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Abstract

Large Vision-Language Models (LVLMs) show promise for embodied planning
tasks but struggle with complex scenarios involving unfamiliar environments and
multi-step goals. Current approaches rely on environment-agnostic imitation
learning that disconnects instructions from environmental contexts, causing models
to struggle with context-sensitive instructions and rely on supplementary cues
rather than visual reasoning during long-horizon interactions. In this work, we
propose World-Aware Planning Narrative Enhancement (WAP), a framework that
infuses LVLMs with comprehensive environmental understanding through four
cognitive capabilities (visual appearance modeling, spatial reasoning, functional
abstraction, and syntactic grounding) while developing and evaluating models
using only raw visual observations through curriculum learning. Evaluations on the
EB-ALFRED benchmark demonstrate substantial improvements, with Qwen2.5-
VL achieving a 60.7 absolute improvement in task success rates—particularly in
commonsense reasoning (+60.0) and long-horizon planning (+70.0). Notably, our
enhanced open-source models outperform proprietary systems like GPT-40 and
Claude-3.5-Sonnet by a large margin.

1 Introduction

Recent advances in Large Vision-Language Models (LVLMs) [6,120] have expanded their applications
to embodied planning tasks, where agents interpret natural language instructions into a sequence
of actions which will be further executed in interactive environments [21, [28]]. These models
leverage large-scale pretraining on vision-language datasets to align visual inputs with textual
commands, achieving notable success in controlled scenarios with explicit object references and
low environmental complexity [[13} [12]. However, when faced with increasingly complex real-
life-like scenarios—those involving unfamiliar environments, varied instruction formats, and multi-
step goals—current methods exhibit severe limitations in both generalization ability and reasoning
consistency[26].

A fundamental challenge confronting current embodied planning systems lies in their environment-
agnostic imitation learning paradigm. In existing methodologies [13} [12], expert demonstration
trajectories are typically associated with simplified, environment-independent instructions (e.g., “put
the apple on the table”). They force models to learn direct mappings from generic instructions to action
sequences in an open-loop manner, disregarding the nuances of the changing surrounding environment.
This learning approach operates on a disjointed fashion, treating task instructions and environmental
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contexts as distinct, unconnected elements. This hinders models from developing an integrated grasp
of the environment’s specific characteristics such as visual appearance, spatial relationships, object
functionality, and linguistic comprehension—capabilities essential for human-like task execution
[9]. While these models may perform adequately in standardized validation environments, their
performance significantly deteriorates when faced with difficult situations that demand the ability to
establish links between the changing surroundings and context-sensitive instructions, for example,
“place the apple on the table near the television”. The limitation is becomes evident during extended
sequences of interaction, where models, due to their lack of detailed environmental representations,
struggle to integrate previous visual observations. Hence, they resort to supplementary environmental
cues, like feedback from actions taken or indicators of task progress, instead of relying exclusively
on visual input for decision-making.

To address these gaps, we introduce WAP, an innovative world-aware narrative enhancement approach.
This method is designed to infuse LVLMs with comprehensive information about the environment.
By doing so, we aim to augment the model’s understanding of the environment by incorporating
relevant context from the world around it. Inspired by traditional theories of cognitive intelligence
[[14]], our narrative enhancement focuses on collecting data that progressively cultivates four inter-
connected capabilities: (1) Visual Appearance Modeling: Detailed capture of object textures and
geometries. (2) Spatial-Relational Reasoning: Understanding the spatial arrangement and room
layouts. (3) Functional Abstraction Learning: Grasping tool-object relationships and symbolic
representations. (4) Syntactic Grounding: Interpreting complex language to resolve ambiguity. To
effectively steer the data generation process while considering various dimensions, we augment
existing disjointed data by integrating complementary information from the environment or semantic
spaces. Secondly, our framework adheres to realistic deployment scenarios: agents receive only image
observations and natural language instructions in a closed-loop manner, without auxiliary privileged
environmental feedback. To incrementally equip the model to tackle cognitive challenges, we collect
the data and train the model with a curriculum learning strategy, which enhances the model’s ability
to formulate sophisticated strategies in a wide range of situations, markedly differentiating from
traditional imitation learning techniques that do not support this level of advanced intellectual growth.

We evaluate our framework through extensive experiments using Qwen2.5-VL [§]and InternVL3
[32] on the EB-ALFRED benchmark within EmbodiedBench [26]], a challenging suite of high-
level planning tasks. Our approach achieves substantial improvements over baseline methods, with
Qwen2.5-VL demonstrating a 60.7 absolute improvement in average task success rates. Particularly
noteworthy are the significant gains in commonsense reasoning (+60.0) and long-horizon planning
(+70.0), with similar patterns observed for InternVL3. Remarkably, our enhanced open-source models
outperform recent proprietary systems like GPT-40 and Claude-3.5-Sonnet by a large margin.

This work makes three key contributions:

* Our approach bridges the gap between high-level task instructions and the nuanced details
of real-world environments by integrating contextual world knowledge into planning sys-
tems. This multidimensional enhancement leverages narratives that are aware of various
environmental factors, making the planning process more robust and adaptable to complex,
real-life scenarios.

* We demonstrate that closed-loop embodied agents can achieve superior planning perfor-
mance using only visual observations and natural language instructions without privileged
environmental feedback—challenging the prevailing assumption that additional auxiliary
signals are necessary for robust planning in complex environments.

* Our approach establishes new state-of-the-art benchmarks on EB-ALFRED, outperforming
not only existing academic baselines by 60.7 improvement but also surpassing proprietary
systems like GPT-40 and Claude-3.5-Sonnet by significant margins in challenging long-
horizon planning scenarios.

2 Related Works

Embodied planning [4] 25]] represents a critical cognitive capability for embodied agents, serving
as the brain that guides physical interactions within complex environments. Early approaches to
embodied planning [18], 27, 31] relied exclusively on textual environment metadata rather than
visual perception, limiting their adaptability to real-world scenarios. Later visual-based methods
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Figure 1: Multi-dimensional cognitive enhancement framework overview. Our approach trans-
forms base instruction-trajectory pairs through a structured pipeline: (1) Four-dimensional instruction
augmentation, targeting different cognitive abilities; (2) Reasoning generation with semantic verifi-
cation; and (3) Curriculum learning across progressive stages. This process builds robust planning
capabilities while maintaining strict visual-only observation constraints.

[Z, 111} 15 16} [30] employed cascaded pipelines with external models for visual processing like
semantic maps. Recent LVLM-based systems [21} [25] have begun processing visual input directly
but continue to depend on unrealistic forms of environmental feedback like action success signals
and task progress information that would be unavailable in genuine deployment scenarios. Our work
advances the field by operating solely on raw visual observations without privileged feedback and by
processing complete observational history, more closely mirroring human capabilities in real-world
settings.

Methodologically, embodied planning approaches can be categorized as either training-free or training-
based. Training-free methods leverage prompt engineering [16}[10} 3] or multi-agent frameworks with
specialized roles [29, 15 22]]. Training-based approaches include supervised fine-tuning on human
expert demonstrations [23} 2], or methods that recognize the importance of trial-and-error learning
through either direct preference optimization [17, 30} 21] or reinforcement learning [1} 24} [19].
Unlike these approaches that often treat task instructions and environmental contexts as disconnected
elements, our world-aware planning narrative enhancement framework systematically develops
integrated cognitive capabilities, enabling LVLMs to form sophisticated planning strategies without
relying on privileged cues, more closely resembling human cognitive processes in complex real-world
scenarios.

3 Methodology

We propose a multi-dimensional cognitive enhancement framework for embodied planning that
systematically develops reasoning capabilities across complementary dimensions while operating
solely on raw visual observations. Figure[T]illustrates our approach’s core components.

3.1 Problem Formulation

In embodied planning tasks, an agent must execute a sequence of actions {ay, as, ..., ar} based
on a natural language instruction I and egocentric visual observations {01, 09, . . ., o7 }. We operate
within a closed-loop control framework, where each action decision depends critically on both current
observation and historical context. This mirrors real-world robotics scenarios where agents must
continuously adapt to environmental changes resulting from previous interactions. Unlike many
previous approaches that focus on isolated decision points, our framework explicitly models temporal
dependencies by conditioning each action on the complete observation history:
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Where fgo represents our vision-language model that predicts the next action based on the instruction
and observation history. The key challenge is to develop robust planning capabilities across diverse
scenarios with only visual-context history. Our multi-dimensional cognitive enhancement approach
specifically addresses these challenges by systematically developing the agent’s ability to extract and
integrate relevant information across time.

3.2 Multi-Dimensional Cognitive Enhancement

Our complete narratives enhance framework follows the pipeline illustrated in Figure ??. Our
framework enhances cognitive capabilities across four complementary dimensions that systematically
develop different aspects of the embodied intelligence required for robust planning.

3.2.1 Instruction Augmentation

Given an original instruction I and expert trajectory 7 = {a; }._; with corresponding observations
{o+}L_,, we generate enhanced instructions {;, } across four cognitive dimensions:

I, = M(I,0r;0)), ke {Visual, Spatial, Functional, Syntactic} 2)

Where M is a superior vision-language model and 6 represents dimension-specific prompting
strategies:

* Visual Dimension: Enhances object appearance modeling by explicitly describing visual
attributes critical for identification (e.g., cone-shaped lamp, small square clock).

» Spatial Dimension: Augments positional understanding by specifying object locations rela-
tive to environmental landmarks (beside the wooden chair) and precise spatial relationships
(below the lamp base).

* Functional Dimension: Develops deeper object-interaction understanding by articulat-
ing affordances and functional properties (light source, timekeeper) that capture causal
relationships between objects.

 Syntactic Dimension: Introduces linguistic complexity through narrative structures, indirect
references, and contextual dependencies that require resolving ambiguity beyond literal
instructions.

This augmentation process creates a structured hierarchy of cognitive demands, progressively chal-
lenging the model’s environmental reasoning capabilities.

3.2.2 Semantic Consistency Verification

To ensure augmented instructions maintain task equivalence, we implement a verification mechanism:

5
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Where V(-; ¢;) represents the verification function that checks if the generated instruction I represents
the same intention as I, I(-) is an identification function and evaluates to 1 if the input expression is
true. Instructions fail to meet the threshold will trigger a regeneration of the instruction to maintain
dataset quality.

3.2.3 Stepwise Reasoning Generation

For each action a; in trajectory 7, we generate explicit reasoning r; that captures the cognitive process
linking observation to action:

e = M(f, o, {(-yae) Y U{(rs,a5) i€ {1,--- ,t —1}}) %)

The t-th step of reasoning is left out for the vision-language model M to predict. These reasoning
annotations serve as intermediate supervision signals that help the model develop explicit cognitive
processes that might otherwise remain implicit, including environmental state tracking, object
relationship inferences, and action preconditions.



3.3 Curriculum Learning Framework

Our training procedure follows a three-stage curriculum that gradually increases cognitive complexity:
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where fg represents the vision-language model being optimized and Lcg is the cross-entropy loss for
action prediction. The curriculum stages are:

1. Base Stage (D;): Training on original instruction-trajectory pairs to establish foundational
action mapping capabilities.

2. Environmental Understanding Stage (D5): Incorporating visual and spatial augmentations
to develop perceptual grounding and scene comprehension.

3. Conceptual Reasoning Stage (Ds): Introducing functional and syntactic augmentations to
develop higher-order reasoning about object relations and ambiguous references.

This progressive training scheme aligns with cognitive development theories, allowing the model to
first master perception-action correspondences before tackling more abstract semantic relationships.
Importantly, our framework operates under strict partial observability constraints—providing only
egocentric RGB observations without privileged information—to ensure real-world applicability.

4 Experiments

We conduct comprehensive experiments to evaluate our framework’s effectiveness in enhancing
embodied planning capabilities. Our analysis focuses on both overall performance metrics and
fine-grained cognitive capabilities across diverse task contexts.

4.1 Experimental Settings

Dataset We construct an enhanced corpus comprising 80,875 instruction-trajectory pairs derived
from the original 16,145 ALFRED trajectories through our multi-dimensional augmentation approach.
The dataset is structured across four cognitive dimensions: Visual (appearance attributes), Spatial
(positional relationships), Functional (interaction affordances), and Syntactic (referential complexity).
This structured enhancement enables systematic evaluation of specific cognitive capabilities crucial
for embodied agents.

Models For instruction augmentation and reasoning generation described in Section 3, we employ
Qwen2.5-VL-72B-Instruct as the teacher model. We evaluate our framework on two foundation
model series: Qwen2.5-VL (Qwen2.5-VL-7B-Instruct) [8]] and InternVL3 (InternVL3-8B) [32],
representing state-of-the-art vision-language architectures with distinct pretraining approaches.

Evaluation We evaluate on the EB-ALFRED benchmark from EmbodiedBench [25]], which pro-
vides refined evaluation protocols over the original ALFRED benchmark, including streamlined
action spaces and higher-quality language instructions. Beyond the standard Success Rate (SR) metric,
we also use the standard deviation to quantify a model’s ability to maintain consistent performance
across varying task complexities:

1 _
STD =, |- > (SR, - SR)? (6)
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Where C represents the six task categories (Base, Common, Complex, Visual, Spatial, and Long),
and SR is the mean success rate across all categories. Lower STD values indicate more balanced
capabilities across different task types, while higher values suggest uneven performance that excels in
some categories but struggles in others, representing lower robustness. This metric provides crucial
insight into model robustness beyond aggregate performance measures.



Table 1: Performance comparison on EmbodiedBench (EB-ALFRED). Results show success rates
(SR) across task categories. Models marked with } indicate our proposed approach and its variants.
Results for InternVL3-8B and harder closed-loop settings are conducted by ourselves. Best results in
bold.

Model Avg. STD| Base Common Complex Visual Spatial Long
Proprietary Models (Original open-loop setting with action feedback)

GPT-40 56.3 7.8 64 54 68 46 52 54
Claude-3.5-Sonnet 64.0 8.6 72 66 76 60 58 52
Gemini-1.5-Pro 62.3 7.8 70 64 72 58 52 58
Gemini-2.0-flash 52.3 6.2 62 48 54 46 46 58
Gemini-1.5-flash 39.3 10.6 44 40 56 42 26 28
GPT-40 mini 24.0 13.0 34 28 36 24 22 0
Open-Source Models

InternVL2.5-78B-MPO 40.0 4.5 48 36 42 40 40 34
Qwen2.5-VL-72B-Ins 39.7 6.3 50 42 42 36 34 34
Qwen2-VL-72B-Ins 33.7 4.8 40 30 40 30 32 30
Llama-3.2-90B-Vision-Ins  32.0 10.1 38 34 44 28 32 16
InternVL2.5-38B-MPO 25.7 4.7 30 20 20 28 32 24
InternVL2.5-38B 233 9.0 36 30 36 22 14 26
Llama-3.2-11B-Vision-Ins  13.7 7.4 24 8 16 22 6 6
InternVL2.5-8B-MPO 7.7 43 12 6 14 6 6 2
Qwen2.5-VL-7B-Ins 4.7 3.9 10 8 6 2 0 2
Qwen2-VL-7B-Ins 1.7 2.3 6 0 2 0 0 2
InternVL3-8B 10.7 7.6 20 12 20 8 2 2
Proprietary Models (Under harder closed-loop settings)t

GPT-40 26 2.8 30 26 28 22 26 24
Claude-3.5-Sonnet 57.3 13.4 62 62 64 40 42 74
Our Approach with InternVL3-8BT

InternVL3-8B 6 4.7 12 8 10 2 0 4
+ Original Reasoning 46.0 184 58 16 56 46 34 66
+ WAP Augmentation 57.0 55 62 52 60 58 48 62
+ Curriculum Learning 61.0 7.2 66 56 66 58 50 70
Our Approach with Qwen2.5-VL-7B-Inst

Qwen2.5-VL-7B-Ins 2 2.5 6 2 4 0 0 0
+ Original Reasoning 47.0 14.0 64 22 48 50 44 54
+ WAP Augmentation 58.0 6.8 60 62 62 46 54 64
+ Curriculum Learning 62.7 6.3 66 62 70 56 52 70

4.2 Main results

As demonstrated in Table [T] our curriculum learning framework establishes new state-of-the-art
performance across all task categories while operating under strictly realistic observation constraints.
The Qwen2.5-VL implementation achieves a 13.5x improvement in average success rate (from 4.67
to 62.67) with 14% improvement compared with baseline method, surpassing even GPT-40 (56.3)
and approaching Gemini-1.5-Pro (62.3) under harder settings — without having access to privileged
environmental information. Similar performance gains are observed with InternVL3 models, which
improve from 10.67 to 61.0.

Notably, our approach maintains a competitive Standard Deviation (STD) of 6.3, lower than many
proprietary models such as Claude-3.5-Sonnet (8.6) and Gemini-1.5-flash (10.6), indicating more
balanced capabilities across diverse task categories. This represents a substantial improvement over
our basic reasoning approach, which exhibits a high STD of 14.0, suggesting uneven performance
that handles some categories well but struggles significantly with others. The progression from basic
reasoning (STD=14.0) to curriculum learning (STD=6.3) demonstrates how our multi-dimensional
enhancement approach systematically builds more balanced cognitive capabilities.



Enhanced Environmental Cognition Our framework demonstrates substantial improvements
in environmental understanding capabilities, evidenced by performance across specialized task
categories:

1. Visual Perception: For InternVL3, the success rate improves from 46 (baseline) to 58 on
tasks requiring the identification of objects based on appearance (e.g., distinguishing objects
by color, shape, or pattern).

2. Spatial Reasoning: Performance rises from 34 to 50 (InternVL3) on tasks requiring precise
positioning and relational understanding (e.g., “place the object to the left of the sink™).

3. Semantic Grounding: For Qwen2.5-VL, commonsense reasoning accuracy increases from
22 to 62, enabling effective handling of instructions requiring real-world knowledge and
functional understanding of objects.

4. Referential Resolution: The model successfully resolves ambiguous references (e.g., “that
container mentioned before”) through contextual reasoning with accuracy raising from 48 to
70 (Qwen2.5-VL), overcoming a critical limitation in conventional vision-language systems.

These improvements underscore the importance of structured environmental modeling beyond simple
action prediction for robust embodied planning.

Further generalization on long-horizon planning Our approach achieves remarkable 70 success
rate on long-horizon tasks—those requiring 15+ sequential actions—representing a 35-fold improvement
over baseline models and matching Claude-3.5-Sonnet’s performance in this challenging category.
Notably, while proprietary models show mixed results under the stricter closed-loop setting (without
action feedback), our framework maintains consistent performance across all settings.

This exceptional capability stems from two key innovations, (1) Full Temporal Context: Our
training paradigm incorporates complete observation histories rather than isolated frames, enabling
the model to capture causal relationships between actions and environmental changes across extended
sequences. (2) Multi-dimensional Knowledge Integration: The four cognitive dimensions of our
data enhancement approach collectively enable the model to maintain coherent world representations
throughout extended task execution.

The dramatic performance disparity between GPT-40 (24 in closed-loop vs. 54 in open-loop settings)
and Claude-3.5-Sonnet (74 in closed-loop vs. 52 in open-loop) on long-horizon tasks is particularly
revealing. While GPT-4o struggles without action feedback, likely falling into repetitive error
patterns, Claude-3.5-Sonnet actually improves under closed-loop constraints, suggesting superior
error recognition and recovery capabilities. Our framework (70 success rate) approaches Claude’s
closed-loop performance without requiring proprietary model access, validating our hypothesis that
proper environmental modeling serves as a critical foundation for compositional task planning. This
confirms that closed-loop settings, despite being more challenging, better reflect the requirements for
successful long-horizon planning in real-world scenarios.

5 Analysis

5.1 Self-Directed Enhancement Potential

To explore autonomous data augmentation capabilities, we investigate a self-directed enhancement
approach where models independently select augmentation strategies based on task descriptions. This
implicit enhancement contrasts with our explicit curriculum learning framework.

As shown in Table 2] self-directed enhancement achieves moderate success (56.7 average), but
exhibits notable limitations compared to our explicit framework (62.7). The self-directed approach
demonstrates reasonable environmental perception capabilities—matching explicit methods in Visual
(52 vs. 56) and Spatial (52 vs. 52) categories. However, it shows significant deficiencies in semantic
reasoning: Commonsense understanding (48 vs. 62) and Long-horizon planning (60 vs. 70).

While the self-directed curriculum approach improves performance consistency (STD=7.2) compared
to the basic reasoning baseline (STD=14.0), it remains less balanced than our explicit curriculum
method (STD=6.3). This suggests that while the model can autonomously develop more uniform
capabilities across tasks, it still benefits from structured guidance in developing complementary



Table 2: Comparison between explicit and self-directed enhancement approaches

Method Avg STD] Base Common Complex Visual Spatial Long
Original Reasoning 47.0 140 64 22 48 50 44 54
Explicit (Standard) 58.0 6.8 60 62 62 46 54 64
Explicit (Curriculum) 62.7 6.3 66 62 70 56 52 70
Self-Directed (Standard) 54.7 7.7 60 50 62 44 50 62
Self-Directed (Curriculum)  56.7 7.2 66 48 62 52 52 60

cognitive skills. The model shows particular weakness in commonsense reasoning (48), indicating a
tendency toward surface-level linguistic modifications rather than deeper semantic understanding.

Nevertheless, the 56.7 success rate achieved without human-designed enhancement rules suggests
promising avenues for autonomous improvement in future work.

5.2 Generalization to Unseen Environments and Object Configurations

To evaluate robustness beyond the training distribution, we measured performance on the unseen split
of VOTA-Bench [21]], which introduces novel kitchens, living rooms, and object instances absent
during training. We report Success Rate (SR) and path-length—weighted success (PL) across diverse
tasks, comparing our approach (WAP) with GPT-4o0:

Table 3: Results on VOTA-Bench unseen split. SR = success rate; PL = path-length-weighted
success.

Task Examine & Light Pick & Place Stack & Place Heat & Place Cool & Place Overall
Method SR PL SR PL SR PL SR PL SR PL SR PL
GPT-40 30.42 2473 2415  19.82  18.27 1456 1683 1598 1254 1045 2036 16.83

WAP (ours)  70.35 65.42 58.62 5491 61.47 5637 6384 60.21 5928 57.63 6456  59.86

WAP consistently outperforms GPT-40 across all task families and both metrics, indicating improved
grounding and execution efficiency in environments and object configurations that differ substantially
from those seen during training.

5.3 Sensitivity to Teacher Model Quality and Size
We assess sensitivity to the teacher model by varying size and quality using Qwen2.5-7B, Qwen2.5-
32B, and Qwen2.5-72B [8]]. Larger teachers generally yield better results across most dimensions,

with stronger gains in spatial and long-horizon reasoning:

Table 4: Impact of teacher model capacity on performance across evaluation aspects.

Teacher Avg Base Visual Spatial Common Complex Long
Qwen2.5-7B  54.67 66 54 56 48 48 56
Qwen2.5-32B 5733 64 60 62 52 46 60
Qwen2.5-72B  62.67 66 62 70 56 52 70

As shown in Table[d] average performance improves monotonically (54.67—57.33—62.67), with
consistent gains in the Spatial and Long categories as the teacher scales up. Some dimensions (e.g.,
Complex) may show non-monotonic changes at intermediate scales, suggesting that benefits from
additional capacity can be task- and skill-dependent.

5.4 Ablation Study

We conduct a top-down ablation on Qwen2.5-VL-7B by starting from the full framework and
progressively disabling modules to isolate their effects. We remove, in sequence: (i) curriculum
learning (three-stage schedule: Base — Environmental Understanding — Conceptual Reasoning); (ii)



Table 5: Top-down ablation from the full framework by progressively disabling curriculum, step-wise
reasoning, and WAP instruction enhancement

Configuration Avg STD| Base Common Complex Visual Spatial Long
Curriculum (Full) 62.7 6.3 66 62 70 56 52 70
w/o Curriculum 580 6.8 60 62 62 46 54 64
w/o Following-steps Reasoning ~ 54.0 9.3 62 46 64 52 40 60
w/o First-step Reasoning 46.7 17.1 60 16 56 46 42 60
w/o WAP Instruction 47.0 14.0 64 22 48 50 44 54
Base Model 4.7 39 10 8 6 2 0 2

step-wise reasoning components—first-step reasoning and the reasoning chains applied at following
steps; and (iii) WAP instruction enhancement (multi-dimensional prompts integrating visual, spatial,
commonsense, and long-horizon cues).

According to the results in Table [5] removing curriculum decreases the average by 4.7 points
(62.7—58.0) and slightly increases variance. The largest drops occur in Visual (56—46, -10),
Complex (70—62, -8), Long (70—64, -6), and Base (66— 60, -6), while Common remains unchanged
(62) and Spatial slightly improves (52—54, +2). This indicates that curriculum primarily benefits
perceptual robustness and long-horizon execution, with limited direct impact on commonsense.

Disabling reasoning chains after the first step (w/o Following-steps Reasoning) further reduces the
average to 54.0 (-4.0) and increases variance (STD 6.8—9.3). The strongest declines are in Common
(62—46, -16) and Spatial (54—40, -14), underscoring that sustained step-wise reasoning is crucial
for coherent environment—action coupling beyond initial guidance. Visual and Complex rise slightly
(46—52; 62—64), suggesting that front-loaded guidance offers short-term benefits for perceptual
tasks but cannot maintain commonsense or spatial consistency.

Removing the initial bootstrapping chain (w/o First-step Reasoning) causes a sharper average drop to
46.7 (-7.3) and the largest variance increase (STD 9.3—17.1). Common collapses (46— 16, -30), with
additional declines in Complex (64—156, -8) and Visual (52—46, -6), while Long remains unchanged
(60). This pattern shows that first-step reasoning is pivotal for establishing correct task setup and
commonsense grounding; without it, the model becomes highly unstable across categories.

Replacing WAP prompts with original simple instructions (w/o WAP Instruction) keeps the average
similar (46.7—47.0) but changes the error profile: Common recovers modestly (16—22, +6), whereas
Complex (56—48, -8) and Long (60— 54, -6) deteriorate. This suggests WAP cues are particularly
beneficial for complex and long-horizon behavior, but in the absence of step-wise reasoning they can
amplify imbalance across categories.

Overall, three findings emerge: (1) Curriculum chiefly strengthens long-horizon planning and
perceptual robustness while modestly reducing variance. (2) Complete step-wise reasoning is
essential for stability and for commonsense and spatial coherence; removing follow-up chains
disproportionately harms Common and Spatial. (3) WAP instruction is necessary to realize gains
on Complex and Long tasks, but without sustained reasoning chains it yields an imbalanced skill
profile. The full combination achieves the highest average with the lowest variance, improving the
base model by over 13x while maintaining balanced gains across all splits.

5.5 Case Study

To provide qualitative insights into our model’s capabilities, we analyze representative examples
of embodied planning and reasoning. Our case studies focus on (1) cognitive process transparency
in complex multi-step planning and (2) the effectiveness of our multi-dimensional augmentation
approach.

Figure 2]illustrates the execution of a seemingly simple instruction: “Place a chilled apple section
into the bin.” This instruction contains implicit procedural requirements—the apple must be sliced
and chilled—necessitating a sequence of steps beyond merely disposing of an apple.

Our Qwen2.5-VL model with curriculum learning successfully decomposes this task into 18 distinct
actions across three phases. First, the model identifies necessary tools, demonstrating task decom-
position by recognizing that sectioning requires a knife. Second, it exhibits situational awareness,
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Figure 2: Reasoning process visualization for complex instruction execution. The figure shows our
model executing the instruction “Place a chilled apple section into the bin.” The model successfully
decomposes this seemingly simple instruction into 18 distinct actions across three phases, demon-
strating robust planning capabilities. Reasoning annotations highlight five critical cognitive abilities:
task decomposition, functional understanding, situational awareness, object property reasoning, and
commonsense knowledge application. This example illustrates how our model maintains coherent
planning over a long horizon (18 steps) while handling implicit requirements not explicitly stated in
the instruction (e.g., the apple must be chilled before disposal).

notably in Reasoning 6 where it places the knife down before handling the apple, showing safety
awareness. Most importantly, the model correctly infers the need to refrigerate the apple to fulfill the
“chilled” requirement—demonstrating both functional understanding of appliances and commonsense
knowledge application. This example highlights improvements achieved through our curriculum
learning approach, as baseline models consistently failed to maintain coherence across extended
sequences, typically omitting the critical chilling step.

6 Conclusion

In this paper, we address fundamental limitations in embodied agents where current LVLMs struggle
with complex real-life scenarios due to their environment-agnostic imitation learning paradigm.
Previous approaches treat task instructions and environmental contexts as disconnected elements,
leading to poor generalization in unfamiliar environments and inconsistent reasoning during multi-
step tasks. We introduce a world-aware narrative enhancement approach that systematically develops
four cognitive capabilities: visual appearance modeling, spatial-relational reasoning, functional
abstraction learning, and syntactic grounding. Our experiments on EB-ALFRED demonstrate
substantial improvements with Qwen2.5-VL and InternVL3, achieving up to 60.7 higher success
rates and outperforming even proprietary models like GPT-40 in challenging scenarios. Our approach
proves that high-performance embodied planning is possible using only raw visual observations
without privileged feedback, establishing a new state-of-the-art for embodied Al systems in complex,
real-life-like environments.
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7 Technical Appendices and Supplementary Material

A Limitation

While our framework demonstrates significant advancements in embodied planning, several limita-
tions warrant further discussion. First, our world-aware narrative enhancement operates primarily
at the symbolic action level (e.g., "pick up knife"), lacking explicit modeling of continuous control
parameters. This abstraction necessitates future integration with low-level controllers to enable
practical deployment requiring force modulation and precise trajectory optimization. Second, while
our experiments demonstrate effectiveness in household environments based on the ALFRED dataset,
the framework’s generalizability to industrial settings or outdoor scenarios with dynamic obstacles
remains unverified. These domains may present distinct challenges in spatial reasoning and adaptive
navigation that our current implementation does not address. Third, in our approach we mainly
focus on enhancing user instruction and step-wise reasoning, limiting the fine-tuned model’s capacity
for mid-execution error correction. This constraint suggests the need for more dynamic enhance
mechanisms in future iterations.

B Training Details

B.1 Narrative Enhancement

Our instruction enhancement pipeline employs the Qwen2.5-VL-72B-Instruct model under
manufacturer-recommended configurations, utilizing temperature sampling (7=1.0) with nucleus
filtering (top-p=0.7) for balanced diversity and coherence. This process generates both narrative-
augmented instructions and associated step-wise rationales, maintaining strict alignment with the
original ALFRED action trajectories through constrained decoding mechanisms.

B.2 Model Fine-tuning

We implement full-parameter optimization on two vision-language architectures: Qwen2.5-VL-72B-
Instruct and InternVL3-8B. The training regime employs AdamW optimization with base learning
rate = 11075, 10% linear warmup, and cosine decay scheduling over 3 epochs. Experiments utilize
contrastive context windows (16k/32k tokens) with per-device batch size 4, distributed across 8xA100-
80GB nodes via tensor parallelism. The complete training cycle requires 14 hours per model variant,
aggregating to 800 A100 GPU-hours when accounting for ablation studies and hyperparameter tuning.
Memory optimization is achieved through Flash Attention v2 and BF16 mixed-precision training,
maintaining numerical stability while maximizing hardware utilization.

B.3 Compute for augmentation and training.

We further report the end-to-end compute for data preparation and training on H100-class accelerators:

Table 6: Compute profile for augmentation and training.

Stage Hardware Compute (GPU hours)
Instruction augmentation  4x H100 20
Reasoning augmentation  4x H100 200
Training 8x H100 100

Reasoning augmentation dominates the preparation cost, followed by supervised training and instruc-
tion augmentation. In practice, practitioners can: (i) adopt complete observation history at inference
for stronger execution performance; and (ii) scale reasoning augmentation selectively to balance
up-front cost against downstream improvements.
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C Additional Results and Analyses

C.1 Performance—Cost Trade-offs: Observation History and Augmented Instruction
Generation

We study how observation history and augmentation choices affect both effectiveness and computa-
tional cost. All inference-time results were measured with tensor parallelism on 2x GTX 3090 GPUs.
Using complete observation histories (i.e., multi-image inputs) improves performance relative to a
single observation, at the expense of higher inference compute. Importantly, the speed comparison
here contrasts multi-image inputs against the original long textual prompts used in EmbodiedBench,
isolating the impact of richer visual context versus prompt length.

Table 7: Effect of observation history on performance and inference-time cost (tensor parallel on 2 x
GTX 3090s).

Setting Performance Inference compute (GPU hours)
Single observation 52.33 1.6
Complete observation history 62.67 4.2

Relative to single-observation inference, complete history yields a +10.34 absolute improvement
while increasing compute by roughly 2.6x (1.6—4.2 GPU hours), offering a clear latency—accuracy
knob for long-horizon tasks where temporal context is critical.

C.2 Qualitative Examples of Reasoning Effect

Example 1: Object Recognition and World Knowledge

Task:
After enjoying your morning coffee, move the beverage holder to the nightstand.

WAP Model (Success):
Action Sequence: (1) find a mug (2) pick up the mug (3) find a side table (4) put down object

Step 1 Reasoning: "Since the goal is to move the beverage holder to the nightstand,
I need to first locate the beverage holder. Assuming it’s a mug, I will start by searching for it
in the current environment."

Action: find a mug

Baseline Model (Failure):
Action Sequence: (1) find a statue (2) pick up the statue (3) find a side table (4) put down object

Step 1 Reasoning: "Since the goal is to move the beverage holder to the nightstand,
I first need to locate the statue to determine its current position and plan the next steps
accordingly.”

Action: find a statue

Figure 3: Example showing baseline’s failure to understand object-level world knowledge (mug as
beverage holder)
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Example 2: Multi-Object Manipulation with Physical Constraints

Task:
When finished cooking, place the saucepan with a spatula inside on the kitchen counter.

WAP Model (Success):
Action Sequence: (1) find a spatula (2) pick up the spatula (3) find a pan (4) put down the
spatula (5) pick up the pan (6) find a counter top (7) put down object

Step 4 Reasoning: "The current visual state shows that the spatula is being held,
but the saucepan is still on the table. To place the spatula inside the saucepan as per the user’s
instruction, I need to put down the spatula temporarily."

Action: put down the spatula

Baseline Model (Failure):

Action Sequence: (1) find a spatula (2) pick up the spatula (3) find a fridge (4) open the
fridge (5) find a pan (6) pick up the pan (7) close the fridge (8) find a counter top (9) put
down object

Step 3 Reasoning: "After picking up the spatula, the next logical step is to look for
a saucepan. A saucepan is typically stored in the fridge or pantry."
Action: find a fridge

Claude-sonnet-3.5 (Failure):
Action Sequence: (1) find a pan (2) pick up the pan (3) find a spatula (4) pick up the spatula
(5) put down the object in hand (6) find a counter top (7) put down the object in hand

Step 3 Reasoning: "Based on the instruction, we need to handle a saucepan and
spatula, placing them together on the kitchen counter. The task requires finding and
manipulating multiple objects in a specific sequence to achieve the desired arrangement."

Figure 4: Example showing baseline and comparison models’ incorrect spatial reasoning and failure
to handle one-object-at-a-time constraint

The failure cases reveal different types of reasoning deficiencies: Baseline model shows incorrect
spatial reasoning by mistaking sauce and saucepan, demonstrating poor understanding of typical
kitchen object locations; Claude-sonnet-3.5 fails to understand the task requirement of placing the
spatula inside the pan, instead treating them as separate objects to be placed on the counter; Our
model correctly recognizes the one-object-at-a-time constraint and strategically puts down the spatula
to enable proper manipulation.

C.3 Contrastive Examples of Narration-Augmented Training

Original Training Sample

Original Instruction:
Place white coffee mug on white dresser

Action Sequence: (1) find a mug (2) pick up the mug (3) find a dresser (4) put
down object

Step 1 Reasoning: "Since the white coffee mug needs to be placed on the white
dresser, I need to locate the mug first before proceeding to the next step."
Action: find a mug

Figure 5: Original training sample with basic reasoning
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Narration-Augmented Training Sample

Enhanced Instruction:
Place the white vessel for enjoying hot beverages atop the surface where personal treasures
rest.

Action Sequence: (1) find a mug (2) pick up the mug (3) find a dresser (4) put
down the mug

Step 1 Reasoning: "The user instruction requires placing a white vessel (likely a
mug) for enjoying hot beverages on a surface where personal treasures rest. From the
provided image, there is no visible mug present. Therefore, the logical next step is to find a
mug."

Action: find a mug

Figure 6: Narration-augmented sample with semantic bridges ("vessel for enjoying hot beverages" —
mug)

The narration in the augmented data explicitly states the semantic bridges that are only implicit in
the original demonstrations. Training on pairs that couple the same action with both concise and
enhanced reasoning equips the policy with these paraphrase links. Consequently, at evaluation time
the WAP model retrieves the correct object and surface ("beverage holder" — mug, "nightstand"
— side table), whereas the baseline—lacking such supervision—often selects objects similar to the
training data ("statue") while having no semantic relationships.

D Data Generation Process

D.1 Dataset Statistics

Our enhanced dataset comprises 80,875 instruction-trajectory pairs derived from 16,145 original
ALFRED trajectories, systematically expanded through two complementary approaches. The first
expansion preserves the original trajectory structure while adding four specialized narrative en-
hancements (visual, spatial, functional and syntactic), yielding four distinct subsets each containing
16,145 samples. Unlike conventional datasets that provide only sparse instructions and atomic
action sequences, our framework enriches each trajectory with: (1) step-wise observation images
capturing environmental states, and (2) step-wise reasoning annotations detailing action rationales
and preconditions.

Additionally, we provide a comparative dataset of 32,290 samples featuring implicit-instruction
augmentation. This contrastive set employs self-supervised prompting techniques where models
autonomously determine enhancement requirements through preliminary attention patterns, rather
than receiving explicit annotation guidelines. This dual-structure design enables systematic evaluation
of both human-guided and model-induced enhancement strategies, while maintaining parity in
environmental complexity and task diversity with the original ALFRED distribution.

D.2 Prompt Templates for Instruction Augmentation

Here are the prompt templates used for generating the enhanced instructions across the four cognitive
dimensions.

Visual Dimension Prompt

17



Visual Dimension Prompt:

Enhance the following instruction by adding spatial descriptions based on the image. Keep it
natural and concise.

Examples:
1. Original: "Put two spray bottles in the cabinet”
Enhanced: "Place two cylindrical green cleaning spray bottles in the wooden cabinet."

2. Original: "Put a knife in a container”
Enhanced: "Put a 20cm silver chef knife into the blue rectangular plastic container."

Now enhance:
Original: {human_instruction}
Enhanced:

Figure 7: Prompt for instruction visual enhancement

Spatial Dimension Prompt

Spatial Dimension Prompt

Enhance the following instruction by adding multi-layered spatial descriptions based on the
image. Refer to objects through their positional relationships with 2-3 adjacent landmarks.
Keep descriptions natural and concise.

Examples:

1. Original: "Put two spray bottles in the cabinet"

Enhanced: "Put two spray bottles in the white cabinet under the stainless steel sink against
the wall"

2. Original: "Put a knife in a container”
Enhanced: "Place the chef’s knife holder on the granite countertop, positioned to the right of
the refrigerator”

Now enhance:
Original: {human_instruction}
Enhanced:

Figure 8: Prompt for instruction spatial enhancement
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Functional Dimension Prompt

Functional Dimension Prompt

Enhance the following instruction by adding functional descriptions based on world
knowledge. Replace one object or its placement with an indirect reference while keeping the
sentence natural and concise.

Examples:
1. Original: "Put two spray bottles in the cabinet"
Enhanced: "Place two items used for misting surfaces inside the cabinet."

2. Original: "Put a knife in a container”
Enhanced: "Insert an object commonly used for cutting into a container designed for
safekeeping.”

Now enhance:
Original: {human_instruction}
Enhanced:

Figure 9: Prompt for instruction functional enhancement

Syntactic Dimension Prompt

Syntactic Dimension Prompt

Enhance the following instruction into a more elaborate version by adding contextual details
and symbolic substitutions. Replace objects and locations with contextual references (e.g.,
pronouns or implied terms) and include irrelevant but plausible background information.
Keep sentences concise and avoid adding new actions.

Examples:

1. Original: "Put two spray bottles in the cabinet"
Enhanced: "The spray bottles are on the shelf, already cleaned from yesterday’s use. Move
them to the cabinet for storage."

2. Original: "Put a knife in a container”
Enhanced: "That knife on the counter just finished slicing vegetables. Place it in the container
to keep the edge protected."

3. Original: "Put washed lettuce in the refrigerator”
Enhanced: "There’s a lettuce in the sink—we’ve prepped enough for dinner. Wash it and
store there to keep it fresh.”

Now enhance:
Original: {human_instruction}
Enhanced:

Figure 10: Prompt for instruction syntactic enhancement
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D.2.1 Verification Prompt for Semantic Consistency

Verification Prompt for Semantic Consistency

You are tasked with verifying two instructions describe the same task.

Original instruction: {original_instruction}
Enhanced instruction: {enhanced_instruction}
Environment images: [[IMAGES]

Please verify if these instructions describe the SAME task goal, even if expressed
differently. Consider only task objects and actions, not the specific methods. Respond with
ONLY "Yes" if they describe the same task, or "No" if they describe different tasks.

Figure 11: Verification Prompt for Semantic Consist

D.2.2 Reasoning Generation Prompt

Reasoning Generation Prompt

You are tasked with generating the reasoning process for an embodied agent executing a
specific action.

Instruction: {enhanced_instruction}
Current observation: [IMAGE]
Current action: {action}

Previous actions and reasoning:
{previous_actions_and_reasoning}

Please generate detailed reasoning that explains WHY the agent should take the cur-
rent action. Include:

1. What the agent observes in the environment

2. How this relates to the instruction

3. Why this specific action is appropriate at this step

4. How this action contributes to the overall task goal

Reasoning:

Figure 12: Reasoning Generation Prompt
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect the paper’s
contributions. We identify the limitation of environment-agnostic planning in current
LVLMs and propose a world-aware enhancement framework that systematically develops
four cognitive dimensions (visual, spatial, functional, and syntactic).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation is discussed in Appendix Part with a separate "Limitations" section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Code and model generation configs are provided in supplementary materials.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Our code is provided in supplementary materials and will release soon.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Setting and Details are discussed in section 4.1 and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We follow the evaluation settings in Embodiedbench, which does not contain
error bar settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96 CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiments compute resources part is discussed in Appenix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We carefully follow NeurIPS Code of Ethics in our research.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: This part is discussed in the Appendix.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the dataset from ALFRED
(https://github.com/askforalfred/alfred) and evaluation benchmark from Embodied-
bench. (https://github.com/EmbodiedBench/EmbodiedBench)

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: All assets are discussed in main paper and Appendix.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Details are discussed in Section 3.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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