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certainty set by placing constraints on the order statistics of random variables. We utilize the quantiles

Keywords: of random variables to depict the uncertainties and then adopt the formulation of the assignment prob-
Uncertainty modelling lem to develop a tractable formulation for the order statistic uncertainty set. We show that the robust
Robust optimization optimization models with the interval uncertainty set, the budget uncertainty set, and the demand un-
Order statistics certainty set can be obtained as special cases of the robust optimization model with the order statistic

uncertainty set. Finally, using a robust portfolio construction problem as an example, we show via numer-
ical experiments that the order statistic uncertainty set has better performance than other uncertainty
sets when the sample size is small and the correlation between random variables is low.
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1. Introduction paper, we focus on robust optimization and propose a new uncer-
tainty set.
In many optimization problems, the decision maker needs to
make decisions in the presence of uncertainty. Stochastic optimiza- 1.1. The robust optimization model
tion has long been used to find optimal solutions in such settings.
Specifically, the random quantities are assumed to follow some Consider the standard deterministic linear optimization prob-

probability distributions, which leads to either a random objective lem given below:

function, or random constraints, or both. Stochastic optimization

models can impose significant computational burden, and as a re- max c'’x (1a)
sult, approximation procedures are often used — see Birge & Lou-

veaux (2011, Chapter 8-10). .
. L . . t. x- < b VY
Another popular approach is robust optimization, which has st Za,jx] <b;, Viel (1b)
drawn increasingly more attention in recent years. Rather than I
model random quantities as having known distributions, the robust _
X <X <X, (1c)

optimization model aims to find a solution that achieves the best

objective performance while remaining feasible for any realization where J; is the index set of x;’s for the ith constraint, and the car-
(scenario) of the uncertain quantities within an uncertainty set. If  ginality of the set J; is denoted as [Jj]. The set of indexes for con-
the solution is not feasible for some scenarios excluded from the straints is denoted as I, which is assumed to be a finite set. In the
uncertainty set, then the decision maker may find it more econom- above model, each coefficient a;; is known and fixed. Suppose now
ical to develop contingency plans to deal with those scenarios. Ro- the decision maker is uncertain about the values of a;;’s, and mod-
bust Optimization (RO) is particularly attractive when uncertainty els them by random variables A;;'s. The decision maker aims to
characterization via a probability distribution is unreliable. In this find a solution that not only has a high objective value but also
ensures the feasibility of constraint (1b) with a particular proba-
bility as specified by the following chance constraint.
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Table 1
Summary of uncertainty sets.
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Uncertainty set Definition

Distributional information Parameter to control the size

Interval uncertainty set U = {Z :0<Zj<1,Vj}

Budget uncertainty set Uk = {Z : ZE’L] Z;<T,0<Zj< l,Vj}

Ellipsoidal uncertainty set Ul={zerll: 7y 'z < @}
ub — {ZZ YjesZj

Demand uncertainty set S

<y.vsclf
Tail uncertainty set Ut = {Z :3qeRY st Z=YN  guz",

1q=1.qs < grgy N =1, N}

range None
range r
variance & covariance Q
variance oy
tail average o'

The optimization problem involving chance constraints is generally
hard to solve (see Yang & Xu, 2016). The probabilistic feasibility of
constraints can also be achieved with the RO model - see Ben-Tal
& Nemirovski (2000) and Bertsimas et al. (2011).

Uncertainty modelling in the RO model. As in the robust op-
timization framework presented in Bertsimas & Sim (2004), we
assume that the random variable A;; follows an unknown but
symmetric distribution, and A;; can take any value in the range
la;j — d;j. a;; + G;;]. We transform the random variable A;; into the
random variable Z;; € [0, 1] such that Z;; = |A;; — a;;|/d;;, and we let
Z; = (Zy, ..., Zy). Henceforth, whenever random variables are men-
tioned, we mean the random variables Zij's.

The robust model that guarantees feasibility of the constraint i
for any realization of Z; that lies within the uncertainty set /; can
be written as follows:

max ¢'x (3a)
X
s.t. Zaijxj—i_l_l?jbii(zdij. |Xj| -Z,'j <b;, Viel (3b)
Jeli Jeli
X<X<X, (30)

We denote the subproblem maxzey, > ;) i - 1xj| - Zi;  as
Bi(x,U;). We have assumed that the uncertainty sets in the above
model to be “constraint-wise”. Note that this is without loss of
generality because we can always reformulate a joint uncertainty
set ¢/ across constraints to be “constraint-wise” (see Section 1.2.1
in Ben-Tal et al, 2009). Therefore, we will drop the constraint
index i and focus on an arbitrary constraint. As we will discuss in
Section 3.1, the above robust formulation (3) is consistent with the
framework presented in Bertsimas & Sim (2004). In the following,
we review previous works on uncertainty set characterization, and
then discuss uncertainty set design and our contribution.

1.2. Common uncertainty sets

The uncertainty set is an essential component of the RO ap-
proach. Table 1 summarizes some of the most common uncertainty
sets that have been studied in the RO literature. The table also in-
cludes the distributional information that each uncertainty set uti-
lizes and the parameter of each uncertainty set that may be used
to adjust its size. We briefly discuss each of the uncertainty sets in
the following.

The interval uncertainty set (also known as the box uncertainty
set) can be found in Ben-Tal & Nemirovski (2000). It offers a high
protection level, but tends to be conservative because it finds the
best solution for the worst possible realization of the unknown pa-
rameters, i.e., all the random variables Z;'s in the optimal solution
are set to 1. The budget uncertainty set, introduced in Bertsimas &
Sim (2004), is the first polyhedral uncertainty set that can control
the level of conservativeness for the RO model. The idea is to im-
pose the budget constraint on the sum of all random variables Z;’s,

which prevents all random variables from taking the extreme value
of 1. The ellipsoidal uncertainty set (Ben-Tal & Nemirovski, 1998;
El Ghaoui et al., 1998) is motivated by the standard deviation for-
mula, which results in the quadratic form. The matrix X' is the
variance-covariance matrix for random variables Z;’s. The demand
uncertainty set is inspired by the generalized central limit theorem
(Bandi et al., 2015; Bandi & Gupta, 2020). In Table 1, the parameter
« is the tail coefficient, and |S| stands for the cardinality of the set
S, which is an arbitrary subset of the set J. Note that if we impose
constraints on all possible subsets of J, then there will be 2Ul — 1
constraints for |J| random variables. The tail uncertainty set con-
sists of the convex hull of all the centroids of any N(1 — &) points
out of N points in the sampled data z!, z2, ..., zV (Bertsimas et al.,
2011). The tail uncertainty set is an attractive way to characterize
uncertainty when the decision maker’s risk preference corresponds
to the conditional value-at-risk measure.

In addition to the above-mentioned linear or quadratic uncer-
tainty sets, there are other data-driven approaches to design un-
certainty sets. Bertsimas et al. (2018) construct uncertainty sets
using statistical hypothesis tests in a data-driven manner. Shang
et al. (2017) propose a novel data-driven uncertainty set for solving
robust optimization problems based on a piecewise linear kernel.
Cheramin et al. (2021) propose data-driven polyhedral uncertainty
sets, which can capture correlation information between uncertain
variables using principal component analysis.

1.3. The trade-off between the objective value and constraint
feasibility

The choice of the uncertainty set is a key consideration in uti-
lizing the RO approach. The uncertainty set in the RO model de-
termines the trade-off between two conflicting goals: good objec-
tive performance and a high probability of constraint feasibility.
The balance between the objective value and probability of con-
straint feasibility depends on two aspects of the uncertainty set.
The first aspect is the size of the uncertainty set, which is cho-
sen by the decision maker depending on his level of conservatism.
For a particular uncertainty set, if its size gets smaller, then the
objective value improves but the probability of constraint feasibil-
ity declines; the improvement in one is always at the expense of
the other. The second aspect of the uncertainty set is the geomet-
ric flexibility. We may be able to improve the performance of both
the objective value and constraint protection if the uncertainty set
contains regions of more likely uncertain scenarios and excludes
the extremely unlikely ones. To achieve this, we need to design
the uncertainty set with greater geometric flexibility so that we
can adjust its shape to contain regions of high probability.

Besides having the uncertainty set that possesses geometric
flexibility, we also need to identify characterizations of uncertain-
ties that can guide us to adjust the shape of the uncertainty set.
Such characterization may stem from two sources. One source
can be the data-free and distribution-free properties of random
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variables. Typically, the properties emanate from general statistical
knowledge of random variables, which requires no input from any
sample data, and as few assumptions as possible about the data
generating process. The second source is the specific information
relevant to the particular problem setting, which may be derived
from either historical data or institutional knowledge. Existing un-
certainty sets have utilized different kinds of information, which
often appear as parameters in the formulations; for example, the
range in the budget uncertainty set, or the mean and covariance
in the ellipsoidal uncertainty set. However, these statistics contain
limited information and may lose some useful distributional infor-
mation. Therefore, it is important to conceive uncertainty sets that
can incorporate richer information from data.

1.4. Our contribution

The focus of this study is to explore the characterization of ran-
dom variables and utilize it to design a new uncertainty set. We
seek to answer the following questions: What are the data-free
and distribution-free statistical characteristics of the collective be-
havior of random variables that may be utilized to refine the un-
certainty set? How can we design an uncertainty set that captures
rich distributional information while still resulting in a tractable
linear programming formulation? Is it possible to construct an un-
certainty set that offers the ability to adjust the level of uncer-
tainty in each dimension separately rather than a single parameter
that affects all dimensions in the same way? If we can construct
a new uncertainty set, then under what conditions can the new
uncertainty set outperform other existing approaches? Our main
results are as follows:

1. We use the Probability Integral Transform to show that if
the random variables Z;’s are continuous and mutually in-
dependent of each other, then the order statistics of the cu-
mulative distribution functions (CDFs) of Z;’s follow the Beta
distribution. For a given probability, each order statistic of
the CDFs of random variables Z;’s has a high-density interval
within the range [0,1]. Based on this data-free distribution-
free property of CDFs of random variables Z;'s, we construct
an order statistic uncertainty set by imposing constraints on
order statistics of the CDFs of random variables Z;'s.

2. To embed the CDFs of random variables in the RO model
with the order statistic uncertainty set, we utilize the quan-
tiles of random variables, which carry rich distributional in-
formation of random variables. Because the order statistics
of the CDFs of Z's have |J|! possible outcomes, the con-
straints for them imply |J|! implicit linear constraints. In or-
der to develop a tractable linear formulation for the |J|! im-
plicit linear constraints, we adopt the formulation of the as-
signment problem.

3. We demonstrate the geometric flexibility of the order statis-
tic uncertainty set and prove that the RO model with the
order statistic uncertainty set reduces to the RO model with
the interval uncertainty set, or the budget uncertainty set,
or the demand uncertainty set if its parameters are selected
suitably. This shows that the order statistic uncertainty set
has a greater modeling power because the RO model with
the order statistic uncertainty set provides a framework that
incorporates these three uncertainty sets as special cases.

4. The order statistic uncertainty set captures rich informa-
tion about distributions because it utilizes the quantiles of
distributions to characterize uncertainties. Different quan-
tile values for different random variables are used in the
uncertainty set, and the uncertainties for different random
variables can be depicted separately. The quantile levels in
the order statistic uncertainty set determine the probabilis-
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tic guarantee for the constraint feasibility. We illustrate how
we can achieve different trade-offs between the objective
performance and constraint feasibility by choosing different
quantile levels.

5. We apply the order statistic uncertainty set and several com-
peting characterizations of the uncertainty set to a robust
portfolio construction problem and compare and contrast
their relative performance. Results of our numerical experi-
ments show that when the correlation of portfolio returns is
low, the order statistic uncertainty set outperforms the bud-
get uncertainty set, the interval uncertainty set and the con-
vex hull uncertainty set. Additionally, if the correlation of
portfolio returns is low and the sample size is small, then
the order statistic uncertainty set has better performance
than the tail uncertainty set and the ellipsoidal uncertainty
set as well.

The outline of the paper is as follows. In Section 2, we present
the motivation to construct the order statistic uncertainty set and
provide a linear formulation of the RO model with the order statis-
tic uncertainty set. In Section 3, we show that the RO models with
the interval uncertainty set, or the budget uncertainty set, or the
demand uncertainty set can be obtained as special cases of the
RO model with the order statistic uncertainty set. In Section 4,
we derive the probabilistic bound for constraint feasibility for the
RO model with the order statistic uncertainty set, and discuss
how to determine the parameters for the order statistic uncer-
tainty set. In Section 5, we solve a robust portfolio construction
problem with the order statistic uncertainty set and other existing
uncertainty sets, and compare their relative performance. Finally,
Section 6 summaries our results.

2. The order statistic uncertainty set

In this section, we use the Probability Integral Transformation
to derive a distribution-free and data-free property of random vari-
ables Z;'s, and then use the property to construct the order statis-
tic uncertainty set. In Section 2.2, we present a linear formulation
of the RO model with the new uncertainty set. All mathematical
proofs can be found in the appendix.

2.1. Motivation: order statistics

Suppose the random variables Z;’s are continuous and inde-
pendently distributed in the range [0,1], each following an arbi-
trary continuous distribution with an unknown cumulative distri-
bution function F;. Denote random variables U; = F;(Z;), Vj € J, and
each U; can be shown to be uniformly distributed over [0,1] (see
Roussas, 1997, Section 9.4). Denote the order statistics of U;’s as
Uay, ---»Uqypy, which is the rearranged sequence of U;'s with the
k-th order statistic Uy, being the k-th smallest among them. Dif-
ferent from the random variable Uj’s, the order statistic random
variable U, follows Beta(k, |J| + 1 — k) distribution (see Gut, 2009,
Chapter 4.1) instead of the uniform distribution. The mapping from
{Z1,....Z} 0 {Ugq), ..., Uy} is illustrated in Fig. 1.

To motivate our approach, we discuss an example with |J| = 20
random variables. Fig. 2 shows the Beta(k, |J]| + 1 — k) distribution
of different Ug,'s, Vk =1, ..., 20. There are two observations worth
noting.

1. If k is small, the distribution of Uy, tends to be right
skewed, which means the U, variable tends to be small. As
k increases, the distribution of U, gets more skewed to the
left. Most U,'s are extremely unlikely to be either 0 or 1.

2. Each order statistic Uy, has a high-density interval strictly
smaller than [0,1], over which the area under its probabil-
ity density function is close to 1. For example, the area un-
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Variables

Distribution

Zl’ ZZ: ceey Z”l

Z;s are independent with arbitrary
continuous distributions

v

via cdf transformation

Us = F1(Z), U = Fa(Zy), ... Uy = Fly(Zy)|

Uj ~ Uniform(0,1), Vj

v

via ordering from smallest to largest

Uw, U - Ugppy

| Ugy ~Beta(k,lJ| + 1= k)

Fig. 1. Transformations of variables.

12

Ulsy~Beta(8,13)

e
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t

Fig. 2. Probability density functions of order statistics U,'s for |J| = 20.

der the 8th order statistic’s probability density function (the
solid line) over the interval [0.05,0.85] is 0.999997, which is
almost 1. This illustrates that the uncertainty characteriza-
tion with either the box or the budget uncertainty sets may
be too extreme because in the robust solution with these
two uncertainty sets, at least |J| —1 random variables Z;’s
are equal to either 0 or 1 and such scenarios are not con-
tained in the high-density interval [0.05,0.85].

From above, we see that regardless of the unknown cumula-
tive distributions F; of the random variable Z;, the order statistics
of Fj(Z;)'s always follow the Beta distribution. Denote the cumu-
lative distribution function for Beta(k, |J| +1 — k) distribution as
Ie(k, J| +1 — k), and its quantile function Qf = inf{z : I (k, /| + 1 -
k) = t}. Therefore, given any ¢, < [0, 1], we can find the lower limit

Q,f" for U, such that Prob(Ug, < Q;:") = &, Similarly, we can find
the upper limit Q{:ﬂg" for Uy, such that Prob(Uy, < Q;’gk) =1-
&k Denote &’ as the vector of values &7, &, ..., 8{”. and e of values
€1, €2,..., &), where 0 < 8;.,£j <1,Vje]. We then construct the

uncertainty set U/(e’, &) based on the order statistics of the CDFs
of random variables as follows:

U, e) = {z LFi(Z)) =U;, Vje), and Q*
<Ug = Q"™ keJ]. (4)

In the above uncertainty set, the random variables Z;'s are re-
stricted so that the order statistics Ug,)’s belong to the high-
density regions. Note that Upny <Up) <...<Uq is always im-
plied by definition. Although ¢ can be any value in the range

[0,1], we only need to consider ¢’s such that Q,ff]‘ < Q:", for
k=2,3,...,|J]- To argue for this, we first assume that there ex-

& €

. ko—1
ists a ko/ such that ri] > Q,
13 (T-gg )
. "0 kO
isfies Qko = U(ko) = Qko

;‘0. Then for any Uy, that sat-

8/
and Ug) < Qk(’:‘f]], we would have

ko1 . . .
Ukg-1) = Qkofi] > U(k,)» Which violates Ug,_1y < U,y For a sim-

ilar reason, we also assume Q,S;s"’l) < Q,El_g"), fork=2,3,.... [l

We emphasize that all the properties that we have utilized
above only rely on the assumption that the continuous distribu-
tions of Z;'s are independent. These properties are distribution-free
because they hold regardless of the distributions F;’s of the random
variables of Z;'s. These properties are also data-free because they
are not based on any information extracted from data.

2.2. Robust model with order statistic uncertainty set

To use the uncertainty set U//(¢’,&) in the robust model
(3), we need to study the subproblem B(x,u’(¢’,&)), which
IS MaXze (e 6) 2jes Gj - 1Xj] - Zj. The following characterization of
U’ (&', €) helps to reformulate the subproblem B (x,u’(¢’, €)).

Proposition 2.1. Given &', &, and a fixed x, Uy, = Q\' "', ¥k hold
in the optimal solution to B(X, U’ (€', €)).

Proposition 2.1 states that the order statistics of F;(Z;)’s
are equal to their upper bounds in the optimal solution to
B, U’ (&', €)). Note that in the optimal solution to 8(x,u’(¢&’, €)),
the variable Z; should be as large as possible because Z;'s coeffi-
cient d; - |x;| is non-negative. Because F; is non-decreasing, then
Fj(Zj) should also be as large as possible. As a result, each or-
der statistic U, of Fj(Z;)'s should be as large as its upper bound

(-2 Based on Proposition 2.1, we know that the uncertainty set

U'(¢’, &) can be substituted by the following order statistic uncer-
tainty set.

U%(e) = {Z :F(Zj) =Uj, VjeJ and Uy, < Q™. Vk e]}.
(5)

Proposition 2.1 shows that the lower bounds in ¢/’ (&’, €) are ir-
relevant to the optimal solution for B(x,u’(¢&’, €)), and the lower
bounds can be dropped in the definition of ¢/(&’, €). In the op-
timal solution for B(x,2%(¢)), we must also have U, = (1-2p),
Therefore, we know the optimal objective value for S (x,u’ (&', €))
must be equal to the optimal objective value for B(x, % (¢)).

The order statistic uncertainty set ¢/%(¢e) is intractable in its
current form for three reasons. The first reason is that the uncer-
tainty set ¢/%5(e) is not directly defined on the random variable
Z;, but is constructed with constraints on the cumulative distribu-
tion functions of Z;'s. Another reason is that there are |J|! permu-
tations of Fj(Z;)’s for all possible outcomes of U,'s, which makes
reformulating B(x, 4% (¢)) challenging. The third reason has to do
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with the nonconvexity of the order statistic uncertainty set /5 (&)
as stated in the following proposition.

Proposition 2.2. If there exist k; and k, (1 < k; < ky < |J|) such that
(l—akl) (1-¢

Q, T #Q,

To overcome the difficulty in reformulating B(x,2%(¢e)), we
utilize the assignment formulation. The technique that we use is
similar to the averaging function for the ordered weighted av-
eraging approach (see Chassein & Goerigk, 2015). Let q;, be Zj's
quantile of order Q;]_E"), ie, qj = inf{x : F;(x) > Q,E1_S")}, Vi kel
The following proposition provides a tractable formulation for the
problem B(x, 4% (&)).

) . .
“2° then the uncertainty set U9 (&) is not convex.

Proposition 2.3. For a fixed x, the optimal objective value for
B (x, uos(e)) is equal to the optimal objective value for the follow-
ing linear optimization problem:

max >oajlxgl - D qun (6a)
jel kel
s.t. Zﬁjk=1,v_j€] (6b)
k
an,<=1,VI(€] (GC)
J
N> 0.Vj kel (6d)

The problem (6) in Proposition 2.3 is the linear relaxation of the
maximum weight assignment problem, which is known to have
an integer optimal solution. If 5y =1, then d;|x;| is assigned to

qjk» which implies Z; = q; and F;j(Z;) = qfl_sk). The integer opti-

mal solution of problem (6) will map the set {F;(Z;),Vj €]} to the
set {Q;]_E"),Vk eJl.

The RO Model (3) with uncertainty set /% (¢) becomes the fol-
lowing problem (7). We follow the procedure in Bertsimas & Sim
(2004) to reformulate the following model to a linear optimization
model (we add back the index i for the constraints).

max c'x (7a)

s.t. a;iX; + max dii - |xi|-Zii < b;, Yiel 7b
Z ijrj zieu05<s)z ij | ]| ij i ( )
Jeli ! Jeli

X<X<X (7¢)

Theorem 2.4. Model (7) is equivalent to the following linear pro-
gramming problem:

max " cjx; (8a)
J
sty ayxj+ Y B+ i) <b;, Viel (8b)
Jeli Jeli
—yj <X <y, Vj (8¢)
X; <X <X;,Vj (8d)
0ij + Qi > Gijqijky. Vi ke Ji, Viel (8e)
¥j=0,Vj (8f)
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We leverage the strong duality to obtain the linear formulation
(8) by replacing the maximizing problem in constraints (7b) with
the dual of problem (6). Because Model (8) has more variables
and constraints than the Model (7) in Bertsimas & Sim (2004), the
computational complexity of the RO Model (8) is generally higher
than the RO model with the budget uncertainty set.

3. Special cases

Using the order statistic uncertainty set in the RO model has
several advantages. First, the quantile in the order statistic uncer-
tainty set is a robust statistic and is less sensitive to extreme ob-
servations. The quantiles also contain richer information about the
uncertainty of a random variable than some other statistics, e.g.,
the range.

In the following, we demonstrate the modeling power of the
order statistic uncertainty set by showing that the RO model with
the order statistic uncertainty set incorporates three existing un-
certainty sets as special cases. Specifically, we show that with suit-
able parameters, the RO model with the order statistic uncertainty
set reduces to the RO models with the interval uncertainty set, the
budget uncertainty set, and the demand uncertainty set.

3.1. Special cases: the interval and the budget uncertainty set

Although motivated by different statistical properties, the order
statistic uncertainty set has a close relationship with the interval
and the budget uncertainty sets. We illustrate it with a numerical
example with |J| = 7. The typical structures of the Z; values in the
optimal solutions for different uncertainty sets are shown in Fig. 3.
In each figure, the values of Z;'s are ordered from the smallest to
the largest. In the optimal solution of the RO model with the inter-
val uncertainty set, all Z;'s are equal to 1. In the optimal solution
of the RO model with the budget uncertainty set, up to one of Z;’s
is fractional and all others are either O or 1.

In the optimal solution of the RO model with the or-
der statistic uncertainty set, the values of Zj's are fractions
4,1, 9jy.20 - -5 jy. Ul where ji,j2,..., jy is a permutation of
1,2,...,|J|- Each of the quantile values determines the level of un-
certainty for the corresponding random variable. The |J| fractional
values qj, 1.qj,,2; - <> qj, ) €an be completely different from each

other. Moreover, for any particular k, the fractional value 4.k has
up to |J| possible outcomes because it depends on the index ji. The
values of qj, 1. 95,2 - j. 1 altogether have up to |J|! outcomes,
depending on the sequence ji, ja, ..., jj- The geometric shape of
the order statistic uncertainty set can be flexibly adjusted by the
U|2 parameters.

The RO models with the interval and the budget uncertainty
sets are both special cases of the RO model with the order statis-
tic uncertainty set. If we choose suitable values for the parameters
in the RO model with the order statistic uncertainty set, we can
obtain the RO models with the other two uncertainty sets.

1. The RO model with the order statistic uncertainty set re-
duces to the RO model with the interval uncertainty set if
we choose g, = 1, Vk, j € J. The shape of the interval uncer-
tainty set is not adjustable.

2. The RO model with the order statistic uncertainty set re-
duces to the RO model with the budget uncertainty set
with budget I' if we choose gji as follows: g =0, if 1<
k=Ul-IT|-1Vje]; qu=T [T}, if k=|]|-|I'].Vje
Jiqjg=1,if J| = [T]+1 <k < |]|.Vje]. In Appendix E, we
prove that the RO model with the order statistic uncertainty
set with such a choice of qj, values is equivalent to the RO
model with the budget uncertainty set with budget I" (the
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Fig. 3. Order statistics of Z;’s for different uncertainty sets — (a) interval uncertainty set, (b) budget uncertainty set, (c) order statistic uncertainty set.

Problem (4) in Bertsimas & Sim, 2004). In the optimal so- Corollary 3.2. For a fixed X, the optimal objective value for problem
lution of the RO model with the budget uncertainty set, at ﬂ(x, HD) is equal to the optimal objective value for the following lin-
most one of Z's can be a fraction, and all other Z;'s are ei- ear optimization problem:

ther 0 or 1 (Bertsimas & Sim, 2004, Section 3). The geomet-

ric flexibility of the budget uncertainty set is limited because

a:lx: Ve _ (ke —1)V/2) . n.
a small change in the value of the budget will only change mr?x Zal|x1| ' ZV ’ (k = k-1) a) Mjk (10a)
the value of the fractional Z;, but not any other Zj’s. ie ke]
3.2. Special case: the demand uncertainty set s.t. Z nx=1Vje] (10b)
k

Next, we show that the RO model with the demand uncertainty
set that has 2Ul — 1 constraints for the Z;’s can be obtained from Z N =1Vke] (10c)
the RO model of the order statistic uncertainty set. Recall that the j
demand uncertainty set is as follows:

Z/{D 1z ZjeSZj
- : |S|]/(¥

In the literature, « is often assumed to be in the range (1,2],
and y > 0. The following proposition characterizes the optimal so-
lution to the problem B(x,4P) and connects the demand uncer-
tainty set with the order statistic uncertainty set.

Nik>0,Vjke] (10d)

sy,VSEJ}. 9)

For the problem B(x,4P), we need to find the maximum sum
of the pairwise products of the sequence d;|x;|,Vj €] and the se-
quence y - (k1% — (k — 1)1/®) Vk ¢ J. Corollary 3.2 ensures that the
elements of the two sequences are one-to-one paired with the as-
signment formulation, and the two sequences must be paired in

Proposition 3.1. For a fixed X, Z?k) =y -(Ul+1-kV*—y.(J] - the same order in the optimal solution of the problem (10). The

k)1/* ¥k e J hold in the optimal solution for B(x,uP). robust optimization model with the demand uncertainty set, i.e.,
Model (3) with u}’ (instead of U;), can be reformulated by taking

We explain the key idea of the above result. Notice that the ob- duality of Model (10). The reformulated model is as follows:

jective function of B(x,4P) is the sum of the pairwise products

of two sequences d;lx;|’s and Z;'s. Because of the rearrangement max ZCij (11a)

inequality (see Cvetkovski 2012, Theorem 6.1), in the optimal so- j

lution of B(x,4P), the two sequences should be in the same or-

der (both non-decreasing or non-increasing). Thus the largest d;x;| s.t. Z aijx; + Z(QU +¢ij) < by, Vi (11b)

should be paired with the largest Z;, and the second largest of the iel iel

two sequences should also be paired with each other, and so on.

Because the dj|x;|'s are non-negative, Z;'s should be as large as .
possible in the optimal solution for B(x, ). Moreover, we should V=X =Y. Vi
make the largest Z; to be as large as possible because it is paired

with the largest d;|x;|. The largest of Z; is restricted by the con- o
straints with |S| =1, so the largest of Z; should be equal to y. The ~ ¥Xj =Xj =X, Vj (11d)
second largest Z; is restricted by the constraints with [S| =2, so

the second largest Z; should be equal to y - (212 —1). The remain-

(11¢)

ing Z’s can be analyzed similarly. O + b = dij - yj -y - (KV* = (k= 1)), Vj ke ;. Vi (11e)
For the demand uncertainty set, the value of Zj =y - (Ul +

1-k)/* —y . (|J| —k)V/* only depends on the index k for the or- )

der statistic but does not depend on the index j of Z's. In con-  ¥j =0, VJ. (111)

trast, the values of Z;'s for the order statistic uncertainty set (i.e.,
4j;1:9jy.20 - - qjm,ll\) depend on both indices. This shows that the

demand uncertainty set has less geometric flexibility than the or- 4. Further analysis of the order statistic uncertainty set

der statistic uncertainty set because it does not capture the poten-

tial heterogeneity of different distributions of Z;’s. In this section, we first derive the probabilistic guarantee of
The following corollary provides an equivalent formulation for the order statistic uncertainty set to ensure the constraint feasi-

the demand uncertainty set. It requires []I2 continuous variables, bility under uncertainty. We then discuss how one may estimate

and []|2 +2-|J| constraints, which is much less than the 2Ul —1 the quantile values (qj;’s) that we introduced in Section 2.2 from

constraints in /P if |J| is large. available data.
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4.1. Probability of constraint feasibility

Denote the optimal solution to Model (7) as x*; the constraint
index i is dropped in this section for the ease of exposition, i.e., we
study a single constraint in (3b). We are interested in the prob-
abilistic guarantee of constraint feasibility that the order statistic
uncertainty set can provide, i.e., Prob( ¥ A; X< b). In the fol-
lowing, we prove a probabilistic guarantee for the case when the
random variables are independently and symmetrically distributed.
The probabilistic guarantee is expressed by a formula derived in
Steck (1971), which gives the probability of order statistics of the
uniform distribution lying in a multi-dimensional rectangle.

Proposition 4.1 (This is a restatement of the first theorem in Steck,
1971). Let A be the |J| x |J| matrix whose (i, j)th element is given as:

Ay — (Qi(1fsi))]?i+l/(j_l'_’_1)!7 ]'_1'_,’_120 (12)
0. j—i+1<0.

We have

Prob(U(k) <Q"W k=1,.... u|) — ]! det[A]. (13)

Theorem 4.2. If the continuous variable A; is independently and
symmetrically distributed in [a; —d;,a;+@;],Vje], then the or-
der statistic uncertainty set MOS](e) implies a probabilistic guaran-
tee of at least 1+ 1 -|J|'det[A] for the constraint feasibility, ie.,
Prob(Y;Aj X5 <b) = 3+ 5 - lJ|! det[A].

According to the above result, the upper limits of the order
statistics of the CDFs of random variables Q,Elfa")‘s determine the
probabilistic guarantee of the order statistic uncertainty set. If we
need a high probabilistic guarantee, then we should set g,’s to be

small because smaller ¢,’s lead to larger Q,(lfa") values, which in-

K
creases Prob(Ug, < 0 =1, .

4.2. Estimating parameters in the order statistic uncertainty set

The RO model (8) with the order statistic uncertainty set re-
quires the quantiles qj;'s as inputs. In practice, if there is no his-
torical data, decision makers may choose these parameters based
on institutional knowledge. If there is data, then the quantiles gj;’s
can be specified based on data with the following procedure.

We first need to specify the values of &1, ..., g in (5). For con-
venience, we can let all g;'s be equal to each other and denote
them as &1 = ... = g = &, which can range between 0 and 1. As
we will show in our numerical experiments, such parameter con-
figuration can lead to good performance. The & value controls the
size of the uncertainty set, which then determines the trade-off
between the objective value and the probability of constraint fea-
sibility. If e is large (small), then the size of the uncertainty set
is small (large, respectively), and consequently, we would get a
large (small, respectively) objective value and low (high, respec-
tively) probability of constraint feasibility. With the trial-and-error
search, we can find an ¢ value such that the corresponding opti-
mal solution achieves a particular target probability of constraint
feasibility.

For a given & value, we can determine Q/*, 21‘8,...,(211”“8
based on the quantile function Qf =inf{z : [ (k |J|+1-k) =
t}. Then we can estimate each random variable Zj's quantile

1-¢
of order QE W

El_gk)},Vj, k € J. Suppose we have N samples of Z; denoted as
Zj1....,Zjy, and we can use the simple random sampling to get

according to the definition qj, = inf{x: F;(x) >

[m5G;June 3, 2023;19:37]
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the following estimation of qj’s.

o . P 1zj<zjm (1-¢)
qjx = min ZJT”TZQ’( »VmEN . (14)

The simple random sampling estimator is asymptotically normal,
and the asymptotic variance could be reduced by various vari-
ance reduction approaches (see Glasserman et al., 2000), including
stratified sampling, importance sampling, etc. Note that the above
method provides quantile estimations with discontinuities. To re-
solve this issue, we can apply interpolation or smoothing tech-
niques (see Dielman et al., 1994).

5. Numerical experiments

In this section, we apply our method to a portfolio construction
problem and compare the performance of the order statistic un-
certainty set with other existing uncertainty sets. All models were
implemented in Python and solved with CPLEX 22.1. The compu-
tational experiments were performed on a Unix PC equipped with
2.4GHz dual-Core Intel Core i5 processors and 8 GB memory. All
problem instances discussed in this section were solved optimally
using CPLEX’s default setting.

5.1. A robust portfolio construction problem

Suppose we have one unit of asset to invest among |J| port-
folios 1,...,|J|. We model each portfolio j’s return as an inde-
pendent random variable distributed symmetrically in an interval
[rj —Fj.rj+7;]. The portfolio j’s return can be denoted as ?'] =
rj+ p;f; with —1 < p; < 1. Denote Z; = | p;|, Vj € J. Suppose we al-
locate x; of the unit asset in portfolio j, and the goal is to keep the
return high and make the associated risk low.

Suppose we have N samples pjy, ..., pjy for each p;. The fol-
lowing problem maximizes the worst-case return V with respect
to an uncertainty set ¢/ while enforcing the expected return to be
a given level r.

max V (15a)

st Y xi(rj—2zf) =V, VZeu, (15b)
jel

N

Z ij(rj =+ P;nf’;)/N =T, (15C)

n=1 jeJ

doxi=1, (15d)

Jjel

0<x;=<1,Vje] (15e)

Denote the optimal solution of problem (15) as ¥* and V*. For
any realization of p within the uncertainty set ¢/ in the constraint
(15b), the corresponding portfolio return will be no less than V*,
For realizations of p that are not in the uncertainty set u/, the
portfolio return could be less than V*. Therefore, there exists an
w € [0, 1] such that

Prob( Y "x;-Tj <V* | =w. (16)
jel

According to the relation (16), the w value is the probability
that the portfolio return is no greater than V*. This means that
the negative of the optimal objective value (i.e., —V*) is the Value-
at-Risk (VaR) of level w because the VaR of level w is defined as
the minimum value such that the probability of a loss exceeds VaR
is at most w. Therefore, the problem (15) can be viewed as the
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Robust Mean-Value at Risk (Robust-MVaR) portfolio optimization
model. Using the trial-and-error procedure that we discussed in
Section 4.2, we can solve the problem (15) with different parame-
ters for the uncertainty set ¢/ and find the one such that the level
w for the corresponding optimal solution is equal to our target risk
level (say, @ = 0.1 or 0.05). For example, if the level w for the op-
timal solution is larger (smaller) than what we want, then we can
reduce (increase, respectively) it by increasing (reducing, respec-
tively) the size of the uncertainty set / so that the optimal solution
can ensure a higher (lower, respectively) probabilistic guarantee on
the portfolio return being no less than the objective value.

In our numerical experiment, we solve problem (15) with the
order statistic uncertainty set, the budget uncertainty set, the inter-
val uncertainty set (see Chassein et al., 2019), the tail uncertainty
set, the convex hull uncertainty set (see Chassein et al., 2019) and
the ellipsoidal uncertainty set. We generate portfolio returns based
on the value-weighted portfolio dataset in the 17 Industry Port-
folios Daily category from Kenneth French’s website (see French,
2021). This dataset has daily returns for 17 portfolios from July 01
1926 to October 29, 2021. With the dataset, we can estimate the
sample mean ; and sample standard deviation o; for each port-
folioj (j=1,...,17).

In the following numerical experiments, we aim to compare the
performances of the order statistic uncertainty set and the other
five uncertainty sets, as well as investigate how the sample size
and the correlation of random variables affect the performances of
uncertainty sets.

5.2. Probability bound of constraint feasibility

In this section, we evaluate the probability bound of constraint
feasibility in Theorem 4.2 by comparing it with the posteriori em-
pirical probability of constraint feasibility. We let |J| take 4 differ-
ent values 2, 4, 6 and 8. For each of the |J| values, we let ¢ take dif-
ferent values between 0 and 1 and compare the probability bound
of constraint feasibility and the posteriori empirical probability of
constraint feasibility.

For each |J| and each &, we can calculate the probability
bound of constraint feasibility using } + 1 - |J|! det{A] based on
Theorem 4.2. In order to evaluate the posteriori empirical probabil-
ity of constraint feasibility, we make use of Model (15). Specifically,
for each |J| and each &, we use the first |J| portfolios of the 17 port-
folios (introduced in Section 5.1) to evaluate the posteriori empiri-
cal probability of constraint feasibility with 100 repetitions. In each
repetition, we generate the in-sample dataset consisting of 1000
samples of the |J| portfolios’ returns drawn from the multivariate
normal distribution with mean (uq, ..., i) and covariance ma-
trix whose (i, j)th entry is aiz if i=j and O if i # j. With this in-
sample dataset, we solve Model (15) to obtain the optimal solution
x* and V*. Then we generate the out-of-sample dataset consisting
of 108 samples of the |J| portfolios’ returns drawn from the same
distribution that was used to generate the in-sample dataset. With
the optimal solution x*, V* and the out-of-sample dataset, we use
the formula (16) to calculate the w value. Then the posteriori em-
pirical probability of constraint feasibility can be obtained as 1 — w.
The mean out-of-sample posteriori empirical probabilities of con-
straint feasibility (over the 100 repetitions) are shown in Fig. 4.
The figure also has the probability bound of constraint feasibility
for each |J| and each e.

For the case |J| = 2, the gap between the probability bound and
the posteriori empirical probability of constraint feasibility is rel-
atively small. As |J| increases to 4, 6 and 8, the gap gets larger.
Therefore, the probability bound in Theorem 4.2 is more useful for
the cases with small |J| values. Due to the gap between the prob-
ability bound and the posteriori empirical probability of constraint
feasibility, we use the posteriori empirical probability of constraint
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feasibility to evaluate the probability level of constraint feasibility
in the following numerical experiments.

5.3. The effect of sample size and correlation

In this section, we compare the performances of the order
statistic uncertainty set and five other uncertainty sets for different
sample sizes and different degrees of correlation between portfo-
lio returns. We let w = 0.1 and set the target return r in constraint
(15¢) to be the median of w1, ..., W17.

We conduct the experiment with 400 repetitions. In each rep-
etition, we generate the in-sample dataset consisting of N sam-
ples of 17 portfolios’ returns drawn from the multivariate nor-
mal distribution with mean (uq,..., M17) and covariance ma-
trix whose (i, j)th entry is aiz ifi=jand p-0;-0; if i # j. We
will let p =0.05,0.5 and 0.95, corresponding to low-correlation,
medium-correlation and high-correlation regimes. Using this in-
sample dataset, we estimate the parameters for each of the six un-
certainty sets, e.g., the range for the budget uncertainty set, the
correlation matrix for the ellipsoidal uncertainty set, etc. Note that
we used linear interpolation to avoid the discontinuity of the quan-
tile estimator in (14). Then by adjusting the parameter of each un-
certainty set that controls the size of the uncertainty set (e.g., ad-
justing the & value for 295, T for 8, o’ for 7, and Q for Q), we
can find the solution for each uncertainty set such that the cor-
responding objective value is equal to the in-sample VaR of level
w = 0.1. Then we evaluate the out-of-sample returns and the out-
of-sample VaR values of level w = 0.1 for the six solutions using
another dataset consisting of 106 samples of 17 portfolios’ returns
drawn from the same distribution that is used to generate the in-
sample dataset. As a result, for each repetition, each uncertainty
set would have a solution with its out-of-sample return and out-
of-sample VaR of level w = 0.1. Note that with the above proce-
dure, the in-sample returns for different uncertainty sets are the
same.

We have tested for 4 different in-sample sample sizes
N =100, 200, 500, 1000 for each of the case with p =
0.05, 0.5, 0.95. To achieve the in-sample VaR of level w = 0.1, we
used binary search to find the parameter (with precision up to 14
decimal places) for each uncertainty set. This requires repeatedly
solving instances of Model (15). Computation time for cases with
different sample sizes ranges from 1 to 6 hours. Note that we have
discarded the instances for which we were not able to find a pa-
rameter for some uncertainty set(s) such that the in-sample VaR of
level @ = 0.1 can be achieved. We believe this does not affect the
relative performance of different uncertainty sets.

Fig. 5 shows the mean out-of-sample return and the mean out-
of-sample VaR of level w = 0.1 (over 400 repetitions) for differ-
ent uncertainty sets when p = 0.5 and N = 100. We say that one
uncertainty set dominates another uncertainty set if the first un-
certainty set has higher return and lower VaR value. The interval
uncertainty set has lower return and higher VaR values than all
other uncertainty sets, so the interval uncertainty set is dominated
by all other uncertainty sets. The performances of the tail uncer-
tainty set and the ellipsoidal uncertainty set are very close to each
other. No uncertainty set dominates the order statistic uncertainty
set because the order statistic uncertainty set either has higher re-
turn or has lower VaR value than other uncertainty sets. To check
whether these findings are statistically significant, we can plot the
confidence intervals for different uncertainty sets. To more clearly
show the confidence intervals, we plot the confidence intervals of
returns and VaR values separately in Fig. 6. We use the 95% level
of confidence for all the confidence interval analyses in this paper.
Note that the portfolio returns and VaR values reported in this pa-
per are percentage values, i.e., we need to divide them by 100 and
then add 1 to get the actual portfolio return and VaR. The “CH” in
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Fig. 4. Probability bound v.s. the posteriori empirical probability of constraint feasibility.
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Fig. 5. The out-of-sample return and out-of-sample VaR for the case of p = 0.5 and N = 100.

the figure represents the convex hull uncertainty set. The “Qua” in
the figure represents the ellipsoidal uncertainty set.

5.3.1. The effect of sample size.

In Fig. 6, the out-of-sample returns for each of the six uncer-
tainty sets do not seem to be affected by the sample size, no mat-
ter when the correlation is low, medium, or high. For the out-of-
sample VaR, the performances of the order statistic uncertainty
set and the budget uncertainty set do not seem to be affected
by the sample size for different correlation regimes. The out-of-
sample VaR values of the interval uncertainty set, the tail uncer-
tainty set, the convex hull uncertainty set and the ellipsoidal un-
certainty set improve when the sample size increases from 100
to 1000 for both the low-correlation and the medium-correlation
cases, but not for the high-correlation cases. This can be explained
by the effect of sample size, i.e., for low-correlation and medium-
correlation regimes, the estimation of the parameters for the four
uncertainty sets improves with the sample size. Moreover, we can
see that the effect of sample size on the out-of-sample VaR is more
significant when the correlation of random variables is lower.

Next, we compare the performance of the order statistic uncer-
tainty set with the other five uncertainty sets. Note that in Fig. 6,
the confidence intervals of the order statistic uncertainty set and
other uncertainty sets may overlap. Because we cannot determine
whether the out-of-sample returns or VaR values are statistically
significantly different from each other if the confidence intervals
overlap, we test whether the difference between the out-of-sample

returns or VaR values is significantly greater (or less) than 0. We
will always use this approach for significance tests whenever we
have overlapping confidence intervals in this paper.

We say one uncertainty set is better than another uncertainty
set if either of the following condition is satisfied: (1) the VaR of
the first uncertainty set is lower than that of the second uncer-
tainty set, and the return of the first uncertainty set is higher than
or not significantly different from that of the second uncertainty
set; (2) the return of the first uncertainty set is higher than that
of the second uncertainty set, and the VaR of the first uncertainty
set is lower than or not significantly different from that of the sec-
ond uncertainty set. If neither of these two conditions is satisfied,
then we know that one of the two uncertainty sets has signifi-
cantly higher VaR value and higher return than the other uncer-
tainty set, and in this case we say that the two uncertainty sets
offer different trade-offs between the VaR and return, and the two
uncertainty sets cannot be ranked.

In Fig. 7, we summarize the comparison between the order
statistic uncertainty set and each of the other five uncertainty sets
based on the results in Fig. 6. The “Ret” stands for the out-of-
sample return. The sign “>” (or “<”, or “~”) denotes that the VaR
value or the return of the corresponding uncertainty set is greater
than (or smaller than, or not significantly different from) the or-
der statistic uncertainty set. The cells with green color (or diago-
nal lines) mean that the performance of the order statistic uncer-
tainty set is better (or worse) than the corresponding uncertainty
set. The cells without green color or diagonal lines mean that the
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Fig. 6. The out-of-sample performance for different N sample sizes and different correlation regimes. The target return r is the median of the 17 portfolios returns; w = 0.1.
For the case of p = 0.05, the mean VaR values for the interval uncertainty set are 1.048, 1.019, 1.011, 0.995.

7 =0.05 7=05 7 =095
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Interval| > [ < [ > [ <[> [ <[> |[<|[>|<|[>|<|>|<|>|R”R|<|<|<|<|<|<|< |~
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The sign < (> or &) means the corresponding VaR or Return is significantly less (significantly greater or not significantly

different) than that of the order statistic uncertainty set.

El:l: the order statistic uncertainty set is better.

EEI: the order statistic uncertainty set is worse.

Fig. 7. Compare the out-of-sample return and out-of-sample VaR of the order statistic uncertainty set with each of the other five uncertainty sets.

order statistic uncertainty set and the corresponding uncertainty
set achieve different trade-offs between the VaR value and the re-
turn, and the performances of the two uncertainty sets can not be
ranked.

For example, when p = 0.05 and N = 100 in Fig. 6, the budget
uncertainty set has larger VaR value than the order statistic uncer-
tainty set and the returns of the two uncertainty sets are not sig-
nificantly different from each other, and so we can conclude that
the order statistic uncertainty set has better performance. Corre-
spondingly, when £=0.05 and N = 100 in Fig. 7, we add the sign
“>" in the cell for the row “Budget” and the column “VaR”, and
add the sign “~” in the cell for the row “Budget” and the column
“Ret”. Because the order statistic uncertainty set is better than the
budget uncertainty set in this case, we fill the two cells with color
green. All other cells in Fig. 7 can be interpreted in the same way.

10

5.3.2. Comparision between the order statistic uncertainty set and
other uncertainty sets

Comparison with the budget uncertainty set. For all the four cases
when p = 0.05, Fig. 7 shows that the out-of-sample returns of the
order statistic uncertainty set and the budget uncertainty set are
not significantly different from each other, and the out-of-sample
VaR of the order statistic uncertainty set is significantly lower than
the budget uncertainty set. This shows that the order statistic un-
certainty set has better performance than the budget uncertainty
set. Similarly, when p = 0.5 (except for the case N = 500), the or-
der statistic uncertainty set also has better performance than the
budget uncertainty set. For the case p = 0.95, the order statistic
uncertainty set has better performance when N = 1000. For the
other three cases with N =100, 200 and 500, the order statistic
uncertainty set has significantly lower VaR values and lower return
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N=100 | N=200 | N=500 | N=1000 | N=2000 | N=5000 | N=10000 |N=15000
0S 0.109 | 0.133 0214 | 0284 | 0484 | 0957 | 1.866 | 2.782
Budget | 0.113 | 0118 | 0220 | 0259 | 0423 | 0912 | 2162 | 2482
Interval | 0.057 | 0.085 0.160 | 0223 | 0404 | 0849 | 1.982 | 2.483
Tail 0.091 | 0243 0374 | 0633 | 1262 | 3065 | 5625 | 8.862
CH 0082 | 0.174 | 0344 | 0566 | 1.059 | 2518 | 5064 | 7.460
Qua 0.080 | 0.134 | 0.159 | 0247 | 0466 | 0891 1.951 | 2.396

Fig. 8. The computation time (in seconds) of different uncertainty sets. The target return r is the median of the 17 portfolios returns; w = 0.1.

values than the budget uncertainty set. This means that for these
three cases, the solutions of the two uncertainty sets offer differ-
ent trade-offs between the return and VaR value, and the perfor-
mances of the two uncertainty sets cannot be ranked.

Comparison with the interval/convex hull uncertainty set. For all
cases when p = 0.05, the order statistic uncertainty set has better
performance than the interval and the convex hull uncertainty set.
The interval and the convex hull uncertainty set has better perfor-
mance than the order statistic uncertainty set only when p = 0.95
and N = 1000. For all other cases, either the order statistic uncer-
tainty set has better performance than the interval/convex hull un-
certainty set, or the performance of the order statistic and the in-
terval/convex hull uncertainty set cannot be ranked.

Comparison with the tail/ellipsoidal uncertainty set. For the low-
correlation regime p = 0.05 when the sample size is small (e.g.,
N = 100 or 200), the order statistic uncertainty set has better per-
formance than the tail/ellipsoidal uncertainty set. For the high-
correlation regime p = 0.95, the tail/ellipsoidal uncertainty set has
better performance than the order statistic uncertainty set. For the
medium-correlation regime p = 0.5, the order statistic uncertainty
set has significantly higher out-of-sample returns and significantly
higher VaR values than the tail/ellipsoidal uncertainty set. There-
fore, for the medium-correlation case, we cannot draw a definitive
conclusion regarding the relative performance of the uncertainty
sets because they provide different balances of portfolio return and
VaR.

In summary, when the correlation of the portfolio returns is
low and the sample size is small, the order statistic uncertainty set
tends to have a better out-of-sample performance than the other
five uncertainty sets. For the medium-correlation case, the order
statistic uncertainty set can outperform some uncertainty sets (e.g.,
the interval uncertainty set), but for some other uncertainty sets,
the order statistic uncertainty set does not have a superior perfor-
mance. For example when the correlation is 0.5, the solution of
the tail/ellipsoidal uncertainty set offers different trade-offs com-
pared with the solution of the order statistic uncertainty set. For
the high-correlation regime, the performance of the order statistic
uncertainty set deteriorates even more because it does not outper-
form the other five uncertainty sets for most cases.

From above, we can conclude that the order statistic uncer-
tainty set tends to have better performance when the sample size
is small and the correlations among the portfolio returns are low.
When the correlation increases from p = 0.05 to 0.5 and 0.95, the
performance of the order statistic uncertainty set gets worse. This
can be explained by the fact that the correlation between random
variables is not incorporated in the order statistic uncertainty set,
and thus the performance of the order statistic uncertainty set de-
clines as the correlation grows.

5.3.3. Computation time

In this section, we evaluate the computational performances of
different uncertainty sets. We first generate a sample dataset that
consists of N samples of 17 portfolios’ returns drawn from the mul-

1

tivariate normal distribution with mean (u1,..., ®17) and covari-
ance matrix whose (i, j)th entry is oiz ifi=jandpo-0;-0;ifi#].
Because the results of the computation time for the case p = 0.5
or the case p = 0.95 are very similar to the case with p = 0.05,
we only present results for the case p = 0.05. We set the target
return r in constraint (15c¢) to be the median of uq,..., 7. By
trial-and-error, we can find the parameter for each uncertainty set
such that the corresponding objective value is equal to the in-
sample VaR of level w = 0.1. Then we use the calibrated parame-
ter for each uncertainty set to solve problem (15) with 100 out-of-
sample datasets. Each out-of-sample dataset consists of N samples
of 17 portfolios’ returns drawn from the same distribution as that
used for the in-sample dataset. The mean computation time for the
100 out-of-sample datasets measures the time complexity of each
uncertainty set. We have tested for 8 different sample sizes. The
mean computation time for different uncertainty sets are shown
in Fig. 8.

For each uncertainty set, the computation time increases with
the sample size N. The computation time for the order statis-
tic uncertainty set, the budget uncertainty set, the interval un-
certainty set and the ellipsoidal uncertainty set are very close to
each other. The tail uncertainty set and the convex hull uncertainty
set consume the most computation time (except for the case with
N = 100). Moreover, the gap between the tail/convex hull uncer-
tainty set and other uncertainty sets grows as the sample size N
increases. This can be explained by the model complexity of dif-
ferent uncertainty sets. The number of variables in the tail uncer-
tainty set or the convex hull uncertainty set is proportional to the
sample size N. The number of variables and constraints in the RO
model with the order statistic uncertainty set, the budget uncer-
tainty set, the interval uncertainty set or the ellipsoidal uncertainty
set is proportional to the number of portfolios |J| or |J|2 but is not
related to N. So when the sample size N increases from 100 to
15,000, the computation time for the tail uncertainty set and the
convex hull uncertainty set increases faster than the other four un-
certainty sets.

Among the order statistic uncertainty set, the budget uncer-
tainty set, the interval uncertainty set and the ellipsoidal uncer-
tainty set, the computation time of the order statistic uncertainty
set is slightly more than the other three uncertainty sets for most
cases. This can be explained by the fact that the number of vari-
ables and constraints in the RO model with the order statistic un-
certainty set is more than those in the RO model with the other
three uncertainty sets. That being said, the differences are small
and not practically significant.

5.3.4. Robustness test.

We evaluate the performances of the order statistic uncertainty
set and the other five uncertainty sets using a different set of
parameters. Specifically, we set the target return r in constraint
(15c¢) to be the 75th percentile of w1, ..., 117, and set w to be 0.05
while keeping all other parameters to be the same. We follow the
same procedure described at the beginning of Section 5.3 to find
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Fig. 9. The out-of-sample performance for different N sample sizes and different correlation regimes. The target return r is the 75th percentile of the 17 portfolios returns;
w = 0.05. For the case of p = 0.05, the mean VaR values for the interval uncertainty set are 1.357, 1.337, 1.299, 1.287.

p =0.05 p=0.5 p =0.95

N=100 | N=200 | N=500 | N=1000 | N=100 | N=200 | N=500 | N=1000 [ N=100 | N=200 | N=500 | N=1000

VaR| Ret |VaR | Ret |[VaR | Ret |VaR | Ret [ VaR | Ret | VaR | Ret | VaR | Ret | VaR | Ret [ VaR| Ret | VaR | Ret | VaR | Ret | VaR | Ret
Budget| > | R | > | R[> | R|> [ R|>|[>|>|>|>|>|[>|R|>[>|>|[>]|>|>[>]>
Interval| > | < | > | <[> [ <[> |[R|>|<|>|<|>|<|>|<|< [ "< | ~F]|<|~]|<|~
Tail | > |R|>|<|>|<|<|<|<|<|<|<|<|<|<|<|<|R]|<|R]|<|~R]|]< /|~
CH | >R |>|<|>|<|>|<|>|<|®|l<|<|<|<|<|<|<|<|/~]|<|<]|< |~
Qua | > | <[> |<|<|<|<|<|<|<|<|<|<|<|<|<|<|R|<|R|<|R]|< |~

The sign < (> or &) means the corresponding VaR or Return is significantly less (significantly greater or not significantly

different) than that of the order statistic uncertainty set.

|:I:|: the order statistic uncertainty set is better.

I:l:l: the order statistic uncertainty set is worse.

Fig. 10. Compare the out-of-sample return and out-of-sample VaR of the order statistic uncertainty set with each of the other five uncertainty sets.

and evaluate solutions for different uncertainty sets. The results for
VaR and return are shown in Fig. 9. The comparison analysis be-
tween the order statistic uncertainty set and each of the other five
uncertainty sets is shown in Fig. 10.

The results can be interpreted in the same way as in Figs. 6 and
7. The relative performance of the order statistic uncertainty set
and the other five uncertainty sets is qualitatively the same as
what we observe in Section 5.3.2. When the correlation is low
(0 =0.05), the order statistic uncertainty set has better perfor-
mance than the budget uncertainty set, the interval uncertainty
set and the convex hull uncertainty set. When the correlation is
low (p = 0.05) and the sample size is small, e.g., N = 100 or 200,
the order statistic uncertainty set has better performance than the
tail uncertainty set and the ellipsoidal uncertainty set. As the cor-

relation increases to 0.95, the performance of the order statistic
uncertainty set decreases.

We also follow the same procedure in Section 5.3.3 to evaluate
the computational performances of different uncertainty sets, ex-
cept that we now make the target return r in constraint (15c) be
the 75th percentile of wq,..., (17, and make w be 0.05 (all other
parameters are kept to be the same). The results are shown in
Fig. 11. The relative computational performance of different uncer-
tainty sets is very similar to the results in Fig. 8. For example, the
computation time of the order statistic uncertainty set is slightly
higher than the budget uncertainty set, the interval uncertainty set
and the ellipsoidal uncertainty set. The computation time of the
tail/convex hull uncertainty set increases the most as the sample
size N increases.

12



JID: EOR
P. Zhang and D. Gupta

[m5G;June 3, 2023;19:37]

European Journal of Operational Research xxx (Xxxx) Xxx

N=100 | N=200 | N=500 | N=1000 | N=2000 | N=5000 | N=10000 | N=15000
0S 0.178 | 0.195 | 0275 | 0281 | 0433 | 0997 | 2018 | 2.873

Budget | 0.105 | 0.164 | 0198 | 0263 | 0414 | 1.048 | 1653 | 2749

Interval | 0.054 | 0.107 | 0.143 | 0218 | 0376 | 1.033 1.616 | 2.533
Tail 0.089 | 0209 | 0332 | 0.631 1119 | 3979 | 5591 | 10.104
CH 0.080 | 0.190 | 0347 | 0545 | 0996 | 2530 | 5.042 | 8.143
Qua 0.086 | 0.116 | 0.172 | 0271 | 0395 | 0997 | 1930 | 2.488

Fig. 11. The computation time (in seconds) of different uncertainty sets. The target return r is the 75th percentile of the 17 portfolios returns; @ = 0.05.

6. Conclusion

In this paper, we develop and analyze the order statistic uncer-
tainty set for robust linear optimization models. We use the Prob-
ability Integral Transform to study data-free and distribution-free
properties of random variables, which are then embedded in the
design of the order statistic uncertainty set. To depict uncertainties,
the order statistic uncertainty set utilizes quantiles of random vari-
ables, which contain rich information of distributions. We demon-
strate the geometric flexibility of the order statistic uncertainty set
and show that the RO models with the interval uncertainty set, the
budget uncertainty set, and the demand uncertainty set are all spe-
cial cases of the RO model with the order statistic uncertainty set.
Numerical experiments on a portfolio construction problem show
that the order statistic uncertainty set outperforms five other ex-
isting uncertainty sets when the sample size is small and the cor-
relation of random variables is low.

Appendix A. Proof of Proposition 2.1

The proof is by contradiction. First, assume that the statement
of the proposition is not true. Then in the optimal solution to
B(x,U'(¢’,€)), there must exist at least one k such that Uy, <

Q,Elfg"). Let k' = argmax;{k : Uy, < Q,Elfs")} and denote the corre-
sponding random variable to be Z;. Specifically, j(k") is a map-
ping from order statistics’ index k' to the index j of random vari-
able Z;. We must have that Fj()(Zj)) = Uy < Qk1 )
ing to the definition of k’, we have U, = Q,E ) Yk > K.

(1 &)
Let F(k )(Z k) + 8) = K7

(] ) <1; and § > 0 because Fj(, is non-decreasing. We con-

struct a new solution to B(x,U’'(&’.&)) by only modifying Z;,
to be z](,{)+5 The new solution to B(x,U'(&', &)) becomes

. Accord-

Such § exists because 0 <

Zu- - Zigo -1 Zjgey + 8- Zioys - 2y

In the old solution, the order  statistics  of
F(Z1). ... Fiay-1@jay-1)s Fw) Ziaey)s Fiays1 Ciaey+1)s - By @)
are U(]),.. U(k/—l)’u(k/)’u(k/+l)’ .. U(UD Next we
show that in the new solution the order statis-
tics of E(ZD). ... Fay-1E -1 Fooy iy +
5)’I:j(k/)+1 (Zj(k/)+1)’ ,Fm (ZI_”) dare U(]), U(k/—'l)’F](k/)(Z](k/) +
8). U i1y -+ Uqp- This will hold if we can prove that
Uw_1) < Fjaw)Zjuy +68) <Ugiq), because the only differ-

ence between the old solution and the new solution is that

Zj(l(’) becomes Zj(k’) +4. Wel have U(k’*]) =< j(k’)(Zj(k’) + 8)

because U(k/ 1) = < U(k’) < Q’:/ 78’(/) = Fj(k/) (Z](k/) =+ 8) We

have ](k’)( (k) + ) < U(k’+1) because Fj(k’) (Zj(k’) + 8) =
(- Sk/) (- €k’+1)

" <Q.y =U(41)- Therefore, we have proven that
Up_1) < J(,()(Zj(k,)—i-rS) <Uqs1y holds, and this means that
the order statistics of F(Zy),...,Fwy_1Zjw)-1)s Fiw) Zjwy +
(S),F](k/ +1 (Zj(](/ +l) ..... FU‘ (ZU|) are U(]) U(k’—l) F(k’) (Z J(K) +
3). Uy 41y, ---» Uqyp)- Based on this conclusion, we can tell that the

.....
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new solution Z, ...
Bx.U' (€, €)).

The new solution increases the objective value by & || -
8 >0, and this means that the old solution to 8(x,u’(¢’, &)) was
not a maximizer of 8(x,U’(¢’, €)), and we can improve the objec-
tive value by increasing Zj, to be Z;( + 4. Using this same logic,
we continue to modify our solutlon if there exist a k such that

Ugy < Q'", and eventually we must have Uy, = Q' Vk.

j(k') +4,Z Zm is feasible to

Zigey-1-Z Zik)+1- -

Appendix B. Proof of Proposition 2.2

Without loss of generality, assume k; < kp. As we stated in
: . (=e) _ (-
Section 2.1, if k; < ky, then we have le ka
(1—£k1) (1-¢

Q, ' #Q,

a
We further assume le

. Because

,skl) B

Qk “ , and the reason for it
k]) (1-ery)

(1*5k2).
2
k1 +1)

) ¢
*2” we have Qk

- k1

, there must ex-

< ka

- - (-em) _ o178k)

ist an integer m (ky <m < ky) such that Q < ka and
) polds; i

1—¢m (I—ems1) a
Q| £)<Qm+lm”.lfm:k1,thean1 -
m > kq, then we make m to be the new k;, and then it holds
(- Ekl) (]*fklﬂ)
that Qk

1+]
(=epy1) _ o178
Qm+l

< ka
(1-¢y.)

ka 2", Therefore, in the following, we will assume Qk]

Q;1"9k]+1) - (1"9k2).
1+1 Ky

Next we choose a Z=

is in the following. Because le
*Skl)

. Note that because m < k,, we have

I —&k 1)
?) , i.e., for the new k;, we also have Qk + 1

€, )
<

Zj) eu%(e), such that there

(Zl DR

) . . (1—e,)

(j1 # j2) that satisfy F; (Zj,)=U; = s and
(1- Ekz

exist ji, ja
(1*5k2) . (1*€k]) d
sz(ij):sz:Qk .SmceOng <land 0 < Q1<
(1- é‘kz)

1, we can find W; and W,, such that F;, (W) _Qk

F,(Wy) :le rk ). Then we construct Z' by replacing Z;,

Zj, in Z with W; and W,, respectively. So we have Z;.

and

and

W1,Z;,2 =W, and Z;. =Z;, for j# ji,jo- Since Fj (2}1) :FjZ(lez),
sz(Zgz)z F;, (Z;,) and F‘(Z’)=Fj(Zj), for j+# ji.j,, we have
{FZ),.... By (Z )} ={R(Z),..., Fj(Zy)}. This shows that Z' e
MOS(e)

Because Q, BCK < Q,(l %) , we have Z; <W; and Zj, > W,.
Then for any A € (0,1), we must have F; ((1 —A)Z; +AW1)) >
Q,: and Fy, (1 - 1)Z;, + AWp)) = Q,fl S’ﬁ)

For any A€ (0, 1), denote =(1- A)Z+AZ’ We
next show Z* ¢u9%(e). Since Z)‘ (1 —~MZj+ 202 = for

J#J1,J, we have {Fj(z%) 1V 75]1»12} ={F(Z)) -VJ 75]1,]2} =
{Qlfks") :Vk #ky,ky}. Therefore, the ki-th order statistic of
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. 1))
{F@}):Vj=1,... U|}_m1n{Qk +1<’1*” Fi ((1-0)Z;, +
(1*‘5‘/(1)

AWD), F, (1= 2)Z;, + AW,)} is strictly greater than le
This proves that Z* ¢ 1/%5(¢), and our proof is completed. O

Appendix C. Proof of Proposition 2.3

First we prove that the optimal solution to problem (6) is feasi-
ble to B(x,U%(¢)). Note that the problem (6) is essentially a lin-
ear relaxation of the maximum weight assignment problem. It is
well-known that there is always an optimal solution with all the n
variables taking integer values. In the optimal solution to problem
(6), for every j €], there exists a unique k €] such that ny =1.
If np=1, we let Z; =3 qjnjw = qjk, and we have F;(Z;) =
Fi(qjx) = @178"). Then we have {Fj(Z;),Vje]}= {Q,flfek),\?’k e}
Therefore, for any 1 < m < |J|, we must have the mth smallest el-
ement in the set {F;(Z;),VjeJ} should be no greater than the

mth smallest element in the set {Q,El_g"),‘v’k € J}, which is essen-

tially Uy < (1=em) vim € J. This proves that the optimal solution
to problem (6) is indeed feasible to the problem B(x,%%(¢)), and
so the optimal objective value for problem (6) is less than or equal
to the optimal objective value for the problem B(x, 4% (¢)).

Next we prove that the optimal solution to B(x,4%(g))

is feasible to problem (6). Assume in the optimal solu-
tion to B(x.U%(e)), the order statistics of F;(Z;)'s are
F, ;). F,(Zj,), .. fl/\( JUI) where the sequence ji, jo, ..., Jj

are a permutation of the set {1,2,...,|J|}. We then have
F, (Z;) = Q,?*Sk),\fk €), ie, Zj =qj 1 Such a solution is feasi-
ble to problem (6) because we can construct the corresponding
solution to problem (6) as follows:

1,
Ujk,m = 07

This proves that the optimal solution to B(x,4%(¢)) is feasible to
problem (6), and so the optimal objective value for B(x, 4% (¢)) is
less than or equal to the optimal objective value for the problem
(6).

In the above, we have proven that the optimal objective val-
ues for problem (6) and problem B(x,1/%(¢)) are no greater than
each other, and so the optimal objective values of problem (6) and
problem B(x, 4% (&)) must be equal to each other.

k=m

k% m. Vk,me].

(C1)

Appendix D. Proof of Theorem 2.4

Similar to Bertsimas & Sim (2004), we apply the strong dual-
ity to reformulate Model (7). For fixed x, we first take dual of the
maximizing problem in constraints (7b), and we get:

min Z (GU + (ﬁ,’j) (D.1a)
Jeli
S.t. 0 + Py = Gij|x;1qijk. Vi k € Ji, Vi (D.1b)

Because the maximizing problem in constraints (7b) is feasible
and bounded, we must have that the formulation (D.1) is also fea-
sible and bounded due to strong duality. And their optimal objec-
tive values are equal. Substituting formulation (D.1) into Model (7),
we can get the linear programming formulation (8). Hence proven.

g

Appendix E. Proof: the equivalence of the RO models with the
budget uncertainty set and the order statistic uncertainty set

We prove that the RO model with the budget uncertainty set
with budget I" (the Problem (4) in Bertsimas & Sim, 2004) is equiv-
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alent to the RO model with the order statistic uncertainty set with
properly chosen g values.

The Problem (4) in Bertsimas & Sim (2004) is essentially the
following problem. We assume that there is only one constraint
that has the budget uncertainty set, and so we have removed the i
index.

max cx (Eda)

st. Y axi+B(x.UP(T)) <b (E.1b)
J

X<X<X, (E.1c)

where B(x,u5(I")) is the following problem

(SUBISLBIo LT te\S) Za’ il + (@ = LT ]) - @ -] (E2)

Note that we have used x and X instead of 1 and u for lower and
upper bounds. We need to prove that the problem (E.1) is equiva-
lent to the following RO model with the order statistic uncertainty
set.

max cx (E.3a)

st Y axi+B(x.uU” () <b (E.3b)
J

X<X<X, (E.3¢)

where B(x,1/%%(q)) is the following problem

max > dilxl (D g (E4a)
jel kel

st. Y nx=1Vje] (E.4b)
k

Y nj=1Vke] (E.4c)

J
0<nix=<1Vjke] (E.4d)

and q satisfies q; =0, if 1<k<||-|T']-1Vje]; qu=T-
[CLifk=-TLVjieliqp=1ifJ|-T]+1=<k=<|].Vje]

We just need to prove that the optimal objective value
for B(x,uB(I')) is equal to the optimal objective value for
Bx.U%(q)).

The problem (E.4) is the linear relaxation of the maximum
weight assignment problem, which is known to have an integer
optimal solution. For every j ], there exists a unique k €] such
that ny = 1. If ny =1, then d;|x;| is paired to qy. Therefore, if
1<k=<]||-[I'] -1, then dj|x;| is paired with 0; if k=|J| — [T},
then d;|x;| is paired with I' — [T']; if |J| - [I'] +1 <k < |J|, then
djlx;| is paired with 1. So for all d;|x, 1, d2|xz|, ..., ay|x |, we know
that | I"| of them will be paired with 1, and one of them will be
paired with I' — | I"|, and the rest will be paired with 0. Therefore,
the problem (E.4) is essentially the same as the problem (E.2), and
so we have that the optimal objective values for B(x,8(I")) and
B(x,U%(q)) are equal to each other. Hence proven. [
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Appendix F. Proof of Proposition 3.1

The constraints in 2 are equivalent to the following:

—y -m'* <3 Z;<y -m"® VS ] |S|=m,m=1,....|J|, (Fla)
jes
1/« Z
-vem <s_111\151\ mz i sl mZ sy-m!
Vm=1... . u|. (E1b)

Because the kth order statistic of Z;’s is denoted as Z,, we have
the following:

m
min Zi = Zi,
sng\=mZ i=2 2w
jes k=1

Then the demand uncertainty set 2P can be rewritten in terms
of the order statistics of Z;'s as follows:

max

(F2)
Sclls|=m

1]
Zj= Z Zyo

jes k=|J|+1-m

j Ul
Up = —y GV Zwy Y Zg <y -jU.Vielt.
k=1 k=[J|+1-j

(E3)

Since the demand uncertainty set is equivalent to 2, we just
need to prove that Z* maximizes B(x, U2). We first check Z* is fea-
sible to &2, and then prove it is optimal to the problem B(x,%2).

To prove the feasibility of Z*, there are two steps: (1)
we need to prove that (|J|+1— )1/0‘ (Ul =k« is increas-
ing in k. That is [(J] — k)1 — (| —k— DV —[(J] +1 - k)V/* —

-0 =0,Vi<k<|]|-1, or equ1va1ently 2 (] = k)l —
(Ul -k—-DV* —(J|+1—-k)1/® >0, which is evidenced by the
fact that the function x/* is concave for a>1. (2) We
check that Z* satisfies all the constraints in #2. Note that

Z?k) >0,Vke], so —y-jl/* < ZL] Zz*k),\v’j e/, is satisfied; for

other constraints, Z}LUIH—J' Zyy = ZEI:U\H—]V U+ k)Y
y - (U] = k)¢ = y . j1/*, Therefore, Z* is feasible to UZ.

We next prove that Z* is the optimal solution to the problem
B(x,UR). Denote the ordered sequence of d; |x;], &3 |x;], ..., aylxy
as [alx|]y. [aIx]]2), - - - [@lx[] )y, Qe [dlx|] is the kth small-
est among all &;|x;|'s. Because of the rearrangement inequality
(Cvetkovski, 2012, Theorem 6.1), the objective value for any fea-
sible Z in L{(’,fs should be no greater tl'1an [alx]qy - Za) + [d|x|](2)~
Zoy+ ...+ 1alxl1qyp) - Zq)y- Then the difference of the optimal ob-
jective value of our Z* and that of any feasible Z in ¢2 should be
no less than:

[dlx]q) - (Z(l) Zay) +alxl] o) - (Zfz) -Z))

Since Z satisfies Z}!‘ s1-jZao =¥ jle = Z’l! Ue1—i Zio- Vje

J, we then have Zk J(Z -Zy) =0,Vje], ie, Z(j)—Z(])z

(k)

Zk 1+1 (k) —Zk)), V1 <j<|J|—1. We apply these constraints
to (F.4) one at a time repeatedly, and we can get:
Ul
(F4) = —[alx|]qy - Y Zhy — Zay) +Alxll o) - (Ziy) — Z2)) +
k=2

+1alxl ]y - (Ziy) —Zan)

= ([d|x|](2) - [d|x|]<1)) : (Z?Z) _Z(z))
+ ([alxl]a) — [alx1]r)) - (Z53) = Z3) + -
+ ([alx]y — [alxl]ay) - (Ziy) —Zan)
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Ul

[alxl1)) - Y (Ziy — Zw)

k=3
+(lalxl]s) — dlxl]y) - (Z5) — Z))
+ o ([alx] Ty — [8lx11ay) - (Ziy) = Zan)
= ([all]s) — [aX])) - (Z55) — Z)
+ ([ﬁ|x|](4) - [ﬁ|x|](2)) : (2?4) —2(4)) +
+ (1l — [d1xl ) - (Ziy) = Zam) -
(()[a|x|]<m> = [alxy-n) - (Ziy — Zan)

> —([é|x|](2) -

Ed
Ed

The last inequality holds because Zg) <y = Z(U\)‘ and
[alx|1qyp = La@lxl1y—1) = 0 holds by definition. This concludes
the proof. O

Appendix G. Proof of Corollary 3.2

Similar to the problem (6), the problem (10) is also a relaxed
maximum weight assignment problem. Therefore, there always ex-
ists an optimal solution where all the n variables take integer val-
ues. For any j e ], there exists a unique k €] such that ny =1.
As a result, problem (10) is equivalent to maxj, _.j, ey Gl x| -

Y- G = G = DY), where j,'/% — (j, — DV is assigned to
aglxel, and {ji,Jj2, .-, jy} is a permutation of the set J=
{1,2,....|J|}. Due to the rearrangement inequality, the optimal so-

lution to problem (10) must be > [dIX]]¢) - ¥ - (U] +1 - k)l
JI - I<)”"), which is exactly the optimal solution to the problem
B(x,uP) as we derived in the proof for Proposition 3.1. O

Appendix H. Proof of Theorem 4.2

Denote the optimal solution to Model (7) as x*, and denote
the corresponding value of the subproblem in constraint (7b) as
B*. Then B* is equal to the optimal objective value of problem
(6) when we fix x in problem (6) to be x*. Suppose the contin-
uous variable A; is independently and symmetrically distributed in
laj—dj.a;+4d;].Vje], and we need to prove Prob(ZjEJAj-xjf <
b)> 1+ 1. ||'det[A]. Denote p; = (Aj—a;)/d; €[-1,1] and let
Z; = |pjl. We then have

Prob (Zij}f < b) (H.1a)
J
= Prob(Z ax; + Y djlxil - pj < b) (H.1b)
J J
:Prob<Zdj|xjf|-,oj<b—Zajxj> (H.1c)
J Jj

> Prob(Zdj|xj| pj < ,B*) (H.1d)
J

Because p; is symmetrically distributed in [-1,1],Vje], we
must have Prob(}; &jlxj.l -pj<0)= % and that

Prob<0 <Y ajlx;l-pj < /3*)

J

= Prob(—ﬂ* <> alx;l - py < 0)
J
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= ;Prob<

Further, we have

1
Prob(z ajlx;| - pj < ,8*) (H.2a) U

J

Y djlxil-p;

J

< ﬁ*) > > (H.4b)

Uodzedydt Unodzeendypd={1.2.0U1

PI'Ob[Z]k — q]k k> Vk EJ ’ F]l (Zh) = Flz (Z]z) =. Ju\( ]m)]
(H.4c)

= > (H.4d)
= Prob (Z ailx;l - pj < 0) + Prob (0 < Zdjlxﬂ -pj < ﬁ*) {dasdidt Gz} ={1.20 U1}

J J

H.2b 1
( ) WPrOb[ij Zj,) <F, (qjk-k)’ Vke] ’ F, (Z;,)
1 1 < sz (ij) =. JU\ (Z]m)] (H4e)
- j-|-§~Prob ;|x;| - pi| < B (H.2¢)
J = > (H.4f)
11 Urodzeedydt Unodzeendypd={1.2.0U1}
z E E (Za1|x [-1pjl < B* ) (H.2d) ;
1—
U—“Prob[ij(ij) <Q, *.Vke] | F,(Z;,)
1 1 ~ <F (Z;) <. Z H.4;
=2+2‘Prob<Zaj|xj|-Zj§ﬂ*) (H.2e) =F,Z;) = = Fy JV')] (H.4g)
i
. . = > (H.4h)
Note that Zy,...,Z are independent with each other, so we

know F;(Z;)’s are independent with each other and each Fj(Z;) fol- Uredoveadul: g dd=01.2..-. 1)
lows Unif(0,1) distribution. Suppose ji, jo,..., jj is an arbitrary 1 g .
permutation of 1,2,...,]|, and because of symmetry, we have UT!PrOb[UJk =Q “Vke] i Uy =Uj=...= UJU\] (H4i)
Prob[F; (Z; ) <F. (Z.)) <...<F; (Z; )] = -+. Then we have

e 20 JV' Tu ur Recall that U;~ Unif(0, 1) and because of symmetry, we

have Prob (U; <Uj, <. JU\) % for any permulation
Prob( " ajlx;|-Z; < B (H3a) i j.....jy- Then we have
J
Prob[ L I(U(k) <Q )] (H.5a)
U dzeesdyds Lo dzeen dy =112, U1 = Z (H.5b)
Prob[F; (Z;,) <F;,(Z;,) <... <F,Z;)] (H.3b) Urdaeeady}e Uz} =012, 1)
; U—“Prob[U <Q*Vke] | U, <U;, <...<U;,]. (H.5¢)
Prob (Z a;, |X]k| e = F,(Z;,) <F,(Z;,) <. Jw (Z]U|)) which is exactly (H.4i). So we have
k
(H3¢)  prop (Z ajlx;l - Z; < ﬂ*) (H.6a)
J
= Z (H.3d) _
Urdzsendy}s Unsdzeedyd={1.2,U1) = (H3e) (H.6b)
] Ul > (H.4i) (H.6¢)
W -Prob(Zdik el g =
. = prob[ L, (Ui = Q)] (H.6d)
<F,(Z,)=...<F,Z JU)) (H.3e)
= |J|! det[A] (H.6e)

Denote U; = F;(Z;),Vj 1,..., ||, and then U; ~ Unif(0, 1). Recall
that 8* is equal to the optimal objective value of problem (6) when
we fix x in problem (6) to be x*. Then for any permutation (

Prob

Therefore, we have

D AX; < b) (H.7a)

Jroda ey of 1.2, Ul we have 301 d; x| - q,,(k_ﬂ Note
J

that a1k|x* | >0, so if ZJ, = Gk Yk €] hold, then Zk ]ajk|x* |-
Zj <p* holds. So we have
> Prob

ajlxil - pj = B b
(H3e) (H4a) Za]|xj| p] —ﬁ) (H7 )

J
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1 1 P N
z§+§-Prob gaﬂle-zjsﬁ (H.7¢)
> 1L hdera) (H7d)
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