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ABSTRACT

A recent line of research on deep learning focuses on the extremely over-
parameterized setting, and shows that when the network width is larger than
a high degree polynomial of the training sample size n and the inverse of the target
error ε´1, deep neural networks learned by (stochastic) gradient descent enjoy
nice optimization and generalization guarantees. Very recently, it is shown that
under certain margin assumptions on the training data, a polylogarithmic width
condition suffices for two-layer ReLU networks to converge and generalize (Ji
and Telgarsky, 2020). However, whether deep neural networks can be learned
with such a mild over-parameterization is still an open question. In this work, we
answer this question affirmatively and establish sharper learning guarantees for
deep ReLU networks trained by (stochastic) gradient descent. In specific, under
certain assumptions made in previous work, our optimization and generalization
guarantees hold with network width polylogarithmic in n and ε´1. Our results
push the study of over-parameterized deep neural networks towards more practical
settings.

1 INTRODUCTION

Deep neural networks have become one of the most important and prevalent machine learning models
due to their remarkable power in many real-world applications. However, the success of deep learning
has not been well-explained in theory. It remains mysterious why standard optimization algorithms
tend to find a globally optimal solution, despite the highly non-convex landscape of the training loss
function. Moreover, despite the extremely large amount of parameters, deep neural networks rarely
over-fit, and can often generalize well to unseen data and achieve good test accuracy. Understanding
these mysterious phenomena on the optimization and generalization of deep neural networks is one
of the most fundamental problems in deep learning theory.

Recent breakthroughs have shed light on the optimization and generalization of deep neural networks
(DNNs) under the over-parameterized setting, where the hidden layer width is extremely large (much
larger than the number of training examples). It has been shown that with the standard random
initialization, the training of over-parameterized deep neural networks can be characterized by a
kernel function called neural tangent kernel (NTK) (Jacot et al., 2018; Arora et al., 2019b). In
the neural tangent kernel regime (or lazy training regime (Chizat et al., 2019)), the neural network
function behaves similarly as its first-order Taylor expansion at initialization (Jacot et al., 2018;
Lee et al., 2019; Arora et al., 2019b; Cao and Gu, 2019), which enables feasible optimization and
generalization analysis. In terms of optimization, a line of work (Du et al., 2019b; Allen-Zhu et al.,
2019b; Zou et al., 2019; Zou and Gu, 2019) proved that for sufficiently wide neural networks,
(stochastic) gradient descent (GD/SGD) can successfully find a global optimum of the training loss
function. For generalization, Allen-Zhu et al. (2019a); Arora et al. (2019a); Cao and Gu (2019)
established generalization bounds of neural networks trained with (stochastic) gradient descent, and
showed that the neural networks can learn target functions in certain reproducing kernel Hilbert space
(RKHS) or the corresponding random feature function class.

Although existing results in the neural tangent kernel regime have provided important insights
into the learning of deep neural networks, they require the neural network to be extremely wide.
∗Equal contribution.
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The typical requirement on the network width is a high degree polynomial of the training sample
size n and the inverse of the target error ε´1. As there still remains a huge gap between such
network width requirement and the practice, many attempts have been made to improve the over-
parameterization condition under various conditions on the training data and model initialization
(Oymak and Soltanolkotabi, 2019; Zou and Gu, 2019; Kawaguchi and Huang, 2019; Bai and Lee,
2019). For two-layer ReLU networks, a recent work (Ji and Telgarsky, 2020) showed that when the
training data are well separated, polylogarithmic width is sufficient to guarantee good optimization
and generalization performances. However, their results cannot be extended to deep ReLU networks
since their proof technique largely relies on the fact that the network model is 1-homogeneous, which
cannot be satisfied by DNNs. Therefore, whether deep neural networks can be learned with such a
mild over-parameterization is still an open problem.

In this paper, we resolve this open problem by showing that polylogarithmic network width is
sufficient to learn DNNs. In particular, unlike the existing works that require the DNNs to behave
very close to a linear model (up to some small approximation error), we show that a constant linear
approximation error is sufficient to establish nice optimization and generalization guarantees for
DNNs. Thanks to the relaxed requirement on the linear approximation error, a milder condition on
the network width and tighter bounds on the convergence rate and generalization error can be proved.
We summarize our contributions as follows:

• We establish the global convergence guarantee of GD for training deep ReLU networks based
on the so-called NTRF function class (Cao and Gu, 2019), a set of linear functions over random
features. Specifically, we prove that GD can learn deep ReLU networks with width m “ polypRq
to compete with the best function in NTRF function class, where R is the radius of the NTRF
function class.

• We also establish the generalization guarantees for both GD and SGD in the same setting. Specifi-
cally, we prove a diminishing statistical error for a wide range of network width m P prΩp1q,8q,
while most of the previous generalization bounds in the NTK regime only works in the setting
where the network widthm is much greater than the sample size n. Moreover, we establish rOpε´2q

rOpε´1q sample complexities for GD and SGD respectively, which are tighter than existing bounds
for learning deep ReLU networks (Cao and Gu, 2019), and match the best results when reduced to
the two-layer cases (Arora et al., 2019b; Ji and Telgarsky, 2020).

• We further generalize our theoretical analysis to the scenarios with different data separability
assumptions in the literature. We show if a large fraction of the training data are well separated,
the best function in the NTRF function class with radius R “ rOp1q can learn the training data
with error up to ε. This together with our optimization and generalization guarantees immediately
suggests that deep ReLU networks can be learned with network width m “ rΩp1q, which has a
logarithmic dependence on the target error ε and sample size n. Compared with existing results
(Cao and Gu, 2020; Ji and Telgarsky, 2020) which require all training data points to be separated
in the NTK regime, our result is stronger since it allows the NTRF function class to misclassify a
small proportion of the training data.

For the ease of comparison, we summarize our results along with the most related previous results in
Table 1, in terms of data assumption, the over-parameterization condition and sample complexity.
It can be seen that under data separation assumption (See Sections 4.1, 4.2), our result improves
existing results for learning deep neural networks by only requiring a polylogpn, ε´1q network width.

Notation. For two scalars a and b, we denote a^ b “ minta, bu. For a vector x P Rd we use }x}2
to denote its Euclidean norm. For a matrix X, we use }X}2 and }X}F to denote its spectral norm
and Frobenius norm respectively, and denote by Xij the entry of X at the i-th row and j-th column.
Given two matrices X and Y with the same dimension, we denote xX,Yy “

ř

i,jXijYij .

Given a collection of matrices W “ tW1, ¨ ¨ ¨ ,WLu P b
L
l“1Rmlˆm

1
l and a function fpWq over

bLl“1Rmlˆm
1
l , we define by∇Wl

fpWq the partial gradient of fpWq with respect to Wl and denote
∇WfpWq “ t∇Wl

fpWquLl“1. We also denote BpW, τq “
 

W1 : maxlPrLs }W
1
l ´Wl}F ď τ

(

for τ ě 0. For two collection of matrices A “ tA1, ¨ ¨ ¨ ,Anu, B “ tB1, ¨ ¨ ¨ ,Bnu, we denote
xA,By “

řn
i“1xAi,Biy and }A}2F “

řn
i“1 }Ai}

2
F .
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Table 1: Comparison of neural network learning results in terms of over-parameterization condition
and sample complexity. Here ε is the target error rate, n is the sample size, L is the network depth.

Assumptions Algorithm Over-para. Condition Sample Complexity Network

Zou et al. (2019) Data nondegeneration GD rΩ
`

n12L16
pn2

` ε´1
q
˘

- Deep
This paper Data nondegeneration GD rΩ

`

L22n12
˘

- Deep

Cao and Gu (2020) Data separation GD rΩpε´14
q ¨ eΩpLq rOpε´4

q ¨ eOpLq Deep
Ji and Telgarsky (2020) Data separation GD polylogpn, ε´1

q rOpε´2
q Shallow

This paper Data separation GD polylogpn, ε´1
q ¨ polypLq rOpε´2

q ¨ eOpLq Deep
Cao and Gu (2019) Data separation SGD rΩpε´14

q ¨ polypLq rOpε´2
q ¨ polypLq Deep

Ji and Telgarsky (2020) Data separation SGD polylogpε´1
q rOpε´1

q Shallow
This paper Data separation SGD polylogpε´1

q ¨ polypLq rOpε´1
q ¨ polypLq Deep

Algorithm 1 Gradient descent with random initialization

Input: Number of iterations T , step size η, training set S “ tpxi, yiqni“1u, initialization Wp0q

for t “ 1, 2, . . . , T do
Update Wptq “Wpt´1q ´ η ¨∇WLSpW

pt´1qq.
end for
Output: Wp0q, . . . ,WpT q.

Given two sequences txnu and tynu, we denote xn “ Opynq if |xn| ď C1|yn| for some absolute
positive constant C1, xn “ Ωpynq if |xn| ě C2|yn| for some absolute positive constant C2, and
xn “ Θpynq if C3|yn| ď |xn| ď C4|yn| for some absolute constants C3, C4 ą 0. We also use rOp¨q,
rΩp¨q to hide logarithmic factors inOp¨q and Ωp¨q respectively. Additionally, we denote xn “ polypynq
if xn “ OpyDn q for some positive constant D, and xn “ polylogpynq if xn “ polyplogpynqq.

2 PRELIMINARIES ON LEARNING NEURAL NETWORKS

In this section, we introduce the problem setting in this paper, including definitions of the neural
network and loss functions, and the training algorithms, i.e., GD and SGD with random initialization.

Neural network function. Given an input x P Rd, the output of deep fully-connected ReLU network
is defined as follows,

fWpxq “ m1{2WLσpWL´1 ¨ ¨ ¨σpW1xq ¨ ¨ ¨ q,

where W1 P Rmˆd, W2, ¨ ¨ ¨ ,WL´1 P Rmˆm, WL P R1ˆm, and σpxq “ maxt0, xu is the ReLU
activation function. Here, without loss of generality, we assume the width of each layer is equal to m.
Yet our theoretical results can be easily generalized to the setting with unequal width layers, as long
as the smallest width satisfies our overparameterization condition. We denote the collection of all
weight matrices as W “ tW1, . . . ,WLu.

Loss function. Given training dataset txi, yiui“1,...,n with input xi P Rd and output yi P t´1,`1u,
we define the training loss function as

LSpWq “
1

n

n
ÿ

i“1

LipWq,

where LipWq “ `
`

yifWpxiq
˘

“ log
`

1` expp´yifWpxiqq
˘

is defined as the cross-entropy loss.

Algorithms. We consider both GD and SGD with Gaussian random initialization. These two algo-
rithms are displayed in Algorithms 1 and 2 respectively. Specifically, the entries in W

p0q
1 , ¨ ¨ ¨ ,W

p0q
L´1

are generated independently from univariate Gaussian distributionNp0, 2{mq and the entries in W
p0q
L

are generated independently from Np0, 1{mq. For GD, we consider using the full gradient to update
the model parameters. For SGD, we use a new training data point in each iteration.

Note that our initialization method in Algorithms 1, 2 is the same as the widely used He initialization
(He et al., 2015). Our neural network parameterization is also consistent with the parameterization
used in prior work on NTK (Jacot et al., 2018; Allen-Zhu et al., 2019b; Du et al., 2019a; Arora et al.,
2019b; Cao and Gu, 2019).
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Algorithm 2 Stochastic gradient desecent (SGD) with random initialization

Input: Number of iterations n, step size η, initialization Wp0q

for i “ 1, 2, . . . , n do
Draw pxi, yiq from D and compute the corresponding gradient∇WLipW

pi´1qq.
Update Wpiq “Wpi´1q ´ η ¨∇WLipW

pi´1qq.
end for
Output: Randomly choose xW uniformly from tWp0q, . . . ,Wpn´1qu.

3 MAIN THEORY

In this section, we present the optimization and generalization guarantees of GD and SGD for learning
deep ReLU networks. We first make the following assumption on the training data points.
Assumption 3.1. All training data points satisfy }xi}2 “ 1, i “ 1, . . . , n.

This assumption has been widely made in many previous works (Allen-Zhu et al., 2019b;c; Du et al.,
2019b;a; Zou et al., 2019) in order to simplify the theoretical analysis. This assumption can be relaxed
to be upper bounded and lower bounded by some constant.

In the following, we give the definition of Neural Tangent Random Feature (NTRF) (Cao and Gu,
2019), which characterizes the functions learnable by over-parameterized ReLU networks.

Definition 3.2 (Neural Tangent Random Feature, (Cao and Gu, 2019)). Let Wp0q be the initialization
weights, and FWp0q,Wpxq “ fWp0qpxq ` x∇fWp0qpxq,W ´Wp0qy be a function with respect to
the input x. Then the NTRF function class is defined as follows

FpWp0q, Rq “
 

FWp0q,Wp¨q : W P BpWp0q, R ¨m´1{2q
(

.

The function class FWp0q,Wpxq consists of linear models over random features defined based on
the network gradients at the initialization. Therefore it captures the key “almost linear” property of
wide neural networks in the NTK regime (Lee et al., 2019; Cao and Gu, 2019). In this paper, we
use the NTRF function class as a reference class to measure the difficulty of a learning problem. In
what follows, we deliver our main theoretical results regarding the optimization and generalization
guarantees of learning deep ReLU networks. We study both GD and SGD with random initialization
(presented in Algorithms 1 and 2).

3.1 GRADIENT DESCENT

The following theorem establishes the optimization guarantee of GD for training deep ReLU networks
for binary classification.
Theorem 3.3. For δ,R ą 0, let εNTRF “ infFPFpWp0q,Rq n

´1
řn
i“1 `ryiF pxiqs be the minimum

training loss achievable by functions in FpWp0q, Rq. Then there exists

m˚pδ,R, Lq “ rO
`

polypR,Lq ¨ log4{3
pn{δq

˘

,

such that if m ě m˚pδ,R, Lq, with probability at least 1 ´ δ over the initialization, GD with step
size η “ ΘpL´1m´1q can train a neural network to achieve at most 3εNTRF training loss within
T “ O

`

L2R2ε´1
NTRF

˘

iterations.

Theorem 3.3 shows that the deep ReLU network trained by GD can compete with the best function in
the NTRF function class FpWp0q, Rq if the network width has a polynomial dependency in R and L
and a logarithmic dependency in n and 1{δ. Moreover, if the NTRF function class with R “ rOp1q
can learn the training data well (i.e., εNTRF is less than a small target error ε), a polylogarithmic (in
terms of n and ε´1) network width suffices to guarantee the global convergence of GD, which directly
improves over-paramterization condition in the most related work (Cao and Gu, 2019). Besides, we
remark here that this assumption on the NTRF function class can be easily satisfied when the training
data admits certain separability conditions, which we discuss in detail in Section 4.

Compared with the results in (Ji and Telgarsky, 2020) which give similar network width requirements
for two-layer networks, our result works for deep networks. Moreover, while Ji and Telgarsky (2020)
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essentially required all training data to be separable by a function in the NTRF function class with a
constant margin, our result does not require such data separation assumptions, and allows the NTRF
function class to misclassify a small proportion of the training data points∗.

We now characterize the generalization performance of neural networks trained by GD. We denote
L0´1
D pWq “ Epx,yq„Dr1tfWpxq ¨ y ă 0us as the expected 0-1 loss (i.e., expected error) of fWpxq.

Theorem 3.4. Under the same assumptions as Theorem 3.3, with probability at least 1´δ, the iterate
Wptq of Algorithm 1 satisfies that

L0´1
D pWptqq ď 2LSpW

ptqq ` rO

˜

4LL2R

c

m

n
^

˜

L3{2R
?
n
`
L11{3R4{3

m1{6

¸¸

`O

˜

c

logp1{δq

n

¸

for all t “ 0, . . . , T .

Theorem 3.4 shows that the test error of the trained neural network can be bounded by its training error
plus statistical error terms. Note that the statistical error terms is in the form of a minimum between
two terms 4LL2R

a

m{n and L3{2R{
?
n` L11{3R4{3{m1{6. Depending on the network width m,

one of these two terms will be the dominating term and diminishes for large n: (1) if m “ opnq,
the statistical error will be 4LL2R

a

m{n, and diminishes as n increases; and (2) if m “ Ωpnq, the
statistical error is L3{2R{

?
n` L11{3R4{3{m1{6, and again goes to zero as n increases. Moreover,

in this paper we have a specific focus on the setting m “ rOp1q, under which Theorem 3.4 gives a
statistical error of order rOpn´1{2q. This distinguishes our result from previous generalization bounds
for deep networks (Cao and Gu, 2020; 2019), which cannot be applied to the setting m “ rOp1q.
We note that for two-layer ReLU networks (i.e., L “ 2) Ji and Telgarsky (2020) proves a tighter
rOp1{n1{2q generalization error bound regardless of the neural networks width m, while our result
(Theorem 3.4), in the two-layer case, can only give rOp1{n1{2q generalization error bound when
m “ rOp1q or m “ rΩpn3q. However, different from our proof technique that basically uses the
(approximated) linearity of the neural network function, their proof technique largely relies on the
1-homogeneous property of the neural network, which restricted their theory in two-layer cases. An
interesting research direction is to explore whether a rOp1{n1{2q generalization error bound can be
also established for deep networks (regardless of the network width), which we will leave it as a
future work.

3.2 STOCHASTIC GRADIENT DESCENT

Here we study the performance of SGD for training deep ReLU networks. The following theorem
establishes a generalization error bound for the output of SGD.
Theorem 3.5. For δ,R ą 0, let εNTRF “ infFPFpWp0q,Rq n

´1
řn
i“1 `ryiF pxiqs be the minimum

training loss achievable by functions in FpWp0q, Rq. Then there exists

m˚pδ,R, Lq “ rO
`

polypR,Lq ¨ log4{3
pn{δq

˘

,

such that if m ě m˚pδ,R, Lq, with probability at least 1 ´ δ, SGD with step size η “ Θ
`

m´1 ¨

pLR2n´1ε´1
NTRF ^ L

´1q
˘

achieves

ErL0´1
D pxWqs ď

8L2R2

n
`

8 logp2{δq

n
` 24εNTRF,

where the expectation is taken over the uniform draw of xW from tWp0q, . . . ,Wpn´1qu.

For any ε ą 0, Theorem 3.5 gives a rOpε´1q sample complexity for deep ReLU networks trained with
SGD to achieveOpεNTRF`εq test error. Our result extends the result for two-layer networks proved in
(Ji and Telgarsky, 2020) to multi-layer networks. Theorem 3.5 also provides sharper results compared
with Allen-Zhu et al. (2019a); Cao and Gu (2019) in two aspects: (1) the sample complexity is
improved from n “ rOpε´2q to n “ rOpε´1q; and (2) the overparamterization condition is improved
from m ě polypε´1q to m “ rΩp1q.
∗A detailed discussion is given in Section 4.2.
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4 DISCUSSION ON THE NTRF CLASS

Our theoretical results in Section 3 rely on the radius (i.e.,R) of the NTRF function classFpWp0q, Rq
and the minimum training loss achievable by functions in FpWp0q, Rq, i.e., εNTRF. Note that a larger
R naturally implies a smaller εNTRF, but also leads to worse conditions on m. In this section, for
any (arbitrarily small) target error rate ε ą 0, we discuss various data assumptions studied in the
literature under which our results can lead to Opεq training/test errors, and specify the network width
requirement.

4.1 DATA SEPARABILITY BY NEURAL TANGENT RANDOM FEATURE

In this subsection, we consider the setting where a large fraction of the training data can be linearly
separated by the neural tangent random features. The assumption is stated as follows.

Assumption 4.1. There exists a collection of matrices U˚ “ tU˚1 , ¨ ¨ ¨ ,U
˚
Lu satisfying

řL
l“1 }U

˚
l }

2
F “ 1, such that for at least p1´ ρq fraction of training data we have

yix∇fWp0qpxiq,U
˚y ě m1{2γ,

where γ is an absolute positive constant† and ρ P r0, 1q.

The following corollary provides an upper bound of εNTRF under Assumption 4.1 for some R.

Proposition 4.2. Under Assumption 4.1, for any ε, δ ą 0, if R ě C
“

log1{2
pn{δq ` logp1{εq

‰

{γ for
some absolute constant C, then with probability at least 1´ δ,

εNTRF :“ inf
FPFpWp0q,Rq

n´1
n
ÿ

i“1

`
`

yiF pxiq
˘

ď ε` ρ ¨OpRq.

Proposition 4.2 covers the setting where the NTRF function class is allowed to misclassify training
data, while most of existing work typically assumes that all training data can be perfectly separated
with constant margin (i.e., ρ “ 0) (Ji and Telgarsky, 2020; Shamir, 2020). Our results show that
for sufficiently small misclassification ratio ρ “ Opεq, we have εNTRF “ rOpεq by choosing the
radius parameter R logarithimic in n, δ´1, and ε´1. Substituting this result into Theorems 3.3,
3.4 and 3.5, it can be shown that a neural network with width m “ polypL, logpn{δq, logp1{εqq

˘

suffices to guarantee good optimization and generalization performances for both GD and SGD.
Consequently, we can obtain that the bounds on the test error for GD and SGD are rOpn´1{2q and
rOpn´1q respectively.

4.2 DATA SEPARABILITY BY SHALLOW NEURAL TANGENT MODEL

In this subsection, we study the data separation assumption made in Ji and Telgarsky (2020) and show
that our results cover this particular setting. We first restate the assumption as follows.

Assumption 4.3. There exists up¨q : Rd Ñ Rd and γ ě 0 such that }upzq}2 ď 1 for all z P Rd, and

yi

ż

Rd

σ1pxz,xiyq ¨ xupzq,xiydµNpzq ě γ

for all i P rns, where µN p¨q denotes the standard normal distribution.

Assumption 4.3 is related to the linear separability of the gradients of the first layer parameters at
random initialization, where the randomness is replaced with an integral by taking the infinite width
limit. Note that similar assumptions have also been studied in (Cao and Gu, 2020; Nitanda and
Suzuki, 2019; Frei et al., 2019). The assumption made in (Cao and Gu, 2020; Frei et al., 2019) uses
gradients with respect to the second layer weights instead of the first layer ones. In the following, we
mainly focus on Assumption 4.3, while our result can also be generalized to cover the setting in (Cao
and Gu, 2020; Frei et al., 2019).

†The factor m1{2 is introduced here since }∇Wp0qfpxiq}F is typically of order Opm1{2
q.
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In order to make a fair comparison, we reduce our results for multilayer networks to the two-layer
setting. In this case, the neural network function takes form

fWpxq “ m1{2W2σpW1xq.

Then we provide the following proposition, which states that Assumption 4.3 implies a certain choice
of R “ rOp1q such the the minimum training loss achieved by the function in the NTRF function
class FpWp0q, Rq satisfies εNTRF “ Opεq, where ε is the target error.
Proposition 4.4. Suppose the training data satisfies Assumption 4.3. For any ε, δ ą 0, let R “

C
“

logpn{δq ` logp1{εq
‰

{γ for some large enough absolute constant C. If the neural network width
satisfies m “ Ω

`

logpn{δq{γ2
˘

, then with probability at least 1 ´ δ, there exist FWp0q,Wpxiq P

FpWp0q, Rq such that `
`

yi ¨ FWp0q,Wpxiq
˘

ď ε,@i P rns.

Proposition 4.4 shows that under Assumption 4.3, there exists FWp0q,Wp¨q P FpWp0q, Rq with

R “ rOp1{γq such that the cross-entropy loss of FWp0q,Wp¨q at each training data point is bounded by
ε. This implies that εNTRF ď ε. Moreover, by applying Theorem 3.3 with L “ 2, the condition on the
neural network width becomes m “ rΩp1{γ8q‡, which matches the results proved in Ji and Telgarsky
(2020). Moreover, plugging these results on m and εNTRF into Theorems 3.4 and 3.5, we can conclude
that the bounds on the test error for GD and SGD are rOpn´1{2q and rOpn´1q respectively.

4.3 CLASS-DEPENDENT DATA NONDEGENERATION

In previous subsections, we have shown that under certain data separation conditions εNTRF can be
sufficiently small while the corresponding NTRF function class has R of order rOp1q. Thus neural
networks with polylogarithmic width enjoy nice optimization and generalization guarantees. In this
part, we consider the following much milder data separability assumption made in Zou et al. (2019).
Assumption 4.5. For all i ‰ i1 if yi ‰ yi1 , then }xi ´ xj}2 ě φ for some absolute constant φ.

In contrast to the conventional data nondegeneration assumption (i.e., no duplicate data points) made
in Allen-Zhu et al. (2019b); Du et al. (2019b;a); Zou and Gu (2019)§, Assumption 4.5 only requires
that the data points from different classes are nondegenerate, thus we call it class-dependent data
nondegeneration.

We have the following proposition which shows that Assumption 4.5 also implies the existence of a
good function that achieves ε training error, in the NTRF function class with a certain choice of R.
Proposition 4.6. Under Assumption 4.5, if

R “ Ω
`

n3{2φ´1{2 logpnδ´1ε´1q
˘

, m “ rΩ
`

L22n12φ´4
˘

,

we have εNTRF ď ε with probability at least 1´ δ.

Proposition 4.6 suggests that under Assumption 4.5, in order to guarantee εNTRF ď ε, the size of
NTRF function class needs to be Ωpn3{2q. Plugging this into Theorems 3.4 and 3.5 leads to vacuous
bounds on the test error. This makes sense since Assumption 4.5 basically covers the “random label”
setting, which is impossible to be learned with small generalization error. Moreover, we would like
to point out our theoretical analysis leads to a sharper over-parameterization condition than that
proved in Zou et al. (2019), i.e., m “ rΩ

`

n14L16φ´4`n12L16φ´4ε´1
˘

, if the network depth satisfies
L ď rOpn1{3 _ ε´1{6q.

5 PROOF SKETCH OF THE MAIN THEORY

In this section, we introduce a key technical lemma in Section 5.1, based on which we provide a
proof sketch of Theorems 3.3. The full proof of all our results can be found in the appendix.
‡We have shown in the proof of Theorem 3.3 that m “ rΩpR8

q (see (A.1) for more detail).
§Specifically, Allen-Zhu et al. (2019b); Zou and Gu (2019) require that any two data points (rather than data

points from different classes) are separated by a positive distance. Zou and Gu (2019) shows that this assumption
is equivalent to those made in Du et al. (2019b;a), which require that the composite kernel matrix is strictly
positive definite.
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5.1 A KEY TECHNICAL LEMMA

Here we introduce a key technical lemma used in the proof of Theorem 3.3.

Our proof is based on the key observation that near initialization, the neural network function can be
approximated by its first-order Taylor expansion. In the following, we first give the definition of the
linear approximation error in a τ -neighborhood around initialization.

εapppτq :“ sup
i“1,...,n

sup
W1,WPBpWp0q,τq

ˇ

ˇfW1pxiq ´ fWpxiq ´ x∇fWpxiq,W1 ´Wy
ˇ

ˇ.

If all the iterates of GD stay inside a neighborhood around initialization with small linear approxima-
tion error, then we may expect that the training of neural networks should be similar to the training of
the corresponding linear model, where standard optimization techniques can be applied. Motivated
by this, we also give the following definition on the gradient upper bound of neural networks around
initialization, which is related to the Lipschitz constant of the optimization objective function.

Mpτq :“ sup
i“1,...,n

sup
l“1,...,L

sup
WPBpWp0q,τq

}∇Wl
fWpxiq}F .

By definition, we can choose W˚ P BpWp0q, Rm´1{2q such that n´1
řn
i“1 `

`

yiFWp0q,W˚pxiq
˘

“

εNTRF. Then we have the following lemma.
Lemma 5.1. Set η “ OpL´1Mpτq´2q. Suppose that W˚ P BpWp0q, τq and Wptq P BpWp0q, τq
for all 0 ď t ď t1 ´ 1. Then it holds that

1

t1

t1´1
ÿ

t“0

LSpW
ptqq ď

}Wp0q ´W˚}2F ´ }W
pt1q ´W˚}2F ` 2t1ηεNTRF

t1η
`

3
2 ´ 4εapppτq

˘ .

Lemma 5.1 plays a central role in our proof. In specific, if Wptq P BpWp0q, τq for all t ď t1, then
Lemma 5.1 implies that the average training loss is in the same order of εNTRF as long as the linear
approximation error εapppτq is bounded by a positive constant. This is in contrast to the proof in Cao
and Gu (2019), where εapppτq appears as an additive term in the upper bound of the training loss,
thus requiring εapppτq “ OpεNTRFq to achieve the same error bound as in Lemma 5.1. Since we can
show that εapp “ rOpm´1{6q (See Section A.1), this suggests that m “ rΩp1q is sufficient to make the
average training loss in the same order of εNTRF.

Compared with the recent results for two-layer networks by Ji and Telgarsky (2020), Lemma 5.1
is proved with different techniques. In specific, the proof by Ji and Telgarsky (2020) relies on the
1-homogeneous property of the ReLU activation function, which limits their analysis to two-layer
networks with fixed second layer weights. In comparison, our proof does not rely on homogeneity, and
is purely based on the linear approximation property of neural networks and some specific properties
of the loss function. Therefore, our proof technique can handle deep networks, and is potentially
applicable to non-ReLU activation functions and other network architectures (e.g, Convolutional
neural networks and Residual networks).

5.2 PROOF SKETCH OF THEOREM 3.3

Here we provide a proof sketch of Theorem 3.3. The proof consists of two steps: (i) showing that
all T iterates stay close to initialization, and (ii) bounding the empirical loss achieved by gradient
descent. Both of these steps are proved based on Lemma 5.1.

Proof sketch of Theorem 3.3. Recall that we choose W˚ P BpWp0q, Rm´1{2q such that
n´1

řn
i“1 `

`

yiFWp0q,W˚pxiq
˘

“ εNTRF. We set τ “ rOpL1{2m´1{2Rq, which is chosen slightly
larger than m´1{2R since Lemma 5.1 requires the region BpWp0q, τq to include both W˚ and
tWptqut“0,...,t1 . Then by Lemmas 4.1 and B.3 in Cao and Gu (2019) we know that εapppτq “
rOpτ4{3m1{2L3q “ rOpR4{3L11{3m´1{6q. Therefore, we can set m “ rΩpR8L22q to ensure that
εapppτq ď 1{8.

Then we proceed to show that all iterates stay inside the region BpWp0q, τq. Since the L.H.S. of
Lemma 5.1 is strictly positive and εapppτq ď 1{8, we have for all t ď T ,

}Wp0q ´W˚}2F ´ }W
ptq ´W˚}2F ě ´2tηεNTRF,

8
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which gives an upper bound of }Wptq ´W˚}F . Then by the choice of η, T , triangle inequality,
and a simple induction argument, we see that }Wptq ´Wp0q}F ď m´1{2R `

?
2TηεNTRF “

rOpL1{2m´1{2Rq, which verifies that Wptq P BpWp0q, τq for t “ 0, . . . , T ´ 1.

The second step is to show that GD can find a neural network with at most 3εNTRF training loss within
T iterations. To show this, by the bound given in Lemma 5.1 with εapp ď 1{8, we drop the terms
}Wptq ´W˚}2F and rearrange the inequality to obtain

1

T

T´1
ÿ

t“0

LSpW
ptqq ď

1

ηT
}Wp0q ´W˚}2F ` 2εNTRF.

We see that T is large enough to ensure that the first term in the bound above is smaller than εNTRF.
This implies that the best iterate among Wp0q, . . . ,WpT´1q achieves an empirical loss at most
3εNTRF.

6 CONCLUSION

In this paper, we established the global convergence and generalization error bounds of GD and SGD
for training deep ReLU networks for the binary classification problem. We show that a network width
condition that is polylogarithmic in the sample size n and the inverse of target error ε´1 is sufficient
to guarantee the learning of deep ReLU networks. Our results resolve an open question raised in Ji
and Telgarsky (2020).
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A PROOF OF MAIN THEOREMS

In this section we provide the full proof of Theorems 3.3, 3.4 and 3.5.

A.1 PROOF OF THEOREM 3.3

We first provide the following lemma which is useful in the subsequent proof.
Lemma A.1 (Lemmas 4.1 and B.3 in Cao and Gu (2019)). There exists an absolute constant κ such
that, with probability at least 1 ´ OpnL2q expr´Ωpmτ2{3Lqs, for any τ ď κL´6rlogpmqs´3{2, it
holds that

εapppτq ď rO
`

τ4{3L3m1{2
˘

, Mpτq ď rOp
?
mq.

Proof of Theorem 3.3. Recall that W˚ is chosen such that

1

n

n
ÿ

i“1

`
`

yiFWp0q,W˚pxiq
˘

“ εNTRF

and W˚ P BpWp0q, Rm´1{2q. Note that to apply Lemma 5.1, we need the region BpWp0q, τq to in-
clude both W˚ and tWptqut“0,...,t1 . This motivates us to set τ “ rOpL1{2m´1{2Rq, which is slightly
larger than m´1{2R. With this choice of τ , by Lemma A.1 we have εapppτq “ rOpτ4{3m1{2L3q “

rOpR4{3L11{3m´1{6q. Therefore, we can set

m “ rΩpR8L22q (A.1)

to ensure that εapppτq ď 1{8, where rΩp¨q hides polylogarithmic dependencies on network depth L,
NTRF function class size R, and failure probability parameter δ. Then by Lemma 5.1, we have with
probability at least 1´ δ, we have

}Wp0q ´W˚}2F ´ }W
pt1q ´W˚}2F ě η

t1´1
ÿ

t“0

LSpW
ptqq ´ 2t1ηεNTRF (A.2)

as long as Wp0q, . . . ,Wpt1´1q P BpWp0q, τq. In the following proof we choose η “ ΘpL´1m´1q

and T “ rLR2m´1η´1ε´1
NTRFs.

We prove the theorem by two steps: 1) we show that all iterates tWp0q, ¨ ¨ ¨ ,WpT qu will stay inside
the region BpWp0q, τq; and 2) we show that GD can find a neural network with at most 3εNTRF
training loss within T iterations.

All iterates stay inside BpWp0q, τq. We prove this part by induction. Specifically, given t1 ď T , we
assume the hypothesis Wptq P BpWp0q, τq holds for all t ă t1 and prove that Wpt1q P BpWp0q, τq.
First, it is clear that Wp0q P BpWp0q, τq. Then by (A.2) and the fact that LSpWq ě 0, we have

}Wpt1q ´W˚}2F ď }W
p0q ´W˚}2F ` 2ηt1εNTRF

Note that T “ rLR2m´1η´1ε´1
NTRFs and W˚ P BpWp0q, R ¨m´1{2q, we have

L
ÿ

l“1

}W
pt1q
l ´W˚

l }
2
F “ }W

pt1q ´W˚}2F ď CLR2m´1,

where C ě 4 is an absolute constant. Therefore, by triangle inequality, we further have the following
for all l P rLs,

}W
pt1q
l ´W

p0q
l }F ď }W

pt1q
l ´W˚

l }F ` }W
p0q
l ´W˚

l }F

ď
?
CLRm´1{2 `Rm´1{2

ď 2
?
CLRm´1{2. (A.3)

Therefore, it is clear that }Wpt1q
l ´W

p0q
l }F ď 2

?
CLRm´1{2 ď τ based on our choice of τ

previously. This completes the proof of the first part.
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Convergence of gradient descent. (A.2) implies

}Wp0q ´W˚}2F ´ }W
pT q ´W˚}2F ě η

ˆ T´1
ÿ

t“0

LSpW
ptqq ´ 2TεNTRF

˙

.

Dividing by ηT on the both sides, we get

1

T

T´1
ÿ

t“0

LSpW
ptqq ď

}Wp0q ´W˚}2F

ηT
` 2εNTRF ď

LR2m´1

ηT
` 2εNTRF ď 3εNTRF,

where the second inequality is by the fact that W˚ P BpWp0q, R ¨ m´1{2q and the last in-
equality is by our choices of T and η which ensure that Tη ě LR2m´1ε´1

NTRF. Notice that
T “ rLR2m´1η´1ε´1

NTRFs “ OpL2R2ε´1
NTRFq. This completes the proof of the second part, and

we are able to complete the proof.

A.2 PROOF OF THEOREM 3.4

Following Cao and Gu (2020), we first introduce the definition of surrogate loss of the network,
which is defined by the derivative of the loss function.

Definition A.2. We define the empirical surrogate error ESpWq and population surrogate error
EDpWq as follows:

ESpWq :“ ´
1

n

n
ÿ

i“1

`1
“

yi ¨ fWpxiq
‰

, EDpWq :“ Epx,yq„D
 

´ `1
“

y ¨ fWpxq
‰(

.

The following lemma gives uniform-convergence type of results for ESpWq utilizing the fact that
´`1p¨q is bounded and Lipschitz continuous.

Lemma A.3. For any rR, δ ą 0, suppose that m “ rΩpL12
rR2q ¨ rlogp1{δqs3{2. Then with probability

at least 1´ δ, it holds that

|EDpWq ´ ESpWq| ď rO

˜

min

#

4LL3{2
rR

c

m

n
,
L rR
?
n
`
L3

rR4{3

m1{6

+¸

`O

˜

c

logp1{δq

n

¸

for all W P BpWp0q, rR ¨m´1{2q

We are now ready to prove Theorem 3.4, which combines the trajectory distance analysis in the proof
of Theorem 3.3 with Lemma A.3.

Proof of Theorem 3.4. With exactly the same proof as Theorem 3.3, by (A.3) and induction we have
Wp0q,Wp1q, . . . ,WpT q P BpWp0q, rRm´1{2q with rR “ Op

?
LRq. Therefore by Lemma A.3, we

have

|EDpWptqq ´ ESpWptqq| ď rO

˜

min

#

4LL2R

c

m

n
,
L3{2R
?
n
`
L11{3R4{3

m1{6

+¸

`O

˜

c

logp1{δq

n

¸

for all t “ 0, 1, . . . , T . Note that we have 1tz ă 0u ď ´2`1pzq. Therefore,

EL0´1
D pWptqq ď 2EDpWptqq

ď 2LSpW
ptqq ` rO

˜

min

#

4LL2R

c

m

n
,
L3{2R
?
n
`
L11{3R4{3

m1{6

+¸

`O

˜

c

logp1{δq

n

¸

for t “ 0, 1, . . . , T , where the last inequality is by ESpWq ď LSpWq because ´`1pzq ď `pzq for all
z P R. This finishes the proof.
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A.3 PROOF OF THEOREM 3.5

In this section we provide the full proof of Theorem 3.5. We first give the following result, which is
the counterpart of Lemma 5.1 for SGD. Again we pick W˚ P BpWp0q, Rm´1{2q such that the loss
of the corresponding NTRF model FWp0q,W˚pxq achieves εNTRF.

Lemma A.4. Set η “ OpL´1Mpτq´2q. Suppose that W˚ P BpWp0q, τq and Wpn1q P BpWp0q, τq
for all 0 ď n1 ď n´ 1. Then it holds that

}Wp0q ´W˚}2F ´ }W
pn1q ´W˚}2F ě

´3

2
´ 4εapppτq

¯

η
n1
ÿ

i“1

LipW
pi´1qq ´ 2nηεNTRF.

We introduce a surrogate loss EipWq “ ´`1ryi ¨ fWpxiqs and its population version EDpWq “

Epx,yq„Dr´`1ry ¨ fWpxqss, which have been used in (Ji and Telgarsky, 2018; Cao and Gu, 2019;
Ji and Telgarsky, 2020). Our proof is based on the application of Lemma A.4 and an online-to-
batch conversion argument (Cesa-Bianchi et al., 2004; Cao and Gu, 2019; Ji and Telgarsky, 2020).
We introduce a surrogate loss EipWq “ ´`1ryi ¨ fWpxiqs and its population version EDpWq “

Epx,yq„Dr´`1py ¨ fWpxqqs, which have been used in (Ji and Telgarsky, 2018; Cao and Gu, 2019;
Nitanda and Suzuki, 2019; Ji and Telgarsky, 2020).

Proof of Theorem 3.5. Recall that W˚ is chosen such that

1

n

n
ÿ

i“1

`
`

yiFWp0q,W˚pxiq
˘

“ εNTRF

and W˚ P BpWp0q, Rm´1{2q. To apply Lemma A.4, we need the region BpWp0q, τq to include
both W˚ and tWptqut“0,...,t1 . This motivates us to set τ “ rOpL1{2m´1{2Rq, which is slightly
larger than m´1{2R. With this choice of τ , by Lemma A.1 we have εapppτq “ rOpτ4{3m1{2L3q “

rOpR4{3L11{3m´1{6q. Therefore, we can set

m “ rΩpR8L22q

to ensure that εapppτq ď 1{8, where rΩp¨q hides polylogarithmic dependencies on network depth L,
NTRF function class size R, and failure probability parameter δ.

Then by Lemma A.4, we have with probability at least 1´ δ,

}Wp0q ´W˚}2F ´ }W
pn1q ´W˚}2F ě η

n1
ÿ

i“1

LipW
pi´1qq ´ 2nηεNTRF (A.4)

as long as Wp0q, . . . ,Wpn1´1q P BpWp0q, τq.

We then prove Theorem 3.5 in two steps: 1) all iterates stay inside BpWp0q, τq; and 2) convergence
of online SGD.

All iterates stay inside BpWp0q, τq. Similar to the proof of Theorem 3.3, we prove this part by
induction. Assuming Wpiq satisfies Wpiq P BpWp0q, τq for all i ď n1 ´ 1, by (A.4), we have

}Wpn1q ´W˚}2F ď }W
p0q ´W˚}2F ` 2nηεNTRF

ď LR2 ¨m´1 ` 2nηεNTRF,

where the last inequality is by W˚ P BpWp0q, Rm´1{2q. Then by triangle inequality, we further get

}W
pn1q
l ´W

p0q
l }F ď }W

pn1q
l ´W˚

l }F ` }W
˚
l ´W

p0q
l }F

ď }Wpn1q ´W˚}F ` }W
˚
l ´W

p0q
l }F

ď Op
?
LRm´1{2 `

?
nηεNTRFq.

Then by our choices of η “ Θ
`

m´1 ¨ pLR2n´1ε´1
NTRF ^ L´1q

˘

, we have }Wpn1q ´Wp0q}F ď

2
?
LRm´1{2 ď τ . This completes the proof of the first part.
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Convergence of online SGD. By (A.4), we have

}Wp0q ´W˚}2F ´ }W
pnq ´W˚}2F ě η

ˆ n
ÿ

i“1

LipW
pi´1qq ´ 2nεNTRF

˙

.

Dividing by ηn on the both sides and rearranging terms, we get

1

n

n
ÿ

i“1

LipW
pi´1qq ď

}Wp0q ´W˚}2F ´ }W
pnq ´W˚}2F

ηn
` 2εNTRF ď

L2R2

n
` 3εNTRF,

where the second inequality follows from facts that W˚ P BpWp0q, R ¨m´1{2q and η “ Θ
`

m´1 ¨

pLR2n´1ε´1
NTRF ^L

´1q
˘

. By Lemma 4.3 in (Ji and Telgarsky, 2020) and the fact that EipWpi´1qq ď

LipW
pi´1qq, we have

1

n

n
ÿ

i“1

L0´1
D pWpi´1qq ď

2

n

n
ÿ

i“1

EDpWpi´1qq

ď
8

n

n
ÿ

i“1

EipWpi´1qq `
8 logp1{δq

n

ď
8L2R2

n
`

8 logp1{δq

n
` 24εNTRF.

This completes the proof of the second part.

B PROOF OF RESULTS IN SECTION 4

B.1 PROOF OF PROPOSITION 4.2

We first provide the following lemma which gives an upper bound of the neural network output at the
initialization.
Lemma B.1 (Lemma 4.4 in Cao and Gu (2019)). Under Assumption 3.1, if m ě C̄L logpnL{δq
with some absolute constant C̄, with probability at least 1´ δ, we have

|fWp0qpxiq| ď C
a

logpn{δq

for some absolute constant C.

Proof of Proposition 4.2. Under Assumption 4.1, we can find a collection of matrices U˚ “

tU˚1 , ¨ ¨ ¨ ,U
˚
Lu with

řL
l“1 }U

˚
l }

2
F “ 1 such that yix∇fWp0qpxiq,U

˚y ě m1{2γ for at least 1 ´ ρ

fraction of the training data. By Lemma B.1, for all i P rns we have |fWp0qpxiq| ď C
a

logpn{δq for
some absolute constant C. Then for any positive constant λ, we have for at least 1´ ρ portion of the
data,

yi
`

fWp0qpxiq ` x∇fWp0q , λU˚y
˘

ě m1{2λγ ´ C
a

logpn{δq.

For this fraction of data, we can set

λ “
C 1

“

log1{2
pn{δq ` logp1{εq

‰

m1{2γ
,

where C 1 is an absolute constant, and get

m1{2λγ ´ C
a

logpn{δq ě logp1{εq.

Now we let W˚ “ Wp0q ` λU˚. By the choice of R in Proposition 4.2, we have W˚ P

BpWp0q, R ¨ m´1{2q. The above inequality implies that for at least 1 ´ ρ fraction of data, we
have `

`

yiFWp0q,W˚pxiq
˘

ď ε. For the rest data, we have

yi
`

fWp0qpxiq ` x∇fWp0q , λU˚y
˘

ě ´C
a

logpn{δq ´ λ}∇fWp0q}
2
2 ě ´C1R
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for some absolute positive constant C1, where the last inequality follows from fact that }∇fWp0q}2 “

rOpm1{2q (see Lemma A.1 for detail). Then note that we use cross-entropy loss, it follows that for
this fraction of training data, we have `

`

yiFWp0q,W˚pxiq
˘

ď C2R for some constant C2. Combining
the results of these two fractions of training data, we can conclude

εNTRF ď n´1
n
ÿ

i“1

`
`

yiFWp0q,W˚pxiq
˘

ď p1´ ρqε` ρ ¨OpRq

This completes the proof.

B.2 PROOF OF PROPOSITION 4.4

Proof of Proposition 4.4. We are going to prove that Assumption 4.3 implies the existence of a good
function in the NTRF function class.

By Definition 3.2 and the definition of cross-entropy loss, our goal is to prove that there exists
a collection of matrices W “ tW1,W2u satisfying maxt}W1 ´W

p0q
1 }F , }W2 ´W

p0q
2 }2u ď

R ¨m´1{2 such that

yi ¨
“

fWp0qpxiq ` x∇W1
fWp0q ,W1 ´W

p0q
1 y ` x∇W2

fWp0q ,W2 ´W
p0q
2 y

‰

ě logp2{εq.

We first consider∇W1
fWp0qpxiq, which has the form

p∇W1
fWp0qpxiq

˘

j
“ m1{2 ¨ w

p0q
2,j ¨ σ

1pxw
p0q
1,j ,xiyq ¨ xi.

Note that wp0q2,j and w
p0q
1,j are independently generated from N p0, 1{mq and N p0, 2I{mq respectively,

thus we have Pp|wp0q2,j | ě 0.47m´1{2q ě 1{2. By Hoeffeding’s inequality, we know that with
probability at least 1 ´ expp´m{8q, there are at least m{4 nodes, whose union is denoted by S,
satisfying |wp0q2,j | ě 0.47m´1{2. Then we only focus on the nodes in the set S. Note that Wp0q

1 and

W
p0q
2 are independently generated. Then by Assumption 4.3 and Hoeffeding’s inequality, there exists

a function up¨q : Rd Ñ Rd such that with probability at least 1´ δ1,

1

|S|
ÿ

jPS
yi ¨ xupw

p0q
1,j q,xiy ¨ σ

1pxw
p0q
1,j ,xiyq ě γ ´

d

2 logp1{δ1q

|S|
.

Define vj “ upw
p0q
1,j q{w2,j if |w2,j | ě 0.47m´1{2 and vj “ 0 otherwise. Then we have

m
ÿ

j“1

yi ¨ w
p0q
2,j ¨ xvj ,xiy ¨ σ

1pxw
p0q
1,j ,xiyq “

ÿ

jPS
yi ¨ xupw

p0q
1,j q,xiy ¨ σ

1pxw
p0q
1,j ,xiyq

ě |S|γ ´
a

2|S| logp1{δ1q.

Set δ “ 2nδ1 and apply union bound, we have with probability at least 1´ δ{2,
m
ÿ

j“1

yi ¨ w
p0q
2,j ¨ xvj ,xiy ¨ σ

1pxw
p0q
1,j ,xiyq ě |S|γ ´

a

2|S| logp2n{δq.

Therefore, note that with probability at least 1 ´ expp´m{8q, we have |S| ě m{4. Moreover, in
Assumption 4.3, by yi P t˘1u and |σ1p¨q|, }up¨q}2, }xi}2 ď 1 for i “ 1, . . . , n, we see that γ ď 1.
Then if m ě 32 logpn{δq{γ2, with probability at least 1´ δ{2´ exp

`

´ 4 logpn{δq{γ2
˘

ě 1´ δ,
m
ÿ

j“1

yi ¨ w
p0q
2,j ¨ xvj ,xiy ¨ σ

1pxw
p0q
1,j ,xiyq ě |S|γ{2.

Let U “ pv1,v2, ¨ ¨ ¨ ,vmq
J{

a

m|S|, we have

yix∇W1
fWp0qpxiq,Uy “

1
a

|S|

m
ÿ

j“1

yi ¨ w
p0q
2,j ¨ xvj ,xiy ¨ σ

1pxw
p0q
1,j ,xiyq ě

a

|S|γ
2

ě
m1{2γ

4
,
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where the last inequality is by the fact that |S| ě m{4. Besides, note that by concentration and
Gaussian tail bound, we have |fWp0qpxiq| ď C logpn{δq for some absolute constant C. Therefore,
let W1 “W

p0q
1 ` 4

`

logp2{εq ` C logpn{δq
˘

m´1{2U{γ and W2 “W
p0q
2 , we have

yi ¨
“

fWp0qpxiq ` x∇W1fWp0q ,W1 ´W
p0q
1 y ` x∇W2fWp0q ,W2 ´W

p0q
2 y

‰

ě logp2{εq. (B.1)

Note that }up¨q}2 ď 1, we have }U}F ď 1{0.47 ď 2.2. Therefore, we further have }W1 ´

W
p0q
1 }F ď 8.8γ´1

`

logp2{εq ` C logpn{δq
˘

¨ m´1{2. This implies that W P BpWp0q, Rq with
R “ O

`

log
`

n{pδεq
˘

{γ
˘

. Applying the inequality `plogp2{εqq ď ε on (B.1) gives

`pyi ¨ FWp0q,Wpxiqq ď ε

for all i “ 1, . . . , n. This completes the proof.

B.3 PROOF OF PROPOSITION 4.6

Based on our theoretical analysis, the major goal is to show that there exist certain choices of R
and m such that the best NTRF model in the function class FpWp0q, Rq can achieve ε training
error. In this proof, we will prove a stronger results by showing that given the quantities of R
and m specificed in Proposition 4.6, there exists a NTRF model with parameter W˚ that satisfies
n´1

řn
i“1 `

`

yiFWp0q,W˚pxiq
˘

ď ε.

In order to do so, we consider training the NTRF model via a different surrogate loss function.
Specifically, we consider squared hinge loss r`pxq “

`

maxtλ´ x, 0u
˘2

, where λ denotes the target
margin. In the later proof, we choose λ “ logp1{εq ` 1 such that the condition r`pxq ď 1 can
guarantee that x ě logpεq. Moreover, we consider using gradient flow, i.e., gradient descent with
infinitesimal step size, to train the NTRF model. Therefore, in the remaining part of the proof, we
consider optimizing the NTRF parameter W with the loss function

rLSpWq “
1

n

n
ÿ

i“1

r`
`

yiFWp0q,Wpxiq
˘

.

Moreover, for simplicity, we only consider optimizing parameter in the last hidden layer (i.e., WL´1).
Then the gradient flow can be formulated as

dWL´1ptq

dt
“ ´∇WL´1

rLSpWptqq,
dWlptq

dt
“ 0 for any l ‰ L´ 1.

Note that the NTRF model is a linear model, thus by Definition 3.2, we have

∇WL´1
rLSpWptqq “ yir`

1
`

yiFWp0q,Wptqpxiq
˘

¨∇WL´1
FWp0q,Wptqpxiq

“ yir`
1
`

yiFWp0q,Wptqpxiq
˘

¨∇
W
p0q
L´1

fWp0qpxiq. (B.2)

Then it is clear that∇WL´1
rLSpWptqq has fixed direction throughout the optimization.

In order to prove the convergence of gradient flow and characterize the quantity of R, We first provide
the following lemma which gives an upper bound of the NTRF model output at the initialization.

Then we provide the following lemma which characterizes a lower bound of the Frobenius norm of
the partial gradient∇WL´1

rLSpWq.

Lemma B.2 (Lemma B.5 in Zou et al. (2019)). Under Assumptions 3.1 and 4.5, if m “ rΩpn2φ´1q,
then for all t ě 0, with probability at least 1´ exp

`

´Opmφ{nq
˘

, there exist a positive constant C
such that

}∇WL´1
rLSpWptqq}2F ě

Cmφ

n5

„ n
ÿ

i“1

r`1
`

yiFWp0q,Wptqpxiq
˘

2

.

We slightly modified the original version of this lemma since we use different models (we consider
NTRF model while Zou et al. (2019) considers neural network model). However, by (B.2), it is clear
that the gradient ∇rLSpWq can be regarded as a type of the gradient for neural network model at the
initialization (i.e.,∇WL´1

LSpW
p0qq) is valid. Now we are ready to present the proof.
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Proof of Proposition 4.6. Recall that we only consider training the last hidden weights, i.e., WL´1,
via gradient flow with squared hinge loss, and our goal is to prove that gradient flow is able to
find a NTRF model within the function class FpWp0q, Rq around the initialization, i.e., achieving
n´1

řn
i“1 `

`

yiFWp0q,W˚pxiq
˘

ď ε. Let Wptq be the weights at time t, gradient flow implies that

drLSpWptqq

dt
“ ´}∇WL´1

rLSpWptqq}2F ď ´
Cmφ

n5

ˆ n
ÿ

i“1

r`1
`

yiFWp0q,Wptqpxiq
˘

˙2

“
4CmφrLSpWptqq

n3
,

where the first equality is due to the fact that we only train the last hidden layer, the first inequality

is by Lemma B.2 and the second equality follows from the fact that r`1p¨q “ ´2

b

r`p¨q. Solving the
above inequality gives

rLSpWptqq ď rLSpWp0qq ¨ exp

ˆ

´
4Cmφt

n3

˙

. (B.3)

Then, set T “ O
`

n3m´1φ´1 ¨ logprLSpWp0qq{ε1q
˘

and ε1 “ 1{n, we have rLSpWptqq ď ε1. Then
it follows that r`

`

yiFWp0q,Wptqpxiq
˘

ď 1, which implies that yiFWp0q,Wptqpxiq ě logpεq and thus
n´1

řn
i“1 `

`

yiFWp0q,W˚pxiq
˘

ď ε. Therefore, WpT q is exactly the NTRF model we are looking
for.

The next step is to characterize the distance between WpT q and Wp0q in order to characterize the
quantity of R. Note that }∇WL´1

rLSpWptqq}2F ě 4CmφrLSpWptqq{n3, we have

d

b

rLSpWptqq

dt
“ ´

}∇WL´1
rLSpWptqq}2F

2

b

rLSpWptqq
ď ´}∇WL´1

rLSpWptqq}F ¨
C1{2m1{2φ1{2

n3{2
.

Taking integral on both sides and rearranging terms, we have
ż T

t“0

}∇WL´1
rLSpWptqq}Fdt ď

n3{2

C1{2m1{2φ1{2
¨

ˆ

b

rLSpWp0qq ´

b

rLSpWptqq

˙

.

Note that the L.H.S. of the above inequality is an upper bound of }Wptq ´Wp0q}F , we have for any
t ě 0,

}Wptq ´Wp0q}F ď
n3{2

C1{2m1{2φ1{2
¨

b

rLSpWp0qq “ O
ˆ

n3{2 log
`

n{pδεq
˘

m1{2φ1{2

˙

,

where the second inequality is by Lemma B.1 and our choice of λ “ logp1{εq ` 1. This implies that
there exists a point W˚ within the class FpWp0q, Rq with

R “ O
ˆ

n3{2 log
`

n{pδεq
˘

φ1{2

˙

such that

εNTRF :“ n´1
n
ÿ

i“1

`
`

yiFWp0q,W˚pxiq
˘

ď ε.

Then by Theorem 3.3, and, more specifically, (A.1), we can compute the minimal required neural
network width as follows,

m “ rΩpR8L22q “ rΩ

˜

L22n12

φ4

¸

.

This completes the proof.

C PROOF OF TECHNICAL LEMMAS

Here we provide the proof of Lemmas 5.1, A.3 and A.4.
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C.1 PROOF OF LEMMA 5.1

The detailed proof of Lemma 5.1 is given as follows.

Proof of Lemma 5.1. Based on the update rule of gradient descent, i.e., Wpt`1q “ Wptq ´

η∇WLSpW
ptqq, we have the following calculation.

}Wptq ´W˚}2F ´ }W
pt`1q ´W˚}2F

“
2η

n

n
ÿ

i“1

xWptq ´W˚,∇WLipW
ptqqy

loooooooooooooooooooooomoooooooooooooooooooooon

I1

´ η2
L
ÿ

l“1

}∇Wl
LSpW

ptqq}2F

loooooooooooooomoooooooooooooon

I2

, (C.1)

where the equation follows from the fact that LSpWptqq “ n´1
řn
i“1 LipW

ptqq. In what follows,
we first bound the term I1 on the R.H.S. of (C.1) by approximating the neural network functions with
linear models. By assumption, for t “ 0, . . . , t1 ´ 1, Wptq,W˚ P BpWp0q, τq. Therefore by the
definition of εapppτq,

yi ¨ x∇fWptqpxiq,W
ptq ´W˚y ď yi ¨

`

fWptqpxiq ´ fW˚pxiq
˘

` εapppτq (C.2)

Moreover, we also have

0 ď yi ¨
`

fW˚pxiq ´ fWp0qpxiq ´ x∇fWp0qpxiq,W
˚ ´Wp0qy

˘

` εapppτq

“ yi ¨
`

fW˚pxiq ´ FWp0q,W˚pxiq
˘

` εapppτq, (C.3)

where the equation follows by the definition of FWp0q,W˚pxq. Adding (C.3) to (C.2) and canceling
the terms yi ¨ fW˚pxiq, we obtain that

yi ¨ x∇fWptqpxiq,W
ptq ´W˚y ď yi ¨

`

fWptqpxiq ´ FWp0q,W˚pxiq
˘

` 2εapppτq. (C.4)

We can now give a lower bound on first term on the R.H.S. of (C.1). For i “ 1, . . . , n, applying the
chain rule on the loss function gradients and utilizing (C.4), we have

xWptq ´W˚,∇WLipW
ptqqy “ `1

`

yifWptqpxiq
˘

¨ yi ¨ xW
ptq ´W˚,∇WfWptqpxiqy

ě `1
`

yifWptqpxiq
˘

¨
`

yifWptqpxiq ´ yifW˚pxiq ` 2εapppτq
˘

ě p1´ 2εapppτqq`
`

yifWptqpxiq
˘

´ `
`

yiFWp0q,W˚pxiq
˘

, (C.5)

where the first inequality is by the fact that `1
`

yifWptqpxiq
˘

ă 0, the second inequality is by convexity
of `p¨q and the fact that ´`1

`

yifWptqpxiq
˘

ď `
`

yifWptqpxiq
˘

.

We now proceed to bound the term I2 on the R.H.S. of (C.1). Note that we have `1p¨q ă 0, and
therefore the Frobenius norm of the gradient∇Wl

LSpW
ptqq can be upper bounded as follows,

}∇Wl
LSpW

ptqq}F “

›

›

›

›

1

n

n
ÿ

i“1

`1
`

yifWptqpxiq
˘

∇Wl
fWptqpxiq

›

›

›

›

F

ď
1

n

n
ÿ

i“1

´`1
`

yifWptqpxiq
˘

¨ }∇Wl
fWptqpxiq}F ,

where the inequality follows by triangle inequality. We now utilize the fact that cross-entropy loss
satisfies the inequalities ´`1p¨q ď `p¨q and ´`1p¨q ď 1. Therefore by definition of Mpτq, we have

L
ÿ

l“1

}∇Wl
LSpW

ptqq}2F ď O
`

LMpτq2
˘

¨

ˆ

1

n

n
ÿ

i“1

´`1
`

yifWptqpxiq
˘

˙2

ď O
`

LMpτq2
˘

¨ LSpW
ptqq. (C.6)

Then we can plug (C.5) and (C.6) into (C.1) and obtain

}Wptq ´W˚}2F ´ }W
pt`1q ´W˚}2F
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ě
2η

n

n
ÿ

i“1

”

p1´ 2εapppτqq`
`

yifWptqpxiq
˘

´ `
`

yiFWp0q,W˚pxiq
˘

ı

´O
`

η2LMpτq2
˘

¨ LSpW
ptqq

ě

„

3

2
´ 4εapppτq



ηLSpW
ptqq ´

2η

n

n
ÿ

i“1

`
`

yiFWp0q,W˚pxiq
˘

,

where the last inequality is by η “ OpL´1Mpτq´2q and merging the third term on the second line
into the first term. Taking telescope sum from t “ 0 to t “ t1 ´ 1 and plugging in the definition
1
n

řn
i“1 `

`

yiFWp0q,W˚pxiq
˘

“ εNTRF completes the proof.

C.2 PROOF OF LEMMA A.3

Proof of Lemma A.3. We first denote W “ BpWp0q, rR ¨ m´1{2q, and define the corresponding
neural network function class and surrogate loss function class as F “ tfWpxq : W P Wu and
G “ t´`ry ¨ fWpxqs : W PWu respectively.

By standard uniform convergence results in terms of empirical Rademacher complexity (Bartlett and
Mendelson, 2002; Mohri et al., 2018; Shalev-Shwartz and Ben-David, 2014), with probability at least
1´ δ we have

sup
WPW

|ESpWq ´ EDpWq| “ sup
WPW

ˇ

ˇ

ˇ

ˇ

ˇ

´
1

n

n
ÿ

i“1

`1
“

yi ¨ fWpxiq
‰

` Epx,yq„D`1
“

y ¨ fWpxq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2pRnpGq ` C1

c

logp1{δq

n
,

where C1 is an absolute constant, and

pRnpGq “ Eξi„Unifpt˘1uq

#

sup
WPW

1

n

n
ÿ

i“1

ξi`
1
“

yi ¨ fWpxiq
‰

+

is the empirical Rademacher complexity of the function class G. We now provide two bounds
on pRnpGq, whose combination gives the final result of Lemma A.3. First, by Corollary 5.35 in
(Vershynin, 2010), with probability at least 1 ´ L ¨ expp´Ωpmqq, }Wp0q

l }2 ď 3 for all l P rLs.
Therefore for all W PW , we have }Wl}2 ď 4. Moreover, standard concentration inequalities on the
norm of the first row of Wp0q

l also implies that }Wl}2 ě 0.5 for all W PW and l P rLs. Therefore,
an adaptation of the bound in (Bartlett et al., 2017)¶ gives

pRnpFq ď rO

˜

sup
WPW

#

m1{2

?
n
¨

«

L
ź

l“1

}Wl}2

ff

¨

«

L
ÿ

l“1

}WJ
l ´W

p0qJ
l }

2{3
2,1

}Wl}
2{3
2

ff3{2+¸

ď rO

˜

sup
WPW

#

4Lm1{2

?
n

¨

«

L
ÿ

l“1

p
?
m ¨ }WJ

l ´W
p0qJ
l }F q

2{3

ff3{2+¸

ď rO

˜

4LL3{2
rR ¨

c

m

n

¸

. (C.7)

We now derive the second bound on pRnpGq, which is inspired by the proof provided in (Cao and
Gu, 2020). Since y P t`1, 1u, |`1pzq| ď 1 and `1pzq is 1-Lipschitz continuous, by standard empirical
Rademacher complexity bounds (Bartlett and Mendelson, 2002; Mohri et al., 2018; Shalev-Shwartz
and Ben-David, 2014), we have

pRnpGq ď pRnpFq “ Eξi„Unifpt˘1uq

«

sup
WPW

1

n

n
ÿ

i“1

ξifWpxiq

ff

,

¶Bartlett et al. (2017) only proved the Rademacher complexity bound for the composition of the ramp loss
and the neural network function. In our setting essentially the ramp loss is replaced with the ´`1

p¨q function,
which is bounded and 1-Lipschitz continuous. The proof in our setting is therefore exactly the same as the proof
given in (Bartlett et al., 2017), and we can apply Theorem 3.3 and Lemma A.5 in (Bartlett et al., 2017) to obtain
the desired bound we present here.

19



Published as a conference paper at ICLR 2021

where pRnpFq is the empirical Rademacher complexity of the function class F . We have

pRnrFs ď Eξ

#

sup
WPW

1

n

n
ÿ

i“1

ξi
“

fWpxiq ´ FWp0q,Wpxiq
‰

+

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

I1

`Eξ

#

sup
WPW

1

n

n
ÿ

i“1

ξiFWp0q,Wpxiq

+

loooooooooooooooooooomoooooooooooooooooooon

I2

,

(C.8)

where FWp0q,Wpxq “ fWp0qpxq `
@

∇WfWp0qpxq,W´Wp0q
D

. For I1, by Lemma 4.1 in (Cao and
Gu, 2019), with probability at least 1´ δ{2 we have

I1 ď max
iPrns

ˇ

ˇfWpxiq ´ FWp0q,Wpxiq
ˇ

ˇ ď O
`

L3
rR4{3m´1{6

a

logpmq
˘

,

For I2, note that Eξ
“

supWPW
řn
i“1 ξifWp0qpxiq

‰

“ 0. By Cauchy-Schwarz inequality we have

I2 “
1

n

L
ÿ

l“1

Eξ

#

sup
}ĂWl}Fď rRm´1{2

Tr

«

ĂWJ
l

n
ÿ

i“1

ξi∇Wl
fWp0qpxiq

ff+

ď
rRm´1{2

n

L
ÿ

l“1

Eξ

«
›

›

›

›

›

n
ÿ

i“1

ξi∇Wl
fWp0qpxiq

›

›

›

›

›

F

ff

.

Therefore

I2 ď
rRm´1{2

n

L
ÿ

l“1

g

f

f

eEξ

«
›

›

›

›

›

n
ÿ

i“1

ξi∇Wl
fWp0qpxiq

›

›

›

›

›

2

F

ff

“
rRm´1{2

n

L
ÿ

l“1

g

f

f

e

n
ÿ

i“1
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where we apply Jensen’s inequality to obtain the first inequality, and the last inequality follows by
Lemma B.3 in (Cao and Gu, 2019). Combining the bounds of I1 and I2 gives

pRnrFs ď rO
ˆ

L rR
?
n
`
L3

rR4{3

m1{6

˙

.

Further combining this bound with (C.7) and recaling δ completes the proof.

C.3 PROOF OF LEMMA A.4

Proof of Lemma A.4. Different from the proof of Lemma 5.1, online SGD only queries one data to
update the model parameters in each iteration, i.e., Wi`1 “Wi ´ η∇Li`1pW

piqq. By this update
rule, we have

}Wpiq ´W˚}2F ´ }W
pi`1q ´W˚}2F

“ 2ηxWpiq ´W˚,∇WLi`1pW
piqqy ´ η2

L
ÿ

l“1

}∇Wl
Li`1pW

piqq}2F . (C.9)

With exactly the same proof as (C.5) in the proof of Lemma 5.1, we have

xWptq ´W˚,∇WLipW
ptqqy ě p1´ 2εapppτqq`

`

yifWptqpxiq
˘

´ `
`

yiFWp0q,W˚pxiq
˘

, (C.10)

for all i “ 0, . . . , n1 ´ 1. By the fact that ´`1p¨q ď `p¨q and ´`1p¨q ď 1, we have

L
ÿ

l“1

}∇Wl
Li`1pW

piqq}2F ď

L
ÿ

l“1

`
`

yi`1fWt
pxi`1q

˘

¨ }∇Wl
fWpiqpxi`1q}

2
F
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ď O
`

LMpτq2
˘

¨ Li`1pW
piqq. (C.11)

Then plugging (C.10) and (C.11) into (C.9) gives

}Wpiq ´W˚}2F ´ }W
pi`1q ´W˚}2F

ě p2´ 4εapppτqqηLi`1pW
piqq ´ 2η`

`

yiFWp0q,W˚pxiq
˘

´O
`

η2LMpτq2
˘

Li`1pW
piqq

ě p
3

2
´ 4εapppτqqηLi`1pW

piqq ´ 2η`
`

yiFWp0q,W˚pxiq
˘

,

where the last inequality is by η “ OpL´1Mpτq´2q and merging the third term on the second line
into the first term. Taking telescope sum over i “ 0, . . . , n1 ´ 1, we obtain

}Wp0q ´W˚}2F ´ }W
pn1q ´W˚}2F

ě
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2
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η
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.

ě

´3

2
´ 4εapppτq

¯

η
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ÿ

i“1
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pi´1qq ´ 2η

n
ÿ

i“1

`
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yiFWp0q,W˚pxiq
˘

.

ě

´3

2
´ 4εapppτq

¯

η
n1
ÿ

i“1

LipW
pi´1qq ´ 2nηεNTRF.

This finishes the proof.

D EXPERIMENTS

In this section, we conduct some simple experiments to validate our theory. Since our pa-
per mainly focuses on binary classification, we use a subset of the original CIFAR10 dataset
(Krizhevsky et al., 2009), which only has two classes of images. We train a 5-layer fully-
connected ReLU network on this binary classification dataset with different sample sizes (n P
t100, 200, 500, 1000, 2000, 5000, 10000u), and plot the minimal neural network width that is required
to achieve zero training error in Figure 1 (solid line). We also plot Opnq,Oplog3

pnqq,Oplog2
pnqq

and Oplogpnqq in dashed line for reference. It is evident that the required network width to achieve
zero training error is polylogarithmic on the sample size n, which is consistent with our theory.
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Figure 1: Minimum network width that is required to achieve zero training error with respect to
the training sample size (blue solid line). The hidden constants in all Op¨q notations are adjusted to
ensure their plots (dashed lines) start from the same point.
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