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ABSTRACT

Noise injection is an effective way of circumventing overfitting and enhancing
generalization in machine learning, the rationale of which has been validated in
deep learning as well. Recently, noise injection exhibits surprising effectiveness
when generating high-fidelity images in Generative Adversarial Networks (e.g.
StyleGAN). Despite its successful applications in GANs, the mechanism of its
validity is still unclear. In this paper, we propose a geometric framework to theoret-
ically analyze the role of noise injection in GANs. Based on Riemannian geometry,
we successfully model the noise injection framework as fuzzy equivalence on
geodesic normal coordinates. Guided by our theories, we find that existing methods
are incomplete and a new strategy for noise injection is devised. Experiments on
image generation and GAN inversion demonstrate the superiority of our method.

1 INTRODUCTION

Noise injection is usually applied as regularization to cope with overfitting or facilitate generalization
in neural networks (Bishop, 1995; An, 1996). The effectiveness of this simple technique has also
been proved in various tasks in deep learning, such as learning deep architectures (Hinton et al.,
2012; Srivastava et al., 2014; Noh et al., 2017), defending adversarial attacks (He et al., 2019),
facilitating stability of differentiable architecture search with reinforcement learning (Liu et al.,
2019; Chu et al., 2020), and quantizing neural networks (Baskin et al., 2018). In recent years,
noise injection1 has attracted more and more attention in the community of Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014a). Extensive research shows that it helps stabilize the
training procedure (Arjovsky & Bottou, 2017; Jenni & Favaro, 2019) and generate images of high
fidelity (Karras et al., 2019a;b; Brock et al., 2018). In practice, Fig. 1 shows significant improvement
in hair quality due to noise injection.

Particularly, noise injection in StyleGAN (Karras et al., 2019a;b) has shown the amazing capability of
helping generate sharp details in images, shedding new light on obtaining high-quality photo-realistic
results using GANs. Therefore, studying the underlying principle of noise injection in GANs is an
important theoretical work of understanding GAN algorithms. In this paper, we propose a theoretical
framework to explain and improve the effectiveness of noise injection in GANs. Our framework is
motivated from a geometric perspective and also combined with the results of optimal transportation
problem in GANs (Lei et al., 2019a;b). Our contributions are listed as follows:

• We show that the existing GAN architectures, including Wasserstein GANs (Arjovsky et al.,
2017), may suffer from adversarial dimension trap, which severely penalizes the property of
generator;

• Based on our theory, we attempt to explain the properties that noise injection is applied in
the related literatures;

• Based on our theory, we propose a more proper form for noise injection in GANs, which
can overcome the adversarial dimension trap. Experiments on the state-of-the-art GAN
architecture, StyleGAN2 (Karras et al., 2019b), demonstrate the superiority of our new
method compared with original noise injection used in StyleGAN2.

1It suffices to note that noise injection here is totally different from the research field of adversarial attacks
raised in Goodfellow et al. (2014b).
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Figure 1: Noise injection significantly improves the detail quality of generated images. From left
to right, we inject extra noise to the generator layer by layer. We can see that hair quality is clearly
improved. Varying the injected noise and visualizing the standard deviation over 100 different seeds,
we can find that the detail information such as hair, parts of background, and silhouettes are most
involved, while the global information such as identity and pose is less affected.

To the best of our knowledge, this is the first work that theoretically draws the geometric picture of
noise injection in GANs.

2 RELATED WORKS

The main drawbacks of GANs are unstable training and mode collapse. Arjovsky et al. (Arjovsky &
Bottou, 2017) theoretically analyze that noise injection directly to the image space can help smooth
the distribution so as to stabilize the training procedure. The authors of Distribution-Filtering GAN
(DFGAN) (Jenni & Favaro, 2019) then put this idea into practice and prove that this technique will
not influence the global optimality of the real data distribution. However, as the authors pointed out
in (Arjovsky & Bottou, 2017), this method depends on the amount of noise. Actually, our method
of noise injection is essentially different from these ones. Besides, they do not provide a theoretical
vision of explaining the interactions between injected noises and features.

BigGAN (Brock et al., 2018) splits input latent vectors into one chunk per layer and projects each
chunk to the gains and biases of batch normalization in each layer. They claim that this design allows
direct influence on features at different resolutions and levels of hierarchy. StyleGAN (Karras et al.,
2019a) and StyleGAN2 (Karras et al., 2019b) adopt a slightly different view, where noise injection is
introduced to enhance randomness for multi-scale stochastic variations. Different from the settings
in BigGAN, they inject extra noise independent of latent inputs into different layers of the network
without projection. Our theoretical analysis is mainly motivated by the success of noise injection
used in StyleGAN (Karras et al., 2019a). Our proposed framework reveals that noise injection in
StyleGAN is a kind of fuzzy reparameterization in Euclidean spaces, and we extends it into generic
manifolds (section 4.3).

3 THE INTRINSIC DRAWBACKS OF TRADITIONAL GANS

3.1 OPTIMAL TRANSPORTATION AND DISCONTINUOUS GENERATOR

Traditional GANs with Wasserstein distance are equivalent to the optimal transportation problem,
where the optimal generator is the optimal transportation map. However, there is rare chance for
the optimal transportation map to be continuous, unless the support of Brenier potential is convex
(Caffarelli, 1992). Considering that the Brenier potential of Wasserstein GAN is determined by the
real data distribution and the inverse map of the generator, it is highly unlikely that its support is
convex. This means that the optimal generator will be discontinuous, which is a fatal limitation to the
capacity of GANs. Based on that, Lei et al. (Lei et al., 2019a) further point out that traditional GANs
will hardly converge or converge to one continuous branch of the target mapping, thus leading to mode
collapse. They then propose to find the continuous Brenier potential instead of the discontinuous
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transportation map. In the next paragraph, we show that this solution may not totally overcome the
problem that traditional GANs encounter due to structural limitations of neural networks. Besides,
it suffices to note that their analysis is built upon the Wasserstein distance, and may not be directly
applied to the Jenson-Shannon divergence or KL divergence. We refer the readers to Lei et al. (2019a);
Caffarelli (1992) for more detailed analysis.

3.2 ADVERSARIAL DIMENSION TRAP

In addition to the above discontinuity problem, another drawback is the relatively low dimension of
latent spaces in GANs compared with the high variance of details in real-world data. Taking face
images as an example, the hair, freckles, and wrinkles have extremely high degree of freedom, which
make traditional GANs often fail to capture them. The repetitive application of non-invertible CNN
blocks makes the situation even worse. Non-invertible CNN, which is a singular linear transformation,
will drop the intrinsic dimensions of feature manifolds (Strang et al., 1993). So during the feedforward
procedure of the generator, the dimensions of feature spaces will keep being dropped. Then it will
have a high chance that the valid dimension of the input latent space is lower than that of the real
data. The relatively lower dimension of the input latent space will then force the dimension of the
support with respect to the distribution of generated images lower than that of the real data, as no
smooth mappings increase the dimension. However, the discriminator, which measures the distance
of these two distributions, will keep encouraging the generator to increase the dimension up to the
same as the true data. This contradictory functionality, as we show in the theorem bellow, incurs
severe punishment on the smoothness and invertibility of the generative model, which we refer as the
adversarial dimension trap.

Theorem 1. 2 For a deterministic GAN model and generator G : Z → X , if the dimension of the
input latent Z is lower than that of data manifold X , then at least one of the two cases must stand:

1. the generator cannot be Lipschitz;
2. the generator fails to capture the data distribution and is unable to perform inversion.

Namely, for an arbitrary point x ∈ X , the possibility of G−1(x) = ∅ is 1.

The above theorem stands for a wide range of GAN loss functions, including Wasserstein divergence,
Jenson-Shannon divergence, and other KL-divergence based losses. Notice that this theorem implies
much worse situation than it states. For any open sphere B in the data manifold X , the generator
restricted in the pre-image of B also follows this theorem, which suggests bad properties of nearly
every local neighborhood. This also suggests that the above consequences of Theorem 1 may both
stand. As in some subsets, the generator may successfully capture the data distribution, while in some
others, the generator may fail to do so.

The first issue in section 3.1 can be addressed by not learning the generator directly with continuous
neural network components. We will show how our method addresses the second issue.

4 FUZZY REPARAMETERIZATION

The generator G in the traditional GAN is a composite of sequential non-linear feature mappings,
which can be denoted as G(z) = fk ◦ fk−1 ◦ · · · ◦ f1(z), where z ∼ N (0, 1) is the standard
Gaussian. Each feature mapping, which is typically a single layer convolutional neural network
(CNN) plus non-linear activations, carries out a certain purpose such as extracting multi-scale patterns,
upsampling, or merging multi-head information. The whole network is then a deterministic mapping
from the latent space Z to the image space X . We propose to replace f i(x), 1 ≤ i ≤ k, with

gi(x) = µi(x) + σi(x)ε, ε ∼ N (0, 1), x ∈ gi−1 ◦ · · · ◦ g1(Z). (1)

We call it as Fuzzy Reparameterization (FR) as it in fact learns fuzzy equivalence relation of the
original features, and uses reparameterization to model the high-dimensional feature manifolds. We
believe that this is the proper form of generalization of noise injection in StlyeGAN, and will show
the reasons and benefits in the following sub-sections.

2As the common practice in the manifold learning community, our theorems and discussions are based on
Riemannian manifolds. Proofs to all the theorems are included in the supplementary material.
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(a) Skeleton of the manifold. (b) Representative pair.

Figure 2: Illustration of the skeleton set and representative pair. The blue curve in (a) is the skeleton.
In (b), the dashed sphere inM is the geodesic ball, while the solid sphere in TµM is its projection
onto the tangent space. The normal vector ~n determines the final affine transformation into the
Euclidean space.

It is not hard to see that our proposed method can be viewed as the extension of the reparameterization
trick in VAEs (Kingma & Welling, 2013). While the reparameterization trick in VAEs serves to a
differentiable solution to learn through random variables and is only applied in the latent space, our
method is a type of deep noise injection in feature maps of each layer to correct the defect in GAN
architectures. Therefore, the purposes of using reparameterization in these two scenarios are different,
thus leading to thoroughly different theories that are presented in the next sub-section.

4.1 HANDLING ADVERSARIAL DIMENSION TRAP WITH NOISE INJECTION

As Sard’s theorem tells us (Petersen et al., 2006), the key to solve the adversarial dimension trap is
to avoid mapping low-dimensional feature spaces into high-dimensional ones, which looks like a
pyramid structure in the generator. However, we really need the pyramid structure in practice because
the final output dimension of generated images is much larger than that of the input space. So the
solution could be that, instead of mapping into the full feature spaces, we choose to map only onto
the skeleton of the feature spaces and use random noise to fill up the remaining space. For a compact
manifold, it is easy to find that the intrinsic dimension of the skeleton set can be arbitrarily low by
applying Heine–Borel theorem to the skeleton (Rudin et al., 1964). By this way, the model can escape
from the adversarial dimension trap.

Now we develop the idea in detail. The whole idea is based on approximating the manifold by the
tangent polyhedron. Assume that the feature spaceM is a Riemannian manifold embedded in Rm.
Then for any point µ ∈ M, the local geometry induces a coordinate transformation from a small
neighborhood of µ inM to its projection onto the tangent space TµM at µ by the following theorem.
Theorem 2. Given Riemannian manifoldM embedded in Rm, for any point µ ∈M, we let TµM
denote the tangent space at µ. Then the exponential map Expµ induces a smooth diffeomorphism
from a Euclidean ball BTµM(0, r) centered at O to a geodesic ball BM(µ, r) centered at µ inM.
Thus {Exp−1

µ , BM(µ, r), BTµM(0, r)} forms a local coordinate system ofM in BM(µ, r), which
we call the normal coordinates. Thus we have

BM(µ, r) = Expµ(BTµM(0, r)) = {τ : τ = Expµ(v), v ∈ BTµM(0, r)}. (2)

Theorem 3. The differential of Expµ at the origin of TµM is identity I . Thus Expµ can be
approximated by

Expµ(v) = µ+ Iv + o(‖v‖2). (3)
Thus, if r in equation (2) is small enough, we can approximate BM(µ, r) by

BM(µ, r) ≈ µ+ IBTµM(0, r) = {τ : τ = µ+ Iv, v ∈ BTµM(0, r)}. (4)

Considering that TµM is an affine subspace of Rm, the coordinates on BTµM(0, r) admit an affine
transformation into the coordinates on Rm. Thus equation (4) can be written as

BM(µ, r) ≈ µ+ IBTµM(0, r) = {τ : τ = µ+ rT (µ)ε, ε ∈ B(0, 1)}. (5)

We remind the readers that the linear component matrix T (µ) differs at different µ ∈ M and is
decided by the local geometry near µ. In the above formula, µ defines the center point and rT (µ)
defines the shape of the approximated neighbor. So we call them a representative pair of BM(µ, r).
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Picking up a series of such representative pairs, which we refer as the skeleton set, we can construct
a tangent polyhedron H ofM. Thus instead of trying to learn the feature manifold directly, we
adopt a two-stage procedure. We first learn a map f : x 7→ [µ(x), σ(x)] (σ(x) ≡ rT (µ(x))) onto the
skeleton set, then we use noise injection g : x 7→ µ(x) + σ(x)ε, ε ∼ U(0, 1) (uniform distribution)
to fill up the flesh of the feature space as shown in Figure 2.

However, the real world data often include fuzzy semantics. Even long range features could share
some structural relations in common. It is unwise to model it with unsmooth architectures such as
locally bounded sphere and uniform distribution. Thus we borrow the idea from fuzzy topology (Ling
& Bo, 2003; Zhang & Zhang, 2005; Murali, 1989; Recasens, 2010) which is designed to address
this issue. It is well known that for any distance metrics d(·, ·), e−d(µ,·) admits a fuzzy equivalence
relation for points near µ, which is similar with the density of Gaussian. The fuzzy equivalence
relation can be viewed as a suitable smooth alternative to the sphere neighborhood BM(µ, r). Thus
we replace the uniform distribution with unclipped Gaussian3. Under this settings, the first stage
mapping in fact learns a fuzzy equivalence relation, while the second stage is a reparameterization
technique. Notice that the skeleton set can have arbitrarily low dimension by Heine–Borel theorem.
So the first-stage map can be smooth and well conditioned. For the second stage, we can show that it
possesses a smooth property in expectation by the following theorem.

Theorem 4. Given f : x 7→ [µ(x), σ(x)]T , f is locally Lipschitz and ‖σ‖∞ = o(1). Define
g(x) ≡ µ(x) + σ(x)ε, ε ∼ N (0, 1) (standard Gaussian). Then for any bounded set U , ∃L > 0, we
have E[‖g(x) − g(y)‖2] ≤ L‖x − y‖2 + o(1),∀x, y ∈ U . Namely, the principal component of g
is locally Lipschitz in expectation. Specifically, if the definition domain of f is bounded, then the
principal component of g is globally Lipschitz in expectation.

4.2 PROPERTIES OF NOISE INJECTION

As we have discussed, traditional GANs face two challenges: the discontinuous optimal generator
and the adversarial dimension trap. Both of the two challenges will lead to an unsmooth generator.
Theorem 1 also implies an unstable training procedure because the gradient explosion that may occur
on the generator. Besides, the dimension reduction in GAN will make it hard to fit high-variance
details as information keeps compressed along channels in the generator. With noise injection in the
network of the generator, however, we can theoretically overcome such problems if the representative
pairs are constructed properly to capture the local geometry. In this case, our model does not need
to fit the discontinuous optimal transportation map, nor the image manifold with higher dimension
than that the network architecture can handle. Thus the training procedure will not encourage the
unsmooth generator, and can proceed more stably. Also, the extra noise can compensate the loss
of information compression so as to capture high-variance details, which has been discussed and
illustrated in StyleGAN (Karras et al., 2019a). We will evaluate the performance of our method from
these aspects in section 5.

4.3 CHOICE OF µ(x) AND σ(x)

As µ stands for a particular point in the feature space, we simply model it by the traditional deep
CNN architectures. σ(x) is designed to fit the local geometry of µ(x). According to our theory, the
local geometry should only admit minor differences from µ(x). Thus we believe that σ(x) should
be determined by the spatial and semantic information contained in µ(x), and should characterize
the local variations of the spatial and semantic information. The deviation of pixel-wise sum
along channels of feature maps in StyleGAN2 highlights the semantic variations like hair, parts of
background, and silhouettes, as the standard deviation map over sampling instances shows in Fig.
1. This observation suggests that the sum along channels identifies the local semantics we expect
to reveal. Thus it should be directly connected to σ(x) we are pursuing here. For a given feature
map µ = DCNN(x) from the deep CNN, which is a specific point in the feature manifold, the sum
along its channels is

µ̃ijk =

c∑
i=1

µijk, (6)

3A detailed analysis about why unclipped Gaussian should be applied is offered in the supplementary
material.
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where i enumerates all the c feature maps of µ, while j, k enumerate the spatial footprint of µ in
its h rows and w columns, respectively. The resulting µ̃ is then a spatial semantic identifier, whose
variation corresponds to the local semantic variation. We then normalize µ̃ to obtain a spatial semantic
coefficient matrix s with

mean(µ̃) =
1

h× w

h∑
j=1

w∑
k=1

µ̃jk,

s = µ̃−mean(µ̃),

max(|s|) = max
1≤j≤h,1≤k≤w

|sjk|,

s =
s

max(|s|)
.

(7)

Recall that the standard deviation of s over sampling instances highlights the local variance in
semantics. Thus s can be decomposed into two independent components: sm that corresponds to the
main content of the output image, which is almost invariant under changes of injected noise; sv that
is associated with the variance that is induced by the injected noise, and is nearly orthogonal to the
main content. We assume that this decomposition can be attained by an affine transformation on s
such that

sd = A ∗ s+ b = sm + sv, sv ∗ µ ≈ 0, (8)
where ∗ denotes element-wise matrix multiplication, and 0 denotes the matrix whose all elements
are zeros. To avoid numerical instability, we add 1 whose all elements are ones to the above
decomposition, such that its condition number will not get exploded,

s′ = αsd + (1− α)1,

σ =
s′

‖s′‖2
.

(9)

The regularized sm component is then used to enhance the main content in µ, and the regularized sv
component is then used to guide the variance of injected noise. The final output o is then calculated as

o = rσ ∗ µ+ rσ ∗ ε, ε ∼ N (0, 1). (10)

In the above procedure, A, b, r, and α are learnable parameters. Note that in the last equation, we
do not need to decompose s′ into sv and sm, as sv is designed to be nearly orthogonal to µ, and
sm is nearly invariant. Thus σ ∗ µ will automatically drop the sv component, and σ ∗ ε amounts to
adding an invariant bias to the variance of injected noise. There are alternative forms for µ and σ with
respect to various GAN architectures. However, modeling µ by deep CNNs and deriving σ through
the spatial and semantic information of µ are universal for GANs, as they comply with our theorems.
We further conduct ablation study to verify the effectiveness of the above procedure. The related
results can be found in the supplementary material.

Using our formulation, noise injection in StyleGAN2 can be written as follows:

µ = DCNN(x), o = µ+ r ∗ ε, ε ∼ N (0, 1), (11)

where r is a learnable scalar parameter. This can be viewed as a special case of our method, where
T (µ) in (5) is set to identity. Under this settings, the local geometry is assumed to be everywhere
identical among the feature manifold, which suggests a globally Euclidean structure. While our
theory supports this simplification and specialization, our choice of µ(x) and σ(x) can suit broader
and more usual occasions, where the feature manifolds are non-Euclidean. We denote this fashion of
noise injection as additive noise injection, and will extensively study its performance compared with
our choice in the following section.

5 EXPERIMENT

We conduct experiments on benchmark datasets including FFHQ faces, LSUN objects, and CIFAR-10.
The GAN models we use are the baseline DCGAN (Radford et al., 2015) (originally without noise
injection) and the state-of-the-art StyleGAN2 (Karras et al., 2019b) (originally with additive noise
injection). For StyleGAN2, we use config-e in the original paper due to that config-e achieves the best
performance with respect to Path Perceptual Length (PPL) score. Besides, we apply the experimental
settings from StyleGAN2.
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Table 1: Comparison for different generator architectures.

GAN arch FFHQ LSUN-Church
PPL (↓) FID (↓) PPL (↓) FID (↓)

DCGAN 2.97 45.29 33.30 51.18
DCGAN + Additive noise 3.14 44.22 22.97 54.01
DCGAN + FR (Ours) 2.83 40.06 22.53 46.31
Bald StyleGAN2 28.44 6.87 425.7 6.44
StyleGAN2 16.20 7.29 123.6 6.80
StyleGAN2-NoPathReg + FR (Ours) 16.02 7.14 178.9 5.75
StyleGAN2 + FR (Ours) 13.05 7.31 119.5 6.86

FFHQ LSUN-Church
Bald StyleGAN2

StyleGAN2

StyleGAN2-NoPathReg + FR

StyleGAN2 + FR

Figure 3: Synthesized images of different StyleGAN2-based models.

Image synthesis. PPL (Zhang et al., 2018) has been proven an effective metric for measuring
structural consistency of generated images (Karras et al., 2019b). Considering its similarity to the
expectation of the Lipschitz constant of the generator, it can also be viewed as a quantification of
the smoothness of the generator. The path length regularizer is proposed in StyleGAN2 to improve
generated image quality by explicitly regularizing the Jacobian of the generator with respect to the
intermediate latent space. We first compare the noise injection methods with the bald StyleGAN2,
which remove the additive noise injection and path length regularizer in StyleGAN2. As shown
in Table 1, we can find that all types of noise injection significantly improve the PPL scores. It is
worth noting that our method without path length regularizer can achieve comparable performance
against the standard StyleGAN2 on the FFHQ dataset, and the performance can be further improved
if combined with path length regularizer. Considering the extra GPU memory consuming of path
length regularizer in training, we think that our method offers a computation-friendly alternative
to StyleGAN2 as we observe smaller GPU memory occupation of our method throughout all the
experiments. Another benefit is that our method accelerates the convergence to the optimal FID
scores, as illustrated in Figure 4. This superior convergence can be explained with our theorem. The
underlying reason is that our method offers an architecture that is more consistent with the intrinsic
geometry of the feature space. Thus it is easier for the network to fit.
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Figure 4: Comparison of FID curves. All curves are terminated by the optimal FIDs in 25M training
iterations.

CIFAR-10
DCGAN DCGAN + Additive noise DCGAN + FR
PPL=101.4,FID=83.8, IS=4.46 PPL=77.9, FID=84.8, IS=4.73 PPL=69.9, FID=83.2, IS=4.64

Cat-Selected
StyleGAN2 StyleGAN2 + FR
PPL=115, MC=0.725, TTMC=1.54 FID=12.7 PPL=106, MC=0.686, TTMC=1.45, FID=13.4

Figure 5: Image synthesis on CIFAR-10 and LSUN cats.

For the LSUN-Church dataset, we observe an obvious improvement in FID scores compared with
StyleGAN2. We believe that this is because the LSUN-Church data are scene images and contain
various semantics of multiple objects, which are hard to fit for the original StyleGAN2 that is more
suitable for single object synthesis. So our FR architecture offers more degrees of freedom to the
generator to fit the true distribution of the dataset. In all cases, our method is superior to StyleGAN2
in both PPL and FID scores. This proves that our noise injection method is more powerful than the
one used in StyleGAN2. For DCGAN, as it does not possess the intermediate latent space, we cannot
facilitate it with path length regularizer. So we only compare the additive noise injection with our FR
method. Through all the cases we can find that our method achieves the best performance in PPL and
FID scores.

Table 2: Conditions for different GAN architectures. MC and TTMC (Top Thousand Mean Condition)
are mean condition and mean value of the largest 1000 conditions at 50000 randomly sampled points
in the input space, respectively. The intermediate latent space is taken as the input space.

GAN arch FFHQ LSUN-Church
MC (↓) TTMC (↓) MC (↓) TTMC (↓)

Bald StyleGAN2 0.943 2.81 2.31 6.31
StyleGAN2 0.666 1.27 0.883 1.75
StyleGAN2-NoPathReg + FR 0.766 2.39 1.71 4.74
StyleGAN2 + FR 0.530 1.05 0.773 1.51
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We also study whether our choice for µ(x) and σ(x) can be applied to broader occasions. We further
conduct experiments on a cat dataset which consists of 100 thousand selected images from 800
thousand LSUN-Cat images by PageRank algorithm (Zhou et al., 2004). For DCGAN, we conduct
extra experiments on CIFAR-10 to test whether our method could succeed in multi-class image
synthesis. The results are reported in Figure 5. We can see that our method still outperforms the
compared methods in PPL scores and the FID scores are comparable, indicating that the proposed
noise injection is more favorable of preserving structural consistency of generated images with real
ones.

Numerical stability. As we have analyzed before, noise injection should be able to improve the
numerical stability of GAN models. To evaluate it, we examine the condition number of different
GAN architectures. The condition number of a given function f is defines as Horn & Johnson (2013)

Cond(f) = lim
δ→0

sup
‖∆x‖≤δ

‖f(x)− f(x+ ∆x)‖/‖f(x)‖
‖∆x‖/‖x‖

. (12)

It measures how sensitive a function is to changes or errors in the input. A function with a high
condition number is said to be ill-conditioned. Considering the numerical infeasibility of the sup
operator in the definition of condition number, we resort to the following alternative approach.
We first sample a batch of 50000 pairs of (Input, Perturbation) from the input distribution and
the perturbation ∆x ∼ N (0, 1e-4), and then compute the corresponding condition numbers. We
compute the mean value and the mean value of the largest 1000 values of these 50000 condition
numbers as Mean Condition (MC) and Top Thousand Mean Condition (TTMC) respectively to
evaluate the condition of GAN models. We report the results in Table 2, where we can find that noise
injection significantly improves the condition of GAN models, and our proposed method dominates
the performance.

GAN inversion. StyleGAN2 makes use of a latent style space that is capable of enabling control-
lable image modifications. This characteristic motivates us to study the image embedding capability
of our method via GAN inversion algorithms (Abdal et al., 2019) as it may help further leverage the
potential of GAN models. From the experiments, we find that the StyleGAN2 model is prone to work
well for full-face, non-blocking human face images. For this type of images, we observe comparable
performance for all the GAN architectures. We think that this is because those images are close to
the ‘mean’ face of FFHQ dataset (Karras et al., 2019a), thus easy to learn for the StyleGAN-based
models. For faces of large pose or partially occluded ones, the capacity of compared models differs
significantly. Noise injection methods outperform the bald StyleGAN2 by a large margin, and our
method achieves the best performance. The detailed implementation and results are reported in the
supplementary material.

6 CONCLUSION

In this paper, we propose a theoretical framework to explain the effect of noise injection technique
in GANs. We prove that the generator can easily encounter difficulty of unsmoothness, and noise
injection is an effective approach to addressing this issue. Based on our theoretical framework, we
also derive a more proper formulation for noise injection. We conduct experiments on various datasets
to confirm its validity. Despite the superiority compared with the existing methods, however, it is still
unclear whether our formulation is optimal and universal for different networks. In future work, we
will further investigate the realization of noise injection, and attempt to find more powerful way to
characterize local geometries of feature spaces.
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Appendices
A PROOF TO THEOREMS

A.1 THEOREM 1

Proof. Denote the dimensions of G(Z) and X as dG and dX , respectively. There are two possible
cases for G: dG is lower than dX , or dG is higher than or equal to dX .

For the first case, a direct consequence is that, for almost all points in X , there are no pre-images
under G. This means that for an arbitrary point x ∈ X , the possibility of G−1(x) = ∅ is 1, as
{x ∈ X : G−1(x) 6= ∅} ⊂ G(Z) ∩ X , which is a zero measure set in X . This also implies that the
generator is unable to perform inversion. Another consequence is that, the generated distribution Pg
can never get aligned with real data distribution Pr. Namely, the distance between Pr and Pg cannot
be zero for arbitrary distance metrics. For the KL divergence, the distance will even approach infinity.
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For the second case, dG ≥ dX > dZ . We simply show that a Lipschitz-continuous function cannot
map zero measure set into positive measure set. Specifically, the image of low dimensional space of a
Lipschitz-continuous function has measure zero. Thus if dG ≥ dX , G cannot be Lipschitz.

Now we prove our claim.

Suppose that f : Rn → Rm, n < m, f is Lipschitz with Lipschitz constant L. We show that
f(Rn) has measure zero in Rm. As Rn is a zero measure subset of Rm, by the Kirszbraun theorem
(Deimling, 2010), f has an extension to a Lipschitz function of the same Lipschitz constant on
Rm. For convenience, we still denote the extension as f . Then the problem reduces to proving
that f maps zero measure set to zero measure set. For every ε > 0, we can find countable union
of balls {Bk}k of radius rk such that Rn ⊂ ∪kBk and

∑
km(Bk) < ε in Rm, where m(·) is

the Lebesgue measure in Rm. But f(Bk) is contained in a ball with radius Lrk. Thus we have
m(f(Rn)) ≤ Lm

∑
km(Bk) < Lmε, which means that it is a zero measure set in Rm. For the

mapping between manifolds, using the chart system can turn it into the case we analyze above, which
completes our proof.

We want to remind the readers that, even if the generator suits one of the cases in Theorem 1, the
other case can still occur. For example, G could succeed in capturing the distribution of certain parts
of the real data, while it may fail in the other parts. Then for the pre-image of those successfully
captured data, the generator will not have finite Lipschitz constant.

A.2 THEOREMS 2 & 3

Theorems 2 & 3 are classical conclusions in Riemannian manifold. We refer readers to section 5.5 of
the book written by Petersen et al. (2006) for detailed proofs and illustration.

A.3 THEOREM 4

Proof.

E[‖g(x)− g(y)‖2] ≤ ‖µ(x)− µ(y)‖2 + E[‖σ(x)ε− σ(y)δ‖2] (13)
≤ Lµ‖x− y‖2 + 2C‖σ‖∞ ≤ Lµ‖x− y‖2 + o(1), (14)

where C is a constant related to the dimension of the image space of σ and Lµ is the Lipschitz
constant of µ.

B WHY GAUSSIAN DISTRIBUTION?

We first introduce the notion of fuzzy equivalence relations.
Definition 1. A t-norm is a function T : [0, 1]×[0, 1]→ [0, 1] which satisfies the following properties:

1. Commutativity: T (a, b) = T (b, a).

2. Monotonicity: T (a, b) ≤ T (c, d), if a ≤ c and b ≤ d.

3. Associativity: T (a, T (b, c)) = T (T (a, b), c).

4. The number 1 acts as identity element: T (a, 1) = a.
Definition 2. Given a t-norm T , a T -equivalence relation on a set X is a fuzzy relation E on X and
satisfies the following conditions:

1. E(x, x) = 1,∀x ∈ X (Reflexivity).

2. E(x, y) = E(y, x),∀x, y ∈ X (Symmetry).

3. T (E(x, y), E(y, z)) ≤ E(x, z)∀x, y, z ∈ X (T -transitivity).

Then it is easy to check that T (x, y) = xy is a t-norm, and E(x, y) = e−d(x,y) is a T -equivalence
for any distance metric d on X , as

T (E(x, y), E(y, z)) = e−(d(x,y)+d(y,z)) ≤ e−d(x,z) = E(x, z).

12
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Table 3: GPU environments for all experiments in this work.
Experiment Environment

StyleGAN2 based GAN model training 8 NVIDIA Tesla V100-SXM2-16GB GPUs (DGX-1 station)
DCGAN based GAN model training 4 TITAN Xp GPUs
Metrics measurement 8 GeForce GTX 1080Ti GPUs
GAN inversion 1 TITAN Xp GPU

Considering that we want to contain the fuzzy semantics of real world data in our local geometries of
feature manifolds, a natural solution will be that we sample points from the local neighborhood of
µ with different densities on behalf of different strength of semantic relations with µ. Points with
stronger semantic relations will have larger densities to be sampled. A good framework to model this
process is the fuzzy equivalence relations we mention above, where the degrees of membership E are
used as the sampling density. However, our expansion of the exponential map Expµ carries an error
term of o(‖v‖2). We certainly do not want the local error to be out of control, and we also wish to
constrain the sampling locally. Thus we accelerate the decrease of density when points depart from
the center µ, and constrain the integral of E to be identity, which turns E to the density of standard
Gaussian.

C DATASETS

FFHQ Flickr-Faces-HQ (FFHQ) (Karras et al., 2019a) is a high-quality image dataset of human
faces, originally created as a benchmark data for generative adversarial networks (GANs). The dataset
consists of 70,000 high-quality PNG images and contains considerable variations in terms of age,
pose, expression, hair style, ethnicity and image backgrounds. It also covers diverse accessories such
as eyeglasses, sunglasses, hats, etc.

LSUN-Church and Cat-Selected LSUN-Church is the church outdoor category of LSUN
dataset (Yu et al., 2015), which consists of 126 thousand church images of various styles. Cat-
Selected contains 100 thousand cat images selected by ranking algorithm (Zhou et al., 2004) from
the LSUN cat category. The plausibility of using PageRank to rank data was analyzed in Zhou et al.
(2004). We also used the algorithm presented in Zhao & Tang (2009) to construct the graph from the
cat data.

CIFAR-10 The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 60,000 images of size
32x32. There are all 10 classes and 6000 images per class. There are 50,000 training images and
10,000 test images.

D IMPLEMENTATION DETAILS

D.1 MODELS

We illustrate the generator architectures of StyleGAN2 based methods in Figure 6. For all those
models, the discriminators share the same architecture as the original StyleGAN2. The genera-
tor architecture of DCGAN based methods are illustrated in Figure 7. For all those models, the
discriminators share the same architecture as the original DCGAN.

E EXPERIMENT ENVIRONMENT

All experiments are carried out by TensorFlow 1.14 and Python 3.6 with CUDA Version 10.2 and
NVIDIA-SMI 440.64.00. We basically build our code upon the framework of NVIDIA official
StyleGAN2 code, which is available at https://github.com/NVlabs/stylegan2. We use
a variety of servers to run the experiments as reported in Table 3.
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Figure 6: Generator architectures of StyleGAN2 based models. (a) The generator of bald StyleGAN2.
(b) The generator of StyleGAN2. (c) The generator of StyleGAN2 + FR and StyleGAN2-NoPathReg
+ FR. ‘Mod’ and ‘Demod’ denote the weight demodulation method proposed in section 2.2 of
StyleGAN2 (Karras et al., 2019b). A denotes a learned affine transformation from the intermediate
latent spaceW .

F IMAGE ENCODING AND GAN INVERSION

From a mathematical perspective, a well behaved generator should be easily invertible. In the last
section, we have shown that our method is well conditioned, which implies that it could be easily
invertible. We adopt the methods in Image2StyleGAN (Abdal et al., 2019) to perform GAN inversion
and compare the mean square error and perceptual loss on a manually collected dataset of 20 images.
The images are shown in Figure 8 and the quantitative results are provided in Table 4. For our FR
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Figure 7: Generator architecture of DCGAN based models. (a) The generator of DCGAN. (b) The
generator of DCGAN + Additive Noise. (c) The generator of DCGAN + FR.

Table 4: Image inversion metrics for different StyleGAN2 based models. The perceptual loss is the
mean square distance of VGG16 features between the original and projected images as in Abdal et al.
(2019)

GAN arch Overall Hard Cases

MSE (↓) Perceptual Loss (↓) MSE (↓) Perceptual Loss (↓)

Bald StyleGAN2 1.34 5.42 2.86 11.34
StyleGAN2 1.24 4.86 2.58 9.82
StyleGAN2-NoPathReg + FR 1.24 5.11 2.70 10.49
StyleGAN2 + FR 1.13 4.52 2.23 8.47

methods, we further optimize the α parameter in Eq. 7 in section 4.3, which fine-tunes the local
geometries of the network to suit the new images that might not be settled in the model. Considering
that α is limited to [0, 1], we use (α∗)t

(α∗)t+(1−α∗)t to replace the original α and optimize t. The initial
value of t is set to 1.0 and α∗ is constant with the same value as α in the converged FR models.

During the experiments, we find that the StyleGAN2 model is prone to work well for full-face,
non-blocking human face images. For this type of images (which we refer as regular case in Figure
9), we observe comparable performance for all the GAN architectures. We think that this is because
those images are closed to the ‘mean’ face of FFHQ dataset (Karras et al., 2019a), thus easy to learn
for the StyleGAN based models. For faces of large pose or partially blocked ones, the capacity of
different models differs significantly. Noise injection methods outperform the bald StyleGAN2 by a
large margin, and our method achieves the best performance.

G ABLATION STUDY OF FR

In Tab. 5, we perform the ablation study of the proposed FR method on the FFHQ dataset. We test 5
different choices of FR implementation and compare their FID and PPL scores after convergence.
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Figure 8: Manually collected 20 images for GAN inversion.
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Figure 9: Projected Images to the intermediate latent spaces of StyleGAN2 based models.

1. No normalization: in this setting we remove the normalization of µ̃ in Eq. 7, and use the
unnormalized µ̃ to replace s in the following equations. The network comes to a minimum
FID of 23.77 after training on 1323 thousand images, and then quickly falls into mode
collapse after that.
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Table 5: Ablation study of different noise injection methods on FFHQ. The zero values of PPL scores
in the first two methods suggest mode collapse.

Method FID PPL

No normalization 628.94 0
No stabilization 184.30 0
No decomposition 6.48 18.78
CNN 22.54 14.53
FR 7.31 13.05

2. No stabilization: in this setting we remove the stabilization technique in Eq. 9. The network
comes to a minimum FID of 50.27 after training on 963 thousand images, and then quickly
falls to mode collapse after that.

3. No decomposition: in this setting we remove the decomposition in Eq. 8. The network
successfully converges, but admits a large PPL score.

4. CNN: in this setting we use a convolutional neural network to replace the procedure that we
get σ in section 4.3. Namely, we take σ = CNN(µ). The network successfully converges,
but admits a very large FID score.

The zero PPL scores in ‘No normalization’ and ’No stabilization’ suggest that the generator output is
invariant to small perturbations, which means mode collapse. We can find that the stabilization and
normalization in the FR implementation in section 4.3 is necessary for the network to avoid numerical
instability and mode collapse. The implementation of FR method reaches the best performance in
PPL score and comparable performance against the ‘no decomposition’ method in FID score. As
analyzed in StyleGAN (Karras et al., 2019a) and StyleGAN2 (Karras et al., 2019b), for high fidelity
images, PPL is more convincing than the FID score in measuring the synthesis quality. Therefore, the
FR implementation is the best among these methods.
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