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ABSTRACT

The distribution closeness testing (DCT) assesses whether the distance between an
unknown distribution pair is at least ϵ-far; in practice, the ϵ can be defined as the
distance between a reference (known) distribution pair. However, existing DCT
methods are mainly measure discrepancies between a distribution pair defined on
discrete one-dimensional spaces (e.g., total variation on a discrete one-dimensional
space), which limits the DCT to be used on complex data (e.g., images). To make
DCT applicable on complex data, a natural idea is to introduce the maximum mean
discrepancy (MMD), a powerful measurement to see the difference between a pair
of two complex distributions, to DCT scenarios. Nonetheless, in this paper, we
find that MMD value is less informative when assessing the closeness levels for
multiple distribution pairs with the same kernel, i.e., MMD value can be the same
for many pairs of distributions that have different norms in the same reproducing
kernel Hilbert space (RKHS). To mitigate the issue, we propose a new kernel DCT
with the norm-adaptive MMD (NAMMD) by scaling MMD with the norms of
distributions, effective for kernels κ(x,x′) = Ψ(x − x′) ≤ K with a positive-
definite Ψ(·) and Ψ(0) = K. Theoretically, we prove that our NAMMD test
achieves higher test power compared to the MMD test, along with asymptotic
distribution analysis. We also present upper bounds on the sample complexity of
our NAMMD test and prove that Type-I error is controlled. We finally conduct
experiments to validate the effectiveness of our NAMMD test.

1 INTRODUCTION

Assessing difference between a distribution pair is important in the field of machine learning, because
the test and training data are from different distributions in many real-world scenarios [1]. Thus, tons
of research has been done on problem settings where distributional differences exist. Two phenomena
can be observed in the literature. On the one hand, a large distributional discrepancy between training
and test data might cause poor performance on test data for a model trained on the training data [2].
This phenomenon can be theoretically explained by the domain adaptation theory [3]. On the other
hand, it is also empirically proved that models trained on a large dataset (e.g., ImageNet [4]) can have
good performance on relevant/similar downstream test data (e.g., Pascal VOC [5]) that is different
from training dataset [6]. This means that, even if training and test data are from different distributions,
we can still expect relatively good performance because they might be close to each other.

Therefore, seeing to what statistically significant extent two distributions are close to each other is
important and might have the potential to help us decide if we really need to adapt a model when we
observe upcoming data that follow a different distribution from training data. Two-sample testing can
naturally help see if training and test data are from the same distribution [7], but it is less useful in the
second phenomenon above as we might also have good empirical performance when the training and
test data are close to each other. Fortunately, in the field of theoretical computer science, researchers
have proposed distribution closeness testing to see if the distance between a distribution pair is at
least ϵ-far, including two-sample testing as a specific case with ϵ = 0 [8–11]. This kind of testing
exactly fits the aim of seeing to what statistically significant extent two distributions are close to each
other. Distribution closeness testing has been used to evaluate Markov chain mixing time [12], testing
language membership [13], analyzing feature combinations [14].

However, existing distribution closeness testing methods mainly measure closeness using total
variation [15–18], and primarily focus on the theoretical analysis of the sample complexity of sub-
linear algorithms applied to discrete one-dimensional distributions defined on a support set only
containing finite elements (e.g., distribution defined on a positive-integer domain {1, 2, ..., n}). This
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Figure 1: All visualizations are presented with a constant MMD value ∥µP − µQ∥2Hκ
= 0.15 on a Gaussian

kernel, extendable to other kernels of the form: κ(x,x′) = Ψ(x− x′) ≤ K for a positive-definite Ψ(·) and
Ψ(0) = K. (Relevant Limitation Statement regarding kernel forms can be found in C.4) Panels (a) and (b)
depict distribution P and Q with varying norms, i.e. ∥µP∥2Hκ

and ∥µQ∥2Hκ
. Panel (c) presents the standard

deviations and p-values of the empirical MMD estimator in the two-sample testing. Panel (d) presents the values
of original MMD and our NAMMD as the norms of distributions increase.

limits the distribution closeness testing to be used on complex data (e.g., images) often used in the
machine learning tasks (e.g., image classification task).

Although it is possible to discretize complex data to a simple support set (then conducting distribution
closeness testing using existing methods [19]), it is not easy to maintain intrinsic structures and
patterns of complex data after the discretization [20, 21]. To handle complex data, in the literature,
the kernel trick is also helpful to measure the closeness in higher-dimensional spaces [22]. Significant
efforts have been made to apply the kernel trick in hypothesis testing statistics, including Hilbert-
Schmidt Independence Criterion for independence testing [23], Kernel Stein Discrepancy for good-
of-fitness testing [24, 25], Maximum Mean Discrepancy (MMD) for two-sample testing [7].

Since MMD is an effective measurement to see the distributional discrepancy [26] and is frequently
used in two-sample testing tasks [27] (a special case of distribution closeness testing), there is a natural
idea to introduce MMD to distribution closeness testing. MMD provides a versatile approach across
both discrete and continuous domains, and many approaches have extended it to various scenarios,
including mean embeddings with test locations [28, 29], local difference exploration [30], stochastic
process [31], multiple kernel [32, 33], adversarial learning [34], and domain adaptation [35]. Yet, no
one has explored how to extend distribution closeness testing to complex data with MMD.

In this paper, however, we find it is not ideal to directly use MMD in distribution closeness testing,
because the MMD is less informative when comparing the closeness levels of different distribution
pairs for a fixed kernel κ. Specifically, the MMD value can be the same for many pairs of distributions
that have different norms in the RKHS Hκ, which actually reflect different closeness levels for these
distribution pairs. We present an example to analyze the above issue on a Gaussian kernel, extendable
to other characteristic kernels of the form κ(x,x′) = Ψ(x− x′) ≤ K with a positive-definite Ψ(·)
and Ψ(0) = K, including Laplace [33], Mahalanobis [30] and Deep kernels [27] (frequently used in
kernel-based hypothesis testing). Denote by ∥µP∥2Hκ

and ∥µQ∥2Hκ
the norms of distributions P and Q,

respectively. We can observe that larger norms imply smaller variances Var(P, κ) = 1−∥µP∥2Hκ
and

Var(Q, κ) = 1− ∥µQ∥2Hκ
, indicating more tightly concentrated distributions as shown in Figure 1a

and 1b. Nonetheless, the MMD values regarding Figure 1a and 1b are the same, showing a case
where MMD is less informative in comparing multiple distribution pairs with different norms.

Furthermore, we adapt the standard deviation and p-value of the empirical MMD estimator in two-
sample testing to see if pairs of distributions in Figures 1a and 1b have the same closeness. As
illustrated in Figures 1c, the standard deviation decreases as the norms of distributions increase,
which is a result of the more tightly concentrated distributions. As we know, a smaller standard
deviation signifies a reduced probability of the empirical MMD estimator falling outside the expected
range, resulting in a smaller p-value. Therefore, the standard deviation decreases as the norms of
distributions increase, even when the MMD value is held at a constant 0.15 as shown in Figures 1c.
Notably, smaller p-values indicate more significant difference and less closeness between distributions.
Hence, the pairs of distributions in Figures 1a and 1b actually have different levels of closeness.

We mitigate the above issue by scaling MMD value with the norms of distributions, and we propose a
new kernel distribution closeness testing called the norm-adaptive MMD (NAMMD) test. Specifically,
our NAMMD distance is scaled up as the norms of distributions increase, while the MMD value is held
at constant. Figure 1c and 1d illustrate that our NAMMD exhibits a stronger correlation with the p-
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value. This enhancement in correlation translates to improved test power, as supported by comparisons
between NAMMD and the original MMD under the same kernel, as outlined in Theorem 10 and 12.

In the above analysis, we use a fixed global kernel for different distribution pairs, which is essential
for effectively comparing their closeness levels under a unified distance measurement. Yet, existing
kernel selection methods are primarily designed for two-sample testing [27, 36], focusing on selecting
a kernel that maximizes the test power estimator to distinguish a fixed distribution pair P and Q.
Despite efforts to extend these kernel selections to distribution closeness testing, deriving a test power
estimator with multiple distribution pairs remains an open question and poses a significant challenge.

When we want to test distribution closeness, we could use a reference (known) pair of distributions
P1 and Q1, with their distance serving as threshold ϵ. Here, the global kernel can be selected by
maximizing the test power estimator of P1 and Q1 following two-sample testing methods. With the
kernel, we then test whether the distance between an unknown distribution pair P2 and Q2 exceeds
that between P1 and Q1. Given this, we conduct experiments to validate the effectiveness of our
NAMMD test, including three case studies demonstrating its application in evaluating whether a
model performs similarly across training and testing datasets without ground truth labels (Section 5.2).

2 PRELIMINARIES

Distribution Closeness Testing. Distribution closeness testing accesses whether two unknown
discrete distributions are ϵ-far from each other in the closeness measure. Let Pn = {p1, p2, ..., pn}
and Qn = {q1, q2, ..., qn} be two discrete distributions over domain Z = {z1, z2, ...,zn} ⊆ Rd such
that

∑n
i=1 pi = 1 and

∑n
i=1 qi = 1. We define the total variation [37] of Pn and Qn as

TV(Pn,Qn) = sup
S⊆Z

(Pn(S)−Qn(S)) =
1

2

n∑
i=1

|pi − qi| =
1

2
∥Pn −Qn∥1 ∈ [0, 1] .

Taking the total variation as the closeness measure for distribution closeness, the goal is to test
between the null and alternative hypothesis as follows

H ′
0 : TV(Pn,Qn) ≤ ϵ′ and H ′

1 : TV(Pn,Qn) > ϵ′,

where ϵ′ ∈ [0, 1) denotes the predetermined closeness parameter.

Maximum Mean Discrepancy. The MMD [26] is a typical kernel-based distance between two
distributions. Denote by P and Q two Borel probability measures over an instance space X ⊆ Rd.
Let κ : X × X → R be the kernel of a reproducing kernel Hilbert space Hκ, with feature map
κ(·,x) ∈ Hκ and 0 ≤ κ(x,y) ≤ K. The kernel mean embeddings [38, 39] of P and Q are given as

µP = Ex∼P[κ(·,x)] and µQ = Ey∼Q[κ(·,y)] .
We now define the MMD of P and Q as

MMD2(P,Q, κ) = ∥µP − µQ∥2Hκ
= E[κ(x,x′) + κ(y,y′)− 2κ(x,y)] ∈ [0, 2K] ,

where the expectation are taken with respect to x,x′ ∼ P and y,y′ ∼ Q.

For characteristic kernels, MMD(P,Q, κ) = 0 if and only if P = Q. Hence, MMD can be readily
applied to the two-sample testing with null and alternative hypotheses as follows

H ′′
0 : P = Q and H ′′

1 : P ̸= Q ,

which can be viewed as a specific case of distribution closeness testing using MMD and setting ϵ = 0.

3 THE PROPOSED NAMMD TEST

As discussed in introduction and shown in Figure 1, while MMD can detect whether two distributions
are identical, it is less informative in measuring the closeness between distributions. Specifically,
different pairs of distributions with varying norms in the RKHS can yield the same MMD value,
despite having different levels of closeness, as revealed through the analysis of p-values.

NAMMD Distance and Its Asymptotic Property. We define our NAMMD distance as follows.
Definition 1. Let κ be the kernel of Hκ and 0 ≤ κ(x,y) ≤ K. Let x,x′ ∼ P and y,y′ ∼ Q with
µP and µQ. We define the norm-adaptive maximum mean discrepancy (NAMMD) as follows:

NAMMD(P,Q, κ) =
∥µP − µQ∥2Hκ

4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

=
E[κ(x,x′) + κ(y,y′)− 2κ(x,y)]

4K − E[κ(x,x′)]− E[κ(y,y′)]
, (1)

and it is clear that NAMMD ∈ [0, 1]. Here, the value of NAMMD approaches 1 when the two
distributions are well-separated and both highly concentrated.
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Remark. In NAMMD, we essentially capture differences between two distributions using their
characteristic kernel mean embeddings (i.e. µP and µQ), which uniquely represent probability
distributions and capture distinct characteristics for effective comparison [40]. A natural way to
measure the difference is by the Euclidean-like distance ∥µP − µQ∥2Hκ

(i.e., MMD). However, as
discussed in Section 1, MMD can yields same value for many pairs of distributions that have different
norms with the same kernel (which results in different closeness levels). To mitigate the issue, we
scale it using 4K − ∥µP∥2Hκ

− ∥µQ∥2Hκ
, making NAMMD increase with the norms ∥µP∥2Hκ

and
∥µQ∥2Hκ

. This leverages an insight that we separate two distributions more effectively at same MMD
distance with larger norms. Figure 1c and 1d demonstrate that our NAMMD exhibits a stronger
correlation with the p-value in testing, while MMD is held constant. We also prove that scaling
improves NAMMD’s effectiveness as a closeness measure in Theorems 10 and 12.

Probability measures P and Q are generally unknown, and we can only observe are two i.i.d. samples

X = {xi}mi=1 ∼ Pm and Y = {yj}mj=1 ∼ Qm .

Following Liu et al. [27], we assume equal size for two samples to simplify the notation, yet our
results can be easily extended to unequal sample sizes by changing the empirical estimator.

Based on two samples X and Y , we introduce the empirical estimator of NAMMD as follows

̂NAMMD(X,Y, κ) =
∑
i̸=j

Hi,j/
∑
i ̸=j

[4K − κ(xi,xj)− κ(yi,yj)] ,

where Hi,j = κ(xi,xj) + κ(yi,yj)− κ(xi,yj)− κ(yi,xj).

We then present asymptotic behavior of our empirical estimator as follows.
Theorem 2. If NAMMD(P,Q, κ) = ϵ with ϵ ∈ (0, 1], we have

√
m( ̂NAMMD(X,Y, κ)− ϵ)

d→ N (0, σ2
P,Q) ,

where σP,Q =
√
4E[H1,2H1,3]− 4(E[H1,2])2/(4K − ∥µP∥2Hκ

− ∥µQ∥2Hκ
), and the expectation

are taken over x1,x2,x3 ∼ P3 and y1,y2,y3 ∼ Q3; and if NAMMD(P,Q, κ) = 0, we have

m ̂NAMMD(X,Y, κ)
d−→
∑
i

λi

(
Z2
i − 2

)
/(4K − ∥(µP + µQ)/

√
2∥2Hκ

) ,

where Zi ∼ N (0, 2), and the λi are eigenvalues of the P-covariance operator of the centered kernel.

Building on this result, we now present the distribution closeness testing by taking our NAMMD as
the measure of closeness, along with an appropriately estimated testing threshold.
NAMMD Testing Procedure. We now define the distribution closeness testing as follows.
Definition 3. Given the closeness parameter ϵ ∈ [0, 1), the goal is to test between hypotheses

H0 : NAMMD(P,Q, κ) ≤ ϵ and H1 : NAMMD(P,Q, κ) > ϵ

with the significance level α ∈ (0, 1).
To perform testing procedure for above definition, we need to determine the testing threshold τα based
on Theorem 2. This can be outlined under two asymptotic scenarios 1): when NAMMD(P,Q, κ) = ϵ
with ϵ ∈ (0, 1) and 2): when NAMMD(P,Q, κ) = 0. In the first scenario, which corresponds to the
null hypothesis H0 : NAMMD(P,Q, κ) ≤ ϵ with ϵ ∈ (0, 1), we set τα as the (1 − α)-quantile of
the asymptotic Gaussian distribution in Theorem 2 (which can be easily calculated). Here, the term
σ2
P,Q is unknown in practice and we use the empirical estimator

σX,Y =

√
((4m− 8)ζ1 + 2ζ2)/(m− 1)

(m2 −m)−1
∑

i̸=j 4K − κ(xi,xj)− κ(yi,yj)
,

where ζ1 and ζ2 are standard variance components of the MMD [41, 42]. We present the details of
the estimator in Appendix C.2 due to page limitations.

We have the testing threshold for the null hypothesis H0 : NAMMD(P,Q, κ) ≤ ϵ with ϵ ∈ (0, 1) as

τα = ϵ+ σX,Y N1−α/
√
m , (2)

where N1−α is the (1− α)-quantile of the standard normal distribution.
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In the second scenario, which corresponds to the null hypothesis H0 : NAMMD(P,Q, κ) = 0 (i.e.
ϵ = 0 in Definition 3), the problem reduces to the standard two-sample testing based on Lemma 9. In
this case, it is challenging to directly estimate the null distribution [43]. We instead use the simpler
permutation test to obtain τα [36], which estimate the null distribution by repeatedly re-computing
estimator with the samples randomly re-assigned to X or Y .

Specifically, denote by B the iteration number of permutation test. Let Π2m be the set of all pos-
sible permutations of {1, . . . , 2m} over the pooled sample Z = {x1, . . . ,xm,y1, . . . ,ym} =
{z1, . . . ,zm, zm+1, . . . ,z2m}. In b-th iteration (b ∈ [B]), we generate a permutation π =
(π1, . . . , π2m) ∈ Π2m and then calculate the empirical estimator of NAMMD statistic as follows

Tb = ̂NAMMD(Xπ, Yπ, κ) ,

where Xπ = {zπ1 , zπ2 , ...,zπm} and Yπ = {zπm+1 , zπm+2 , ...,zπ2m}.

During such process, we obtain B statistics T1, T2, ..., TB and introduce the testing threshold for the
null hypothesis H0 : NAMMD(P,Q, κ) = 0 as follows

τα = argmin
τ

{
B∑

b=1

I[Tb ≤ τ ]

B
≥ 1− α

}
. (3)

Finally, we have the following test with testing threshold τα from either Eqn. 2 or 3

h(X,Y, κ) = I[ ̂NAMMD(X,Y, κ) > τα] . (4)

For the variance estimator, we present its asymptotic behavior as follows.
Lemma 4. Given samples X and Y with size m, we have that

∣∣E[σ2
X,Y ]− σ2

P,Q
∣∣ = O(1/

√
m).

We present theoretical analysis for Type-I error as follows.
Theorem 5. Under null hypothesis H0 : NAMMD ≤ ϵ, Type-I error of NAMMD is bounded by α.

Performing Distribution Closeness Testing in Practice. We have demonstrated how to perform
distribution closeness testing above, yet it is still not clear how the ϵ of Definition 3 should be set in
practice. Normally, when we want to test the closeness, we often have a reference pair of distributions
P1 and Q1 that we know its true/approximate distributional discrepancy, i.e. NAMMD(P1,Q1, κ).

Then, given two samples X and Y drawn from unknown distributions P2 and Q2 respectively, we
seek to determine whether the distance between P2 and Q2 is as close or closer to that between P1

and Q1, by applying distribution closeness testing. Here, we set ϵ = NAMMD(P1,Q1, κ), and this
can be formalized by Definition 3 with null and alternative hypotheses as follows

H0 : NAMMD(P2,Q2, κ) ≤ ϵ and H1 : NAMMD(P2,Q2, κ) > ϵ .

Finally, we can perform the NAMMD test procedure with samples X and Y .

Relevant work. A well-known class of two-sample testing constructs kernel embeddings for each
distribution and then test the differences between these embeddings [44–47]. Another relevant
approach assesses the differences between distributions with classification performance [48–56].
Kernel-based MMD has been one of the most important statistic for two-sample testing, which
includes popular classifier-based two-sample testing approaches as a special case [27].

Previous distribution closeness testing approaches primarily focus on theoretical analysis of the
sample complexity of sub-linear algorithms, and these approaches often rely on total variation over
discrete one-dimensional distributions [12, 15–18]. Other measures of closeness also include ℓ2
distance [57–59], entropy [60], probability difference [8, 61], etc. In comparison, we turn to kernel
methods that have shown effectiveness in non-parametric testing.

Permutation tests are widely used in statistics for equality of distributions, providing a finite-sample
guarantee on the Type-I error whenever the samples are exchangeable under null hypothesis [62–65].
As shown in Lemma 9, NAMMD(P,Q, κ) = 0 if and only if P = Q, indicating that our NAMMD
satisfies the exchangeability under null hypothesis H0 : NAMMD(P,Q, κ) = 0. For null hypothesis
H0 : NAMMD(P,Q, κ) ≤ ϵ and ϵ ∈ (0, 1), the empirical estimator of our NAMMD distance, i.e.,
NAMMD(P,Q, κ) = ϵ, has an asymptotic Gaussian distribution as shown in Theorem 2. Hence, we
use the (1− α)-quantile of asymptotic distribution as the testing threshold following [30, 46, 47].

5
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Some approaches select kernels in a supervised manner using held-out data [29, 36], while others
rely on unsupervised methods, such as the median heuristic [26], or adaptively combine multiple
kernels [32, 33]. Our NAMMD is compatible with these methods; for instance, the kernel can be
selected by maximizing the test power estimator derived from Theorem 2 (details are provided in
Appendix C.1). However, these approaches are primarily designed for distinguishing between a fixed
distribution pair in two-sample testing. It remains an open question and an important future work to
select an optimal global kernel for distribution closeness testing with multiple distribution pairs.

4 THEORETICAL ANALYSIS

In this section, we make further theoretical investigations on our NAMMD and the comparison
between our NAMMD and the original MMD in two-sample testing and distribution closeness testing.

4.1 SAMPLE COMPLEXITY OF OUR NAMMD

We now present the large deviation bound for our NAMMD estimator.
Lemma 6. The following holds over sample X and Y of size m,

Pr
(
| ̂NAMMD(X,Y, κ)− NAMMD(P,Q, κ)| ≥ t

)
≤ 4 exp(−mt2/9) for t > 0.

We present the concentration of our NAMMD estimator with permuted two samples as follows.
Lemma 7. Let Π2m be the set of permutations over sample Z = {x1, . . . ,xm,y1, . . . ,ym} and
0 ≤ κ(x,y) ≤ K. Given a permutation π, we have permuted two samples Xπ and Yπ . Then,

Pr
(

̂NAMMD(Xπ, Yπ, κ) ≥ t
)
≤ exp

{
−Cmin

(
4K2t2/Σ2

m, 2Kt/Σm

)}
,

for every t > 0 and some constant C > 0, where

Σ2
m :=

1

m2 (m− 1)
2 sup

π∈Π2m


m∑
i̸=j

κ2
(
zπi

, zπj

) .

We now derive upper bounds on the sample complexity required for our NAMMD test to correctly
reject the null hypothesis with high probability as follows.
Theorem 8. For our NAMMD test, as formalized in Eqn. 4, we correctly reject null hypothesis with
probability at least 1− υ given the sample size

m ≥

(√
9 log 2/υ +

√
9 log 2/υ + 2CαNAMMD(P,Q, κ)

)2
4 · NAMMD2(P,Q, κ)

+ 1 ,

if ϵ = 0 and NAMMD(P,Q, κ) ∈ (0, 1]; and this is also holds given

m ≥
(
2 ∗ N1−α +

√
9 log 2/υ

)2
/(NAMMD(P,Q, κ)− ϵ)2 ,

if ϵ ∈ (0, 1) and NAMMD(P,Q, κ) ∈ (ϵ, 1].

This theorem shows that, in both cases, the ratio 1/(NAMMD(P,Q, κ) − ϵ)2 is the main quantity
dictating the upper bound of the sample complexity of our NAMMD test under alternative hypothesis
H1 : NAMMD(P,Q, κ) > ϵ. This result is in accordance with the intuitive understanding.

4.2 COMPARISON WITH ORIGINAL MMD FOR TWO-SAMPLE TESTING

We recall that original MMD is applied to two-sample testing with null hypothesis H ′′
0 : P = Q. By

following Lemma, we present that our NAMMD can also be used to test whether P = Q.
Lemma 9. We have NAMMD(P,Q, κ) = 0 if and only if P = Q for characteristic kernel κ.

Hence, the two-sample testing can be formalized as distribution closeness testing in Definition 3 with
null and alternative hypotheses: H0 : NAMMD = 0 and H1 : NAMMD > 0.

We present the empirical estimator of MMD as follows [26]

M̂MD(X,Y, κ) = (m(m− 1))−1
∑
i̸=j

κ(xi,xj) + κ(yi,yj)− κ(xi,yj)− κ(yi,xj) .

Given this, we provide theoretical analysis of the advantages of our NAMMD for two-sample testing.

6
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Theorem 10. Under alternative hypothesis H1 : NAMMD(P,Q, κ) > 0, i.e. P ̸= Q, the following
holds with probability at least 1− exp(−m∥µP − µQ∥4Hκ

/(16K2)) over sample X and Y ,

mM̂MD(X,Y, κ) > rM ⇒ m ̂NAMMD(X,Y, κ) > rN .

Here, rM and rN are (1− α)-quantiles of asymptotic null distribution of m ̂NAMMD and mM̂MD.
Furthermore, following holds with probability ς ≥ 1/65 over samples X and Y ,

mM̂MD(X,Y, κ) ≤ rM yet m ̂NAMMD(X,Y, κ) > rN ,

if m ≥ C ′, where C ′ is dependent on distributions P and Q, and probability ς .

This theorem shows that, under the same kernel, if MMD test rejects null hypothesis correctly, our
NAMMD test also rejects null hypothesis with high probability. Furthermore, we present that our
NAMMD test can correctly reject null hypothesis even in cases where the original MMD test fails
to do so. For two-sample testing, NAMMD and MMD have the same test power estimator because,
asymptotically, after we fixed two distributions P and Q, NAMMD can be viewed as MMD scaled by
a constant 4K−∥µP∥2Hκ

−∥µQ∥2Hκ
. Hence, NAMMD and MMD has the same optimal kernel based

on the test power estimator (details are in Appendix B.10). Based on the optimal kernel, NAMMD
also achieves better performance than MMD using the permutation test as stated above Theorem.

4.3 COMPARISON WITH ORIGINAL MMD FOR DISTRIBUTION CLOSENESS TESTING

Inspired by Performing Distribution Closeness Testing in Practice (Section 3), we provide a more
structured definition to compare our NAMMD with original MMD in distribution closeness testing.
Definition 11. Given the known distributions P1 and Q1, and samples X and Y drawn from unknown
distributions P2 and Q2, the goal of distribution closeness testing is to correctly determine whether
the distance between P2 and Q2 is larger than that between P1 and Q1. To compare the test power,
we perform our NAMMD test and original MMD test separately, under scenarios where the following
null hypotheses are simultaneously false:

HN
0 : NAMMD(P2,Q2, κ) ≤ ϵN and HM

0 : MMD(P2,Q2, κ) ≤ ϵM ,

and following alternative hypotheses simultaneously hold true:

HN
1 : NAMMD(P2,Q2, κ) > ϵN and HM

1 : MMD(P2,Q2, κ) > ϵM ,

where ϵN = NAMMD(P1,Q1, κ) and ϵM = MMD(P1,Q1, κ).

Based on the definition, we present theoretical analysis of the advantages of our NAMMD test.
Theorem 12. Under HN

1 : NAMMD(Q2,P2, κ) > ϵN and HM
1 : MMD(Q2,P2, κ) > ϵM , and

assuming ∥µP1
∥ + ∥µQ1

∥ < ∥µP2
∥ + ∥µQ2

∥, then the following holds with probability at least
1− exp

(
−m∆2(4K − ∥µP2

∥2Hκ
− ∥µQ2

∥2Hκ
)2/(4K2(1−∆)2)

)
,

√
mM̂MD(X,Y, κ) > r′M ⇒

√
m ̂NAMMD(X,Y, κ) > r′N ,

where

∆ =
√
mNAMMD(P1,Q1, κ)

∥µP2
∥2Hκ

+ ∥µQ2
∥2Hκ

− ∥µP1
∥2Hκ

− ∥µQ1
∥2Hκ√

mMMD(P1,Q1, κ) + σ′
MN1−α

∈ (0, 1/2) .

r′M and r′N are asymptotic (1−α)-thresholds for
√
mM̂MD and

√
m ̂NAMMD under null hypothesis.

Furthermore, following holds with probability ς ≥ 1/65 over samples X and Y ,
√
mM̂MD(X,Y, κ) ≤ r′M yet

√
m ̂NAMMD(X,Y, κ) > r′N ,

if m ≥ C ′′, where C ′′ is dependent on distributions P and Q, and probability ς .

Similarly, our NAMMD test is proven with higher test power than MMD test in distribution closeness
testing, given that both alternative hypotheses, HN

1 and HM
1 , hold true. Notably, the condition

∥µP1
∥+∥µQ1

∥ < ∥µP2
∥+∥µQ2

∥ is often met in practice as norms of mean embeddings are typically
positively correlated with MMD value. The improvement analysis is conducted using the same kernel
for both NAMMD and MMD. Given this, we can derive an conjunction showing that NAMMD test
with its (unknown) optimal global kernel κN

∗ also achieves improvements over MMD test with its
(unknown) optimal global kernel κM

∗ . The key insight is that, for the optimal kernel of MMD κM
∗ ,

NAMMD test with κM
∗ performs better than MMD test with κM

∗ (details are in Appendix B.10).
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Figure 2: The comparisons of test power vs sample size for our NAMMDFuse and SOTA two-sample tests.

Table 1: Comparisons of test power (mean±std) on two-sample testing with the same kernel, and the bold
denotes the highest mean between our NAMMD test and the original MMD test.

Dataset Gaus. Kernel Maha. Kernel Deep Kernel Lapl. Kernel
MMD NAMMD MMD NAMMD MMD NAMMD MMD NAMMD

blob .600±.090 .616±.090 1.00±.000 1.00±.000 .859±.084 .863±.083 .359±.088 .364±.088
higgs .563±.073 .566±.075 .904±.087 .905±.086 .796±.091 .797±.091 .556±.062 .581±.062
hdgm .707±.042 .713±.041 .801±.097 .805±.095 .332±.087 .334±.086 .090±.012 .100±.013
mnist .405±.019 .411±.020 .970±.013 .975±.012 .462±.100 .467±.098 .873±.016 .881±.010

cifar10 .219±.017 .222±.020 .984±.007 .987±.006 .997±.003 1.00±.000 .998±.002 1.00±.000

Average .499±.048 .506±.049 .932±.041 .934±.040 .689±.073 .692±.072 .575±.036 .585±.035

5 EXPERIMENTS

We first conduct experiments on five benchmark datasets that have been studied in previous hypothesis
testing approaches [27, 30]. Specifically, "blob" and "hdgm" are synthetic datasets based on Gaussain
mixtures with dimensions 2 and 10, respectively. For "higgs", we compare the 4 dimension ϕ-
momenta distribution of Higgs-producing processes to background processes. "mnist" and "cifar" are
image datasets consisting of original and generative images. Additionally, we perform distribution
closeness testing on practical tasks related to domain adaptation using ImageNet and its variants.
Notably, in all experiments, we use the selected characteristic kernels of the form κ(x,x′) =
Ψ(x− x′) ∈ (0,K] with Ψ(0) = K, including Gaussian, Laplace, Mahalanobis and Deep kernels.

5.1 TWO-SAMPLE TESTING EXPERIMENTS

We begin by extending our NAMMD to the NAMMDFuse (Appendix C.3) by simply replacing
original MMD distance with our NAMMD distance in the fusing statistics approach [33]. We compare
our NAMMDFuse with state-of-the-art (SOTA) two-sample testings (Appendix D.3): 1). MMDFuse
[33]; 2). MMD-D [27]; 3). MMDAgg [32]; 4). AutoTST [55]; 5). MEMaBiD [30]; 6). ACTT [66].
We follow parameter settings for these methods as their respective inferences. The ratio is set to 1 : 1
for training and test sample sizes. We repeat such process 10 times for each dataset. Note that we set
the test sample size for NAMMDFuse, MMDFuse, MMDAgg, and ACTT to be twice that of other
methods, as these methods do not require training for kernel selection. For our NAMMDFuse, the
null hypothesis is NAMMDFuse(P,Q, κ) = 0, and we apply permutation test in two-sample testing.

From Figure 2, it is observed that our NAMMDFuse achieves test power that is either higher or
comparable to other methods. In comparison with MMD-D, AutoTST and MEMaBiD, our method
utilizes all available samples for testing without training procedure. Compared to MMDAgg and
ACTT, the fusion of our NAMMD distance use a log-sum-exp soft maximum, which incorporates
information from multiple kernels simultaneously [33]. It is also evident that our method takes better
performance than MMDFuse by scaling MMD distance with norms of mean embeddings.

For further comparison, we evaluate our NAMMD test (with ϵ = 0) against the MMD test in
terms of test power with the same kernel. We perform this experiments across four frequently used
kernels (Appendix D.4): 1). Gaussian kernel [67]; 2). Laplace kernel [33]; 3). Deep kernel [27];
4). Mahalanobis kernel [30]. Following [30, 27], we learn kernels on a subset of each available
dataset for 2000 epochs, and then test on 100 random same size subsets from remaining dataset. The
ratio is set to 1 : 1 for training and test sample sizes. We repeat such process 10 times for each dataset.
For our NAMMD test, the null hypothesis is NAMMD(P,Q, κ) = 0, and we apply permutation test.
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Table 2: Comparisons of test power (mean±std) on distribution closeness testing with respect to different total
variation values, and the bold denotes the highest mean between our NAMMD test and Canonne’s test.

Dataset ϵ′ = 0.1 ϵ′ = 0.3 ϵ′ = 0.5 ϵ′ = 0.7
Canonne’s NAMMD Canonne’s NAMMD Canonne’s NAMMD Canonne’s NAMMD

blob .856±.023 .968±.022 .809±.014 .912±.053 .944±.013 .960±.020 .998±.002 .961±.029

higgs .883±.015 .908±.050 .825±.010 .947±.027 .960±.005 .962±.023 .994±.003 .995±.005
hdgm .861±.011 .942±.023 .888±.016 .946±.017 .937±.014 .965±.014 .987±.004 .989±.004
mnist .715±.021 .931±.024 .786±.026 .965±.007 .896±.013 .997±.001 .971±.008 1.00±.000

cifar10 .686±.030 .919±.017 .751±.021 .923±.021 .917±.006 .997±.002 .981±.004 .999±.001

Average .800±.020 .934±.027 .812±.017 .939±.025 .931±.010 .976±.012 .986±.004 .989±.008
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Figure 3: Comparisons in distinguishing the closeness levels between the original and variants of ImageNet.

Table 1 summarizes the average of test powers and standard deviations of our NAMMD test and the
MMD test with the same kernel. It is evident that our NAMMD test achieves better performance than
original MMD test as for Gaussian, Laplace, Mahalanobis and Deep kernels. It is because scaling
maximum mean discrepancy with the norms of mean embeddings improves the effectiveness of our
NAMMD test in two-sample testing, and this is nicely in accordance with Theorem 10.

5.2 DISTRIBUTION CLOSENESS TESTING EXPERIMENTS

Here, we first compare the test power of distribution closeness tests using our NAMMD and the
statistic based on total variation introduced by Canonne et al. [37], and the experiments are performed
on discrete distributions with a support set containing only finite elements. For each datasets, we
draw 50 elements Z = {z1, z2, ...,z50}, and denote by P50 the uniform distribution over domain Z.
Starting with the uniform distribution, we increase the probability of randomly selected 25 elements
and decrease the probabilities of remaining 25 elements uniformly to construct distribution Q50,
which satisfies TV(P50,Q50) = ϵ′ and is used for null hypothesis. We similarly construct distribution
QA

50 with TV(P50,QA
50) = ϵ′ + 0.2 for alternative hypothesis.

Then, the corresponding null hypothesis for our NAMMD test is H0 : NAMMD(P,Q, κ) ≤ ϵ with
the selected Mahalanobis kernel. In experiments, we randomly draw two samples from P50 and QA

50
to evaluate the test power. Table 2 summarizes the average test powers and standard deviations of our
NAMMD test and Canonne’s test, which measures the difference in the occurrences of each element
between the two samples (i.e., the estimated distance for total variation). For comparison, we set
ϵ′ ∈ {0.1, 0.3, 0.5, 0.7}. The threshold for Canonne’s test is determined by resampling the estimated
distance from distributions P50 and Q50. Further details are provided in the Appendix D.1.

From Table 2, it is evident that our NAMMD for distribution closeness testing achieves better
performances than Canonne’s test, due to the inherent difficulty in making accurate estimates based
on occurrences, particularly when data is limited. On the other hand, kernel trick in our NAMMD can
effectively capture intrinsic structures and complex patterns in real-word datasets. For 2-dimensional
dataset blob, the statistic of Canonne’s test exhibits smaller variance at ϵ′ = 0.7 and preserves much
of the structural information from data, thus leading to higher test power.

Performing Distribution Closeness Testing in Practice. We present three case studies demonstrating
the application of our NAMMD distribution closeness testing to evaluate whether a model performs
similarly across training and testing datasets. First, given the pre-trained ResNet50, which performs
well on the original ImageNet dataset, we wish to evaluate its performance on variants of ImageNet.
A natural metric is the accuracy margin, defined as the difference in accuracy between the ImageNet
and its variant, where a smaller margin indicates more comparable performance. For variants
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Figure 4: Performing distribution closeness testing to
detect the confidence margin for domain adaptation
between ImageNet and ImageNetv2 datasets.
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Figure 5: Comparisons between our NAMMD and
the original MMD for distribution closeness testing in
adversarial perturbation detection (cifar10 dataset).

{ImageNetsk, ImageNetr, ImageNetv2, ImageNeta}, we can compute their accuracy margins as
{0.529,0.564,0.751,0.827} with ground truth labels, reflecting their relative similarity to ImageNet.

However, obtaining ground truth labels for variant ImageNet datasets is often challenging or expensive.
In such cases, we demonstrate that model performance can be assessed using our NAMMD closeness
testing without labels. The key is to validate that our NAMMD distance reflects the same closeness
relationships as the accuracy margin, and it performs effectively in distribution closeness testing.
Following Definition 11, we set ImageNet as P1 and P2, and sequentially set each of its variants
(ImageNeta, ImageNetv2, ImageNetr, and ImageNetsk) as Q2. We further sequentially set each
of the variants (ImageNetv2, ImageNetr, ImageNetsk, slightly perturbed ImageNet) as Q1, and
performs testing to assess if the distance between P2 and Q2 is larger than that between P1 and Q1.
Figure 3 shows that our NAMMD achieves higher test power than MMD by incorporating norms
of distributions, and effectively reflects the closeness relationships indicated by accuracy margin.
Moreover, even with a limited sample size (significantly smaller than that of ImageNet or its variants),
our NAMMD distance can successfully identify the closeness relationships.

For datasets with limited samples, accuracy margin may be dispersed and fail to reliably capture
differences in model performance. We introduce the confidence margin (Eqn. 12 in Appendix D.5)
between two datasets, where a smaller margin also indicate similar model performance. We also
validate that our NAMMD reflects the same closeness relationships as confidence margin. We use
pre-trained ResNet50 model to compute confidence margin for each class individually between
ImageNet and ImageNetv2. Following Definition 11, we define the classes with average margin 0.186
in ImageNet and ImageNetv2 as P1 and Q1. We further set P2 and Q2 as the classes in ImageNet and
ImageNetv2 with margins in {0.154, 0.165, 0.176, 0.186, 0.196, 0.205, 0.214, 0.224, 0.233, 0.241}.
We perform testing with sample size 150 and present the rejection rates and p-values of NAMMD and
MMD are presented in Figure 4. For margins up to 0.186 (left side of red line), rejection rates (type-I
errors) are limited given α = 0.05. Conversely, for margins exceed 0.186 (right side of red line), our
NAMMD achieves higher rejection rates (test powers) and lower p-values by incorporating norms.

Similarly, we validate that our NAMMD can be used to assess the level of adversarial perturbation over
the cifar10 dataset. Using ResNet18 as the base model, we apply the PGD attack with perturbations
{i/255}[10]i=1. As expected, a larger perturbation generally result in poor model performance on the
perturbed cifar10 dataset, indicating that the perturbed cifar10 is farther from the original cifar10.
Following Definition 11, we define the original cifar10 as P1 = P2 and the cifar10 dataset with 4/255

perturbation as Q1. We further set Q2 as the cifar10 dataset after applying perturbations {i/255}[10]i=1,
and perform testing with sample size 1500. It is evident that our NAMMD performs better than
MMD and effectively assesses the levels of adversarial perturbations, as shown in Figure 5.

For each experiment using a deep neural network, we use the corresponding deep kernel with selected
bandwidth following two-sample testing approach [27]. More experiments, including Type-I Error
Experiments for both distribution closeness and two-sample testings, can be found in Appendix D.6.

6 CONCLUSION

This work introduces a new kernel distribution closeness testing by proposing the norm-adaptive
MMD (NAMMD) distance, which leverages the insight that we separate two distributions more
effectively at the same MMD distance with larger norms of distributions. An intriguing future
research direction is to selecting an optimal global kernel for distribution closeness testing. We
provide the Ethics Statement in Appendix A and the Limitation Statement in Appendix C.4.
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B DETAILED PROOFS AND ADDITIONAL DISCUSSIONS OF OUR
THEORETICAL RESULTS

To begin, we define the concept of the U-statistic, which is a key statistical tool.
Definition 13. [41] Let h(x1,x2, . . . ,xr) be a symmetric function of r arguments. Suppose we
have a random sample x1,x2, . . . ,xm from some distribution. The U-statistic is given by:

Um =

(
m

r

)−1 ∑
1≤i1<i2<···<ir≤m

h(xi1 ,xi2 , ...,xir ) .

Here,
(
m
r

)
is the number of ways to choose r distinct indices from m, i.e., the binomial coefficient,

and the summation is taken over all possible r-tuples from the sample.

We further present the large deviation for U-statistic as follows.
Theorem 14. [68] If the function h is bounded, a ≤ h(xi1 ,xi2 , ...,xir ) ≤ b, we have

Pr(|Um − θ| ≥ t) ≤ 2 exp (−2⌊m/r⌋t2/(b− a)2) ,

where θ = E[h(xi1 ,xi2 , ...,xir )].

B.1 DETAILED PROOFS OF LEMMA 9

We begin with a useful theorem as follows.
Theorem 15. [26] Denote by P and Q two Borel probability measures over space X ⊆ Rd. Let
κ : X × X → R be a characteristic kernel. Then MMD2(P,Q, κ) = 0 if and only if P = Q.

We now present the proofs of Lemma 9 as follows.

Proof. Recall that 0 ≤ κ(x,y) ≤ K and

NAMMD(P,Q, κ) =
∥µP − µQ∥2Hκ

4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

=
MMD2(P,Q, κ)

4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

.

It is evident that 4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

> 0. Consequently, NAMMD(P,Q, κ) = 0 if and only
if P = Q for characteristic kernels. This completes the proof.

B.2 DETAILED PROOFS OF THEOREM 2

We begin with the empirical estimator of MMD as

M̂MD
2
(X,Y, κ) = 1/(m(m− 1))

∑
i̸=j

κ(xi,xj) + κ(yi,yj)− κ(xi,yj)− κ(yi,xj) .

Given this, we introduce a useful theorem as follows.
Theorem 16. Under the null hypothesis H ′′

0 : P = Q, let Zi ∼ N (0, 2) and we have

mM̂MD
2
(X,Y, κ)

d−→
∑
i

λi

(
Z2
i − 2

)
;

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

here λi are the eigenvalues of the P-covariance operator of the centered kernel [26, Theorem 12],
and d−→ denotes convergence in distribution. On the other hand, under the alternative H ′′

1 : P ̸= Q,
a standard central limit theorem holds [41, Section 5.5.1]

√
m
(
M̂MD

2
(X,Y, κ)−MMD2(P,Q, κ)

)
d−→ N

(
0, σ2

M

)
,

σ2
M := 4E[H1,2H1,3]− 4(E[H1,2])

2 ,

where Hi,j = κ(xi,xj) + κ(yi,yj) − κ(xi,yj) − κ(yi,xj) and the expectation are taken with
respect to x1,x2,x3 ∼ P3 and y1,y2,y3 ∼ Q3.

We now present the proofs of Theorem 2 as follows.

Proof. Recall the empirical estimator of our NAMMD distance

m ̂NAMMD(X,Y, κ) =

∑
i ̸=j κ(xi,xj) + κ(yi,yj)− κ(xi,yj)− κ(yi,xj)∑

i ̸=j 4K − κ(xi,xj)− κ(yi,yj)

=
mM̂MD

2
(X,Y, κ)

1/(m2 −m)
∑

i ̸=j 4K − κ(xi,xj)− κ(yi,yj)
.

As a U-statistic, it is easy to see that

1/(m(m− 1))
∑
i ̸=j

4K − κ(xi,xj)− κ(yi,yj)
p−→ 4K − ∥µP∥2Hκ

− ∥µQ∥2Hκ
,

where
p−→ denotes convergence in probability.

If NAMMD(P,Q, κ) = 0, we have P = Q from Lemma 9, and

mM̂MD
2
(X,Y, κ)

d−→
∑
i

λi

(
Z2
i − 2

)
,

from Theorem 16. Then, by slutsky’s theorem [69], we have

m ̂NAMMD(X,Y, κ)
d−→

∑
i λi

(
Z2
i − 2

)
4K − ∥µP∥2Hκ

− ∥µQ∥2Hκ

d−→
∑

i λi

(
Z2
i − 2

)
4K − ∥(µP + µQ)/

√
2∥2Hκ

,

where µP = µQ = (µP + µQ)/2.

If NAMMD(P,Q, κ) = ϵ with ϵ ∈ (0, 1), we present the asymptotic distribution of the empirical
estimator in a similar manner, which can be formalized as

√
m( ̂NAMMD(X,Y, κ)− ϵ)

d→ N
(
0,

4E[H1,2H1,3]− 4(E[H1,2])
2

(4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

)2

)
,

which completes the proof.

B.3 DETAILED PROOFS OF LEMMA 4

We present the proofs of Lemma 4 as follows.
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Proof. For simplicity, we let

Â =
√
((4m− 8)ζ1 + 2ζ2)/(m− 1) and A =

√
4E[H1,2H1,3]− 4(E[H1,2])2 ,

and

B̂ = (m2 −m)−1
∑
i ̸=j

4K − κ(xi,xj)− κ(yi,yj) and B = 4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

.

Build on these results, we can bound the bias as follows:∣∣E[σ2
X,Y ]− σ2

P,Q
∣∣ = ∣∣∣∣∣E

[
Â2

B̂2

]
− A2

B2

∣∣∣∣∣ =
∣∣∣∣∣E
[
Â2

B̂2

]
− E

[
Â2

B2

]
+ E

[
Â2

B2

]
− A2

B2

∣∣∣∣∣
=

∣∣∣∣∣E
[
Â2

B̂2

]
− E

[
Â2

B2

]∣∣∣∣∣
≤ E

[∣∣∣∣∣ Â2

B̂2
− Â2

B2

∣∣∣∣∣
]

= E

[∣∣∣∣∣ Â2(B − B̂)(B + B̂)

B̂2B2

∣∣∣∣∣
]

≤ C ∗ E
[∣∣∣B − B̂

∣∣∣]
where C > 0 is a constant that ensures Â2(B+B̂)

B̂2B2
≤ C, and it exists since the kernel is bounded. The

second equation is based on the unbiased variance estimator of the U-statistic, i.e. Â. Based on the
large deviation bound for B, we have

Pr
(∣∣∣B − B̂

∣∣∣ ≥ t
)
≤ 2 exp (−mt2/4K2)

and

C ∗ E
[∣∣∣B − B̂

∣∣∣] = C ∗
∫ ∞

0

Pr
(∣∣∣B − B̂

∣∣∣ ≥ t
)
dt

≤ C ∗
∫ ∞

0

2 exp (−mt2/4K2)dt

= C ∗
∫ ∞

0

2 exp (−u)
K√
m
√
u
du

= C ∗ 2K
√
π√

m
= O

(
1√
m

)
.

This completes the proof.

B.4 DETAILED PROOFS OF THEOREM 5

We begin with a useful definition as follows.
Definition 17. [63] Let Z be the sample taking values in the instance space X . Let G be a finite set
of transformations g : X → X , such that G is a group with respect to the operation of composition of
transformations. Let H0 be any null hypothesis which implies that the joint distribution of the test
statistics T (gZ), g ∈ G, is invariant under all transformations in G of Z. Denote by B the cardinality
of the set G and write G = {g1, ..., gB}. We have, under H0,

(T (g1Z), ..., T (gBZ))
d
= (T (g · g1Z), ..., T (g · gBZ)) for all g ∈ G ,

where d
= denotes equality in distribution.

We now present the proofs of Theorem 5 as follows.
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Proof. Under null hypothesis H0 : NAMMD(P,Q, κ) = 0, we have P = Q from Lemma 9. Let
Z = {X,Y } and Π2m be the set of all possible permutations of {1, . . . , 2m} over the pooled sample
Z = {x1, . . . ,xm,y1, . . . ,ym} = {z1, . . . ,zm, zm+1, . . . ,z2m} . Recall that we set the testing
threshold as the (1− α)-quantile of estimated null distribution by permutation test as

τα(Z) = argmin
τ

{
B∑

b=1

I[Tb(πZ) ≤ τ ]

B
≥ 1− α

}
,

with empirical estimator of permutation π ∈ Π2m of b-th iteration

Tb(πZ) = ̂NAMMD(Xπ, Yπ, κ) =
∑
i ̸=j

Hπi,πj
/
∑
i ̸=j

(4K − κ(xπi
,xπj

)− κ(yπi
,yπj

)) ,

where Xπ = {zπ1 , zπ2 , ...,zπm} and Yπ = {zπm+1 , zπm+2 , ...,zπ2m}.

It is easy to see that Π2m is a group with respect to operation of composition of transformations, and
the null hypothesis H0 : NAMMD(P,Q, κ) = 0, i.e., P = Q implies the joint distribution of T (πZ)
for π ∈ Π2m, is invariant under all transformation.

By group structure, we have πΠ2m = Π2m for all π ∈ Π2m. Hence, we have πZ
d
= Z and

τα(πZ) = τα(Z) .

Denote by T (Z) = ̂NAMMD(X,Y, κ). Then, under null hypothesis H0 : NAMMD(P,Q, κ) = 0,
the reject probability is given by

Pr(T (Z) > τα(Z) ) = Eπ∼Π2m
[Pr(T (πZ ) > τα(πZ) )]

= Eπ∼Π2m
[Pr(T (πZ ) > τα(Z) )]

≤ α .

The first equality holds since the null hypothesis implies the invariant joint distribution, and the
second equality follows τα(πZ) = τα(Z). The final inequality follows from the definition of τα(Z).

Under null hypothesis H0 : NAMMD(P,Q, κ) ≤ ϵ with ϵ ∈ (0, 1), we set the testing threshold as
the (1− α)-quantile of the asymptotic null distribution of NAMMD(P,Q, κ) = ϵ from Theorem 2.
Hence, the reject probability is also bounded by α. This completes the proof.

B.5 DETAILED PROOFS OF LEMMA 6

Proof. Recall our NAMMD distance as follows:

NAMMD(P,Q, κ) =
∥µP − µQ∥2Hκ

4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

=
MMD2(P,Q, κ)

4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

.

Given two i.i.d. samples X = {x1,x2, ...,xm} ∼ Pm and Y = {y1,y2, ...,ym} ∼ Qm, we have
the empirical estimator as follows

̂NAMMD(X,Y, κ) =

∑
i ̸=j κ(xi,xj) + κ(yi,yj)− κ(xi,yj)− κ(yi,xj)∑

i̸=j 4K − κ(xi,xj)− κ(yi,yj)

=
M̂MD

2
(X,Y, κ)

1/(m2 −m)
∑

i̸=j 4K − κ(xi,xj)− κ(yi,yj)
.

We denote by

A = | ̂NAMMD(X,Y, κ)− NAMMD(P,Q, κ)|

=

∣∣∣∣∣M̂MD
2
(X,Y, κ)− MMD2(P,Q, κ) + MMD2(P,Q, κ)

1/(m2 −m)
∑

i̸=j 4K − κ(xi,xj)− κ(yi,yj)
− MMD2(P,Q, κ)

4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

∣∣∣∣∣ .
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Given this, we let

B =

∣∣∣∣∣ M̂MD
2
(X,Y, κ)− MMD2(P,Q, κ)

1/(m2 −m)
∑

i ̸=j 4K − κ(xi,xj)− κ(yi,yj)

∣∣∣∣∣ ,
and

C =

∣∣∣∣∣ MMD2(P,Q, κ)

1/(m2 −m)
∑

i ̸=j 4K − κ(xi,xj)− κ(yi,yj)
− MMD2(P,Q, κ)

4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

∣∣∣∣∣ .
It is easy to see that A ≤ B + C and we have

Pr (A ≥ t) ≤ Pr (B + C ≥ t) ≤ Pr (B ≥ b) + Pr (C ≥ c) ,

for b+ c = t with t > 0 and b, c ≥ 0.

Based on the large deviation bound for U-statistic (Theorem 14), we have

Pr(B ≥ b) ≤ Pr
(∣∣∣M̂MD

2
(X,Y, κ)− MMD2(P,Q, κ)

∣∣∣ /2K ≥ b
)
≤ 2 exp (−mb2/4) ,

In a similar manner, we have

Pr(C ≥ c)

≤ Pr

MMD2(P,Q, κ)|
∑
i ̸=j

(κ(xi,xj) + κ(yi,yj))/(m
2 −m))− ∥µP∥2Hκ

− ∥µQ∥2Hκ
|

(1/(m2 −m)
∑
i ̸=j

4K − κ(xi,xj)− κ(yi,yj)) · (4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

)
≥ c


≤ Pr

∣∣∣∣∣∣
∑
i ̸=j

κ(xi,xj)

m(m− 1)
+

κ(yi,yj)

m(m− 1)
− ∥µP∥2Hκ

− ∥µQ∥2Hκ

∣∣∣∣∣∣ MMD2(P,Q, κ)

4K2
≥ c


≤ Pr

∣∣∣∣∣∣
∑
i ̸=j

κ(xi,xj)

m(m− 1)
+

κ(yi,yj)

m(m− 1)
− ∥µP∥2Hκ

− ∥µQ∥2Hκ

∣∣∣∣∣∣ /2K ≥ c


≤ 2 exp (−mc2)

For simplicity, let b = 2t/3 and c = t/3, we have

Pr (A ≥ t) ≤ Pr (B ≥ 2t/3) + Pr (C ≥ t/3)

= 4 exp (−mt2/9) .

This completes the proof.

B.6 DETAILED PROOFS OF LEMMA 7

Let Π2m be the set of all possible permutations of {1, . . . , 2m} over the pooled sample
Z = {x1, . . . ,xm,y1, . . . ,ym} = {z1, . . . ,zm, zm+1, . . . ,z2m}. Given a permutation π =
(π1, . . . , π2m) ∈ Π2m, we have Xπ = {zπi

}mi=1 and Yπ = {zπi
}2mi=m+1.

We begin with a useful Theorem as follows.
Theorem 18. [65, Theorem 6.1] Consider the permuted two-sample U -statistic U(Xπ, Yπ, κ) with
size m for each sample and define

Σ2
m :=

1

m2 (m− 1)
2 sup

π∈Π2m


m∑
i ̸=j

κ2
(
zπi

, zπj

) .

Then, for every t > 0 and some constant C > 0, we have

Pr (U(Xπ, Yπ, κ) ≥ t) ≤ exp

(
−Cmin

(
t2

Σ2
m

,
t

Σm

))
.
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We now present the proofs of Lemma 7 as follows.

Proof. Recall that

̂NAMMD(Xπ, Yπ, κ) =
M̂MD(Xπ, Yπ, κ)

1/(m2 −m)
∑

i̸=j 4K − κ(xi,xj)− κ(yi,yj)
,

As we can see, M̂MD(Xπ, Yπ, κ) is a U-statistic. Hence, we have

Pr
(

̂NAMMD(Xπ, Yπ, κ) ≥ t
)

≤ Pr

(
M̂MD(Xπ, Yπ, κ)

2K
≥ t

)

≤ exp

(
−Cmin

(
4K2t2

Σ2
m

,
2Kt

Σm

))
.

This completes the proof.

B.7 DETAILED PROOFS OF THEOREM 8

Proof. Under the alternative hypothesis H1 : NAMMD(P,Q, κ) > 0, we need to correctly reject the
null hypothesis H0 : NAMMD(P,Q, κ) = 0. According to Eqn. 3, we set τα as the (1−α)-quantile
of the estimated null distribution by permutation test.

By Lemma 7, it is easy to see that

Pr
(

̂NAMMD(Xπ, Yπ, κ) ≥ t
)

≤ exp

(
−Cmin

(
4K2t2

Σ2
m

,
2Kt

Σm

))
≤ exp

(
−Cmin

(
4(m− 1)2K2t2

K2
,
2(m− 1)Kt

K

))
≤ exp

(
−Cmin

(
4(m− 1)2t2, 2(m− 1)t

))
,

the second inequality holds with Σ2
m ≤ (m(m− 1))−1K2 ≤ (m− 1)−2K2.

Let

exp
(
−Cmin

(
4(m− 1)2t2, 2(m− 1)t

))
= α

min
(
4(m− 1)2t2, 2(m− 1)t

)
=

logα−1

C
.

If 4(m− 1)2t2 ≤ 2(m− 1)t, i.e., t ≤ (2(m− 1))−1, and we have

t =
1

2(m− 1)

logα−1

C
,

which implies logα−1/C ≤ 1 and logα−1/C ≤
√
logα−1/C.

If 4(m− 1)2t2 > 2(m− 1)t, i.e., t > (2(m− 1))−1, and we have

t =
1

2(m− 1)

√
logα−1

C
,

which implies logα−1/C > 1 and logα−1/C >
√
logα−1/C.

In summary, we have

t =
1

2(m− 1)
min

(
logα−1

C
,

√
logα−1

C

)
For simplicity, let Cα = min

(
logα−1/C,

√
logα−1/C

)
, we have

t =
1

2(m− 1)
∗ Cα .
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It is easy to see that the testing threshold τα ≤ t.

By the large deviation bound for our NAMMD as shown in Lemma 6, we have

Pr
(

̂NAMMD(X,Y, κ)− NAMMD(P,Q, κ) ≥ −t
)
≤ 2 exp(−mt2/9) ,

for t > 0.

To derive the upper bound, it follows with at least 1− υ probability, according to the large deviation
bound discussed above,

̂NAMMD(X,Y, κ) ≥ NAMMD(P,Q, κ)−
√

9 log 2/υ

m
.

To ensure the correct rejection of the null hypothesis , we have

̂NAMMD(X,Y, κ) >
1

2(m− 1)
∗ Cα

NAMMD(P,Q, κ)−
√

9 log 2/υ

m
>

1

2(m− 1)
∗ Cα ,

which is equivalent to

(m− 1)NAMMD(P,Q, κ)− (m− 1)

√
9 log 2/υ

m
>

m− 1

2(m− 1)
∗ Cα .

For the upper bound, we further scale as follows

(m− 1)NAMMD(P,Q, κ)−
√
9(m− 1) log 2/υ ≥ Cα

2
.

We finally present the upper bound for sample complexity of our NAMMD test under the alternative
hypothesis H1 : NAMMD(P,Q, κ) > 0 as follows

m ≥

(√
9 log 2/υ +

√
9 log 2/υ + 2CαNAMMD(P,Q, κ)

)2
4 · NAMMD2(P,Q, κ)

+ 1 .

Under the alternative hypothesis H1 : NAMMD(P,Q, κ) > 0, we need to correctly reject the null
hypothesis H0 : NAMMD(P,Q, κ) = 0. According to Eqn. 3, we set τα as the (1− α)-quantile of
the estimated null distribution by permutation test.

Under the alternative hypothesis H1 : NAMMD(P,Q, κ) > ϵ with ϵ ∈ (0, 1), , we need to correctly
reject the null hypothesis H0 : NAMMD(P,Q, κ) ≤ ϵ. According to Eqn. 3, we set τα as the
(1− α)-quantile of the asymptotic null distribution of NAMMD(P,Q, κ) = ϵ from Theorem 2 as,

τα = ϵ+
σX,Y N1−α√

m
,

where the empirical estimator of variance is given by

σX,Y =

√
((4m− 8)ζ1 + 2ζ2)/(m− 1)

(m2 −m)−1
∑

i ̸=j 4K − κ(xi,xj)− κ(yi,yj)
,

where ζ1 and ζ2 are standard variance components of the MMD [41, 42]. We present the details of
the estimator in Appendix C.2.

It is easy to see that

(m2 −m)−1
∑
i ̸=j

4K − κ(xi,xj)− κ(yi,yj) ≥ 2K and ζ1 ≤ 4K2 and ζ2 ≤ 4K2 ,
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Hence, as we can see,

σX,Y ≤
√

(4m− 6)/(m− 1)4K2

2K
≤ 4K/2K

≤ 2 ,

and we have
τα ≤ ϵ+

2N1−α√
m

.

In a similar manner, to ensure the rejection, we have

̂NAMMD(X,Y, κ) > ϵ+
2N1−α√

m
.

To derive the upper bound, the following holds with at least probability 1− υ,

̂NAMMD(X,Y, κ) ≥ NAMMD(P,Q, κ)−
√

9 log 2/υ

m
,

then, we have

NAMMD(P,Q, κ)−
√

9 log 2/υ

m
> ϵ+

2N1−α√
m

,

which leads to

m ≥

(
2 ∗ N1−α +

√
9 log 2/υ

)2
(NAMMD(P,Q, κ)− ϵ)2

.

This completes the proof.

B.8 DETAILED PROOFS OF THEOREM 10

Let Π2m be the set of all possible permutations of {1, . . . , 2m} over the pooled sample
Z = {x1, . . . ,xm,y1, . . . ,ym} = {z1, . . . ,zm, zm+1, . . . ,z2m}. Given a permutation π =
(π1, . . . , π2m) ∈ Π2m, we have Xπ = {zπi

}mi=1 and Yπ = {zπi
}2mi=m+1.

We now present the proofs of Theorem 10 as follows.

Proof. Let rM be the (1 − α)-quantile of the asymptotic null distribution of mM̂MD(Xπ, Yπ, κ)
from Theorem 16, where Xπ and Yπ can be viewed as two i.i.d. samples drawn from (P+Q)/2.

We also denote by rN be the (1 − α)-quantile of the asymptotic null distribution of
m ̂NAMMD(Xπ, Yπ, κ) from Theorem 2, and it is easy to see that

rN =
rM

4K − ∥(µP + µQ)/
√
2∥2Hκ

.

It is easy to see that the inequality mM̂MD(X,Y, κ) > rM can be rewritten as

mM̂MD(X,Y, κ)

4K − ∥(µP + µQ)/
√
2∥2Hκ

> rN .

Recall that

̂NAMMD(Xπ, Yπ, κ) =
M̂MD(Xπ, Yπ, κ)

1/(m2 −m)
∑

i ̸=j 4K − κ(zπi , zπj )− κ(zπi+m , zπj+m)
.

We rewrite the inequality m ̂NAMMD(X,Y, κ) > rN as

mM̂MD(X,Y, κ)

1/(m2 −m)
∑

i ̸=j 4K − κ(xi,xj)− κ(yi,yj)
> rN .

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Then, the following relationship

mM̂MD(X,Y, κ) > rM ⇒ m ̂NAMMD(X,Y, κ) > rN , (5)

holds with

1/(m2 −m)
∑
i ̸=j

4K − κ(xi,xj)− κ(yi,yj) ≤ 4K − ∥(µP + µQ)/
√
2∥2Hκ

,

which can be transformed to∑
i ̸=j κ(xi,xj) + κ(yi,yj)

m2 −m
− ∥µP∥2Hκ

− ∥µQ∥2Hκ
≥

∥∥∥∥µP + µQ√
2

∥∥∥∥2
Hκ

− ∥µP∥2Hκ
− ∥µQ∥2Hκ

≥ −1

2
∥µP − µQ∥2Hκ

.

Using the large deviation bound as follows

P

(∑
i̸=j κ(xi,xj) + κ(yi,yj)

m2 −m
− (∥µP∥2Hκ

+ ∥µQ∥2Hκ
) ≤ −t

)
≤ exp(−mt2/4K2) ,

with t > 0, the Eqn. 5 holds with probability at least

1− exp(−m∥µP − µQ∥4Hκ
/16K2) .

This completes the proof of first part.

From Theorem 16, we have the test power of MMD test as follows

pM = Pr
(
mM̂MD

2
(X,Y, κ) ≥ rM

)
→ Φ

(
mMMD2(P,Q, κ)− rM√

mσM

)
.

The test power of NAMMD test is given by, according to Theorem 2,

pN = Pr
(
m ̂NAMMD(X,Y, κ) ≥ rN

)
→ Φ

(
mNAMMD(P,Q, κ)− rN√

mσP,Q

)
.

It is easy to see that

Φ

(
mNAMMD(P,Q, κ)− rN√

mσP,Q

)
= Φ


mMMD2(P,Q, κ)

4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

− rM

4K − ∥(µP + µQ)/
√
2∥2Hκ√

mσM

4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

 ,

which yields that

pN → Φ

(
mMMD2(P,Q, κ)− rM√

mσM
+

(
1−

4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

4K − ∥(µP + µQ)/
√
2∥2Hκ

)
rM/(

√
mσM )

)
.

Let

A =
mMMD2(P,Q, κ)− rM√

mσM
and B =

(
1−

4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

4K − ∥(µP + µQ)/
√
2∥2Hκ

)
rM/(

√
mσM ) ,

we have

ς = pN − pM =
1√
2π

∫ A+B

A

e−t2/2dt .

Let A ≥ −0.5, we have

mA ≥

−σM +
√
σ2
M + 16MMD2(P,Q, κ)rM

4MMD2(P,Q, κ)

2

.
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In a similar manner, let B ≥ 0.05, we have

mB ≥

(
20rM

(
1−

4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

4K − ∥(µP + µQ)/
√
2∥2Hκ

)
/σM

)−2

By introducing
m ≥ C ′ with C ′ = max{mA,mB} ,

we have B ≥ 0.05 and A ≥ −0.5, and the lower bound of the power improvement is given by

ς = pN − pM ≥ 1√
2π

∫ −0.45

−0.5

e−t2/2dt ≥ 1/65 .

This completes the proof.

B.9 DETAILED PROOFS OF THEOREM 12

Given Definition 11, we assume P1 and Q1 are known, and X and Y are two i.i.d. samples drawn
from P2 and Q2. The goals of distribution closeness testing are to correctly reject null hypotheses
with calculated statistics ̂NAMMD(X,Y, κ) and M̂MD(X,Y, κ).

For simplicity, we let

NORM(P1,Q1, κ) = 4K − ∥µP1
∥2Hκ

− ∥µQ1
∥2Hκ

NORM(P2,Q2, κ) = 4K − ∥µP2
∥2Hκ

− ∥µQ2
∥2Hκ

,

and rewrite the empirical estimator with X and Y as follows

N̂ORM(X,Y, κ) = 1/(m2 −m)
∑
i ̸=j

4K − κ(xi,xj)− κ(yi,yj) .

Proof. Recall that r′M and r′N are the asymptotic thresholds of estimators
√
mM̂MD(X,Y, κ) and

√
m ̂NAMMD(X,Y, κ), respectively.

Specifically, from Theorem 16, we have

r′M =
√
mMMD(P1,Q1, κ) + σ′

MN1−α ,

where σ2
M := 4E[H1,2H1,3]−4(E[H1,2])

2 and Hi,j = κ(xi,xj)+κ(yi,yj)−κ(xi,yj)−κ(yi,xj),

and the expectation are taken with respect to x1,x2,x3
i.i.d.∼ P2 and y1,y2,y3

i.i.d.∼ Q2.

In a similar manner, from Theorem 2, we have

r′N =
√
mNAMMD(P1,Q1, κ) + σP2,Q2

N1−α

=

√
mMMD(P1,Q1, κ)

4K − ∥µP1∥2Hκ
− ∥µQ1

∥2Hκ

+
σ′
MN1−α

(4K − ∥µP2∥2Hκ
− ∥µQ2

∥2Hκ
)

=

√
mMMD(P1,Q1, κ)

NORM(P1,Q1, κ)
+

σ′
MN1−α

NORM(P2,Q2, κ)
,

It is easy to see that
√
mM̂MD(X,Y, κ) > r′M is equivalent to

√
mM̂MD(X,Y, κ)−

√
mMMD(P1,Q1, κ) > σ′

MN1−α , (6)

and in a similar manner,
√
m ̂NAMMD(X,Y, κ) > r′N is equivalent to

NORM(P2,Q2, κ)

N̂ORM(X,Y, κ)

√
mM̂MD(X,Y, κ)− NORM(P2,Q2, κ)

NORM(P1,Q1, κ)

√
mMMD(P1,Q1, κ) > σ′

MN1−α ,

(7)

Hence, to ensure
√
mM̂MD(X,Y, κ) > r′M ⇒

√
m ̂NAMMD(X,Y, κ) > r′N , (8)
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we must verify that, according to Eqn. 6 and 7,(
NORM(P2,Q2, κ)

N̂ORM(X,Y, κ)
− 1

)
√
mM̂MD(X,Y, κ) ≥

(
NORM(P2,Q2, κ)

NORM(P1,Q1, κ)
− 1

)√
mMMD(P1,Q1, κ) .

(9)

Based on Eqn. 6, the inequality in Eqn. 9 can be adjusted to

NORM(P2,Q2, κ)− N̂ORM(X,Y, κ)

N̂ORM(X,Y, κ)

≥ NORM(P2,Q2, κ)− NORM(P1,Q1, κ)

NORM(P1,Q1, κ)

√
mMMD(P1,Q1, κ)√

mMMD(P1,Q1, κ) + σ′
MN1−α

≥
√
mNAMMD(P1,Q1, κ)

NORM(P2,Q2, κ)− NORM(P1,Q1, κ)√
mMMD(P1,Q1, κ) + σ′

MN1−α
.

Given this, we have

NORM(P2,Q2, κ)

≥
(
1 +

√
mNAMMD(P1,Q1, κ)

NORM(P2,Q2, κ)− NORM(P1,Q1, κ)√
mMMD(P1,Q1, κ) + σ′

MN1−α

)
N̂ORM(X,Y, κ)

≥ (1−∆) N̂ORM(X,Y, κ) ,

where we let, for simplicity

∆ =
√
mNAMMD(P1,Q1, κ)

∥µP2∥2Hκ
+ ∥µQ2∥2Hκ

− ∥µP1∥2Hκ
− ∥µQ1∥2Hκ√

mMMD(P1,Q1, κ) + σ′
MN1−α

.

Here, by assuming ∥µP1
∥2Hκ

+ ∥µQ1
∥2Hκ

< ∥µP2
∥2Hκ

+ ∥µQ2
∥2Hκ

, we have ∆ ∈ (0, 1/2).

As we can see, NORM(P2,Q2, κ) ≥ (1−∆)N̂ORM(X,Y, κ) is equivalent to

(1−∆)N̂ORM(X,Y, κ)− (1−∆)NORM(P2,Q2, κ) ≤ ∆ · NORM(P2,Q2, κ) ,

which is
N̂ORM(X,Y, κ)− NORM(P2,Q2, κ) ≤

∆

1−∆
NORM(P2,Q2, κ) .

Using the large deviation bound as follows

P
(

N̂ORM(X,Y, κ)− NORM(P2,Q2, κ) ≥ t
)
≤ exp(−mt2/4K2) ,

with t > 0, the Eqn. 8 holds with probability at least

1− exp

(
−m

(
∆

1−∆
NORM(P2,Q2, κ)

)2

/4K2

)
.

This completes the proof of first part.

The proof of second part closely mirrors the proof of second part in Theorem 10 given in Ap-
pendix B.8.

From Theorem 16, we have the test power of MMD test as follows

pM = Pr
(√

mM̂MD
2
(X,Y, κ) ≥ r′M

)
→ Φ

(√
mMMD2(P2,Q2, κ)− r′M

σ′
M

)
,

which is equivalent to

Φ

(√
m(MMD2(P2,Q2, κ)− MMD2(P1,Q1, κ))− σ′

MN1−α

σ′
M

)
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The test power of NAMMD test is given by, according to Theorem 2,

pN = Pr
(√

m ̂NAMMD(X,Y, κ) ≥ r′N

)
→ Φ

(√
mNAMMD(P2,Q2, κ)− r′N

σP2,Q2

)
,

which is equivalent to

Φ


√
m

(
MMD2(P2,Q2, κ)−

NORM(P2,Q2, κ)

NORM(P1,Q1, κ)
MMD2(P1,Q1, κ)

)
− σ′

MN1−α

σ′
M

 .

For simplicity, we let

A =

√
m(MMD2(P2,Q2, κ)− MMD2(P1,Q1, κ))− σ′

MN1−α

σ′
M

,

and

B =
√
m

(
1− NORM(P2,Q2, κ)

NORM(P1,Q1, κ)

)
MMD2(P1,Q1, κ)

σ′
M

.

Similarly, by assuming ∥µP1
∥2Hκ

+ ∥µQ1
∥2Hκ

< ∥µP2
∥2Hκ

+ ∥µQ2
∥2Hκ

, we have B > 0 with
NORM(P1,Q1, κ) > NORM(P2,Q2, κ).

As we can see,

ς = pN − pM =
1√
2π

∫ A+B

A

e−t2/2dt .

Let A ≥ −0.5, we have

mA ≥
(

(N1−α − 0.5)σ′
M

MMD2(P2,Q2, κ)− MMD2(P1,Q1, κ)

)2

.

In a similar manner, let B ≥ 0.05, we have

mB ≥
(
20

(
1− NORM(P2,Q2, κ)

NORM(P1,Q1, κ)

)
MMD2(P1,Q1, κ)

σ′
M

)−2

By introducing
m ≥ C ′′ with C ′′ = max{mA,mB} ,

we have B ≥ 0.05 and A ≥ −0.5, and the lower bound of the power improvement is given by

ς = pN − pM ≥ 1√
2π

∫ −0.45

−0.5

e−t2/2dt ≥ 1/65 .

This completes the proof.

B.10 DISCUSSIONS ON THE IMPROVEMENT OF NAMMD WITH KERNEL SELECTION

Existing kernel selection methods for MMD are primarily designed for two-sample testing (TST),
focusing on selecting the optimal kernel that maximizes the test power estimator of TST to distinguish
two fixed distributions P and Q [27, 36]. For TST, NAMMD and MMD actually share the same test
power estimator because, asymptotically, after we fixed two distributions P and Q, NAMMD can
be viewed as MMD scaled by a constant 4K − ∥µP∥2Hκ

− ∥µQ∥2Hκ
, as detailed in Appendix C.1.

Hence, the NAMMD and MMD has the same optimal kernel for TST. For the same kernel, when we
use permutation test to do perform two-sample tests, our NAMMD achieves higher test power than
MMD due to its scaling as stated in Theorem 10.
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Algorithm 1 Kernel Selection
Input: Two samples X and Y , a kernel κ, step size η, iteration number N
Output: Two samples X and Y

1: for ℓ = 1, 2, · · · , N do
2: Calculate the estimator ̂NAMMD(X,Y, κ)/σX,Y according to Eqn. 10

3: Calculate gradient ∇ ·
(

̂NAMMD(X,Y, κ)/σX,Y

)
4: Gradient ascend with step size η by the Adam method
5: end for

One conjunction for distribution closeness testing (DCT). Further, based on Theorem 12, we
might have an interesting conjunction. We can assume a scenario where we can obtain the best kernel
κM
∗ for MMD DCT (instead of MMD TST) and the best kernel κN

∗ for NAMMD DCT. Based on
Theorem 12, if we use the kernel κM

∗ (MMD’s best kernel) for NAMMD, then NAMMD DCT will
perform better than MMD DCT already. Because κN

∗ is the kernel to make NAMMD DCT have
the highest test power (in DCT, instead of TST), NAMMD DCT with κN

∗ should have a higher or
equal test power compared to NAMMD DCT with κM

∗ . Thus, NAMMD DCT with kD∗ has a higher
test power than NAMMD DCT with κM

∗ (because NAMMD DCT with κM
∗ has a higher power than

MMD DCT with κM
∗ based on Theorem 12).

C DETAILS AND ADDITIONAL DISCUSSIONS OF OUR NAMMD TEST

C.1 DETAILS OF OPTIMIZATION FOR KERNEL SELECTING

Recall Theorem 2, if NAMMD(P,Q, κ) = ϵ with ϵ ∈ (0, 1), we have
√
m( ̂NAMMD(X,Y, κ)− ϵ)

d→ N (0, σ2
P,Q) ,

where σP,Q =
√

4E[H1,2H1,3]− 4(E[H1,2])2/(4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

), and the expectation
are taken over x1,x2,x3 ∼ P3 and y1,y2,y3 ∼ Q3.

We can find the approximate test power by using the asymptotic testing threshold rN as follows:

Pr
(
m ̂NAMMD(X,Y, κ) ≥ rN

)
→ Φ

(
mNAMMD(P,Q, κ)− rN√

mσP,Q

)
.

It is evident that maximizing the test power is equivalent to optimizing the following term
NAMMD(P,Q, κ)

σP,Q
=

MMD(P,Q, κ)√
4E[H1,2H1,3]− 4(E[H1,2])2

.

Recall that
̂NAMMD(X,Y, κ) =

∑
i ̸=j

Hi,j/
∑
i̸=j

(4K − κ(xi,xj)− κ(yi,yj)) ,

with Hi,j = κ(xi,xj) + κ(yi,yj)− κ(xi,yj)− κ(yi,xj) and

σX,Y =

√
((4m− 8)ζ1 + 2ζ2)/(m− 1)

(m2 −m)−1
∑

i̸=j 4K − κ(xi,xj)− κ(yi,yj)
,

where ζ1 and ζ2 are standard variance components of the MMD [41, 42]. The details of the ζ1 and ζ2
are provided in Appendix C.2.

We have the empirical test power estimator as follows

̂NAMMD(X,Y, κ)

σX,Y
=

M̂MD(X,Y, κ)√
((4m− 8)ζ1 + 2ζ2)/(m− 1)

, (10)

It is evident that the empirical test power estimator for NAMMD is equal to the test power estimator
of MMD [36]. We take gradient method [70] for the optimization of Eqn. 10. Algorithm 1 presents
the detailed description on optimization.
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C.2 DETAILS OF VARIANCE ESTIMATOR

We adhere to the results of empirical variance estimators provided by Sutherland [42]. For simplicity,
we first introduce the uncentred covariance operator as follows:

CX = Ex∼P[φ(x)⊗ φ(x)] ,

where φ(·) is the feature map of the corresponding RKHS Hκ.

For simplicity, we define the m×m matrix KXY with (KXY)ij = κ (xi,yj). Let K̃XY be KXY

with diagonals set to zero. In a similar manner, we have KXX and KYY, and K̃XX and K̃YY. Let
1 be the m-vector of all ones. Denote by (m)k := m(m− 1) · · · (m− k + 1).

We have that
ζ1 = ⟨µX , CXµX⟩ − ⟨µX ,µX⟩2 + ⟨µY , CY µY ⟩ − ⟨µY ,µY ⟩2

+ ⟨µY , CXµY ⟩+ ⟨µX , CY µX⟩ − ⟨µX ,µY ⟩2 − ⟨µY ,µX⟩2

−2 ⟨µX , CXµY ⟩+ 2 ⟨µX ,µX⟩ ⟨µX ,µY ⟩ − 2 ⟨µY , CY µX⟩+ 2 ⟨µY ,µY ⟩ ⟨µX ,µY ⟩

=
1

(m)3

[∥∥∥K̃XX1
∥∥∥2 − ∥∥∥K̃XX

∥∥∥2
F

]
− 1

(m)4

[(
1⊤K̃XX1

)2
− 4

∥∥∥K̃XX1
∥∥∥2 + 2

∥∥∥K̃XX

∥∥∥2
F

]
+

1

(m)3

[∥∥∥K̃YY1
∥∥∥2 − ∥∥∥K̃YY

∥∥∥2
F

]
− 1

(m)4

[(
1⊤K̃YY1

)2
− 4

∥∥∥K̃YY1
∥∥∥2 + 2

∥∥∥K̃YY

∥∥∥2
F

]
+

1

m2(m− 1)

[
∥KXY1∥2 − ∥KXY∥2F

]
+

1

m2(m− 1)

[∥∥K⊤
XY1

∥∥2 − ∥KXY∥2F
]

− 2

m2(m− 1)2

[(
1⊤KXY1

)2 − ∥∥K⊤
XY1

∥∥2 − ∥KXY1∥2 + ∥KXY∥2F
]

− 2

m2(m− 1)
1⊤K̃XXKXY1+

2

m(m)3

[
1⊤K̃XX11⊤KXY1− 21⊤K̃XXKXY1

]
− 2

m2(m− 1)
1⊤K̃YYK⊤

XY1+
2

m(m)3

[
1⊤K̃YY11⊤K⊤

XY1− 21⊤K̃YYK⊤
XY1

]
and

ζ2 = E
[
κ (x1,x2)

2
]
− ⟨µX ,µX⟩2 + E

[
κ (y1,y2)

2
]

−⟨µY ,µY ⟩2 + 2E
[
κ(x,y)2

]
− 2 ⟨µX ,µY ⟩2

−4 ⟨µX , CXµY ⟩+ 4 ⟨µX ,µX⟩ ⟨µX ,µY ⟩ − 4 ⟨µY , CY µX⟩+ 4 ⟨µY ,µY ⟩ ⟨µX ,µY ⟩

=
1

m(m− 1)

∥∥∥K̃XX

∥∥∥2
F
− 1

(m)4

[(
1⊤K̃XX1

)2
− 4

∥∥∥K̃XX1
∥∥∥2 + 2

∥∥∥K̃XX

∥∥∥2
F

]
+

1

m(m− 1)

∥∥∥K̃YY

∥∥∥2
F
− 1

(m)4

[(
1⊤K̃YY1

)2
− 4

∥∥∥K̃YY1
∥∥∥2 + 2

∥∥∥K̃YY

∥∥∥2
F

]
+

2

m2
∥KXY∥2F − 2

m2(m− 1)2

[(
1⊤KXY1

)2 − ∥∥K⊤
XY1

∥∥2 − ∥KXY1∥2 + ∥KXY∥2F
]

− 4

m2(m− 1)
1⊤K̃XXKXY1+

4

m(m)3

[
1⊤K̃XX11⊤KXY1− 21⊤K̃XXKXY1

]
− 4

m2(m− 1)
1⊤K̃YYK⊤

XY1+
4

m(m)3

[
1⊤K̃YY11⊤K⊤

XY1− 21⊤K̃YYK⊤
XY1

]
.

where ⟨·, ·⟩ denotes the inner product in RKHS Hκ.

C.3 DETAILS OF OUR NAMMDFUSE

Following the fusing statistics approach [33], we introduce the NAMMDFuse statistic through
exponentiation of NAMMD with samples X and Y as follows

F̂USE(X,Y ) =
1

λ
log

Eκ∼π(⟨X,Y ⟩)

exp
λ

̂NAMMD(X,Y, κ)√
N̂(X,Y )
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where λ > 0 and N̂(X,Y ) = 1
m(m−1)

∑m
i ̸=j κ(xi,xj)

2 + κ(yi,yj)
2 is permutation invariant.

π(⟨X,Y ⟩) is the prior distribution on the kernel space K. In experiments, we set the prior distribution
π(⟨X,Y ⟩) and the kernel space K to be the same for MMDFuse.

C.4 LIMITATION STATEMENT

Our analysis in this paper focuses on kernels of the form κ(x,x′) = Ψ(x − x′) ≤ K with a
positive-definite Ψ(·) and Ψ(0) = K, including Laplace [33], Mahalanobis [30] and Deep kernels
[27] (frequently used in kernel-based hypothesis testing). For these kernels, a lager norm of mean
embedding ∥µP∥2Hκ

indicates a smaller variance Var(P, κ) = K − ∥µP∥2Hκ
, which corresponds

to a more tightly concentrated distribution P. Leveraging this property, we gain the insight that
two distributions can be separated more effectively at the same MMD distance with larger norms.
Hence, we scale MMD using 4K −∥µP∥2Hκ

−∥µQ∥2Hκ
, making the new NAMMD increase with the

norms ∥µP∥2Hκ
and ∥µQ∥2Hκ

. Figure 1c and 1d demonstrate that our NAMMD exhibits a stronger
correlation with the p-value in testing, while MMD is held constant. We also prove that scaling
improves NAMMD’s effectiveness as a closeness measure in Theorems 10 and 12.

However, all these improvements rely on the property that "A lager norm of mean embedding
∥µP∥2Hκ

indicates a smaller variance Var(P, κ) = K − ∥µP∥2Hκ
, which corresponds to a more

tightly concentrated distribution P". The proposed method may not work well for kernels where the
embedding norm of distribution may increases as the data variance increases. For these kernels, the
"less informative" of MMD still arises when assessing the closeness levels for multiple distribution
pairs with the same kernel, i.e., MMD value can be the same for many pairs of distributions that have
different norms in the same RKHS. We will demonstrate this by further considering two other types
of kernels as follows.

Unbounded kernels for bounded data: For polynomial kernels of the form

κ(x,x′) = (xTx′ + c)d ,

We define P1 = { 1
4 ,

3
4} and Q1 = { 1

2 ,
1
2} be discrete distributions over vector domains

{(
√
c, ..., 0), (−

√
c, ..., 0)}, respectively. Furthermore, we define P2 = { 3

4 ,
1
4} and Q2 = {1, 0} be

discrete distributions over domains {(
√
c, ..., 0), (−

√
c, ..., 0)}. It is evident that

MMD(P1,Q1, κ) = MMD(P2,Q2, κ) =
1

8
(2c)d ,

with different norms for distributions pairs ∥µP1
∥2Hκ

+ ∥µQ1
∥2Hκ

= 9
8 (2c)

d, and ∥µP2
∥2Hκ

+

∥µQ2
∥2Hκ

= 13
8 (2c)d. Specifically, we have ∥µP1

∥2Hκ
= 5

8 (2c)
d, ∥µQ1

∥2Hκ
= 1

2 (2c)
d, ∥µP2

∥2Hκ
=

5
8 (2c)

d and ∥µQ2∥2Hκ
= (2c)d.

In a similar manner, for matrix products kernels of the form

κ(x,x′) = (xTMx′ + c)d ,

and denote by M11 the element in the first row and first column of the matrix M . We de-
fine P1 = { 1

4 ,
3
4} and Q1 = { 1

2 ,
1
2} over vector domains {(

√
c/M11, ..., 0), (−

√
c/M11, ..., 0)},

respectively. Furthermore, we define P2 = { 3
4 ,

1
4} and Q2 = {1, 0} over domains

{(
√
c/M11, ..., 0), (−

√
c/M11, ..., 0)}. We obtain the same results as for polynomial kernels.

Kernels with a positive limit at infinity: Using the kernel as κ(x,x′) = exp(−∥x−x′∥2

2γ ) when
∥x− x′∥∞ < K, and otherwise κ(x,x′) with positive constants K and c. We define P1 = { 1

4 ,
3
4}

and Q1 = { 3
4 ,

1
4} over vector domains {(K, ..., 0), (4K, ..., 0)}, respectively. Furthermore, we define

P2 = { 1
2 ,

1
2} and Q2 = {1, 0} over domains {(K, ..., 0), (4K, ..., 0)}. It is evident that

MMD(P1,Q1, κ) = MMD(P2,Q2, κ) =
1

2
(1− c) ,

with different norms for pairs ∥µP1
∥Hκ

+ ∥µQ1
∥2Hκ

= 5+3c
4 , and ∥µP2

∥2Hκ
+ ∥µQ2

∥2Hκ
= 3+c

2 .
Specifically, we have ∥µP1∥2Hκ

= 5+3c
8 , ∥µQ1∥2Hκ

= 5+3c
8 , ∥µP2∥2Hκ

= 1+c
2 and ∥µQ2∥2Hκ

= 1.
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For these kernels, the relationship between the norm of mean embedding and the variance of
distribution is not monotonic, where a smaller norm of mean embedding may indicate a smaller
variance or a larger variance, depending on the properties of the data distributions. Hence, when
using these kernels for distribution closeness testing, mitigating the issue (i.e., MMD being the same
for multiple pairs of distributions with different norms in the same RKHS) by incorporating norms of
distributions becomes more challenging, potentially leading to a more complex distance design.

D DETAILS OF OUR EXPERIMENTS

D.1 DETAILS OF EXPERIMENTS WITH DISTRIBUTIONS OVER IDENTICAL DOMAIN

Let Pn = {p1, p2, ..., pn} and Qn = {q1, q2, ..., qn} be two discrete distributions over the same
domain Z = {z1, z2, ...,zn} ⊆ Rd such that

∑n
i=1 pi = 1 and

∑n
i=1 qi = 1. We define the total

variation [37] of Pn and Qn as

TV(Pn,Qn) = sup
S⊆Z

(Pn(S)−Qn(S)) =
1

2

n∑
i=1

|pi − qi| =
1

2
∥Pn −Qn∥1 ∈ [0, 1] .

As we can see, the corresponding NAMMD distance can be calculated as

NAMMD(Pn,Qn, κ) =
∥µPn

− µQn
∥2Hκ

4K − ∥µPn
∥2Hκ

− ∥µQn
∥2Hκ

=

∑
i,j pipjκ(zi, zj) + qiqjκ(zi, zj)− 2piqjκ(zi, zj)

4K −
∑

i,j (pipjκ(zi, zj) + qiqjκ(zi, zj))
.

Here, we take the uniform distribution Pn = {1/n, 1/n, ..., 1/n} over sample Z, where pi = 1/n
for i ∈ {1, 2, ..., n}. We construct discrete distribution Qn, which is ϵ′ ∈ [0, 1] total variation away
from the uniform distribution Pn, as follows: We initiate the Qn = Pn and randomly split the sample
Z into two parts. In the first part, we increase the sample probability of each element by ϵ′/n; and in
the second part, we decrease the sample probability of each element by ϵ′/n.

Under null hypothesis H ′
0 : TV(Pn,Qn) = ϵ′, we set testing threshold τ ′α as the (1− α)-quantile of

the estimated null distribution of our NAMMD distance by resampling method, which repeatedly
re-computing the empirical estimator of distance with the samples randomly drawn from Pn and Qn.

Specifically, denote by B the iteration number of resampling method. In b-th iteration (b ∈ [B]), we
randomly draw two samples X and X ′ from Pn, and two samples Y and Y ′ from Qn. The sample
sizes are set to be the same as the size of testing samples. Denote by Xi and X ′

i the occurrences of zi
in samples X and X ′ respectively, and let Yi and Y ′

i be the occurrences of zi in samples Y and Y ′

respectively. We then calculate the test statistic based on total variation given in Canonne’s test as

T ′
b =

n∑
i=1

(Xi − Yi)
2 −Xi − Yi

f̂i
,

with the term

f̂i := max {|X ′
i − Y ′

i | , X ′
i + Y ′

i , 1} .

During such process, we obtain B statistics T ′
1, T

′
2, ..., T

′
B and set testing threshold as

τ ′α = argmin
τ

{
B∑

b=1

I[T ′
b ≤ τ ]

B
≥ 1− α

}
.

D.2 DETAILS OF EXPERIMENTS WITH DISTRIBUTIONS OVER DIFFERENT DOMAINS
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Algorithm 2 Construction of distribution
Input: Two samples Z and Z ′, a kernel κ, step size η
Output: Two samples Z and Z ′

1: for NAMMD(P,Q, κ) ̸= ϵ do
2: Calculate the objective value L(Z,Z ′ | κ) according to Eqn. 11
3: Calculate gradient ∇L(Z,Z ′ | κ)
4: Gradient descend with step size η by the Adam method
5: end for

Let P and Q be discrete uniform distributions over Z = {zi}mi=1 and Z ′ = {z′
i}mi=1, respectively. As

we can see, our NAMMD distance can be calculated as

NAMMD(P,Q, κ) =
∥µP − µQ∥2Hκ

4K − ∥µP∥2Hκ
− ∥µQ∥2Hκ

=
1/m2

∑
i,j κ(zi, zj) + κ(z′

i, z
′
j)− 2κ(zi, z

′
j)

4K − 1/m2
∑

i,j

(
κ(zi, zj) + κ(z′

i, z
′
j)
) .

Notably, NAMMD(P,Q, κ) = 0 can be effortlessly achieved by setting Z = Z ′.

Here, we learn samples Z and Z ′ given NAMMD(P,Q, κ) = ϵ as follows

L(Z,Z ′ | κ) = (NAMMD(P,Q, κ)− ϵ)
2 (11)

We take gradient method [70] for the optimization of Eqn. 11. Algorithm 2 presents the detailed
description on optimization. The corresponding calculation of MMD(P,Q, κ) is given as follows

MMD(P,Q, κ) = ∥µP − µQ∥2Hκ

= 1/m2
∑
i,j

κ(zi, zj) + κ(z′
i, z

′
j)− 2κ(zi, z

′
j) .

D.3 DETAILS OF STATE-OF-THE-ART TWO-SAMPLE TESTING METHODS

The details of six state-of-the-art two-sample testing methods used in the experiments (which are
summarized in Figure 2) for test power comparison.

• MMDFuse: A fusion of MMD with multiple Gaussian kernels via a soft maximum [33];
• MMD-D: MMD with a learnable Deep kernel [27];
• MMDAgg: MMD with aggregation of multiple Gaussian kernels and multiple testing [32];
• AutoTST: Train a binary classifier of AutoML with a statistic about class probabilities [55];
• MEMaBiD: Embeddings over multiple test locations and multiple Mahalanobis kernels [30];
• ACTT: MMDAgg with an accelerated optimization via compression [66].

D.4 DETAILS OF DIFFERENT KERNELS

The details of the various kernels used in the experiments (which are summarized in Table 1) for test
power comparison in two-sample testing, employing the same kernel for NAMMD and MMD.

• Gaussian: G(x,y) = exp(−∥x− y∥2/2γ2) for γ > 0 [67];
• Laplace: L(x,y) = exp(−∥x− y∥1/γ) for γ > 0 [33];
• Deep: D(x,y) = [(1− λ)G(ϕω(x), ϕω(y)) + λ]G(x,y) for λ > 0 and network ϕω [27];

• Mahalanobis: M(x,y) = exp
(
−(x− y)TM(x− y)/2γ2

)
for γ > 0 and M ≻ 0 [30].
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Table 3: Confidence and accuracy margins between the original ImageNet and its variants.

ImageNetsk ImageNetr ImageNetv2 ImageNeta
Accuracy Margin 0.529 0.564 0.751 0.827

Confidence Margin 0.504 0.549 0.684 0.764

z1 z2 z3 z4 z5 z6 z7 z8 z9
Sample
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Figure 6: The NAMMD distance between δ(z0) and δ(zi) with i ∈ {1, 2, . . . , 9}.

D.5 DETAILS OF CONFIDENCE AND ACCURACY MARGINS

We can test the confidence margin between source dataset S and target dataset T for a model f . Let
f(x) represent the probability assigned by the model f to the true label. We define the confidence
margin as

|Ex∈S [1− f(x)]− Ex∈T [1− f(x)]| . (12)
A smaller margin indicates similar model performance in the source and target dataset.

In a similar manner, we can also define the accuracy margin as follows

|Ex∈S [f(x; yx)]− Ex∈T [f(x; yx)]| ,

where f(x; yx) = 1 if the model f correctly predicts the true label yx, and f(x; yx) = 0 otherwise.

We present the confidence and accuracy margins between the original ImageNet and its variants in
Table 3, with the values computed using the pre-trained ResNet50 model.

D.6 MORE EXPERIMENTS

We demonstrate that our NAMMD better captures the differences between distributions by exploiting
intrinsic structures. For each dataset, we sample ten elements and randomly selecting one element
to serve as the base z0. The remaining elements are sorted as z1, z2, ...,z9 with ∥z0 − z1∥2 ≥
∥z0 − z2∥2 ≥ · · · ≥ ∥z0 − z9∥2. For each element zi, we construct the Dirac distribution δzi with
support only at element zi, and we calculate the distance NAMMD(δz0 , δzi , κ). We repeat this 10
times, using a Gaussian kernel with γ = 1 for blob, higgs, and hdgm, and γ = 10 for mnist.

From Figure 6, it is evident that our NAMMD(δz0
, δzi

, κ) distance increases as ∥z0 − zi∥2 decrease
for all datasets. This is different from previous total variation TV(δz0

, δzi
) = 1 for i ∈ {1, 2, ..., 9},

which merely measures the difference between probability mass functions of two distributions. In
comparison, our NAMMD distance can effectively capture intrinsic structures and complex patterns
in real-word datasets by leveraging kernel trick.

To compare our NAMMD test and original MMD test in distribution closeness testing, we first select
the kernel κ based on the original distribution pair (P,Q) of the dataset, following the two-sample
testing approach [27]. Notably, as analyzed in Appendix B.10, NAMMD and MMD share the same op-
timal kernel under two-sample testing for a fixed distribution pair. Following the setup in Definition 11,
we construct two pairs of distributions: P1 and Q1, and P2 and Q2, where NAMMD(P1,Q1, κ) = ϵ
and NAMMD(Q2,P2, κ) = ϵ+ 0.01, and MMD(P1,Q1, κ) < MMD(Q2,P2, κ). Specifically, we
draw two sets of 500 elements from dataset, denoted as Z = {zi}500i=1 and Z ′ = {z′

i}500i=1. Let P1 and
Q1 be uniform distributions over Z and Z ′. We then optimize Z and Z ′ by gradient method [70]
to ensure that NAMMD(P1,Q1, κ) = ϵ. It is straightforward to calculate MMD(P1,Q1, κ) and to
construct P2 and Q2 in a similar manner. The details of construction are provided in Appendix D.2.

For comparison, we set ϵ ∈ {0.1, 0.3, 0.5, 0.7}. We randomly draw two samples from Q2 and P2 to
evaluate test power of tests. Table 4 summarizes the average test powers and standard deviations of
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Table 4: Comparisons of test power (mean±std) on distribution closeness testing with respect to different
NAMMD values, and the bold denotes the highest mean between tests with our NAMMD and original MMD.
Notably, the same selected kernel is applied for both NAMMD and MMD in this table.

Dataset ϵ = 0.1 ϵ = 0.3 ϵ = 0.5 ϵ = 0.7
MMD NAMMD MMD NAMMD MMD NAMMD MMD NAMMD

blob .974±.009 .978±.008 .890±.030 .923±.025 .902±.032 .924±.021 .909±.024 .933±.011
higgs .998±.002 .999±.001 .938±.020 .965±.013 .975±.012 .993±.003 .978±.010 .996±.002
hdgm .980±.007 .984±.007 .883±.027 .921±.021 .901±.025 .941±.013 1.00±.000 1.00±.000
mnist .982±.004 .982±.004 .961±.006 .974±.004 .946±.014 .983±.005 .962±.010 .991±.003

cifar10 .932±.007 .938±.007 .968±.019 .994±.003 .898±.054 .912±.041 1.00±.000 1.00±.000

Average .973±.006 .976±.005 .928±.020 .955±.013 .924±.027 .951±.017 .970±.009 .984±.003

Table 5: Comparisons of test power (mean±std) on distribution closeness testing with respect to different
NAMMD values, and the bold denotes the highest mean between tests with our NAMMD and original MMD.
Notably, different selected kernel are applied for NAMMD and MMD respectively in this table.

Dataset ϵ = 0.1 ϵ = 0.3 ϵ = 0.5 ϵ = 0.7
MMD NAMMD MMD NAMMD MMD NAMMD MMD NAMMD

blob .939±.009 .983±.004 .968±.007 .991±.002 .952±.010 .999±.001 .934±.010 1.00±.000
higgs .914±.051 .972±.009 .934±.056 .976±.007 .967±.021 .994±.002 .949±.036 .1.00±.000
hdgm .925±.071 .976±.005 .915±.069 .978±.004 .913±.058 .984±.004 .938±.052 1.00±.000
mnist .951±.006 .962±.005 .955±.032 .961±.021 .935±.049 .967±.036 .977±.011 .992±.002

cifar10 .976±.012 .987±.006 .971±.007 .988±.003 .991±.004 1.00±.000 1.00±.000 1.00±.000

Average .941±.030 .976±.006 .949±.034 .979±.007 .952±.028 .989±.009 .960±.022 .998±.000

our NAMMD distance and original MMD distance in distribution closeness testing for distributions
over different domains. It is evident that our NAMMD test achieves better performances than the
original MMD test with respect to different datasets, and this improvement is achieved through
scaling with the norms of mean embeddings of distributions according to Theorem 12.

In a similar manner, we conduct the experiments in Table 4, but with different selected kernels for
NAMMD and MMD. For MMD, the kernel selection remains the same as in the experiments in
Table 4, and we denote the kernel for MMD as κM. However, for NAMMD, we select the kernel κN

similar to the experiments in Table 4, but with an additional regularization term related to the norms
of the original distributions in the dataset (i.e., 4K − ∥µP∥2Hκ

− ∥µQ∥2Hκ
) during the optimization.

Notably, these kernel selection methods are heuristic for distribution closeness testing, as obtaining a
test power estimator for DCT with multiple distribution pairs and selecting an optimal global kernel
for DCT based on the estimator remain open questions and poses a significant challenge. We use κN

for the construction distribution pairs (P1,Q1) and (P2,Q2). Following Definition 11, we perform
NAMMD DCT with κN and MMD DCT with κM respectively. Table 5 summarizes the average test
powers and standard deviations of NAMMD DCT and MMD DCT. It is evident that our NAMMD
test achieves better performance than the MMD test, and this improvement when using different
selected kernels for NAMMD and MMD can be explained by the conjunction analysis for DCT in
Appendix B.10 based on Theorem 12.

Type-I Error Experiments From Figure 7, it is evident that the Type-I error of our NAMMD test
is limited about α = 0.05 with respect to different kernels and datasets in two-sample testing (i.e.
distribution closeness testing with ϵ = 0) by using permutation tests. In a similar manner, Figure 8
shows that the Type-I error of our NAMMD test is limited about α = 0.05 with respect to different
ϵ ∈ (0, 1) and datasets in distribution closeness testing, where we derive the testing threshold based
on asymptotic distribution. These results are nicely in accordance with Theorem 5.
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Figure 7: The Type-I error is limited about α = 0.05 w.r.t different kernels for our NAMMD test with ϵ = 0.

50 100 150 200 250 300 350 400
Sample size

0.00

0.02

0.04

0.06

Ty
pe

-I 
er

ro
r

blob

50 100 150 200 250 300 350 400
Sample size

higgs

50 100 150 200 250 300 350 400
Sample size

hdgm

50 100 150 200 250 300 350 400
Sample size

mnist
ε= 0.1 ε= 0.3 ε= 0.5 ε= 0.7 ε= 0.9

Figure 8: The Type-I error is limited about α = 0.05 w.r.t different ϵ ∈ (0, 1) for our NAMMD test.
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