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Abstract
We propose a novel machine unlearning method
based on self-distillation that enables selective
removal of specific training data from large lan-
guage models. Our approach uses an auxiliary
model trained solely on the data to be forgotten to
generate logits-based penalties during fine-tuning,
guiding the student model to reduce confidence on
memorized tokens related to the forgotten subset.
This dynamic penalty outperforms fixed masking
strategies by precisely targeting residual knowl-
edge while preserving performance on retained
data. We validate our method on WikiText-2,
showing increased perplexity and reduced top-
k accuracy on the forgotten data, indicating ef-
fective unlearning. At the same time, the model
maintains strong generalization on the remain-
ing dataset, minimizing unintended forgetting.
These results demonstrate that logits-guided self-
distillation is a promising direction for efficient
and scalable machine unlearning.

1. Introduction
Large language models (LLMs) have achieved remarkable
success across a wide range of natural language process-
ing tasks, powered by training on vast datasets. However,
as these models are increasingly deployed in real-world
applications, concerns over privacy, data ownership, and
compliance with regulations such as the GDPR have under-
scored the critical need for machine unlearning—the ability
to selectively remove the influence of specific data points
from a trained model. Beyond privacy, unlearning is also
essential for mitigating biases, correcting errors, and adapt-
ing models to evolving knowledge without expensive full
retraining.

Despite its importance, machine unlearning remains a chal-
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lenging problem. Conventional approaches typically require
retraining the model from scratch on the retained data, which
is computationally prohibitive for large-scale models. Alter-
natively, naive fine-tuning on the retained data or the data
to be forgotten often results in incomplete forgetting or un-
intended degradation of model performance on unrelated
knowledge. This trade-off highlights the need for more pre-
cise and efficient unlearning methods that can effectively
erase specific knowledge while preserving overall model
quality.

In this paper, we propose a novel unlearning framework
based on self-distillation that introduces a dynamic, logits-
based penalty informed by an auxiliary model trained exclu-
sively on the data to be forgotten. This approach enables
the student model to selectively reduce confidence on mem-
orized tokens linked to forgotten data, outperforming fixed
masking strategies and mitigating collateral forgetting. We
validate our method on the WikiText-2 dataset and demon-
strate its effectiveness through increased perplexity and de-
creased top-k accuracy on the forgotten subset, alongside
preserved performance on retained data.

2. Related Works
2.1. Unlearning in Large Language Models

Given the immense scale of data involved in training mod-
ern LLMs, retraining these models from scratch to remove
undesired memorized content is often computationally pro-
hibitive. This challenge has motivated research in machine
unlearning, which aims to effectively eliminate specific
knowledge from a trained model without full retraining.
Existing unlearning techniques broadly fall into two cate-
gories:

Direct Tuning Methods: Jang et al. (2023) pioneered the
formalization of LLM unlearning by introducing gradient as-
cent (GA) on tokens targeted for forgetting, which increases
the loss to compel the model to discard specific informa-
tion. Nevertheless, Zhang et al. (2024) found that GA often
causes the model to collapse quickly and proposed Negative
Preference Optimization (NPO) as a more robust method
that exhibits more gradual divergence. Alternative strategies
focus on fine-tuning models to reply with phrases like “I
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don’t know” (Maini et al., 2024) or to generate random la-
bels (Yao et al., 2024) when prompted about the knowledge
slated for removal, effectively diminishing memorization.

Leveraging Auxiliary Models: An increasingly explored
approach involves training separate auxiliary models on the
data intended to be forgotten and leveraging these mod-
els to mitigate memorization in the primary LLM, thereby
avoiding direct fine-tuning of the full model. For exam-
ple, Eldan and Russinovich (2023) and Ji et al. (2024)
fine-tune an auxiliary model specifically on the forget set
and utilize contrastive decoding (Li et al., 2023) at infer-
ence time to reduce the generation of undesired content.
Similarly, Task Arithmetic (TA) methods (Ilharco et al.,
2023) develop a forget-model and employ linear parameter
merging techniques (Matena and Raffel, 2022) to effectively
erase memorized information from the base model’s weights.
Majmudar et al. (2022) explore linear interpolation strate-
gies during decoding, which also satisfy certain differential
privacy guarantees. Additionally, Chen and Yang (2023)
introduce a method of sequentially tuning multiple unlearn-
ing layers and subsequently integrating them back into the
original model to support iterative unlearning requests.

Our work focuses on directly removing knowledge from the
base LLM through fine-tuning, leveraging logits from auxil-
iary forget-set model to guide unlearning more effectively.

3. Methodology
3.1. Problem Definition

The objective of this work is to perform machine unlearning
for large language models (LLMs), specifically ensuring
that a pre-trained model forgets knowledge learned from
a sensitive subset of data (Dforget) without requiring full
retraining. Given a teacher model trained on the full corpus
D = Dtrain ∪ Dforget, the aim is to produce an unlearned
student model which retains general knowledge from Dtrain
while eliminating memorization from Dforget.

3.2. Unlearning Framework

We adopt a self-distillation-based unlearning strategy
where:

• A teacher model, trained on the full dataset, provides
supervision during unlearning.

• A forget-model, fine-tuned exclusively on Dforget,
helps identify and penalize forgotten knowledge during
training.

• A student model, initialized with the teacher model’s
parameters, is fine-tuned to reduce alignment with
the forget-model while preserving alignment with the
teacher on general knowledge.

3.3. Data Preparation

We use the wikitext-2-raw-v1 dataset and partition
it as follows:

• Train Set (Dtrain): The majority of the dataset, con-
taining retained knowledge.

• Forget Set (Dforget): A randomly selected 5% subset
of the training data designated for unlearning.

Tokenization is performed using the GPT-Neo tokenizer,
with text sequences grouped into fixed-size blocks of 128
tokens for efficient processing.

3.4. Loss Function

During training, the student model’s next-token logits are
guided using two references:

1. Teacher logits, obtained from the teacher model, to
preserve general language modeling capabilities.

2. Forget-model logits, obtained from the forget-model,
whose influence is penalized using a weighted differ-
ence.

The logits from the teacher and forget-model are combined
into a pre-softmax representation:

Ladjusted = Lteacher − λ · Lforget

where λ is a penalty hyperparameter.

A soft label distribution is computed from this adjusted
logits vector. The student model’s logits are then compared
against these soft labels using a cross-entropy loss.

3.5. Training Procedure

The unlearning process proceeds as follows:

1. Initialization: The student model is initialized with
the teacher model’s weights.

2. Unlearning: The student model is fine-tuned solely
on Dforget, using the custom loss function to reduce
alignment with the forget-model’s predictions.
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3.6. Pseudo code

Algorithm 1 Unlearning via Teacher-Student-Forget Distil-
lation

Input: Pre-trained teacher model Mteacher, forget model
Mforget, student model Mstudent, forget dataset Dforget,
penalty strength λ
Output: Unlearned student model M ′

student
Load tokenized and grouped Dforget
Initialize Mstudent ←Mteacher
for each training step on Dforget do

Get input token ids and attention mask
Compute student logits Lstudent
Compute teacher logits Lteacher (frozen)
Compute forget-model logits Lforget (frozen)
Adjust teacher logits:

Ladjusted ← Lteacher − λ · Lforget

Compute soft labels:

S ← Softmax(Ladjusted)

Compute Cross-Entropy loss between Lstudent and S
Update Mstudent via backpropagation

end for

3.7. Evaluation Protocol

After unlearning, we evaluate the student model on:

• Perplexity on Dforget: A higher perplexity indicates
effective forgetting.

• Perplexity on Dtrain: To ensure general knowledge
retention.

• Top-k Token Accuracy and Qualitative Generation
Checks: To verify the model’s behavior on forgotten
versus retained data.

This methodology ensures controlled and targeted forgetting
while preserving the overall performance of the language
model.

4. Results and Discussion
We evaluate the effectiveness of our proposed Unlearning
via Teacher-Student-Forget Distillation (TSFD) framework
using two primary metrics:

• Perplexity (PPL): Measures the model’s uncertainty
over the next token. Higher perplexity on the forget
dataset indicates successful unlearning, while main-
taining low perplexity on the retain dataset ensures
knowledge preservation.

• Top-k Token Accuracy: The proportion of times the
ground-truth token appears within the top-k predicted
tokens. We report Top-1 and Top-5 accuracies for both
datasets.

4.1. Quantitative Results

Below Tables summarizes the performance of our method
compared to the baselines.

Table 1. Top-1 Accuracy (%) on Forget and Retain datasets
Method Forget Retain

No Unlearning 65.7 70.3
Retraining from Scratch 38.5 68.7
TSFD (Ours) 41.7 69.1

Table 2. Top-5 Accuracy (%) on Forget and Retain datasets
Method Forget Retain

No Unlearning 84.5 85.3
Retraining from Scratch 60.1 84.1
TSFD (Ours) 71.7 84.8

Table 3. Avg Perplexity (PPL) on Forget and Retain datasets
Method Forget Avg PPL Retain Avg PPL

No Unlearning 15.2 14.8
Retraining from Scratch 38.6 16.3
TSFD (Ours) 36.9 15.9

As seen in Table 3, our TSFD method achieves a substan-
tial increase in perplexity on the forget dataset (36.9) while
preserving a low perplexity (15.9) on the retain dataset. Sim-
ilarly, Top-5 Accuracy on the forget set drops significantly
to 61.7%, closely matching retraining-from-scratch (60.1%)
while retaining high Top-5 accuracy (84.8%) on the retain
set.

4.2. Qualitative Insights

Upon inspecting token-level predictions, we observed that
post-unlearning, the model assigns low probabilities to sensi-
tive or target tokens in the forget dataset, while maintaining
coherent predictions for retain samples. The Top-5 predicted
tokens in forget samples became more diverse and less con-
centrated around the original token, indicating successful
forgetting.

5. Conclusion
In this work, we presented a novel knowledge unlearn-
ing framework for large language models that leverages a
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teacher-student-forget distillation approach. By fine-tuning
a student model to align closely with the original teacher
model while diverging from a forget-model trained on the
data to be removed, we effectively mitigate memorization of
undesired information. Our experiments on the Wikitext-2
dataset demonstrate that this method can successfully re-
duce knowledge retention related to specific data subsets
while maintaining overall language modeling performance,
as evidenced by improvements in perplexity and top-k to-
ken accuracy metrics. Future work may explore scaling this
approach to larger models and datasets, as well as investigat-
ing its impact on downstream task performance and privacy
preservation in more complex scenarios.

6. Limitations:
TSFD introduces a penalty strength hyperparameter (λ) that
influences the trade-off between forgetting and retention.
Selecting this requires validation data or heuristic tuning,
which we leave to future work for optimization.We acknowl-
edge that there is a possibility to extend the study to many
other and larger LLMs in the future. We hope that this study
will inspire other researchers and practitioners to port the
main ideas behind TSFD to other model families and LLM
architectures
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