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ABSTRACT

It is widely acknowledged that trained convolutional neural networks (CNNs) have
different levels of sensitivity to signals of different frequency. In particular, a
number of empirical studies have documented CNNs sensitivity to low-frequency
signals. In this work we show with theory and experiments that this observed
sensitivity is a consequence of the frequency distribution of natural images, which
is known to have most of its power concentrated in low-to-mid frequencies. Our
theoretical analysis relies on representations of the layers of a CNN in frequency
space, an idea that has previously been used to accelerate computations and study
implicit bias of network training algorithms, but to the best of our knowledge has
not been applied in the domain of model robustness.

1 INTRODUCTION

Since their rise to prominence in the early 1990s, convolutional neural networks (CNNs) have formed
the backbone of image and video recognition, object detection, and speech to text systems (

, ). The success of CNNs has largely been attributed to their "hard priors" of spatial
translation invariance and local receptive fields ( , , §9.3). On the other hand,
more recent research has revealed a number of less desirable and potentially data-dependent biases of
CNNS, such as a tendency to make predictions on the basis of texture features ( s ).
Moreover, it has been repeatedly observed that CNNs are sensitive to perturbations in targeted ranges
of the Fourier frequency spectrum ( ; , ) and further investigation
has shown that these frequency ranges are dependent on training data ( , ;

, ). In this work, we provide a mathematical
explananon for these frequency space phenomena, showing with theory and experiments that neural
network training causes CNNss to be most sensitive to frequencies that are prevalent in the training
data distribution.

Our theoretical results rely on representing an idealized CNN in frequency space, a strategy we borrow

from ( , ). This representation is built on the classical convolution theorem,
kT =wW-3T (1.1)

where & and w denote the Fourier transform of x and w respectively, and * denotes a convolution.
Equation 1.1 demonstrates that a Fourier transform converts convolutions into products. As such, in a
“cartoon” representation of a CNN in frequency space, the convolution layers become coordinate-wise
multiplications (a more precise description is presented in section 3). This suggests that in the
presence of some form of weight decay, the weights w for high-power frequencies in the training data
distribution will grow during training, while weights corresponding to low-power frequencies in the
training data will be suppressed. The resulting uneven magnitude of the weights w across frequencies
can thus account for the observed uneven perturbation-sensitivity of CNNs in frequency space. We
formalize this argument for linear CNNs (without biases) in sections 3 and 4.

One interesting feature of the framework set up in section 4 is that the discrete Fourier transform
(DFT) representation of a linear CNN is precisely a feedforward network with block diagonal weight
matrices, where each block corresponds to a frequency index. We show in theorem 4.9 that a learning
objective for such a network of depth L with an {5-norm penalty on weights is equivalent to an
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objective for the associated linear model with an ¢, penalty on the singular values of each of its
blocks, i.e. each frequency index — this result is new for CNNs with multiple channels and outputs.
In particular, the latter penalty is highly sparsity-encouraging, suggesting as depth increases these
linearly-activated CNNs have an even stronger incentive to prioritize frequencies present in the
training data.

It has long been known that the frequency content of natural images is concentrated in low-to-mid
frequencies, in the sense that the power in Fourier frequency f is well-described by 1/|f|* for a
coefficient o ~ 1 ( s ). Hence, when specialized to training data distributions of natural
images, our results explain findings that CNNs are more susceptible to low frequency perturbations
in practice ( R ; , ).

We use our theoretical results to derive specific predictions: CNN frequency sensitivity aligns with
the frequency content of training data, and deeper models, as well as models trained with substantial
weight decay, exhibit frequency sensitivity more closely reflecting the statistics of the underlying
images. We confirm these predictions for nonlinear CNNs trained on the CIFAR10 and ImageNette
datasets. Figure 1 shows our experimental results for a variety of CNN models trained on CIFAR10
as well as a variant of CIFAR10 preprocessed with high pass filtering (more experimental details will
be provided in section 5).

To the best of our knowledge, ours is the first work to connect the following research threads (see
section 2 for further discussion):

* equivalences between linear neural networks and sparse linear models,
* classical data-dependent “shrinkage” properties of sparse linear models,
* statistical properties of natural images, and

* sensitivity of CNNs to perturbations in certain frequency ranges.

2 RELATED WORK

The following a brief synopsis of work most closely related to this paper; a more through survey can
be found in appendix A.

Perturbations in frequency components: ( , ) found that adversarial perturbations
constrained to low frequency Fourier components allowed for greater query efficiency and higher
transferability between different neural networks, and ( s ) demonstrated that
constraining to high or or midrange frequencies did not produce similar effects. ( , ),
( , ), ( , ), ( , ) and ( , ) all found i
one way or another that model frequency sensitivity depends on the underlying training data. Our
work began as an attempt to explain this phenomenon mathematically.

Implicit bias and representation cost of CNNs: Our analysis of (linear) convolutional networks
leverages prior work on implicit bias and representational cost of CNNs, especially ( ,

). There it was found that for a linear CNN trained on a binary linear classification task with
exponential loss, with linear effective predictor 3, the Fourier transformed predictor B converges (in
direction) to a first-order stationary point of

1 4 A
min §|5|2/L such that 472" > 1 for all n. 2.1)

Our general setup in section 3 closely follows these authors’, and our theorem 4.9 partially confirms a
suspicion of ( , , §6) that “with multiple outputs, as more layers are added, even
fully connected networks exhibit a shrinking sparsity penalty on the singular values of the effective
linear matrix predictor ...”

While the above result describes a form of implicit regularization imposed by gradient descent, we
instead consider explicit regularization imposed by auxiliary /5 norm penalties in objective functions,
and prove equivalences of minimization problems. In this sense our analysis is technically more
closely related to that of ( , ), which considers parametrized families of functions f(z,w)
and defines the representation cost of a function g(x) appearing in the parametric family as

R(g) := min{|wl|3| f(z,w) = g(z) for all z}. (2.2)
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Figure 1: Radial averages E[|V,.f(z)Té.;| | |(i,4)| = r] of frequency sensitivities of CNNs trained
on (hpf-)CIFARI1O0, post-processed by dividing each curve by its integral, taking logarithms and
smoothing by averaging with 3 neighbors on either side. Bottom row: frequency statistics of (hpf-
)CIFARI10 for comparison. See section 5 for further details.
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While this approach lacks the intimate connection with the gradient descent algorithms used to train
modern neural networks, it comes with some benefits: for example, results regarding representation
cost are agnostic to the choice of primary loss function (e.g. squared error, cross entropy, even
contrastive losses).

Data-dependent bias: Perhaps the work most closely related to ours is that of (
) on principal component bias, where it is shown that rates of convergence in deep (and Wlde)
linear networks are governed by the spectrum of the input data covariance matrix.

3 THE DISCRETE FOURIER TRANSFORM OF A CNN

In this section we fix the notation and structures we will be working with. We define a class of
idealized, linear convolutional networks and derive a useful representation of these networks in the
frequency space via the discrete Fourier transform.

Consider a linear, feedforward 2D-CNN f(z) of the form

L—1

RCXHXW Wk — RclexW RCQXHXW w?s— L, *— RCL 1 XHXW

1
= Wi gK
3.1)
where w' * z denotes the convolution operation between tensors w! € RE*HXWxCi1 and x ¢

RC-1xHXW " defined by

(w0 * ) eij = Z (Z wlcmndxdm/n/> (3.2)
d

m4+m/=i,n+n’'=j

wx—
—

and w’ Tz denotes a contraction (a.k.a. Einstein summation) of the tensor w’ € REXHxWxCr_
with the tensor z € REL-1*HXW gyer the last 3 indices (the (—)7 denotes a transpose operation
described momentarily). Explicitly,

(whTx)), = Z WE i Ll - (3.3)
l,m,n
Thus, the model eq. (3.1) has weights w; € ROXHXWXCi1 for | = 1,...,L — 1 and w;, €

RKXHXWXCL,l

Remarks 3.4. For tensors with at least 3 indices (such as x and the weights w; above) we will always
use the transpose notation — to denote reversing the second and third tensor indices, which will
always be the 2D spatial indices. For matrices and vectors it will be used according to standard
practice. In eq. (3.3) the transpose ensures that the indices in Einstein sums move from “inside to out”
as is standard practice.

Equivalently, w® Tz can be described as a usual matrix product 10y vec(x) where vec(z) is the
vectorization (flattening) of x and wy, is obtained by flattening the last 3 tensor indices of wy,
(compatibly with those of x as dictated by eq. (3.3)). Hence it represents a typical “flatten and
then apply a linear layer” architecture component. Our reason for adopting the tensor contraction
perspective is that it is more amenable to the Fourier analysis described below.

Note that in this network the number of channels is allowed to vary but the heights and widths remain
fixed, and that we use full H x W convolutions throughout as opposed to the local (e.g. 3 x 3)
convolutions often occurring in practice.

Given an array 2 € R *#XW 'we may consider its discrete Fourier transform (DFT) &, whose
entries are computed as

21 2
Teij = \/7 ;xcmn exp(— H mi — %n]) 3.5)
Similarly, for an array w € RE>HXWxCi-1 the DFT 10 is defined to be
1 2me 2m
Aci’ = T cmn ——mi — —nj). 3.6
Head m;w o exp(=gpmi = i) (36)

In what follows the DFT will always be taken with respect to the two spatial dimensions and no
others. The mapping = — & defines an orthogonal linear transformation of R¢**#*W In addition,
it satisfies the following two properties:
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Lemma 3.7 (Cf. ( , , Lem. C.2)).
W*T =W - & for w € REOHXWXCi1 o« ROXHEXW (conpolution theorem) (3.8)
wlz = 072 for w € REHXWxCi1 e RO XHXW (parseval’s theorem). (3.9)

Explicitly, the products on the right hand sides of eqs. (3.8) and (3.9) are defined as
(W 2)eij = chwdmdw and (w z) Z Weijalai; respectively. (3.10)
d d,i,j

Remark 3.11. In the terminology of CNNS, this says that the DFT converts full 7 x W convolutions
to spatially pointwise matrix multiplications, and preserves dot products.

Our first lemma is a mild generalization of ( s , Lem. 3); we defer all proofs to

appendix D.

Lemma 3.12. The CNN f(x) is functionally equivalent to the network f(:%) defined as
COXHXW =, OxHxW @Y= ~CixHxW @77 = ~CpoixHxW oo K (33)

where the first map — denotes the DFT x v .

4 REGULARIZED CNN OPTIMIZATION PROBLEMS IN FREQUENCY SPACE

Consider a learning problem described as follows: given a dataset D = {(z",y") € REXHXW »
RX |i=1,...,N},and aloss function £ : (RF)N x (RE)N — R, we seek weights w solving the
{5-regularized minimization problem

min £((f (™) 1, (y™)N_) + A Z|wl|§ or equivalently given lemma 3.12,

N 4.1)
min £((f(E)X0, (") HZI“

This setup allows a wide variety of loss functions. In the experiments of section 5 and appendix B we
consider two important special case: first, supervised-style empirical risk minimization with respect
to a sample-wise loss function £ : R x R¥ — R (in our experiments, cross entropy), where

L((f@"))n" (87" )00) NZE (4.2)

Second, contrastive losses such as the alignment and uniformity objective of ( ),
which encourages the features f(z™) to be closely aligned with their corresponding “labels” y and
the set of features { f(z™)}2_; to be uniformly distributed on the unit sphere S¥~1 c RX

According to lemma 3.12,

f(@) = omT (wh 1t at - ). (4.3)
In the case where the numbers of channels C,C,...,C_1 are all 1 and the number of classes
K =1, networks of this form were studied in ( , ) where they were termed “simply
connected.” In the case where the the number of classes K = 1 but the numbers of channels C,
may be larger, such networks were studied in ( , ). Of course, eq. (4.3) is just an

over-parametrized linear function. We can describe it more succinctly by introducing a new tensor
0 € REXHXWXC guch that f(2) = 97 4. With a little manipulation of eq. (4.3), we can obtain a
formula for v in terms of the w; forl =1, ...,

Lemma 4.4.
b= UA)L,T . wL—l L. wl 4.5)

The following theorem shows that the regularization term of eq. (4.1), which penalizes the £5-norms
of the factors 1!, is equivalent to a penalty using more sparsity-encouraging norms of 9. To state it
we need a definition.
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Definition 4.6 (Schatten p-norms). Let A = (a;;) € M(n x n,C) be a square matrix and let
A = UDVT be a singular value decomposition of A, where U,V € U(n) and D = diag(};) is a
non-negative diagonal matrix with diagonal entries A1,..., A, > 0. For any p > 0 the Schatten
p-norm of A is

A5 = ZIA )7 4.7)

Remark 4.8. In the case p = 2, the 2-norm of deﬁmtron 4.6 agrees with the usual Euclidean 2-norm
(D5l 2)2, since left (resp. right) multiplication by a unitary matrix U7 (resp. V) preserves the
Euclidean 2-norms of the columns (resp. rows) of A.

Theorem 4.9. The optimization problem eq. (4.1) is equivalent to an optimization problem for v of
the form

min £((07#"))y, (")020) + ALY (019, (4.10)
i,
where' 0;; denotes the K x C matrix obtained by fixing the spatial indices of © = (cija),

and the min is taken over the space of tensors ¥ such that each matrix 0;; has rank at most
rnin{C, Cl, .. .,CL_17K}.

The essential ingredient of our proof is a generalized non-commutative Holder inequality.

Lemma 4.11. If B € M(m x n,C) is a matrix with complex entries, A1, ..., Ay is a composable
sequence of complex matrices such that Ay, --- Ay = Band ), 1% = % where p1,...,pr,r > 0are

positive real numbers,
1Bl < T4l
i

4.12)

Ppi

Such inequalities are not new: in the case » = 1, lemma 4.11 follows from ( ' , Thm.
6), and in the case L = 2 it is an exercise in ( , ). However, we suspect (and our proof
of theorem 4.9 suggests) that lemma 4.11 underpins many existing results on implicit bias and
representatlon costs of (linear) neural networks such as those of ( s ; s

In the case where the numbers of channels C, C1, ..., _1 are all 1 and and the number of outputs
K =1, and where the loss / is squared error, the problem eq. (4.10) reduces to

.1 " . .2
rnUlnNXnJy —izj:vijxij|§—|—)\L;|vij|L. (4.13)

The sum in the regularization term of eq. (4.13) is |v|p where p = %+ — in particular when L = 1,
eq. (4.13) is a ridge regression problem ( ) and when
L = 2 (the one hidden layer case) eq. (4.13) is a LASSO problem We can analyze these two
tractable cases to obtain qualitative predictions which will be tested empirically in section 5. Since
the qualitative predictions from both cases are similar, we devote the following section to ridge, and
defer LASSO to appendix C.

4.1 L = 1: RIDGE REGRESSION
In this case, eq. (4.13) is the usual ridge regression objective; the closed-form solution is
1 or s 14
A —XTX)o = —XTYy 4.14
where X isa N x C x H x W batch tensor with “rows” the " and the entries of Y are the y" (see
e.g. ( s )). When A = 0 this reduces to the usual (unpenalized) least squares solution

DLg = (XTX)’lXTY, and substituting XTy = XT X1 in eq. (4.14) we obtain

1 oo 1 oo s
A+ NXTX)ﬁ = NXTXﬁLS (4.15)

"by an abuse of notation for which we beg your forgiveness.



Under review as a conference paper at ICLR 2023

where strictly speaking XTX is a tensor product of X with itself in which we contract over the batch
index of length IV, hence it is of shape W x H x C x C' x H x W.

The frequency properties of images enter into the structure of the symmetric tensor %X T X, which (if
the dataset D is centered, i.e. preprocessed by subtracting the mean %X 71 ) serves as a generalized

covariance matrix for the frequency space representation of D. To ease notation, let ¥ = %X TX,
and suppose that

Teij if (¢,1,5) = (¢, 7, 5")
Ew ol hiw! N J ] » &y s by 4.16
hee'h {O otherwise. (4.16)

In other words, proper covariances between distinct frequency components are negligible and we
retain only the variances, i.e. the diagonal entries of the covariance matrix. In fig. 4 we demonstrate
that this assumption is not unrealistic in the case where X is a dataset of natural images.

With the assumption of eq. (4.16), eq. (4.15) reduces to

Teij b 1
~——ULS,cij = T
A+ Teij Tl A

Tecij

Deij = ULs,cij for all cij. (4.17)
Equation (4.17) is an instance of the classic fact that ridge regression shrinks coefficients more
in directions of low input variance. In words, 7.;; is the variance of training images in Fourier
component cij, and eq. (4.17) says |0.;;| shrinks more when the variance 7.;; is low; in the limiting
case 7.;; — 0 the coefficient O.;; — 0 as well.

Returning to the subject of frequency sensitivity, observe that ?.;; is the directional derivative of f
with respect to the cij-th Fourier component.

Proposition 4.18 (Data-dependent frequency sensitivity, L = 1). With the notations and assumptions
introduced above, the magnitude of the directional derivative of f with respect to the cij-th Fourier
component scales with \ and T according to "
Teij
Empirically it has been found that for natural distributions of images the variances 7.;; follow a
power law of the form 7;; ~ W ( s ; s ).2 Under this model,
eq. (4.17) becomes
. 1
Veij = B .
L+ 2l + 417)
that is, sensitivity is monotonically decreasing with respect to both frequency magnitude and the

regularization coefficient A. This is consistent with findings that CNNs trained on natural images are
vulnerable to low frequency perturbations ( , ; , ).

@LS,cij for all Cij, (419)

5 EXPERIMENTS

When L > 2 (that is, when there are more than 1 convolutional layers), the p “norm” of eq. (4.10)
is non-convex (hence the quotes), and in the limit as L. — oo the norms appearing in eq. (4.10)
converge to the Schatten 0-“norm,” which is simply the number of non-0 singular values of a matrix.’
Moreover, we see that the regularization coefficient of eq. (4.10) is effectively multiplied by L.

Even in the case where K = 1 so that ¢ is a vector, it is known that solving eq. (4.10) for L > 1is
NP-hard ( R ), so we have no hope of finding closed form solutions as in section 4.1.
However, we can use the analysis in section 4 to derive three testable hypotheses:

I. CNN frequency sensitivity depends on the frequency content of training data (proposi-
tion 4.18).

II. The fact that the regularization term of eq. (4.10) becomes more sparsity-encouraging as
L increases suggests that the data-dependent frequency sensitivity observed in section 4.1
and appendix C becomes even more pronounced as the number of convolutional layers
increases.

?In particular, under this approximation 7;; is independent of c.
3In the special case where K = 1 the regularization term in eq. (4.10) is the penalty of the subset selection
problem in the field of sparse linear models.
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Figure 2: (a) Standard deviations of image datasets along Fourier basis vectors: in the notation
above, these are the /X ;.c;; (viewed in log scale as RGB images). The origin corresponds to the
lowest frequency basis vectors (i.e. constant images). (b) Same as (a), but with the addition of high
pass filtering removing frequency indices (i, j) with |é|, |j| < 8 (we also experiment with a higher
frequency cutoff on ImageNette in appendix B).

III. Moreover, the functional forms of eqs. (4.17) and (C.7) suggest that the data-dependent
frequency sensitivity will increase monotonically with the weight decay parameter .

We empirically validate these hypotheses with experiments using CNNSs trained on multiple datasets.
The datasets used in these experiments are CIFAR10 ( , ), ImageNette (the 10 easiest
classes from ImageNet ( , ) ( , ), and synthetic images generated using
the wavelet marginal model (WMM) of ( , ). The later dataset is of interest since
the generative model is explicitly designed to capture the frequency statistics of natural images, and
allows for varying the exponents a and (3 in the power law 7.;; ~ W described above. Figure 2a
display the variances CIFAR10, ImageNette and their high pass filtered variants in frequency space;
for those of the WMM datasets see fig. 3. In addition, we experiment with high pass filtered versions
of the CIFAR10 and ImageNette datasets, which we refer to as hpf-CIFAR10 and hpf-ImageNette
respectively; the frequency space statistics of these are shown in fig. 2b.* For implementation details
we refer to appendix B. We can further summarize the data displayed in figs. 2a and 2b by averaging
over circles with varying radii 7, i.e. computing expectations E[+/Xccij | |(Z, 7)| = 7], to obtain the
frequency magnitude statistics curves shown in fig. 1 (see appendix B.2 for implementation details).
From this point forward we focus on such curves with respect to frequency magnitude.

The CNNs used in these experiments are ConvActually (a CNN that closely approximates eq. (3.1),
the differences being the addition of biases and ReL U non-linearities), Myrtle CNN (a small feed-
forward CNN known to achieve high performance on CIFAR10 obtained from ( ), VVG (a

family of CIFAR10 VGGs ( s ) obtained from (Fu, ) and ImageNet
VGGs from ( , )), ResNet (a family of CIFAR10 ResNets ( , )
obtained from ( , )), and AlexNet (a small AlexNet ( , ) adapted to
contrastive training obtained from ( s )) For more detailed descriptions of datasets

and model architectures we refer to appendices B.1 and B.5.

We measure frequency sensitivity of a CNN f in terms of the magnitudes of the directional derivatives
Vaof (I)Técij, where é.;; is the cij-th Fourier basis vector. These magnitudes are averaged over
all the input images z in the relevant validation set, and as in the case of image statistics we can
average them over circles of varying radii, i.e. compute expectations E[|V f(x)Té.;;| | (i, j)| = 7]
(see appendix B.3 for implementation details). By “data-dependent frequency sensitivity” we mean
the extent to which the frequency sensitivity of a CNN f reflects the statistics of the images it was
trained on. Figures 1, 2a, 3 and 5 show that the variance of DFTed CIFAR10, ImageNette and
WMM images is heavily concentrated at low frequencies, in agreement with the power law form
Teij =~ W described in section 4.° Hence in the absence of any modifications to the underlying

images, we expect that training on this data will emphasize sensitivity of f to perturbations along the
lowest frequency Fourier basis vectors, with the effect increasing along with model depth and the
weight decay parameter A. On the other hand, the variance of hpf-CIFAR10 and hpf-ImageNette is
concentrated in mid-range frequencies, and so here we expect training will emphasize sensitivity of f
to perturbations along mid range Fourier basis vectors (again with more pronounced effect as depth/A
increase).

“This was inspired by the experiments of ( R ) and ( R ).
>In the case of WMM this is by design.
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5.1 FREQUENCY SENSITIVITY AND DEPTH

Figure la shows sensitivity of ConvActually models of varying depth to perturbations of varying
DFT frequency magnitudes. These curves illustrate that as depth increases, frequency sensitivity
E[|Vyf(x)Teéqj|||(i, )| = r] more and more closely matches the frequency magnitude statistics
E[\/%jiccij | |(i,7)| = r] of the training data set, both in the case of natural and high pass filtered
images — hence, these empirical results corroborate hypotheses I. and II.. Figure 1c shows results
of a similar experiment with VGG models of varying depth; models trained on natural images have
sensitivity generally decreasing with frequency magnitude, whereas those trained on high pass filtered
data have “U” shaped sensitivity curves with minima near the filter cutoff, corroborating hypothesis
I.. Here it is not clear whether models trained on natural images follow that pattern predicted by II.
(the deepest models are less sensitive to both low and high frequencies), however when trained on
high pass filtered images deeper models do seem to most closely follow the frequency statistics of
the dataset. Figure 5 includes a similar experiment with VGG models of varying depth trained on
(hpf-)ImageNette.

5.2 FREQUENCY SENSITIVITY AND WEIGHT DECAY

Figure 1b shows radial frequency sensitivity curves for ConvActually models of depth 4 trained on
(hpf-)CIFAR10 with varying weight decay coefficient \. We see that as X increases, model frequency
sensitivity more and more closely reflects the statistics of the training data images, corroborating
hypotheses I. and III.. Figure 1b shows results for a similar experiment with Myrtle CNNs, with a
similar conclusion. Figure 5 shows results for VGG models trained with varying weight decay on
(hpf-)ImageNette.

5.3 IMPACT OF THE LEARNING OBJECTIVE

So far, our analysis and experiments have only shown that the regularization term in eq. (4.1)
encourages CNN gradients with respect to spatial Fourier basis vectors to reflect the frequency
statistics of the training data. It is of course possible that the first term of eq. (4.1) defining the learning
objective overwhelms the regularization term resulting in different model frequency sensitivity. In
fig. 8 we show this occurs in CNNSs trained on WMM synthetic data with an alignment and uniformity
contrastive loss; see appendix B.4 for a possible explanation in the framework of sections 3 and 4.

6 LIMITATIONS AND OPEN QUESTIONS

In order to obtain an optimization problem with some level of analytical tractibility, we made many
simplifying assumptions in sections 3 and 4, most notably omitting nonlinearities from our idealized
CNNs. While the experimental results of section 5 illustrate that multiple predictions derived from
sections 3 and 4 hold true for CNNs more closely resembling those used in practice trained with
supervised learning, fig. 7 shows that hypotheses I-III can fail in the presence of residual connections
— see appendix B.4 for further discussion. As previously mentioned, fig. 8 shows that a contrastive
alignment and uniformity learning objective results in far different CNN representations.

Perhaps more significantly, it must be emphasized that model sensitivity as measured by gradients
represents a very small corner of a broader picture of model robustness (or lack therof). For example,

it does not encompass model behaviour on corruptions (see e.g. ( , )) or
shifted distributions (see e.g. ( , ).
REFERENCES

Antonio A. Abello, Roberto Hirata, and Zhangyang Wang. Dissecting the high-frequency bias in
convolutional neural networks. In 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pp. 863-871, 2021. doi: 10.1109/CVPRW53098.2021.00096.

Manel Baradad, Jonas Wulff, Tongzhou Wang, Phillip Isola, and Antonio Torralba. Learning to see
by looking at noise. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=RQU18gZnN70.


https://openreview.net/forum?id=RQUl8gZnN7O
https://openreview.net/forum?id=RQUl8gZnN7O

Under review as a conference paper at ICLR 2023

Rémi Bernhard, Pierre-Alain Moéllic, Martial Mermillod, Yannick Bourrier, Romain Cohendet,
Miguel Solinas, and Marina Reyboz. Impact of spatial frequency based constraints on adversarial
robustness. In 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2021.
doi: 10.1109/IJCNN52387.2021.9534307.

Rajendra Bhatia. Matrix Analysis. Springer Science & Business Media, November 1996. ISBN
978-0-387-94846-1.

Yichen Chen, Dongdong Ge, Mengdi Wang, Zizhuo Wang, Yinyu Ye, and Hao Yin. Strong NP-
hardness for sparse optimization with concave penalty functions. In Doina Precup and Yee Whye
Teh (eds.), Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pp. 740-747. PMLR, 06-11 Aug 2017. URL
https://proceedings.mlr.press/v70/chenl7d.html.

Zhen Dai, Mina Karzand, and Nathan Srebro. Representation costs of linear neural networks:
Analysis and design. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=30Qy jABdbCS.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

James Diffenderfer, Brian R Bartoldson, Shreya Chaganti, Jize Zhang, and Bhavya Kailkhura.
A winning hand: Compressing deep networks can improve out-of-distribution robustness. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=

YygAOyppTR.

Jacques Dixmier. Formes linéaires sur un anneau d’opérateurs. Bulletin de la Société Mathématique
de France, 81:9-39, 1953. doi: 10.24033/bsmf.1436.

FastAl. imagenette. https://github.com/fastai/imagenette, 2019.

Cheng-Yang Fu. pytorch-vgg-cifarl0. https://github.com/chengyangfu/
pytorch-vgg-cifarl0, 2017.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and
Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=Bygh9j09KX.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on
linear convolutional networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Chuan Guo, Jared S. Frank, and Kilian Q. Weinberger. Low Frequency Adversarial Perturbation. In
UAI 2019.

Guy Hacohen and Daphna Weinshall. Principal components bias in over-parameterized linear models,
and its manifestation in deep neural networks. Journal of Machine Learning Research, 23(155):
146, 2022. URL http://Jmlr.org/papers/v23/21-0991.html.

Trevor J. Hastie, Robert Tibshirani, and Jerome H. Friedman. The elements of statistical learning:
Data mining, inference, and prediction, 2nd edition. In Springer Series in Statistics, 2001.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.

10


https://proceedings.mlr.press/v70/chen17d.html
https://openreview.net/forum?id=3oQyjABdbC8
https://openreview.net/forum?id=3oQyjABdbC8
https://openreview.net/forum?id=YygA0yppTR
https://openreview.net/forum?id=YygA0yppTR
https://github.com/fastai/imagenette
https://github.com/chengyangfu/pytorch-vgg-cifar10
https://github.com/chengyangfu/pytorch-vgg-cifar10
https://openreview.net/forum?id=Bygh9j09KX
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://jmlr.org/papers/v23/21-0991.html

Under review as a conference paper at ICLR 2023

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=HJz6tiCqYm.

Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2008. ISBN 978-0-898716-46-7.

Meena Jagadeesan, Ilya Razenshteyn, and Suriya Gunasekar. Inductive bias of multi-channel linear
convolutional networks with bounded weight norm. In Po-Ling Loh and Maxim Raginsky (eds.),
Proceedings of Thirty Fifth Conference on Learning Theory, volume 178 of Proceedings of Machine
Learning Research, pp. 2276-2325. PMLR, 02-05 Jul 2022. URL https://proceedings.
mlr.press/v178/jagadeesan22a.html.

Jason Jo and Yoshua Bengio. Measuring the tendency of cnns to learn surface statistical regularities.
CoRR, abs/1711.11561,2017. URL http://arxiv.org/abs/1711.11561.

Bobak Kiani, Randall Balestriero, Yann LeCun, and Seth Lloyd. projUNN: efficient method for
training deep networks with unitary matrices. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=nEJMdZd8cIi.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Hannah Lawrence, Bobak Kiani, Kristian G. Georgiev, and Andrew K. Dienes. Implicit Bias of
Linear Equivariant Networks. In Proceedings of the 39th International Conference on Machine
Learning, pp. 12096-12125. PMLR, June 2022.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander
Madry. ffcv. https://github.com/libffcv/ffcv/,2022. commit XXXXXXX.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. doi: 10.1109/5.726791.

Ann B. Lee, David Mumford, and Jinggang Huang. Occlusion Models for Natural Images: A
Statistical Study of a Scale-Invariant Dead Leaves Model. International Journal of Computer
Vision, 41(1):35-59, January 2001. ISSN 1573-1405. doi: 10.1023/A:1011109015675.

Kaifeng Lyu and Jian Li. Gradient Descent Maximizes the Margin of Homogeneous Neural Networks,
December 2020.

Shishira Maiya, Max Ehrlich, Vatsal Agarwal, Ser-Nam Lim, Tom Goldstein, and Abhinav Shrivas-
tava. A frequency perspective of adversarial robustness. 2022. URL https://openreview.
net/forum?id=7gRvcAulxa.

Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In
Proceedings of the 18th ACM International Conference on Multimedia, MM 10, pp. 1485-1488,
New York, NY, USA, 2010. Association for Computing Machinery. ISBN 9781605589336. doi:
10.1145/1873951.1874254. URL https://doi.org/10.1145/1873951.1874254.

Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through
ffts: International conference on learning representations (iclr2014), cbls, april 2014. January
2014. 2nd International Conference on Learning Representations, ICLR 2014 ; Conference date:
14-04-2014 Through 16-04-2014.

David Page. How to Train Your ResNet. URL https://myrtle.ai/learn/
how-to-train-your—-resnet/.

11


https://openreview.net/forum?id=HJz6tiCqYm
https://proceedings.mlr.press/v178/jagadeesan22a.html
https://proceedings.mlr.press/v178/jagadeesan22a.html
http://arxiv.org/abs/1711.11561
https://openreview.net/forum?id=nEJMdZd8cIi
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://github.com/libffcv/ffcv/
https://openreview.net/forum?id=7gRvcAulxa
https://openreview.net/forum?id=7gRvcAulxa
https://doi.org/10.1145/1873951.1874254
https://myrtle.ai/learn/how-to-train-your-resnet/
https://myrtle.ai/learn/how-to-train-your-resnet/

Under review as a conference paper at ICLR 2023

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024—-8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch—-an—-imperative-style—-high-performance-deep-learning-library.
pdf.

Harry Pratt, Bryan M. Williams, Frans Coenen, and Yalin Zheng. Fcnn: Fourier convolutional neural
networks. In ECML/PKDD, 2017.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Dréxler, Min Lin, Fred A. Hamprecht,
Yoshua Bengio, and Aaron C. Courville. On the spectral bias of neural networks. In ICML, 2019.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet classifiers
generalize to ImageNet? In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 5389-5400. PMLR, 09-15 Jun 2019. URL https://proceedings.
mlr.press/v97/rechtl9a.html.

Yash Sharma, G. Ding, and Marcus A. Brubaker. On the Effectiveness of Low Frequency Perturba-
tions. 2019. doi: 10.24963/ijcai.2019/470.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

Jiachen Sun, Akshay Mehra, Bhavya Kailkhura, Pin-Yu Chen, Dan Hendrycks, Jihun Hamm, and
Z. Morley Mao. A spectral view of randomized smoothing under common corruptions: Bench-
marking and improving certified robustness. In Shai Avidan, Gabriel J. Brostow, Moustapha Cissé,
Giovanni Maria Farinella, and Tal Hassner (eds.), Computer Vision - ECCV 2022 - 17th European
Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part IV, volume 13664 of Lecture
Notes in Computer Science, pp. 654—671. Springer, 2022. doi: 10.1007/978-3-031-19772-7\_38.
URL https://doi.org/10.1007/978-3-031-19772-7_38.

The Mosaic ML Team. composer. https://github.com/mosaicml/composer/, 2021.
Ryan Tibshirani and Larry Wasserman. Sparsity, the Lasso, and Friends. pp. 34.

Ryan J Tibshirani. Equivalences Between Sparse Models and Neural Networks. pp. 8, 2021. URL
https://www.stat.cmu.edu/~ryantibs/papers/sparsitynn.pdf.

Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan Piantino, and Yann
LeCun. Fast convolutional nets with fbfft: A gpu performance evaluation. January 2015. 3rd
International Conference on Learning Representations, ICLR 2015 ; Conference date: 07-05-2015
Through 09-05-2015.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through
alignment and uniformity on the hypersphere. In Hal Daumé III and Aarti Singh (eds.),
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 9929-9939. PMLR, 13-18 Jul 2020. URL
https://proceedings.mlr.press/v119/wang20k.html.

Lechao Xiao. Eigenspace restructuring: A principle of space and frequency in neural networks. In
Po-Ling Loh and Maxim Raginsky (eds.), Proceedings of Thirty Fifth Conference on Learning
Theory, volume 178 of Proceedings of Machine Learning Research, pp. 4888-4944. PMLR, 02-05
Jul 2022. URL https://proceedings.mlr.press/v178/xiao22a.html.

Lechao Xiao and Jeffrey Pennington. Precise learning curves and higher-order scaling limits for dot
product kernel regression, 2022. URL https://arxiv.org/abs/2205.14846.

12


http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.mlr.press/v97/recht19a.html
https://proceedings.mlr.press/v97/recht19a.html
https://doi.org/10.1007/978-3-031-19772-7_38
https://github.com/mosaicml/composer/
https://www.stat.cmu.edu/~ryantibs/papers/sparsitynn.pdf
https://proceedings.mlr.press/v119/wang20k.html
https://proceedings.mlr.press/v178/xiao22a.html
https://arxiv.org/abs/2205.14846

Under review as a conference paper at ICLR 2023

Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A
fourier perspective on model robustness in computer vision. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’ Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
13255-13265, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
b05b57£6add810d3b7490866d74c0053—-Abstract.html.

Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A unifying view on implicit bias in training
linear neural networks. In International Conference on Learning Representations, March 2021.

Xiaohan Zhu, Zhen Cui, Tong Zhang, Yong Li, and Jian Yang. Going deeper in frequency convolu-
tional neural network: A theoretical perspective. ArXiv, abs/2108.05690, 2021.

A RELATED WORK IN GREATER DETAIL

CNN sensitivity to Fourier frequency components: ( , ) computed transfer
accuracy of image classifiers trained on data preprocessed with various Fourier filtering schemes (e.g.
train on low pass filtered images, test on unfiltered images or vice versa). They found significant
generalization gaps, suggesting that models trained on images with different frequency content
learned different patterns.

( , ) proposed algorithms for generating adversarial perturbations constrained to low
frequency Fourier components, finding that they allowed for greater query efficiency and higher
transferability between different neural networks. ( , ) demonstrated empirically
that constraining to high or or midrange frequencies did not produce similar effects, suggesting
convolutional networks trained on natural images exhibit a particular sensitivity to low frequency
perturbations.

( s ) showed different types of corruptions of natural images (e.g. blur, noise, fog) have
different effects when viewed in frequency space, and models trained with different augmentation
strategies (e.g. adversarial training, gaussian noise augmentation) exhibit different sensitivities
to perturbations along Fourier frequency components. ( , ) investigates the
relationship between frequency sensitivity and natural corruption robustness for models compressed
with various weight pruning techniques, and introduces ensembling algorithms where the frequency
statistics of a test image are compared to those of various image augmentation methods, and models
trained on the augmentations most spectrally similar to the test image are used in inference. (

) designs an augmentation procedure that explicitly introduces variation in both the amphtude
and phase of the DFT of input images, finding it improves certified robustness and robustness and
common corruptions. ( , ) investigated the extent to which constraining models to
use only the lowest (or highest) Fourier frequency components of input data provided perturbation
robustness, also finding significant variability across datasets. ( , ) tested the extent
to which CNNss relied on various frequency bands by measuring model error on inputs where certain
frequencies were removed, again finding a striking amount of variability across datasets. (

, ) analyzed the sensitivity of networks to perturbations in various frequencies, finding
significant variation across a variety of datasets and model architectures. All of these works suggest
that model frequency sensitivity depends heavily on the underlying training data. — our work began
as an attempt to explain this phenomenon mathematically.

Implicit bias and representation cost of CNNs: Our analysis of (linear) convolutional networks
leverages prior work on implicit bias and representational cost of CNNss, especially ( ,

). There it was found that for a linear one-dimensional convolutional network where inputs and
all hidden layers have one channel (in the notation of section3,C =C; =---=Cp_1 =K =1)
trained on a binary linear classification task with exponential loss, with linear effective predictor
B, the Fourier transformed predictor B converges in direction to a first-order stationary point of an
optimization problem of the form

1 . )
min §|ﬁ|2/L such that 45T 2" > 1 for all n. (A.1)

A generalization to arbitrary group-equivariant CNNs (of which the usual CNNs are a special case)
appears in ( , , Thm. 1) — while we suspect that some of our results generalize
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to more general equivariant networks we leave that to future work. For generalizations in different

directions see ( s ; s ), and for additional follow up work see (
, ). Our general setup in section 3 closely follows these authors’, and our theorem 4.9
partially confirms a suspicion of ( , , §6) that “with multiple outputs, as more

layers are added, even fully connected networks exhibit a shrinking sparsity penalty on the singular
values of the effective linear matrix predictor ...”

While the aforementioned works study the implicit regularization imposed by gradient descent, we
instead consider explicit regularization imposed by auxiliary /5 norm penalties in objective functions,
and prove equivalences of minimization problems. In this sense our analysis is perhaps more closely

related to that of ( , ), which considers parametrized families of functions f(z, w) and
defines the representation cost of a function g(x) appearing in the parametric family as
R(g) := min{|w|3 | f(x,w) = g(z) for all z}. (A2)

While this approach lacks the intimate connection with the gradient descent algorithms used to train
modern neural networks, it comes with some benefits: for example, results regarding representation
cost are agnostic to the choice of per-sample loss function (in particular they apply to both squared
error and cross entropy loss). In the case where the number of channels C =C; =---=Cp_1 =1
(but the number of outputs may be > 1), theorem 4.9 can be deduced from ( , , Thm. 3).

Lastly, while in this paper we focus on spatial frequency properties of image data, there is a large and
growing body of work on the impact of frequency properties of training data more broadly interpreted.
( R ) gave a formula for the continuous Fourier transform of a ReLU network
f+R™ — R, and showed in a range of experiments that ReLU networks learn low frequency modes
of input data first. ( , ) proves theoretical results on low frequency components being learned
first for networks f : [[, S™ — R on products of spheres, where the role of frequency is played by
spherical harmonic indices (see also ( R ) for some related results).

Perhaps the work most closely related to ours is that of ( , ) on principal
component bias, where it is shown that rates of convergence in deep (and wide) linear networks are
governed by the spectrum of the input data covariance matrix.® ( , ) also
includes experiments connecting PC bias with spectral bias (learning low frequency modes first, as in
the preceding paragraph) and a phenomenon known as learning order consistency. However, it is
worth noting that in their work there is no explicit theoretical analysis of CNNs and no consideration
of the statistics of natural images in Fourier frequency space.

Other appllcatlons of Fourier transformed CNNs: ( s ; s ;

, ) all, in one way or another, leverage frequency space representatlons
of convolutlons to accellerate computations, e.g. neural network training. Since this is not our main
focus, we omit a more detailed synopsis.

B EXPERIMENTAL DETAILS

B.1 DATASETS

Figure 3 illustrates the frequency content of the image datasets used in this paper.
For CIFAR10 we use canonical train/test splits (imported using ( s ).
As described at ( , ),

Imagenette is a subset of 10 easily classified classes from Imagenet (tench, English
springer, cassette player, chain saw, church, French horn, garbage truck, gas pump,
golf ball, parachute).

We use the “full size” version of the dataset with standard (224-by-224) ImageNet preprocessing.

We implement high pass filtering by passing each image x through the following preprocessing
steps (before any other preprocessing other than loading a JPEG image file as a tensor): (i) take
the DFT Z, (ii) multiply with a mask m where m.;; = 0 if |i|,|j| < some fixed threshold, and 1

SThey also prove a result for shallow ReLU networks.
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Figure 3: Top row: Standard deviations of image datasets (including those generated by the wavelet
marginal model) along Fourier basis vectors: in the notation above, these are the /2 j;cci; (viewed
in log scale as RGB images). The origin corresponds to the lowest frequency basis vectors (i.e.
constant images). Bottom row: Same data as the top row, further processed by taking radial averages

E[\/Ejiceij | |(4, )] = r], and smoothing by averaging with three nearest neighbors on either side;
shown in log-log-scale.

otherwise,’ (iii) applying the inverse DFT. For both CIFAR10 and ImageNette, our threshold is 8
pixels. This means that while 25% of frequency indices are filtered out for CIFAR10, only about
0.13% are filtered for ImageNette. The motivation for this approach was to remove a similar amount
of absolute frequency content in both cases; we also experimented with a threshold of 112 in the case
of ImageNette, resulting in removal of 25% of frequency indices in both cases, and results of these
experiments are shown in fig. 6.

We use the wavelet marginal model dataset generated using the implementation in ( ,

) — details of this model are described in ( , , §3.3). The generated images are
of resolution 128-by-128; they are preprocessed with downsampling to 96-by-96 and cropping to
64-by-64. For further preprocessing details we refer to ( , , §4).

All pipelines described in this paper implement the standard preprocessing step of subtracting the
mean RGB value of the training dataset, and dividing by the standard deviation of the training set
RGB values.® Note that this does not flatten the variances of the image distributions in frequency
space displayed in figs. 1 and 5 — in fact, it (provably) only impacts the variance of the Oth Fourier
component, corresponding to constant images. Ensuring that the variance in each Fourier component
is (approximately) 1 would require the far less standard preprocessing step to each image = consisting
of (i) apply the DFT to get Z, (ii) subtract fi, where /i is the mean of the DFTed images in the training
dataset (not just the mean of their RGB values),’ (iii) divide by the standard deviation & of the DFTed
images in the training dataset, and finally (iv) apply the inverse DFT. It should be emphasized that
i and & have the same shape as z, e.g. (3, 32, 32) for the CIFAR10 dataset. The only work we are
aware of that implements such preprocessing on images is ( , , see §4),
though of course there may be others.

B.2 COVARIANCE MATRICES OF DFTED IMAGE DATASETS

In this section we provide further details on our computations of (co)variances and standard deviations
of DFTed image datasets.

To compute the covariances X ;¢4 5 for fig. 4, we begin with a dataset of natural images, say X.
We subtract its mean RGB pixel value (a vector in R?) and divide by the standard deviation of RGB
pixel values (also a vector in R?) as is standard. We next apply the DFT to every image in X, to
obtain a DFTed dataset X. We then compute the mean fi of the images in X, not the RGB pixel
values — thisis a 3 x H x W tensor, where H, W are the heights/widths of the images in X (e.g.,
32 for CIFAR10). This mean is then subtracted from X to obtain a centered dataset. Next, we sample
batches of size B, say %1,...,2p, from X (these are tensors of shape B x C' x H x W). For each
batch, we subtract the mean, contract over the batch index and divide by B to obtain an estimate for

"Here we assume that the lowest frequency component is at the origin, so the low frequency components are
zeroed out and the high frequency ones pass through.

8For example, in the case of ImageNet these are the canonical [0.485, 0.456, 0.406] and [0.229,
0.224, 0.225] respectively.

Equivalently /i is the DFT of the mean training image.
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Figure 4: Testing the assumption of eq. (4.16) on the CIFARI10 dataset. (a) Average covariance
entry norm E[|Xjiccri| (e, 4, 5) — (¢,7, j')| = r] plotted with respect to r = |(i, j) — (i/, 7')|. (b)
Same as (a), except the ¢, j part of the distance r is computed modularly, i.e. on the discrete torus
Z/H x Z/W instead of the discrete square {0, ..., H — 1} x {0, ..., W — 1}. For more details see
appendix B.

Y, say 3 like so:
B ) 1B
(& — )" @ (& — 1); explicitly Sjieerirjr = B Z(i“b,jic — fijic)(Tv,crirgr — flerivgr)

b=1 b=1
(B.1)
Finally, we average over an entire dataset’s worth of batches to get our final estimate of 3 j;ccr47 7.

i:

I

To estimate the expectations E[|Xj;ccriv57] | [(¢,4,5) — (¢,4',7")| = r], we average absolute values
| jicerarj| over all indices jicc'i'j” satisfying |(c, 4, 7) — (¢/, 7', j')| = r. The number of such entries
varies significantly with r, which is why we have not explicitly written down the average. We compute

“modular” distances, i.e. distances on the discrete torus, using the formulae
d(i,7") = min{|(h — h")modH|,|H — ((h — h/)mod H)|}

d(w,w") = min{|(w — W )modW|, W — ((w — w')modW)|} (B-2)

and finally d((c, h,w), (¢, b/, w")) = \/(c = /)2 + d(h, )2 + d(w,w")2.

In fig. 2a, we begin with a dataset of natural images, say X'. We subtract its mean RGB pixel value
(a vector in R?) and divide by the standard deviation of RGB pixel values (also a vector in R3) as
is standard. We next apply the DFT to every image in X, to obtain a DFTed dataset X. We then

compute the standard deviation of the images in X, not the RGB pixel values — thisisa3 x H x W
tensor, where H, W are the heights/widths of the images in X (e.g., 32 for CIFAR10).

B.3 GRADIENT SENSITIVITY IMAGES

To compute the sensitvity curves in figs. 1, 5, 7 and 8, we subsample 5,000 images from the underlying
validation dataset in the case of CIFAR10 and WMM use the entire validation dataset in the case
of ImageNette. For each such image =, we compute the DFT £, and then backpropagate gradients
through the composition & — i=x— f(x). The resultis a C x H x W x K Jacobian matrix
expressing the derivative of f with respect to Fourier basis vectors. We take {5 norms over the class
index (corresponding to K) to obtain a C' x H x W gradient norm image, with ¢, h, w component
|V f(z)Té.i;|. Finally, we average these gradient norms over the (subsampled in the case of
CIFAR10 and WMM) dataset.

Next, we average radially much as we did in fig. 4. Given an expected gradient norm image

E[|V.f(x)Té.;;|] obtained as above, we further average over all indices cij such that \/i2 + j2 = 7.
Again, the number of such indices is highly variable.

To provide error estimates, for each set of trained model weights and each image dataset, we compute
radial frequency sensitivity curves as in the paragraph above, apply post-processing consisting of:

« Dividing the curve by its integral (to obtain a probability distribution)'?

1this results in a comparison between models that is scale invariant, that is, we want to compare the shapes
of frequency sensitivity curves, not their overall magnitudes
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Figure 5: Radial averages E[|V, f(z)Té.i;]||(i, )| = r] of frequency sensitivities of VGG models
trained on ImageNette and its high pass filtered variant, post processed as discussed in appendix B.3.
Bottom row: frequency statistics of ImageNette and its high pass filtered variant for comparison.

* Taking the logarithm of the resulting probability distribution. This step is motivated by the
empirical observation that the variance of Fourier transformed images follows a power law
with respect to frequency magnitude.

* Smoothing by averaging with 3 nearest neighbors on each side. This step is motivated by
the aforementioned highly variable number of DFT frequency indices corresponding to a
given radius, which means that some radius values correspond to an average over far fewer
samples which as a result has high variance. A possible alternative would have been to bin
radii, thus averaging over DFT components with frequency magnitudes in a small interval.
However, the automatic binning strategies we tried yielded bins that were too large, giving
an undesirably low resolution view of frequency sensitivity curves.

We then repeat the entire pipeline above for 5 sets of model weights trained from independent random
initializations, to obtain 5 curves, and display the standard deviation of their y-values. For more
details on our training procedures, see appendix B.5.

B.4 MORE EXPERIMENTAL RESULTS

Figure 5 shows radial frequency sensitivity curves from experiments training VGGs with variable
depth and weight decay on ImageNette, with and without high pass filtering. Here we do see
significant differences between models trained on natural vs. high pass filtered images, including in
the later case (small) local peaks in near the filter cutoff, however the effect of filtering is not nearly
as noticeable as in the CIFAR10 experiments of fig. 1.

Moreover, effects of depth and decay are not as dramatic in these experiments, although we do see
the curves corresponding to high depth/decay for VGGs trained on natural images dropping off most
severely at high frequencies, and in the case of high pass filtered images deep VGGs are the least
sensitive in the low frequency range (where the training images have no variance).

17



Under review as a conference paper at ICLR 2023

%WI.VM‘U.".

W e

&

Figure 6: VGGs trained on hpf-ImageNette with a larger cutoff (removing 25% of frequency indices).

Interestingly, we see a range of frequency radii, roughly » € [10,100], where the ImageNette
frequency statistics exhibit significant noise around the overall power law pattern, and it does appear
that all VGG models concentrate frequency sensitivity in this range, and more so with greater
depth/decay. It would be interesting to understand what sorts of natural image features contribute to
the observed noise in the r € [10, 100] range, and if they are for some reason useful to the ImageNette
classification task.

Figure 6 shows a similar experiment with VGGs trained on (hpf-)ImageNette, but with a high-pass
threshold of 112, so that 25% of frequency indices are discarded. Here the differences between CNNs
trained on natural and high pass filtered images are (not surprisingly) more dramatic, and the effect of
decay on VGG 11s trained on hpf-ImageNette is especially pronounced. It is (at best) unclear whether
the results for VGGs of variable depth trained on hpf-ImageNette support hypothesis II. (depth).

Figure 7 shows radial frequency sensitivity curves from experiments training ResNets with variable
depth and weight decay on CIFAR10, with and without high pass filtering. The frequency sensitivity
curves are clearly different when trained on natural images (where they drop off at the highest
frequencies) versus high pass filtered images (where they have a “U”-shape similar to those of the
VGG models trained on high pass filtered CIFAR10 in fig. 1). These observations seems somewhat
consistent with hypothesis I. (data-dependent frequency sensitivity). However, the trends with depth
and decay do not conform with hypotheses II., III. (depth, decay): it is difficult to see trends in the
depth experiment, and in the decay experiment the frequency sensitivity curves seem to become
more increasing as decay increases, rather than adhering to the frequency content of the dataset. It is
not immediately clear to the authors what causes this behavior — further investigation would be an
interesting direction for future work.

Lastly, fig. 8 shows frequency sensitivity curves for AlexNets trained with alignment and uniformity
loss ( , ) on synthetic data generated by the wavelet marginal model (WMM) of
( , ) with varying « parameter; to be specific, for simplicity we set « = [ in
the power law 7.;; ~ W These results initially surprised us: for all « the variance of the
synthetic data is concentrated in low frequencies (fig. 3), with the level of concentration decreasing
as «v increases (i.e. as « increases, the frequency curve of the synthetic data spreads out). However,
for all AlexNets trained on WMM data the frequency sensitivity curves increase with frequency

magnitude, with slope roughly increasing with respect to !
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Figure 7: Radial averages E[|V, f(x)Té.;| | |(i, j)| = 7] of frequency sensitivities of ResNet models
of varying depth (top row) and decay (middle row) trained on CIFAR10 and its high pass filtered
variant. Post processing is as discussed in appendix B.3.
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Figure 8: Radial averages E[|V,. f(z)Té.i;|||(4,7)| = r] of frequency sensitivities of unsupervised
AlexNet models trained with alignment and uniformity loss on data generated by WMM models with
varying « parameter. Post-processing is as discussed in appendix B.3.

19



Under review as a conference paper at ICLR 2023

This result, which shows that CNNs trained with contrastive learning objectives can respond quite
differently to the statistics of their training data, admits a simple explanation in terms of sections 3
and 4.

Indeed, the uniformity part of the objective encourages the set of vectors
{fz")=0T2"|n=1,...,N} (B.3)

to be uniformly distributed on the unit sphere S¥~1 C R, Suppose now for the sake of simplicity
that that the vectors " = (27, j) are normally distributed and their covariance matrix X is diagonal,
with diagonal entries of the form

Y

i + 1]

Teij =~

(B.4)

Then the feature vectors f (") = 973" are also normally distributed, with covariance matrix
AT 4 Y A AT
0" X0 = 0, 0;. B.5
2 T 5
ij

Here as above 9;; is a K x C' matrix, so each 'E)ij’l};-r- is indeed a K x K positive semi-definite matrix,
and in cases of interest where C' < K it will have very low rank. Considering eq. (B.5), we see for
example that if ' < K and the 9;; are of roughly constant magnitude, then the covariance of the

features f(2) will be dominated by the terms

2 A AT ..
in‘jvij for small 1) (B6)
making it impossible for the f (™) to be uniformly distributed on the unit sphere. It seems that
perhaps the only way for such uniform distribution to occur is for the magnitudes of the 9;; to increase
with the frequency magnitude |(, 7)|, in such a way as to offset the denominator |i|* + |j|*. We do
not have a proof of this fact (it seems such a proof would have to involve analysis of the functional
form of the contrastive loss in ( s ), which we have not carried out), but it does
offer one potential explanation of fig. 8. At the risk of being overzealous, the above discussion would
suggest that

|Di5] oc [4]% + [7]%, (B.7)
i.e. the norm of the gradient of f with respect to the j-th DFT basis vector, follows a power law in
and indeed in fig. 8, where these gradient norms are plotted with respect to frequency magnitude on a
log-log scale, we see slope roughly increasing with a.

B.5 MODEL ARCHITECTURES, TRAINING PARAMETERS AND VALIDATION ACCURACIES

Recall that our CNNs are

ConvActually A CNN that closely approximates eq. (3.1), the differences being the addition of
biases and ReLU non-linearities. This is accomplished by applying convolutions with
32 x 32 kernels (i.e., kernels of the same size as the input images) with circular padding.

Myrtle CNN A small feed-forward CNN known to achieve high performance on CIFAR10 obtained
from ( ). This CNN has small kernels, ReLLU non-linearities and max-pooling, as well
as exponentially varying channel dimension.

VVG A family of CIFAR10 VGGs obtained from (Fu, ) and ImageNet VGGs from (

b )'
ResNet A family of CIFAR10 ResNets ( , ) obtained from ( s ).
AlexNet A small AlexNet adapted to contrastive training obtained from ( , ).

Tables 1 and 2 describe training hyperparameters. In all experiments we optimize using stochastic
gradient descent (SGD) with momentum 0.9, using a “reduce on plateau” learning rate schedule
where the learning rate is multiplied by 0.1 after “patience” epochs without a 1% improvement in
validation accuracy, where “patience” is some fixed integer (i.e., a hyperparameter); we use patience =
20 throughout. This schedule proceeds until either a minimum learning rate (in all of our experiments,
10~%) or a maximum number of epochs is hit, at which point training stops. We use the PyTorch
library ( , ) on a cluster environment with Nvidia GPUs.
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All models are trained on CIFAR10 except the ImageNette VGGs and AlexNets. The ImageNette
VGGs are optimized as above, with the exception that we use distributed training on 8 GPUs (the
batch size of 256 corresponds to a batch of size 32 on each GPU). The AlexNets are trained using an
unsupervised alignment and uniformity objective as described in ( s , $4, §A); we
use the official implementation of ( s ). For CIFAR10 and ImageNette, we use the
same hyperparameters when training on natural and high pass filtered images.

For each model architecture and choice of hyperparameters,'! i.e. instance appearing in tables 1

and 2, and each training dataset, we train 5 models from different random weight initializations.

Efficiently training this many CNNs was facilitated by the excellent FFCV library (
).

)

arch. family depth batch size initial Ir decay

Conv Actually 4 1024 10~ 10++linspace (-5,
-1, 4)

Myrtle CNN N/A 512 10~2 10+*linspace (-5,
-2, 10)

CIFAR VGG 11 256 10~2 10x+xlinspace (-5,
-2, 10)

ImageNette VGG 11 256 1.250 x 103 10x*linspace (-5,
-2, 3)

ResNet 9 512 10~1 10xxlinspace (-5,
-2, 10)

Table 1: Hyperparameters of CNNs of variable decay used in the experiments of section 5.2. In all
cases, the maximum number of epochs was 500.

arch. family depth batch size initial Ir max epochs
Conv Actually 1,2,4,8 1024 10~ 500
CIFAR VGG 11, 13,16, 19 256 1072 500
ImageNette VGG 11, 13,16, 19 256 1.250 x 1073 500
ResNet 9,20, 56 512 107! 200

Table 2: Hyperparameters of CNNs of variable depth used in the experiments of section 5.1. In all
cases weight decay was 107°.

C L =2: LASSO PARAMETER SHRINKING AND SELECTION
When C; = 1 for all [ and L = 1, we may simplify egs. (4.10) and (4.13) to
1 ~
min — |V — X0|3 4+ 2)\|0); (C.1)
o N

where X and Y are as in section 4.1. The optimality criterion for eq. (4.10) becomes (see e.g.

( )

1 s A

N(XTXﬁ — XTY) 4+ AV|i|, =0, (C2)
where V0| is the sub-gradient of the £;-norm:

(V[o): {: sign(f) if & 70 (C3)

€[-1,1] ifd; =0.

" Except for the AlexNets trained on WMM data.
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When A = 0 this again reduces to the unpenalized least squares solution o := (X7 X) 1 X7TY,
and substituting this in eq. (C.2) we obtain

1 amos N
N(XTX{J — X" Xis) + AV[o]; = 0. (C.4)
If we again make the assumption that > = %X T X is “diagonal” as in eq. (4.16), eq. (C.2) simplifies
to
A B d‘f}czﬂi ..
Teij (Deij — DLS,cij) + A Jo = 0 for all cij, (C.5)
cij

where strictly speaking % is a subgradient as in eq. (C.3). From this we conclude
cij

Teij

N N - A AN
€ [O18,cij — ===, VLS, cij + fm.j} if 95 =0

Teij

~ A . N [N
) = U1.8,¢ij — = sign(De;4 if 0ci5 #0 B
vcij{ “ (i) “ for all cij (C.6)
(the second case is equivalent to: if the LASSO solution 9.;; = 0, it must be that the least squares
solution satisfies |08, ci;| < %) In the case where sign(?.;;) = sign(drs,ci;), we obtain a
cij
particularly nice conclusion:

|0cij| = 0Ls,eij| — 2 foral cij (&)
Teij
Proposition C.8 (Data-dependent frequency sensitivity, L = 2). With the notations and assumptions
introduced above, the magnitude of the directional derivative of [ with respect to the cij-th Fourier
component is linear in % with slope —1.

If we again plug in the empirically determined power law observed in natural imagery, 7.;; ~
—atss €q. (C.7) becomes
li > +]3]

N R Aa ) .

|Ocij| = |DLs,cij| — ;(|l| +417) for all cij. (C9)

Here, the sensitivity decreases monotonically with respect to both frequency magnitude and the
regularization coefficient A. Note that compared to eq. (4.19) from section 4, eq. (C.9) implies a
greater shrinking effect when |f;;| < 1, and less shrinking when |.;;| > 1.!> We conjecture that
shrinkage due to |9.;;| < 1 is the dominant effect, due to the initial distribution of weights w in
modern neural networks, which are often sampled from uniform or normal distributions with variance
< 1 (e.g., according to He initialization; s ).

D PROOFS

D.1 PROOF OF LEMMAS 3.7, 3.12 AND 4.4

Proof of lemma 3.7. For a direct proof of the convolution part, see ( , , Lem. C.2).

We reduce to the “single channel” cases of these formulae (C; = C;—; = 1), which we take to be
well known. For the purposes of legibility, in this proof we denote the DFT (eqs. (3.5) and (3.6)) by
F.

For the convolution part we must apply the DFT to eq. (3.2). Let w,,... 4 denote the single channel
tensor obtained by fixing the input/output channels to indices ¢, d and similarly let x4, .. be the single
channel tensor fixing the input channel to index d. Then by interchanging the order of sums

(w * x)cij = Z (Z owndxdm’n')
d

m4m'=in+n’'=j

Z ( Z wcmndxdm'n') (D.1)

d m+m/=in+n’=j
= E ((wc,...,d * zd,...)ij)
d

>This remark applies generally to LASSO vs. ridge regression, and is perhaps most easily explained by
comparing the derivatives of || and z°.
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In other words, (w * ), .. = Y, We,... d * q,.. Now linearity of the DFT gives

F((w*x)e,.. Z}' d*Tq.) = Z]—'(wc’,,,,d) - F(xa,..) (D.2)
d

where on the right hand side we’ve applied the standard single channel convolution theorem. But this
means

w * 1' cij — ZF myd]: dzj (D3)

as desired.

Our proof of the Parseval identity is similar: we start with eq. (3.3), that is, (wTz), =

Zz m.n WkmnlTlmn- With notation as above, we can write
(whz)y = E WkmnlTlmn = E wk (D.4)
lm,n

where each term on the right hand side is an ordinary inner product of single channel signals. Taking
the Parseval identity for these as well known, we get

(wh2)y, = Z]‘-(w){,.. ! Z F (W) i F (@) 1mn (D.5)
.

l,m,n

as desired. O

Proof of lemmas 3.12 and 4.4. We proceed by induction on L. In the base case where L = 0,
lemma 3.12 is equivalent to Parseval’s theorem eq. (3.9). So, suppose L > 0. We may decompose
f as a convolution followed by a linear CNN of the form eq. (3.1), say g, with one fewer layers.
Explicitly, g has weights wo, . .., wy, and

f(x) = g(wy * z). (D.6)

By inductive hypothesis, we may assume that

g(wy x ) = §(wy x ) = H Wr—1,..i5)W1 Wy * X T, ) (D.7)

Applying the convolution theorem eq. (3.8) to obtain
uf*\:v i = 1,52 45 (D.8)

completes the proof. O

Proof of lemma 4.4. For each weight @' let i ; denote the C; x C;_; matrix obtained by fixing the
spatial indices of 1! to 5. Unpacking definitions,

AL—1_  ~L—1 A1 ~L—1 ~L—1 A1 4
(w . w PEREY w . x) Z] fr— wl] wz] PRI wlj . l’Z] and SO
~LT(~L—1 ~L—1 A1 A\ AL ~L—1 ~L—1 A1 4 (D.9)
ot (et ~a:)c— E E (wij)cd(wij ey "rij)d
ij d
We can recognize the inside sum as performing a matrix product of w w . with wL ! wZLj_1 . w}] Tij.

Since matrix multiplication is associative, we can just as well multlply the w - first and then act on
the vector &;;. Thus

2 25 )ea (0571 00y ) g = 2 D, (000 8) o () (D10

L ~L-—1 Al)T

Now we can recognize the right hand side as (w* - w*~'---w')* Z, as claimed. O
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D.2 PROOFS OF THEOREM 4.9 AND LEMMA 4.11
Recall we aim to prove: the optimization problem
min £(((@" @t @t )T (")) + Al (D.11)
Li,j
is equivalent to the following optimization problem for the product ¢ ;; = HIL:O Wr_1,...45:
min £((872")000, (y")ly) + ALY ([93l13) % (D.12)
]

where the minima runs over the space of tensors © such that each matrix 9;; has rank at most
min{C, C1,...,Cr_1, K}. We proceed by a series of reductions; as a first step we observe

min £(((@" - @@t ) TE")IL (0")05) + A D3
Lyi,g
= min min L") (" )nzn) + A Dl 3,

i3l ’lf)L-?fJL_l-’LDL_l-~"lf)1:ﬁ

(D.13)

Lyi,g

and hence theorem 4.9 will follow if we can prove

Z(Ilvulla )T =min - Zl 13 (D.14)

lz,J

where the min on the right hand side runs over all w such that % - w*—1 . @F=1 ... = 5. We
can make life slightly simpler by noticing eq. (D.14) decomposes over the 7, j index, and will follow
from

. 2 1 . .
(I93513)% = min 7 3 "Ja[3 for all . . (D.15)
l

which we will show in lemma D.18 — note that at this point we are arriving at a statement about
norms of matrix products and can dispense with the baggage of ¢, 7 indices and’s. To formally state
that lemma, we introduce a convenient definition.

Definition D.16. A sequence of matrices A; € M(m; x n1,C),..., A, € M(my x n;,C) is
composable if and only if
my=mny4yforl=1,...,L—1 D.17)

In other words, Ay, ..., Ar is composable if and only if the product Ay, - - - A; makes sense.

Lemma D.18. If B € M(m x n,C) is a matrix with complex entries and L € N is a non-negative
integer, then
2 1

(IBIZ)% =m H\All fzmm—ZlAllé, (D.19)
l

where both minima are taken over all composable sequences of complex matrices Ay, ..., Ay such
that Ap, --- A1 =

We first deal with the elementary aspects of lemma D.18: it will suffice to show that whenever
A;---A, =B

2

(1B15)* H\Azlg )P < Z\Azlé and that (D-20)

(1B1$)% = Z|Al|2 (D.21)

for some composable sequence Aq,..., Ar such that Ap--- Ay = B. As noted in (

) the second 1nequa11ty of eq (D 20) is simply the arlthmenc geometrlc mean inequality
apphed to |A1|3,...]AL|3 € R>o. Furthermore, we can obtain eq. (D.21) using the singular value
decomposition of B: let B = USV™* where, letting r := min{m,n}, U € U(r,m)and V € U(n,r)
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are unitary and S = diag(Aq, ..., \.), where A; > 0 for all . We may decompose B into L factors
liki
ike -
B=(UST)- (][ §7)-(STVv™), (D.22)
i=1
and by unitary invariance of the C (a.k.a. Frobenius) norm,
1 L=l 1 1 1 L= 1 1
UST|2 + ST|Z4|STV*2=|ST|2+ ) |ST|2+|ST|2
USEE+ L ISEE +ISEV I = I5HE + XI5 + 1% 3 .
= LISt 2.
We now note that by definition 4.6,
(HB||%)% = Z|)\z|% and on the other hand
(D.24)

1
ISTR=Y"n72
7

so that combining eqs. (D.23) and (D.24) gives eq. (D.21) for the composable sequence of eq. (D.22).

It remains to prove the first inequality of eq. (D.20) — this is a special case of the non-commutative
generalized Holder inequality lemma 4.11. In fact we will prove a slightly more general statement —
to state it we need a couple more definitions:

Definition D.25. For a (not necessarily square) complex matrix A € M (m x n,C),

|A| := VA*A (D.26)

where A* is the conjugate transpose of A.

The matrix |A| is Hermitian and positive semi-definite, and often referred to as the polar part
of A.® Given any Hermitian matrix H and complex number z, we may form the matrix H?;
explicitly it can be defined as U diag(A\?)U* where H = U diag(\;)U* is a diagonalization of
H. We next define unitary invariant norms on spaces of matrices. For technical reasons to be
encountered shortly, we actually introduce families of norms compatible with the natural inclusions
M(m x n,C) C M(m' xn',C) form’ >m,n" >n.

Definition D.27 (cf. ( R , §IV)). A compatible family of matrix norms is a function
== JT M(mxn,C)— Rxg (D.28)
m,neN
such that
(i) the restriction of ||—|| to M (m x n,C) is a norm (in the sense of functional analysis) for all

m,n € N, and

(ii) wheneverm’ > m,n’ > nand¢: M(m x n,C) C M(m' x n/,C) is the “upper left block
inclusion” sending

A++[A 0] (D.29)

0 O
we have [l1(A4)] = | A].

A compatible family of norms is unitary invariant if and only if for any A € M (m x n,C) and any
unitary matrices U € U(m) and V € U(n)

[TUAVT| = || A]. (D.30)

We will show below that for any p > 0 the Schatten p-norms form a unitary invariant compatible
family.

13E.g. in the polar decomposition ( , , §8).

25



Under review as a conference paper at ICLR 2023

Lemma D.31. If B € M (m x n,C) is a matrix with complex entries, A1, ..., Ay is a composable
sequence of complex matrices such that Ay, --- Ay = Band ), p% = % where p1,...,pr, > 0are

positive real numbers, then for every unitary invariant compatible family of norms ||—||,

1

t< T
i

We note that this non-commutative generalized Holder inequality is ‘“non-commutative” since we
work with products of matrices as opposed to inner products of vectors, and “generalized” since we
consider ¢, exponents p; where ) i > 1. To be specific, lemma 4.11 is the case of lemma D.31

Pi

11B]" G (D.32)

where the unitary invariant compatible family of norms ||—|| consists of the C; norms'* and p; = 2
for all 7. Here we are implicitly using the relationship between Schatten norms

IA]IS = (|[|AJP||$)7 forall A € M(m x n,C),p > 0. (D.33)

As mentioned in section 4, when L = 2 lemma D.31 is ( , , Exercise IV.2.7). In the case
of Schatten norms, it is essentially derived in the course of the proof of ( s , Thm. 1).
Below, we solve ( , , Exercise IV.2.7) and show that the case L > 2 follows by induction. '

We first address a subtle difference between lemma D.31 and the setup of ( , ) (and indeed
most work on matrix analysis). ( , ) considers square matrices throughout, whereas in
lemma D.31 we allow all matrices to be rectangular — this is essential in our applications, since
neural networks have variable width (even if we made our CNNs of section 3 “constant width” by
requiring C; = Cy = --- = C_1, the first and last layers would still change width in general).
Thankfully, there is a simple trick that allows us to reduce to the case of square matrices. Say
A; € M(my x ny) as in definition D.16, and let

N := max{my,...,mp,n1,...,np} (D.34)
Since N > m;, n; by definition, for each matrix A; we may define a new block diagonal matrix
s |A O
A= { 0 O} (D.35)

(that is, we push A; to the top left corner). Note that by definition D.16 and the hypotheses of
lemma D.31 m = mp,n = ny and a straightforward inspection of the mechanics of block diagonal
matrix multiplication shows

AL-AL,1-~-A1 = |:§ 8:| :ZB (D36)
Now Aq,..., A and B are all square, and to reduce to the square case it will suffice to argue that
~ 1 ~
AP | = 1A} for all é and [|B"]| = || BI"| (D37)
Since by hypothesis ||—|| is a compatible family of unitary invariant norms, it will suffice to show that
A |Pi — |Al |pi 0
|A; P = { 0 0 (D.38)

and this is follows from the identities

A 0]"[A 0] _[4*4 0 H 0" _[H* 0

{0 0} {0 0}—[ 0 0} and [0 0] —{0 0} (D-39)
valid for any complex matrix A, Hermitian matrix H and complex number z, the proofs of which we

omit.

Before continuing with the proof of lemma D.31, we pause to verify that Schatten norms are indeed a
unitary invariant compatible family. In doing so we prove a lemma that will be of further use in the
sequel.

4Which is simply the sum of the singular values (sometimes called the trace norm).
'SWe beg forgiveness for posting a Springer GTM exercise solution on the internet.
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Definition D.40. A compatible family of guage functions is a function ® : || R" — R>( such
that

(i) for each n € N the restriction of ® to R" is a norm (in the sense of functional analysis) and

(ii) whenever n’ > n and ¢ : R — R" is the inclusion mapping (21,...,z,) —
(x1,...,2n,0,...,0), we have ®(¢(z)) = D(x).

A compatible family of guage functions is symmetric if and only if for each n € N the restriction of
® to R" is invariant under the action of matrices of the form PD where P is a permutation and D is
diagonal, with diagonal entries in {+1}.

Lemma D.41 (cf. ( R , Thm. IV.2.1)). There is a natural one-to-one correspondence
between unitary invariant compatible families of matrix norms and symmetric compatible families of
guage functions.

Proof. Given a unitary invariant compatible family of matrix norms ||—||, a symmetric compatible
family of guage functions ® can be defined using the maps

R™ U5, Mf(n x 1, €) 1 Ry (D.42)

compatibility of & comes from compatibility of ||—|| and the identity “diag o = ¢ o diag” (suitably
interpreted), and symmetry of ® follows from the identity diag(PDz) = (PD) diag(x)(PD)* for
matrices PD as above, the fact such matrices P D are unitary and unitary invariance of ||—||.

Conversely, given a symmetric compatible family of guage functions ® one may define a unitary

invariant compatible family of matrix norms ||—|| as ||A4|| := ®(s(A4)) where s(A) denotes the
singular values of A. Compatibility comes from the fact that the singular values of a block diagonal
matrix

A0

0 A

are the concatenation of s(A;) and s(As), and unitary invariance follows from the fact that singular
values unitary invariant up to permutations (and ¢ is symmetric). The proof that the maps ||—|| :
M(m x n,C) — R>0 are indeed norms is as in ( , , Thm. IV.2.1).

It can be verified that these maps are mutual inverses — we omit this final step. O

Corollary D.43. For any p > 0 the Schatten p-norms form a unitary invariant compatible family of
matrix norms.

Proof. By definition, ||AH§ = (3, s(A)f)%, i.e. the ¢, norm of the singular values of A. By

lemma D.41 it suffices to show that the £,-norms form a symmetric compatible family — this is
straightforward and omitted. O

We now resume proving lemma D.31, first in the case L = 2 (later we will prove the general case
by induction). Recall that at this point we have reduced to the case where all matrices in sight are
n x n for some fixed n € N, so in particular we are dealing with a fixed unitary invariant norm (no
further need for compatible families). By the above lemma, || A|| = ®(s(A)) for some symmetric
guage function @, for all A € M (n x n,C). By ( , , Thm. IV.2.5),

S(AlAQ)T <w S(Al)TS(AQ)T (D44)

where <,, denotes weak submajorization. Now the “strongly isotone” property of the symmetric
guage function ® implies

(D(S(AlAQ)T) S (I)(S(Al)TS(AQ)T) (D45)
We need a generalized Holder inequality for symmetric guage functions.
Lemma D.46 (( , , Ex. IV.1.7). If p1,p2 > 0 and p% + p% = % then for every symmetric

guage function ® : R™ — R> and every x,y € R™ we have

d(abs(z - y)")* < @(abs(m)pl)ﬁq)(abs(y)m)é (D.47)

where abs denotes the coordinatewise absolute value.
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Proof. Apply the regular » = 1 Holder inequality ( , , Thm. IV.1.6) to the vectors
Z = abs(z)",§ = abs(y)" (coordinatewise r-th powers) with the exponents py = p1/r, pa = p2/r
(note that p% + p% = le + plz = 1) to obtain

d(abs(z-y)") = d(abs(z-§)) < ®(abs(Z)P) 7 D(abs(§)P2) 7 = B(abs(z)P )71 &(abs(y)P?)=

(D.48)
where in the last equality we have just used the definitions of z,y, p; and ps. Taking r-th roots
completes the proof. O
Now applying lemma D.46 to eq. (D.45) gives

D(5(A1A2)") T < D(s(A1)"s(A)") 7 < D(s(A1)P) 71 B(s(Ag)P2) 72 (D.49)

(the first inequality is just taking r-th roots of eq. (D.45), the second is applying lemma D.46). Using
the identity s(]A|") = s(A)", we finally obtain
1 1 L
AL A2[" [ < |l Ax[P* [P [|[ Az P22 (D.50)

which is lemma D.31 when L = 2.
Now suppose L > 2 and assume by inductive hypothesis that lemma D.31 holds for all smaller values
of L. Define

1 K1

g - (D.51)

q ; Di

(note that p% + = = %). By the L = 2 case of lemma D.31

1
q
N 1
AL - (Ap—1 - AN < NALP» |75 | Ap-y -+~ Ar]?]7 (D.52)
and by inductive hypothesis

Di

P (D.53)

1 . _
lAp—1--- Adls < JTé = "4,
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