 

In this section, we apply our method to a portfolio construction 

roblem and compare the performance of the order statistic un- 

ertainty set with other existing uncertainty sets. All models were 

mplemented in Python and solved with CPLEX 22.1. The compu- 

ational experiments were performed on a Unix PC equipped with 

.4 GHz dual-Core Intel Core i5 processors and 8 GB memory. All 

roblem instances discussed in this section were solved optimally 

sing CPLEX’s default setting. 

.1. A robust portfolio construction problem 

Suppose we have one unit of asset to invest among | J| port- 

olios 1 , . . . , | J| . We model each portfolio j’s return as an inde-

endent random variable distributed symmetrically in an interval 

 r j − ˆ r j , r j + ̂  r j ] . The portfolio j’s return can be denoted as ˜ r j =
 j + ρ j ̂  r j with −1 ≤ ρ j ≤ 1 . Denote Z j = | ρ j | , ∀ j ∈ J. Suppose we al-

ocate x j of the unit asset in portfolio j, and the goal is to keep the

eturn high and make the associated risk low. 

Suppose we have N samples ρ j1 , . . . , ρ jN for each ρ j . The fol- 

owing problem maximizes the worst-case return V with respect 

o an uncertainty set U while enforcing the expected return to be 

 given level r. 

ax 
x 

V (15a) 

.t. 
∑ 

j∈ J 
x j 

(
r j − Z j ̂  r j 

)
≥ V, ∀ Z ∈ U , (15b) 

N 
 

 =1 

∑ 

j∈ J 
x j 

(
r j + ρ jn ̂  r j 

)
/N = r, (15c) 

 

j∈ J 
x j = 1 , (15d) 

 ≤ x j ≤ 1 , ∀ j ∈ J. (15e) 

Denote the optimal solution of problem (15) as x ∗ and V ∗. For 

ny realization of ρ within the uncertainty set U in the constraint 

15b) , the corresponding portfolio return will be no less than V ∗. 

or realizations of ρ that are not in the uncertainty set U , the 

ortfolio return could be less than V ∗. Therefore, there exists an 

 ∈ [0 , 1] such that 

rob 

( ∑ 

j∈ J 
x ∗j ·˜ r j ≤ V 

∗

) 

= ω. (16) 

According to the relation (16) , the ω value is the probability 

hat the portfolio return is no greater than V ∗. This means that 

he negative of the optimal objective value (i.e., −V ∗) is the Value- 

t-Risk (VaR) of level ω because the VaR of level ω is defined as 

he minimum value such that the probability of a loss exceeds VaR 

s at most ω. Therefore, the problem (15) can be viewed as the 
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obust Mean-Value at Risk (Robust-MVaR) portfolio optimization 

odel. Using the trial-and-error procedure that we discussed in 

ection 4.2 , we can solve the problem (15) with different parame- 

ers for the uncertainty set U and find the one such that the level 

for the corresponding optimal solution is equal to our target risk 

evel (say, ω = 0 . 1 or 0.05). For example, if the level ω for the op-

imal solution is larger (smaller) than what we want, then we can 

educe (increase, respectively) it by increasing (reducing, respec- 

ively) the size of the uncertainty set U so that the optimal solution 

an ensure a higher (lower, respectively) probabilistic guarantee on 

he portfolio return being no less than the objective value. 

In our numerical experiment, we solve problem (15) with the 

rder statistic uncertainty set, the budget uncertainty set, the inter- 

al uncertainty set (see Chassein et al., 2019 ), the tail uncertainty 

et, the convex hull uncertainty set (see Chassein et al., 2019 ) and 

he ellipsoidal uncertainty set. We generate portfolio returns based 

n the value-weighted portfolio dataset in the 17 Industry Port- 

olios Daily category from Kenneth French’s website (see French, 

021 ). This dataset has daily returns for 17 portfolios from July 01 

926 to October 29, 2021. With the dataset, we can estimate the 

ample mean μ j and sample standard deviation σ j for each port- 

olio j ( j = 1 , . . . , 17) . 

In the following numerical experiments, we aim to compare the 

erformances of the order statistic uncertainty set and the other 

ve uncertainty sets, as well as investigate how the sample size 

nd the correlation of random variables affect the performances of 

ncertainty sets. 

.2. Probability bound of constraint feasibility 

In this section, we evaluate the probability bound of constraint 

easibility in Theorem 4.2 by comparing it with the posteriori em- 

irical probability of constraint feasibility. We let | J| take 4 differ- 

nt values 2, 4, 6 and 8. For each of the | J| values, we let ε take dif-

erent values between 0 and 1 and compare the probability bound 

f constraint feasibility and the posteriori empirical probability of 

onstraint feasibility. 

For each | J| and each ε, we can calculate the probability 

ound of constraint feasibility using 1 
2 + 

1 
2 · | J| ! det [�] based on 

heorem 4.2 . In order to evaluate the posteriori empirical probabil- 

ty of constraint feasibility, we make use of Model (15) . Specifically, 

or each | J| and each ε, we use the first | J| portfolios of the 17 port-

olios (introduced in Section 5.1 ) to evaluate the posteriori empiri- 

al probability of constraint feasibility with 100 repetitions. In each 

epetition, we generate the in-sample dataset consisting of 10 0 0 

amples of the | J| portfolios’ returns drawn from the multivariate 

ormal distribution with mean (μ1 , . . . , μ| J| ) and covariance ma- 

rix whose (i, j) th entry is σ 2 
i 

if i = j and 0 if i 
 = j. With this in-

ample dataset, we solve Model (15) to obtain the optimal solution 

 

∗ and V ∗. Then we generate the out-of-sample dataset consisting 

f 10 6 samples of the | J| portfolios’ returns drawn from the same 

istribution that was used to generate the in-sample dataset. With 

he optimal solution x ∗, V ∗ and the out-of-sample dataset, we use 

he formula (16) to calculate the ω value. Then the posteriori em- 

irical probability of constraint feasibility can be obtained as 1 − ω. 

he mean out-of-sample posteriori empirical probabilities of con- 

traint feasibility (over the 100 repetitions) are shown in Fig. 4 . 

he figure also has the probability bound of constraint feasibility 

or each | J| and each ε. 

For the case | J| = 2 , the gap between the probability bound and

he posteriori empirical probability of constraint feasibility is rel- 

tively small. As | J| increases to 4, 6 and 8, the gap gets larger.

herefore, the probability bound in Theorem 4.2 is more useful for 

he cases with small | J| values. Due to the gap between the prob-

bility bound and the posteriori empirical probability of constraint 

easibility, we use the posteriori empirical probability of constraint 
8 
easibility to evaluate the probability level of constraint feasibility 

n the following numerical experiments. 

.3. The effect of sample size and correlation 

In this section, we compare the performances of the order 

tatistic uncertainty set and five other uncertainty sets for different 

ample sizes and different degrees of correlation between portfo- 

io returns. We let ω = 0 . 1 and set the target return r in constraint

15c) to be the median of μ1 , . . . , μ17 . 

We conduct the experiment with 400 repetitions. In each rep- 

tition, we generate the in-sample dataset consisting of N sam- 

les of 17 portfolios’ returns drawn from the multivariate nor- 

al distribution with mean (μ1 , . . . , μ17 ) and covariance ma- 

rix whose (i, j) th entry is σ 2 
i 

if i = j and ρ · σi · σ j if i 
 = j. We

ill let ρ = 0 . 05 , 0 . 5 and 0.95, corresponding to low-correlation,

edium-correlation and high-correlation regimes. Using this in- 

ample dataset, we estimate the parameters for each of the six un- 

ertainty sets, e.g., the range for the budget uncertainty set, the 

orrelation matrix for the ellipsoidal uncertainty set, etc. Note that 

e used linear interpolation to avoid the discontinuity of the quan- 

ile estimator in (14) . Then by adjusting the parameter of each un- 

ertainty set that controls the size of the uncertainty set (e.g., ad- 

usting the ε value for U OS , � for U B , α′ for U T , and � for U Q ), we

an find the solution for each uncertainty set such that the cor- 

esponding objective value is equal to the in-sample VaR of level 

 = 0 . 1 . Then we evaluate the out-of-sample returns and the out-

f-sample VaR values of level ω = 0 . 1 for the six solutions using

nother dataset consisting of 10 6 samples of 17 portfolios’ returns 

rawn from the same distribution that is used to generate the in- 

ample dataset. As a result, for each repetition, each uncertainty 

et would have a solution with its out-of-sample return and out- 

f-sample VaR of level ω = 0 . 1 . Note that with the above proce-

ure, the in-sample returns for different uncertainty sets are the 

ame. 

We have tested for 4 different in-sample sample sizes 

 = 10 0 , 20 0 , 50 0 , 10 0 0 for each of the case with ρ =
 . 05 , 0 . 5 , 0 . 95 . To achieve the in-sample VaR of level ω = 0 . 1 , we

sed binary search to find the parameter (with precision up to 14 

ecimal places) for each uncertainty set. This requires repeatedly 

olving instances of Model (15) . Computation time for cases with 

ifferent sam ple sizes ranges from 1 to 6 hours. Note that we have 

iscarded the instances for which we were not able to find a pa- 

ameter for some uncertainty set(s) such that the in-sample VaR of 

evel ω = 0 . 1 can be achieved. We believe this does not affect the

elative performance of different uncertainty sets. 

Fig. 5 shows the mean out-of-sample return and the mean out- 

f-sample VaR of level ω = 0 . 1 (over 400 repetitions) for differ-

nt uncertainty sets when ρ = 0 . 5 and N = 100 . We say that one

ncertainty set dominates another uncertainty set if the first un- 

ertainty set has higher return and lower VaR value. The interval 

ncertainty set has lower return and higher VaR values than all 

ther uncertainty sets, so the interval uncertainty set is dominated 

y all other uncertainty sets. The performances of the tail uncer- 

ainty set and the ellipsoidal uncertainty set are very close to each 

ther. No uncertainty set dominates the order statistic uncertainty 

et because the order statistic uncertainty set either has higher re- 

urn or has lower VaR value than other uncertainty sets. To check 

hether these findings are statistically significant, we can plot the 

onfidence intervals for different uncertainty sets. To more clearly 

how the confidence intervals, we plot the confidence intervals of 

eturns and VaR values separately in Fig. 6 . We use the 95% level

f confidence for all the confidence interval analyses in this paper. 

ote that the portfolio returns and VaR values reported in this pa- 

er are percentage values, i.e., we need to divide them by 100 and 

hen add 1 to get the actual portfolio return and VaR. The “CH” in 
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Fig. 4. Probability bound v.s. the posteriori empirical probability of constraint feasibility. 

Fig. 5. The out-of-sample return and out-of-sample VaR for the case of ρ = 0 . 5 and N = 100 . 
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he figure represents the convex hull uncertainty set. The “Qua” in 

he figure represents the ellipsoidal uncertainty set. 

.3.1. The effect of sample size. 

In Fig. 6 , the out-of-sample returns for each of the six uncer- 

ainty sets do not seem to be affected by the sample size, no mat- 

er when the correlation is low, medium, or high. For the out-of- 

ample VaR, the performances of the order statistic uncertainty 

et and the budget uncertainty set do not seem to be affected 

y the sample size for different correlation regimes. The out-of- 

ample VaR values of the interval uncertainty set, the tail uncer- 

ainty set, the convex hull uncertainty set and the ellipsoidal un- 

ertainty set improve when the sample size increases from 100 

o 10 0 0 for both the low-correlation and the medium-correlation 

ases, but not for the high-correlation cases. This can be explained 

y the effect of sample size, i.e., for low-correlation and medium- 

orrelation regimes, the estimation of the parameters for the four 

ncertainty sets improves with the sample size. Moreover, we can 

ee that the effect of sample size on the out-of-sample VaR is more 

ignificant when the correlation of random variables is lower. 

Next, we compare the performance of the order statistic uncer- 

ainty set with the other five uncertainty sets. Note that in Fig. 6 ,

he confidence intervals of the order statistic uncertainty set and 

ther uncertainty sets may overlap. Because we cannot determine 

hether the out-of-sample returns or VaR values are statistically 

ignificantly different from each other if the confidence intervals 

verlap, we test whether the difference between the out-of-sample 
9 
eturns or VaR values is significantly greater (or less) than 0. We 

ill always use this approach for significance tests whenever we 

ave overlapping confidence intervals in this paper. 

We say one uncertainty set is better than another uncertainty 

et if either of the following condition is satisfied: (1) the VaR of 

he first uncertainty set is lower than that of the second uncer- 

ainty set, and the return of the first uncertainty set is higher than 

r not significantly different from that of the second uncertainty 

et; (2) the return of the first uncertainty set is higher than that 

f the second uncertainty set, and the VaR of the first uncertainty 

et is lower than or not significantly different from that of the sec- 

nd uncertainty set. If neither of these two conditions is satisfied, 

hen we know that one of the two uncertainty sets has signifi- 

antly higher VaR value and higher return than the other uncer- 

ainty set, and in this case we say that the two uncertainty sets 

ffer different trade-offs between the VaR and return, and the two 

ncertainty sets cannot be ranked. 

In Fig. 7 , we summarize the comparison between the order 

tatistic uncertainty set and each of the other five uncertainty sets 

ased on the results in Fig. 6 . The “Ret” stands for the out-of- 

ample return. The sign “> ” (or “< ”, or “≈”) denotes that the VaR 

alue or the return of the corresponding uncertainty set is greater 

han (or smaller than, or not significantly different from) the or- 

er statistic uncertainty set. The cells with green color (or diago- 

al lines) mean that the performance of the order statistic uncer- 

ainty set is better (or worse) than the corresponding uncertainty 

et. The cells without green color or diagonal lines mean that the 
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Fig. 6. The out-of-sample performance for different N sample sizes and different correlation regimes. The target return r is the median of the 17 portfolios returns; ω = 0 . 1 . 

For the case of ρ̄ = 0 . 05 , the mean VaR values for the interval uncertainty set are 1.048, 1.019, 1.011, 0.995. 

Fig. 7. Compare the out-of-sample return and out-of-sample VaR of the order statistic uncertainty set with each of the other five uncertainty sets. 
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rder statistic uncertainty set and the corresponding uncertainty 

et achieve different trade-offs between the VaR value and the re- 

urn, and the performances of the two uncertainty sets can not be 

anked. 

For example, when ρ̄ = 0 . 05 and N = 100 in Fig. 6 , the budget

ncertainty set has larger VaR value than the order statistic uncer- 

ainty set and the returns of the two uncertainty sets are not sig- 

ificantly different from each other, and so we can conclude that 

he order statistic uncertainty set has better performance. Corre- 

pondingly, when ρ̄= 0.05 and N = 100 in Fig. 7 , we add the sign

> ” in the cell for the row “Budget” and the column “VaR”, and 

dd the sign “≈” in the cell for the row “Budget” and the column 

Ret”. Because the order statistic uncertainty set is better than the 

udget uncertainty set in this case, we fill the two cells with color 

reen. All other cells in Fig. 7 can be interpreted in the same way. 
10 
.3.2. Comparision between the order statistic uncertainty set and 

ther uncertainty sets 

Comparison with the budget uncertainty set . For all the four cases 

hen ρ = 0 . 05 , Fig. 7 shows that the out-of-sample returns of the

rder statistic uncertainty set and the budget uncertainty set are 

ot significantly different from each other, and the out-of-sample 

aR of the order statistic uncertainty set is significantly lower than 

he budget uncertainty set. This shows that the order statistic un- 

ertainty set has better performance than the budget uncertainty 

et. Similarly, when ρ = 0 . 5 (except for the case N = 500 ), the or-

er statistic uncertainty set also has better performance than the 

udget uncertainty set. For the case ρ = 0 . 95 , the order statistic 

ncertainty set has better performance when N = 10 0 0 . For the

ther three cases with N = 10 0 , 20 0 and 500, the order statistic

ncertainty set has significantly lower VaR values and lower return 
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Fig. 8. The computation time (in seconds) of different uncertainty sets. The target return r is the median of the 17 portfolios returns; ω = 0 . 1 . 
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alues than the budget uncertainty set. This means that for these 

hree cases, the solutions of the two uncertainty sets offer differ- 

nt trade-offs between the return and VaR value, and the perfor- 

ances of the two uncertainty sets cannot be ranked. 

Comparison with the interval/convex hull uncertainty set . For all 

ases when ρ̄ = 0 . 05 , the order statistic uncertainty set has better

erformance than the interval and the convex hull uncertainty set. 

he interval and the convex hull uncertainty set has better perfor- 

ance than the order statistic uncertainty set only when ρ = 0 . 95 

nd N = 10 0 0 . For all other cases, either the order statistic uncer-

ainty set has better performance than the interval/convex hull un- 

ertainty set, or the performance of the order statistic and the in- 

erval/convex hull uncertainty set cannot be ranked. 

Comparison with the tail/ellipsoidal uncertainty set . For the low- 

orrelation regime ρ = 0 . 05 when the sample size is small (e.g., 

 = 100 or 200), the order statistic uncertainty set has better per- 

ormance than the tail/ellipsoidal uncertainty set. For the high- 

orrelation regime ρ = 0 . 95 , the tail/ellipsoidal uncertainty set has 

etter performance than the order statistic uncertainty set. For the 

edium-correlation regime ρ = 0 . 5 , the order statistic uncertainty 

et has significantly higher out-of-sample returns and significantly 

igher VaR values than the tail/ellipsoidal uncertainty set. There- 

ore, for the medium-correlation case, we cannot draw a definitive 

onclusion regarding the relative performance of the uncertainty 

ets because they provide different balances of portfolio return and 

aR. 

In summary, when the correlation of the portfolio returns is 

ow and the sample size is small, the order statistic uncertainty set 

ends to have a better out-of-sample performance than the other 

ve uncertainty sets. For the medium-correlation case, the order 

tatistic uncertainty set can outperform some uncertainty sets (e.g., 

he interval uncertainty set), but for some other uncertainty sets, 

he order statistic uncertainty set does not have a superior perfor- 

ance. For example when the correlation is 0.5, the solution of 

he tail/ellipsoidal uncertainty set offers different trade-offs com- 

ared with the solution of the order statistic uncertainty set. For 

he high-correlation regime, the performance of the order statistic 

ncertainty set deteriorates even more because it does not outper- 

orm the other five uncertainty sets for most cases. 

From above, we can conclude that the order statistic uncer- 

ainty set tends to have better performance when the sample size 

s small and the correlations among the portfolio returns are low. 

hen the correlation increases from ρ̄ = 0 . 05 to 0.5 and 0.95, the

erformance of the order statistic uncertainty set gets worse. This 

an be explained by the fact that the correlation between random 

ariables is not incorporated in the order statistic uncertainty set, 

nd thus the performance of the order statistic uncertainty set de- 

lines as the correlation grows. 

.3.3. Computation time 

In this section, we evaluate the computational performances of 

ifferent uncertainty sets. We first generate a sample dataset that 

onsists of N samples of 17 portfolios’ returns drawn from the mul- 
11
ivariate normal distribution with mean (μ1 , . . . , μ17 ) and covari- 

nce matrix whose (i, j) th entry is σ 2 
i 

if i = j and ρ · σi · σ j if i 
 = j.

ecause the results of the computation time for the case ρ = 0 . 5

r the case ρ = 0 . 95 are very similar to the case with ρ = 0 . 05 ,

e only present results for the case ρ = 0 . 05 . We set the target

eturn r in constraint (15c) to be the median of μ1 , . . . , μ17 . By 

rial-and-error, we can find the parameter for each uncertainty set 

uch that the corresponding objective value is equal to the in- 

ample VaR of level ω = 0 . 1 . Then we use the calibrated parame-

er for each uncertainty set to solve problem (15) with 100 out-of- 

ample datasets. Each out-of-sample dataset consists of N samples 

f 17 portfolios’ returns drawn from the same distribution as that 

sed for the in-sample dataset. The mean computation time for the 

00 out-of-sample datasets measures the time complexity of each 

ncertainty set. We have tested for 8 different sam ple sizes. The 

ean computation time for different uncertainty sets are shown 

n Fig. 8 . 

For each uncertainty set, the computation time increases with 

he sample size N. The computation time for the order statis- 

ic uncertainty set, the budget uncertainty set, the interval un- 

ertainty set and the ellipsoidal uncertainty set are very close to 

ach other. The tail uncertainty set and the convex hull uncertainty 

et consume the most computation time (except for the case with 

 = 100 ). Moreover, the gap between the tail/convex hull uncer- 

ainty set and other uncertainty sets grows as the sample size N

ncreases. This can be explained by the model complexity of dif- 

erent uncertainty sets. The number of variables in the tail uncer- 

ainty set or the convex hull uncertainty set is proportional to the 

ample size N. The number of variables and constraints in the RO 

odel with the order statistic uncertainty set, the budget uncer- 

ainty set, the interval uncertainty set or the ellipsoidal uncertainty 

et is proportional to the number of portfolios | J| or | J| 2 but is not

elated to N. So when the sample size N increases from 100 to 

5,0 0 0, the computation time for the tail uncertainty set and the 

onvex hull uncertainty set increases faster than the other four un- 

ertainty sets. 

Among the order statistic uncertainty set, the budget uncer- 

ainty set, the interval uncertainty set and the ellipsoidal uncer- 

ainty set, the computation time of the order statistic uncertainty 

et is slightly more than the other three uncertainty sets for most 

ases. This can be explained by the fact that the number of vari- 

bles and constraints in the RO model with the order statistic un- 

ertainty set is more than those in the RO model with the other 

hree uncertainty sets. That being said, the differences are small 

nd not practically significant. 

.3.4. Robustness test. 

We evaluate the performances of the order statistic uncertainty 

et and the other five uncertainty sets using a different set of 

arameters. Specifically, we set the target return r in constraint 

15c) to be the 75th percentile of μ1 , . . . , μ17 , and set ω to be 0.05 

hile keeping all other parameters to be the same. We follow the 

ame procedure described at the beginning of Section 5.3 to find 
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Fig. 9. The out-of-sample performance for different N sample sizes and different correlation regimes. The target return r is the 75th percentile of the 17 portfolios returns; 

ω = 0 . 05 . For the case of ρ̄ = 0 . 05 , the mean VaR values for the interval uncertainty set are 1.357, 1.337, 1.299, 1.287. 

Fig. 10. Compare the out-of-sample return and out-of-sample VaR of the order statistic uncertainty set with each of the other five uncertainty sets. 
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nd evaluate solutions for different uncertainty sets. The results for 

aR and return are shown in Fig. 9 . The comparison analysis be- 

ween the order statistic uncertainty set and each of the other five 

ncertainty sets is shown in Fig. 10 . 

The results can be interpreted in the same way as in Figs. 6 and

 . The relative performance of the order statistic uncertainty set 

nd the other five uncertainty sets is qualitatively the same as 

hat we observe in Section 5.3.2 . When the correlation is low 

 ̄ρ = 0 . 05 ), the order statistic uncertainty set has better perfor-

ance than the budget uncertainty set, the interval uncertainty 

et and the convex hull uncertainty set. When the correlation is 

ow ( ̄ρ = 0 . 05 ) and the sample size is small, e.g., N = 100 or 200,

he order statistic uncertainty set has better performance than the 

ail uncertainty set and the ellipsoidal uncertainty set. As the cor- 
12 
elation increases to 0.95, the performance of the order statistic 

ncertainty set decreases. 

We also follow the same procedure in Section 5.3.3 to evaluate 

he computational performances of different uncertainty sets, ex- 

ept that we now make the target return r in constraint (15c) be 

he 75th percentile of μ1 , . . . , μ17 , and make ω be 0.05 (all other 

arameters are kept to be the same). The results are shown in 

ig. 11 . The relative computational performance of different uncer- 

ainty sets is very similar to the results in Fig. 8 . For example, the

omputation time of the order statistic uncertainty set is slightly 

igher than the budget uncertainty set, the interval uncertainty set 

nd the ellipsoidal uncertainty set. The computation time of the 

ail/convex hull uncertainty set increases the most as the sample 

ize N increases. 
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Fig. 11. The computation time (in seconds) of different uncertainty sets. The target return r is the 75th percentile of the 17 portfolios returns; ω = 0 . 05 . 
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. Conclusion 

In this paper, we develop and analyze the order statistic uncer- 

ainty set for robust linear optimization models. We use the Prob- 

bility Integral Transform to study data-free and distribution-free 

roperties of random variables, which are then embedded in the 

esign of the order statistic uncertainty set. To depict uncertainties, 

he order statistic uncertainty set utilizes quantiles of random vari- 

bles, which contain rich information of distributions. We demon- 

trate the geometric flexibility of the order statistic uncertainty set 

nd show that the RO models with the interval uncertainty set, the 

udget uncertainty set, and the demand uncertainty set are all spe- 

ial cases of the RO model with the order statistic uncertainty set. 

umerical experiments on a portfolio construction problem show 

hat the order statistic uncertainty set outperforms five other ex- 

sting uncertainty sets when the sample size is small and the cor- 

elation of random variables is low. 

ppendix A. Proof of Proposition 2.1 

The proof is by contradiction. First, assume that the statement 

f the proposition is not true. Then in the optimal solution to 

(x , U ′ ( ε ′ , ε )) , there must exist at least one k such that U (k ) <

 

(1 −ε k ) 

k 
. Let k ′ = arg max k { k : U (k ) < Q 

(1 −ε k ) 

k 
} and denote the corre-

ponding random variable to be Z j(k ′ ) . Specifically, j(k ′ ) is a map- 

ing from order statistics’ index k ′ to the index j of random vari- 

ble Z j . We must have that F j(k ′ ) (Z j(k ′ ) ) = U (k ′ ) < Q 

(1 −ε 
k ′ ) 

k ′ . Accord-

ng to the definition of k ′ , we have U (k ) = Q 

(1 −ε k ) 

k 
, ∀ k > k ′ . 

Let F j(k ′ ) (Z j(k ′ ) + δ) = Q 

(1 −ε 
k ′ ) 

k ′ . Such δ exists because 0 ≤
 

(1 −ε 
k ′ ) 

k ′ ≤ 1 ; and δ > 0 because F j(k ′ ) is non-decreasing. We con- 

truct a new solution to β(x , U ′ ( ε ′ , ε )) by only modifying Z j(k ′ ) 
o be Z j(k ′ ) + δ. The new solution to β(x , U ′ ( ε ′ , ε )) becomes

 1 , . . . , Z j(k ′ ) −1 , Z j(k ′ ) + δ, Z j(k ′ )+1 , . . . , Z | J| . 
In the old solution, the order statistics of 

 1 (Z 1 ) , . . . , F j(k ′ ) −1 (Z j(k ′ ) −1 ) , F j(k ′ ) (Z j(k ′ ) ) , F j(k ′ )+1 (Z j(k ′ )+1 ) , . . . , F | J| (Z | J|
re U (1) , . . . , U (k ′ −1) , U (k ′ ) , U (k ′ +1) , . . . , U ( | J| ) . Next we

how that in the new solution, the order statis- 

ics of F 1 (Z 1 ) , . . . , F j(k ′ ) −1 (Z j(k ′ ) −1 ) , F j(k ′ ) (Z j(k ′ ) +
) , F j(k ′ )+1 (Z j(k ′ )+1 ) , . . . , F | J| (Z | J| ) are U (1) , . . . , U (k ′ −1) , F j(k ′ ) (Z j(k ′ ) +
) , U (k ′ +1) , . . . , U ( | J| ) . This will hold if we can prove that

 (k ′ −1) ≤ F j(k ′ ) (Z j(k ′ ) + δ) ≤ U (k ′ +1) , because the only differ- 

nce between the old solution and the new solution is that 

 j(k ′ ) becomes Z j(k ′ ) + δ. We have U (k ′ −1) ≤ F j(k ′ ) (Z j(k ′ ) + δ) 

ecause U (k ′ −1) ≤ U (k ′ ) < Q 

(1 −ε 
k ′ ) 

k ′ = F j(k ′ ) (Z j(k ′ ) + δ) . We 

ave F j(k ′ ) (Z j(k ′ ) + δ) ≤ U (k ′ +1) because F j(k ′ ) (Z j(k ′ ) + δ) = 

 

(1 −ε 
k ′ ) 

k ′ ≤ Q 

(1 −ε 
k ′ +1 

) 

k ′ +1 
= U (k ′ +1) . Therefore, we have proven that 

 (k ′ −1) ≤ F j(k ′ ) (Z j(k ′ ) + δ) ≤ U (k ′ +1) holds, and this means that 

he order statistics of F 1 (Z 1 ) , . . . , F j(k ′ ) −1 (Z j(k ′ ) −1 ) , F j(k ′ ) (Z j(k ′ ) +
) , F j(k ′ )+1 (Z j(k ′ )+1 ) , . . . , F | J| (Z | J| ) are U (1) , . . . , U (k ′ −1) , F j(k ′ ) (Z j(k ′ ) +
) , U (k ′ +1) , . . . , U ( | J| ) . Based on this conclusion, we can tell that the
13
ew solution Z 1 , . . . , Z j(k ′ ) −1 , Z j(k ′ ) + δ, Z j(k ′ )+1 , . . . , Z | J| is feasible to

(x , U ′ ( ε ′ , ε )) . 
The new solution increases the objective value by ˆ a j(k ′ ) | x j(k ′ ) | ·

≥ 0 , and this means that the old solution to β(x , U ′ ( ε ′ , ε )) was

ot a maximizer of β(x , U ′ ( ε ′ , ε )) , and we can improve the objec-

ive value by increasing Z j(k ′ ) to be Z j(k ′ ) + δ. Using this same logic, 

e continue to modify our solution if there exist a k such that 

 (k ) < Q 

(1 −ε k ) 

k 
, and eventually we must have U (k ) = Q 

(1 −ε k ) 

k 
, ∀ k . 

ppendix B. Proof of Proposition 2.2 

Without loss of generality, assume k 1 < k 2 . As we stated in 

ection 2.1 , if k 1 < k 2 , then we have Q 

(1 −ε k 1 
) 

k 1 
≤ Q 

(1 −ε k 2 
) 

k 2 
. Because

 

(1 −ε k 1 
) 

k 1 

 = Q 

(1 −ε k 2 
) 

k 2 
, we have Q 

(1 −ε k 1 
) 

k 1 
< Q 

(1 −ε k 2 
) 

k 2 
. 

We further assume Q 

(1 −ε k 1 
) 

k 1 
< Q 

(1 −ε k 1 +1 ) 

k 1 +1 
, and the reason for it 

s in the following. Because Q 

(1 −ε k 1 
) 

k 1 
< Q 

(1 −ε k 2 
) 

k 2 
, there must ex- 

st an integer m ( k 1 ≤ m < k 2 ) such that Q 

(1 −ε m ) 
m 

< Q 

(1 −ε k 2 
) 

k 2 
and

 

(1 −ε m ) 
m 

< Q 

(1 −ε m +1 ) 

m +1 
. If m = k 1 , then Q 

(1 −ε k 1 
) 

k 1 
< Q 

(1 −ε k 1 +1 ) 

k 1 +1 
holds; if

 > k 1 , then we make m to be the new k 1 , and then it holds

hat Q 

(1 −ε k 1 
) 

k 1 
< Q 

(1 −ε k 1 +1 ) 

k 1 +1 
. Note that because m < k 2 , we have

 

(1 −ε m +1 ) 

m +1 
≤ Q 

(1 −ε k 2 
) 

k 2 
, i.e., for the new k 1 , we also have Q 

(1 −ε k 1 +1 ) 

k 1 +1 
≤

 

(1 −ε k 2 
) 

k 2 
. Therefore, in the following, we will assume Q 

(1 −ε k 1 
) 

k 1 
< 

 

(1 −ε k 1 +1 ) 

k 1 +1 
≤ Q 

(1 −ε k 2 
) 

k 2 
. 

Next we choose a Z = (Z 1 , . . . , Z j ) ∈ U OS ( ε ) , such that there

xist j 1 , j 2 ( j 1 
 = j 2 ) that satisfy F j 1 ( Z j 1 ) = U j 1 
= Q 

(1 −ε k 1 
) 

k 1 
and

 j 2 
( Z j 2 ) = U j 2 

= Q 

(1 −ε k 2 
) 

k 2 
. Since 0 ≤ Q 

(1 −ε k 1 
) 

k 1 
≤ 1 and 0 ≤ Q 

(1 −ε k 2 
) 

k 2 
≤

 , we can find W 1 and W 2 , such that F j 1 ( W 1 ) = Q 

(1 −ε k 2 
) 

k 2 
and

 j 2 
(W 2 ) = Q 

(1 −ε k 1 
) 

k 1 
. Then we construct Z 

′ by replacing Z j 1 and 

 j 2 
in Z with W 1 and W 2 , respectively. So we have Z ′ 

j 1 
=

 1 , Z 
′ 
j 2 

= W 2 and Z ′ 
j 
= Z j , for j 
 = j 1 , j 2 . Since F j 1 (Z ′ 

j 1 
) = F j 2 (Z j 2 ) ,

 j 2 
(Z ′ 

j 2 
) = F j 1 (Z j 1 ) and F j (Z ′ 

j 
) = F j (Z j ) , for j 
 = j 1 , j 2 , we have

 F 1 (Z ′ 
1 
) , . . . , F | J| (Z ′ | J| ) } = { F 1 (Z 1 ) , . . . , F | J| (Z | J| ) } . This shows that Z 

′ ∈
 

OS ( ε ) . 

Because Q 

(1 −ε k 1 
) 

k 1 
< Q 

(1 −ε k 2 
) 

k 2 
, we have Z j 1 < W 1 and Z j 2 > W 2 .

hen for any λ ∈ (0 , 1) , we must have F j 1 ((1 − λ) Z j 1 + λW 1 )) >

 

(1 −ε k 1 
) 

k 1 
and F j 2 ((1 − λ) Z j 2 + λW 2 )) > Q 

(1 −ε k 1 
) 

k 1 
. 

For any λ ∈ (0 , 1) , denote Z 

λ = (1 − λ) Z + λZ 

′ . We

ext show Z 

λ 
∈ U OS ( ε ) . Since Z λ
j 

= (1 − λ) Z j + λZ ′ 
j 
= Z j , for

j 
 = j 1 , j 2 , we have { F j (Z λ
j 
) : ∀ j 
 = j 1 , j 2 } = { F j (Z j ) : ∀ j 
 = j 1 , j 2 } =

 Q 

(1 −ε k ) 

k 
: ∀ k 
 = k 1 , k 2 } . Therefore, the k 1 -th order statistic of
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 F j (Z λ
j 
) : ∀ j = 1 , . . . , | J| } = min { Q 

[1 −ε (k 1 +1) ] 

k 1 +1 
, F j 1 ((1 − λ) Z j 1 + 

W 1 )) , F j 2 ((1 − λ) Z j 2 + λW 2 ) } is strictly greater than Q 

(1 −ε k 1 
) 

k 1 
.

his proves that Z 

λ 
∈ U OS ( ε ) , and our proof is completed. �

ppendix C. Proof of Proposition 2.3 

First we prove that the optimal solution to problem (6) is feasi- 

le to β(x , U OS ( ε )) . Note that the problem (6) is essentially a lin-

ar relaxation of the maximum weight assignment problem. It is 

ell-known that there is always an optimal solution with all the η
ariables taking integer values. In the optimal solution to problem 

6) , for every j ∈ J, there exists a unique k ∈ J such that η jk = 1 .

f η jk = 1 , we let Z j = 

∑ 

k ′ ∈ J q jk ′ η jk ′ = q jk , and we have F j (Z j ) =
 j (q jk ) = Q 

(1 −ε k ) 

k 
. Then we have { F j (Z j ) , ∀ j ∈ J} = { Q 

(1 −ε k ) 

k 
, ∀ k ∈ J} .

herefore, for any 1 ≤ m ≤ | J| , we must have the m th smallest el-

ment in the set { F j (Z j ) , ∀ j ∈ J} should be no greater than the

 th smallest element in the set { Q 

(1 −ε k ) 

k 
, ∀ k ∈ J} , which is essen-

ially U (m ) ≤ Q 

(1 −ε m ) 
m 

, ∀ m ∈ J. This proves that the optimal solution

o problem (6) is indeed feasible to the problem β(x , U OS ( ε )) , and

o the optimal objective value for problem (6) is less than or equal 

o the optimal objective value for the problem β(x , U OS ( ε )) . 
Next we prove that the optimal solution to β(x , U OS ( ε )) 

s feasible to problem (6) . Assume in the optimal solu- 

ion to β(x , U OS ( ε )) , the order statistics of F j (Z j ) ’s are

 j 1 
(Z j 1 ) , F j 2 (Z j 2 ) , . . . , F j | J| (Z j | J| ) , where the sequence j 1 , j 2 , . . . , j | J| 

re a permutation of the set { 1 , 2 , . . . , | J| } . We then have

 j k 
(Z j k ) = Q 

(1 −ε k ) 

k 
, ∀ k ∈ J, i.e., Z j k = q j k ,k . Such a solution is feasi-

le to problem (6) because we can construct the corresponding 

olution to problem (6) as follows: 

j k ,m 

= 

{
1 , k = m, 

0 , k 
 = m, 
∀ k, m ∈ J. (C.1) 

his proves that the optimal solution to β(x , U OS ( ε )) is feasible to

roblem (6) , and so the optimal objective value for β(x , U OS ( ε )) is
ess than or equal to the optimal objective value for the problem 

6) . 

In the above, we have proven that the optimal objective val- 

es for problem (6) and problem β(x , U OS ( ε )) are no greater than 

ach other, and so the optimal objective values of problem (6) and 

roblem β(x , U OS ( ε )) must be equal to each other. 

ppendix D. Proof of Theorem 2.4 

Similar to Bertsimas & Sim (2004) , we apply the strong dual- 

ty to reformulate Model (7) . For fixed x , we first take dual of the

aximizing problem in constraints (7b) , and we get: 

in 

∑ 

j∈ J i 

(
θi j + φi j 

)
(D.1a) 

.t. θi j + φik ≥ ˆ a i j | x j | q i jk , ∀ j, k ∈ J i , ∀ i (D.1b)

Because the maximizing problem in constraints (7b) is feasible 

nd bounded, we must have that the formulation (D.1) is also fea- 

ible and bounded due to strong duality. And their optimal objec- 

ive values are equal. Substituting formulation (D.1) into Model (7) , 

e can get the linear programming formulation (8) . Hence proven. 

�

ppendix E. Proof: the equivalence of the RO models with the 

udget uncertainty set and the order statistic uncertainty set 

We prove that the RO model with the budget uncertainty set 

ith budget � (the Problem (4) in Bertsimas & Sim, 2004 ) is equiv- 
14 
lent to the RO model with the order statistic uncertainty set with 

roperly chosen q jk values. 

The Problem (4) in Bertsimas & Sim (2004) is essentially the 

ollowing problem. We assume that there is only one constraint 

hat has the budget uncertainty set, and so we have removed the i 

ndex. 

ax 
x 

c ′ x (E.1a) 

.t. 
∑ 

j 

a j x j + β
(
x , U 

B (�) 
)

≤ b, (E.1b) 

 ≤ x ≤ x , (E.1c) 

here β(x , U B (�)) is the following problem 

max 
 S∪{ t}| S⊂J, | S| = � �� ,t∈ J\ S} 

{ ∑ 

j∈ S 
ˆ a j · | x j | + (� − � �� ) · ˆ a t · | x t | 

} 

. (E.2) 

ote that we have used x and x instead of l and u for lower and

pper bounds. We need to prove that the problem (E.1) is equiva- 

ent to the following RO model with the order statistic uncertainty 

et. 

ax 
x 

c ′ x (E.3a) 

.t. 
∑ 

j 

a j x j + β
(
x , U 

OS ( q ) 
)

≤ b, (E.3b) 

 ≤ x ≤ x , (E.3c) 

here β(x , U OS ( q )) is the following problem 

ax 
η

∑ 

j∈ J 
ˆ a j | x j | ·

( ∑ 

k ∈ J 
q jk η jk 

) 

(E.4a) 

.t. 
∑ 

k 

η jk = 1 , ∀ j ∈ J (E.4b) 

 

j 

η jk = 1 , ∀ k ∈ J (E.4c) 

 ≤ η jk ≤ 1 , ∀ j, k ∈ J. (E.4d) 

nd q satisfies q jk = 0 , if 1 ≤ k ≤ | J| − � �� − 1 , ∀ j ∈ J; q jk = � −
 �� , if k = | J| − � �� , ∀ j ∈ J; q jk = 1 , if | J| − � �� + 1 ≤ k ≤ | J| , ∀ j ∈ J.

We just need to prove that the optimal objective value 

or β(x , U B (�)) is equal to the optimal objective value for 

(x , U OS ( q )) . 

The problem (E.4) is the linear relaxation of the maximum 

eight assignment problem, which is known to have an integer 

ptimal solution. For every j ∈ J, there exists a unique k ∈ J such

hat η jk = 1 . If η jk = 1 , then ˆ a j | x j | is paired to q jk . Therefore, if

 ≤ k ≤ | J| − � �� − 1 , then ˆ a j | x j | is paired with 0; if k = | J| − � �� ,
hen ˆ a j | x j | is paired with � − � �� ; if | J| − � �� + 1 ≤ k ≤ | J| , then

ˆ  j | x j | is paired with 1. So for all ˆ a 1 | x 1 | , ̂  a 2 | x 2 | , . . . , ̂  a | J| | x | J| | , we know

hat � �� of them will be paired with 1, and one of them will be

aired with � − � �� , and the rest will be paired with 0. Therefore,

he problem (E.4) is essentially the same as the problem (E.2) , and 

o we have that the optimal objective values for β(x , U B (�)) and

(x , U OS ( q )) are equal to each other. Hence proven. �
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ppendix F. Proof of Proposition 3.1 

The constraints in U D are equivalent to the following: 

γ · m 

1 /α ≤
∑ 

j∈ S 
Z j ≤ γ · m 

1 /α, ∀ S ⊆ J, | S| = m, m = 1 , . . . , | J| , (F.1a)

r − γ · m 

1 /α ≤ min 

S⊆J, | S| = m 

∑ 

j∈ S 
Z j , max 

S⊆J, | S| = m 

∑ 

j∈ S 
Z j ≤ γ · m 

1 /α, 

∀ m = 1 , . . . , | J| . (F.1b) 

Because the k th order statistic of Z j ’s is denoted as Z (k ) , we have

he following: 

min 

⊆J, | S| = m 

∑ 

j∈ S 
Z j = 

m ∑ 

k =1 

Z (k ) , max 
S⊆J, | S| = m 

∑ 

j∈ S 
Z j = 

| J| ∑ 

k = | J| +1 −m 

Z (k ) (F.2) 

Then the demand uncertainty set U D can be rewritten in terms 

f the order statistics of Z j ’s as follows: 

 

D 
os = 

{ 

Z : −γ · j 1 /α ≤
j ∑ 

k =1 

Z (k ) , 

| J| ∑ 

k = | J| +1 − j 

Z (k ) ≤ γ · j 1 /α, ∀ j ∈ J 

} 

. 

(F.3) 

Since the demand uncertainty set is equivalent to U D os , we just 

eed to prove that Z 

∗ maximizes β(x , U D os ) . We first check Z 

∗ is fea-

ible to U D os , and then prove it is optimal to the problem β(x , U D os ) . 

To prove the feasibility of Z 

∗, there are two steps: (1) 

e need to prove that ( | J| + 1 − k ) 1 /α − ( | J| − k ) 1 /α is increas-

ng in k . That is [( | J| − k ) 1 /α − ( | J| − k − 1) 1 /α] − [( | J| + 1 − k ) 1 /α −
 | J| − k ) 1 /α] ≥ 0 , ∀ 1 ≤ k ≤ | J| − 1 , or equivalently 2 · ( | J| − k ) 1 /α −
 | J| − k − 1) 1 /α − ( | J| + 1 − k ) 1 /α ≥ 0 , which is evidenced by the

act that the function x 1 /α is concave for α ≥ 1 . (2) We 

heck that Z 

∗ satisfies all the constraints in U D os . Note that 

 

∗
(k ) 

≥ 0 , ∀ k ∈ J, so −γ · j 1 /α ≤ ∑ j 

k =1 
Z ∗
(k ) 

, ∀ j ∈ J, is satisfied; for

ther constraints, 
∑ | J| 

k = | J| +1 − j 
Z ∗
(k ) 

= 

∑ | J| 
k = | J| +1 − j 

γ · ( | J| + 1 − k ) 1 /α −
· ( | J| − k ) 1 /α = γ · j 1 /α . Therefore, Z 

∗ is feasible to U D os . 

We next prove that Z 

∗ is the optimal solution to the problem 

(x , U D os ) . Denote the ordered sequence of ˆ a 1 | x 1 | , ̂  a 2 | x 2 | , . . . , ̂  a | J| | x | J| |
s [ ̂  a | x | ] (1) , [ ̂  a | x | ] (2) , . . . , [ ̂  a | x | ] (| J| ) , i.e., [ ̂  a | x | ] (k ) is the k th small- 

st among all ˆ a j | x j | ’s. Because of the rearrangement inequality 

Cvetkovski, 2012, Theorem 6.1) , the objective value for any fea- 

ible Z in U D os should be no greater than [ ̂  a | x | ] (1) · Z (1) + [ ̂  a | x | ] (2) ·
 (2) + . . . + [ ̂  a | x | ] (| J| ) · Z (| J| ) . Then the difference of the optimal ob- 

ective value of our Z 

∗ and that of any feasible Z in U D os should be

o less than: 

[ ̂  a | x | ] (1) · (Z ∗(1) − Z (1) ) + [ ̂  a | x | ] (2) · (Z ∗(2) − Z (2) ) 

+ . . . + [ ̂  a | x | ] (| J| ) · (Z ∗( | J| ) − Z ( | J| ) ) (F.4) 

Since Z satisfies 
∑ | J| 

k = | J| +1 − j 
Z (k ) ≤ γ · j 1 /α = 

∑ | J| 
k = | J| +1 − j 

Z ∗
(k ) 

, ∀ j ∈ 

, we then have 
∑ | J| 

k = j (Z ∗
(k ) 

− Z (k ) ) ≥ 0 , ∀ j ∈ J, i.e., Z ∗
( j) 

− Z ( j) ≥∑ | J| 
k = j+1 

(Z ∗
(k ) 

− Z (k ) ) , ∀ 1 ≤ j ≤ | J| − 1 . We apply these constraints 

o (F.4) one at a time repeatedly, and we can get: 

F . 4) ≥ −[ ̂  a | x | ] (1) ·
| J| ∑ 

k =2 

(Z ∗(k ) − Z (k ) ) + [ ̂  a | x | ] (2) ·
(
Z ∗(2) − Z (2) 

)
+ . . . 

+ [ ̂  a | x | ] ( | J| ) ·
(
Z ∗( | J| ) − Z ( | J| ) 

)
= 

(
[ ̂  a | x | ] (2) − [ ̂  a | x | ] (1) 

)
·
(
Z ∗(2) − Z (2) 

)
+ 

(
[ ̂  a | x | ] (3) − [ ̂  a | x | ] (1) 

)
·
(
Z ∗(3) − Z (3) 

)
+ . . . 

+ 

(
[ ̂  a | x | ] ( | J| ) − [ ̂  a | x | ] (1) 

)
·
(
Z ∗( | J| ) − Z ( | J| ) 

)

15 
≥ −
(
[ ̂  a | x | ] (2) − [ ̂  a | x | ] (1) 

)
·

| J| ∑ 

k =3 

(
Z ∗(k ) − Z (k ) 

)
+ 

(
[ ̂  a | x | ] (3) − [ ̂  a | x | ] (1) 

)
·
(
Z ∗(3) − Z (3) 

)
+ . . . + 

(
[ ̂  a | x | ] ( | J| ) − [ ̂  a | x | ] (1) 

)
·
(
Z ∗( | J| ) − Z ( | J| ) 

)
= 

(
[ ̂  a | x | ] (3) − [ ̂  a | x | ] (2) 

)
·
(
Z ∗(3) − Z (3) 

)
+ 

(
[ ̂  a | x | ] (4) − [ ̂  a | x | ] (2) 

)
·
(
Z ∗(4) − Z (4) 

)
+ . . . 

+ 

(
[ ̂  a | x | ] ( | J| ) − [ ̂  a | x | ] (2) 

)
·
(
Z ∗( | J| ) − Z ( | J| ) 

)
. . . 

≥
(
[ ̂  a | x | ] ( | J| ) − [ ̂  a | x | ] ( | J| −1) 

)
·
(
Z ∗( | J| ) − Z ( | J| ) 

)
≥ 0 

The last inequality holds because Z ( | J| ) ≤ γ = Z ∗
( | J| ) , and 

 ̂  a | x | ] ( | J| ) − [ ̂  a | x | ] ( | J| −1) ≥ 0 holds by definition. This concludes 

he proof. �

ppendix G. Proof of Corollary 3.2 

Similar to the problem (6) , the problem (10) is also a relaxed 

aximum weight assignment problem. Therefore, there always ex- 

sts an optimal solution where all the η variables take integer val- 

es. For any j ∈ J, there exists a unique k ∈ J such that η jk = 1 .

s a result, problem (10) is equivalent to max j 1 , ... , j | J| 
∑ 

k ∈ J ˆ a k | x k | ·
· ( j k 1 /α − ( j k − 1) 1 /α ) , where j k 

1 /α − ( j k − 1) 1 /α is assigned to 

ˆ  k | x k | , and { j 1 , j 2 , . . . , j | J| } is a permutation of the set J =
 1 , 2 , . . . , | J| } . Due to the rearrangement inequality, the optimal so-

ution to problem (10) must be 
∑ 

k ∈ J [ ̂  a | x | ] (k ) · γ · ( ( | J| + 1 − k ) 1 /α −
 | J| − k ) 1 /α ) , which is exactly the optimal solution to the problem 

(x , U D ) as we derived in the proof for Proposition 3.1 . �

ppendix H. Proof of Theorem 4.2 

Denote the optimal solution to Model (7) as x ∗, and denote 

he corresponding value of the subproblem in constraint (7b) as 
∗. Then β∗ is equal to the optimal objective value of problem 

6) when we fix x in problem (6) to be x ∗. Suppose the contin- 

ous variable A j is independently and symmetrically distributed in 

 a j − ˆ a j , a j + ˆ a j ] , ∀ j ∈ J, and we need to prove Prob ( 
∑ 

j∈ J A j · x ∗
j 
≤

) ≥ 1 
2 + 

1 
2 · | J| ! det [�] . Denote ρ j = (A j − a j ) / ̂  a j ∈ [ −1 , 1] and let

 j = | ρ j | . We then have 

rob 

( ∑ 

j 

A j x 
∗
j ≤ b 

) 

(H.1a) 

= Prob 

( ∑ 

j 

a j x 
∗
j + 

∑ 

j 

ˆ a j | x ∗j | · ρ j ≤ b 

) 

(H.1b) 

= Prob 

( ∑ 

j 

ˆ a j | x ∗j | · ρ j ≤ b −
∑ 

j 

a j x 
∗
j 

) 

(H.1c) 

≥ Prob 

( ∑ 

j 

ˆ a j | x ∗j | · ρ j ≤ β∗

) 

(H.1d) 

Because ρ j is symmetrically distributed in [ −1 , 1] , ∀ j ∈ J, we

ust have Prob ( 
∑ 

j ˆ a j | x ∗j | · ρ j ≤ 0) = 

1 
2 and that 

Prob 

( 

0 ≤
∑ 

j 

ˆ a j | x ∗j | · ρ j ≤ β∗

) 

= Prob 

( 

−β∗ ≤
∑ 

j 

ˆ a j | x ∗j | · ρ j ≤ 0 

) 
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P
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P

P

= 

1 

2 

· Prob 

( 

∣∣∣∣∣∑ 

j 

ˆ a j | x ∗j | · ρ j 

∣∣∣∣∣ ≤ β∗

) 

Further, we have 

rob 

( ∑ 

j 

ˆ a j | x ∗j | · ρ j ≤ β∗

) 

(H.2a) 

 Prob 

( ∑ 

j 

ˆ a j | x ∗j | · ρ j ≤ 0 

) 

+ Prob 

( 

0 ≤
∑ 

j 

ˆ a j | x ∗j | · ρ j ≤ β∗

) 

(H.2b) 

 

1 

2 

+ 

1 

2 

· Prob 

( 

∣∣∣∣∣∑ 

j 

ˆ a j | x ∗j | · ρ j 

∣∣∣∣∣ ≤ β∗

) 

(H.2c) 

1 

2 

+ 

1 

2 

· Prob 

( ∑ 

j 

ˆ a j | x ∗j | · | ρ j | ≤ β∗

) 

(H.2d) 

 

1 

2 

+ 

1 

2 

· Prob 

( ∑ 

j 

ˆ a j | x ∗j | · Z j ≤ β∗

) 

(H.2e) 

Note that Z 1 , . . . , Z | J| are independent with each other, so we 

now F j (Z j ) ’s are independent with each other and each F j (Z j ) fol-

ows Unif(0,1) distribution. Suppose j 1 , j 2 , . . . , j | J| is an arbitrary 

ermutation of 1 , 2 , . . . , | J| , and because of symmetry, we have

rob [ F j 1 (Z j 1 ) ≤ F j 2 (Z j 2 ) ≤ . . . ≤ F j | J| (Z j | J| )] = 

1 
| J| ! . Then we have 

rob 

( ∑ 

j 

ˆ a j | x ∗j | · Z j ≤ β∗

) 

(H.3a) 

= 

∑ 

{ j 1 , j 2 , ... , j | J| } : { j 1 , j 2 , ... , j | J| } = { 1 , 2 , ... , | J| } 
Prob 

[
F j 1 (Z j 1 ) ≤ F j 2 (Z j 2 ) ≤ . . . ≤ F j | J| (Z j | J| ) 

]
· (H.3b) 

rob 

( | J| ∑ 

k =1 

ˆ a j k | x ∗j k | · Z j k ≤ β∗
∣∣∣∣F j 1 (Z j 1 ) ≤ F j 2 (Z j 2 ) ≤ . . . ≤ F j | J| (Z j | J| ) 

) 

(H.3c) 

 

∑ 

{ j 1 , j 2 , ... , j | J| } : { j 1 , j 2 , ... , j | J| } = { 1 , 2 , ... , | J| } 
(H.3d) 

1 

| J| ! · Prob 

( | J| ∑ 

k =1 

ˆ a j k | x ∗j k | · Z j k ≤ β∗
∣∣∣F j 1 (Z j 1 ) 

≤ F j 2 (Z j 2 ) ≤ . . . ≤ F j | J| (Z j | J| ) 

)
(H.3e) 

Denote U j = F j (Z j ) , ∀ j 1 , . . . , | J| , and then U j ~ Unif (0 , 1) . Recall

hat β∗ is equal to the optimal objective value of problem (6) when 

e fix x in problem (6) to be x ∗. Then for any permutation 

j 1 , j 2 , . . . , j | J| of 1 , 2 , . . . , | J| , we have 
∑ | J| 

k =1 
ˆ a j k | x ∗j k | · q j k ,k ≤ β∗. Note

hat ˆ a j k | x ∗j k | ≥ 0 , so if Z j k ≤ q j k ,k , ∀ k ∈ J hold, then 

∑ | J| 
k =1 

ˆ a j k | x ∗j k | ·
 j k 

≤ β∗ holds. So we have 

H. 3 e ) (H.4a) 
16 
∑ 

{ j 1 , j 2 , ... , j | J| } : { j 1 , j 2 , ... , j | J| } = { 1 , 2 , ... , | J| } 
(H.4b) 

1 

| J| ! · Prob 

[
Z j k ≤ q j k ,k , ∀ k ∈ J 

∣∣ F j 1 (Z j 1 ) ≤ F j 2 (Z j 2 ) ≤ . . . ≤ F j | J| (Z j | J| ) 
]

(H.4c) 

 

∑ 

{ j 1 , j 2 , ... , j | J| } : { j 1 , j 2 , ... , j | J| } = { 1 , 2 , ... , | J| } 
(H.4d) 

1 

| J| ! Prob 

[
F j k (Z j k ) ≤ F j k (q j k ,k ) , ∀ k ∈ J 

∣∣ F j 1 (Z j 1 ) 

≤ F j 2 (Z j 2 ) ≤ . . . ≤ F j | J| (Z j | J| ) 
]

(H.4e) 

 

∑ 

{ j 1 , j 2 , ... , j | J| } : { j 1 , j 2 , ... , j | J| } = { 1 , 2 , ... , | J| } 
(H.4f) 

1 

| J| ! Prob 

[
F j k (Z j k ) ≤ Q 

1 −ε k 
k 

, ∀ k ∈ J 
∣∣ F j 1 (Z j 1 ) 

≤ F j 2 (Z j 2 ) ≤ . . . ≤ F j | J| (Z j | J| ) 
]

(H.4g) 

 

∑ 

{ j 1 , j 2 , ... , j | J| } : { j 1 , j 2 , ... , j | J| } = { 1 , 2 , ... , | J| } 
(H.4h) 

1 

| J| ! Prob 

[
U j k 

≤ Q 

1 −ε k 
k 

, ∀ k ∈ J 
∣∣ U j 1 ≤ U j 2 ≤ . . . ≤ U j | J| 

]
(H.4i) 

Recall that U j ~ Unif (0 , 1) , and because of symmetry, we 

ave Prob (U j 1 
≤ U j 2 

≤ . . . ≤ U j | J| ) = 

1 
| J| ! for any permulation 

j 1 , j 2 , . . . , j | J| . Then we have 

rob 

[ 
∩ 

| J| 
k =1 

(
U (k ) ≤ Q 

1 −ε k 
k 

)] 
(H.5a) 

 

∑ 

{ j 1 , j 2 , ... , j | J| } : { j 1 , j 2 , ... , j | J| } = { 1 , 2 , ... , | J| } 
(H.5b) 

1 

| J| ! Prob 

[
U j k 

≤ Q 

1 −ε k 
k 

, ∀ k ∈ J 
∣∣ U j 1 ≤ U j 2 ≤ . . . ≤ U j | J| 

]
, (H.5c) 

hich is exactly (H.4i) . So we have 

rob 

( ∑ 

j 

ˆ a j | x ∗j | · Z j ≤ β∗

) 

(H.6a) 

= (H. 3 e ) (H.6b) 

≥ (H. 4 i ) (H.6c) 

= Prob 

[ 
∩ 

| J| 
k =1 

(
U (k ) ≤ Q 

1 −ε k 
k 

)] 
(H.6d) 

= | J| ! det [�] (H.6e) 

Therefore, we have 

rob 

( ∑ 

j 

A j x 
∗
j ≤ b 

) 

(H.7a) 

≥ Prob 

( ∑ 

j 

ˆ a j | x ∗j | · ρ j ≤ β∗

) 

(H.7b) 
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S
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≥ 1 

2 

+ 

1 

2 

· Prob 

( ∑ 

j 

ˆ a j | x ∗j | · Z j ≤ β∗

) 

(H.7c) 

≥ 1 

2 

+ 

1 

2 

· | J| ! det [�] (H.7d) 
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