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ABSTRACT

Neural architectures and hardware accelerators have been two driving forces for
the rapid progress in deep learning. Although previous works have optimized
either neural architectures given fixed hardware, or hardware given fixed neural
architectures, none has considered optimizing them jointly. In this paper, we study
the importance of co-designing neural architectures and hardware accelerators.
To this end, we propose NAHAS, an automated hardware design paradigm
that jointly searches for the best configuration for both neural architecture and
accelerator. In NAHAS, accelerator hardware design is conditioned on the
dynamically explored neural networks for the targeted application, instead of fixed
architectures, thus providing better performance opportunities. Our experiments
with an industry-standard edge accelerator show that NAHAS consistently
outperforms previous platform-aware neural architecture search and state-of-the-
art EfficientNet on all latency targets by 0.5% - 1% ImageNet top-1 accuracy,
while reducing latency by about 20%. Joint optimization reduces the search
samples by 2x and reduces the latency constraint violations from 3 violations to
1 violation per 4 searches, compared to independently optimizing the two sub
spaces.

1 INTRODUCTION

Conventional hardware design has been driven by benchmarks (e.g. SPEC (SPE)) where a selected
set of workloads are evaluated and the average performance is optimized. For example, CPUs are
optimized for sequential workloads such as desktop applications and GPUs are designed for massive
parallel workloads such as gaming, graphics rendering, scientific computing, etc. Generalization
over a wide set of representative workloads is the traditional method for hardware design and
optimization. However, the selected workloads can stay fixed for a substantially long time, which
makes the hardware design lag behind the algorithmic changes.

As a result of hitting the end of Moore’s Law in the recent decade, the focus has switched to hardware
specialization to provide additional speedups and efficiency for a narrowed-down application or
domain. Google’s TPU (TPU) and Intel’s Nirvana NNP (Yang, 2019) are two representative
accelerators specialized for deep learning primitives and MLPerf (MLP) has become prevalent for
benchmarking the state-of-the-art design of ML accelerators. However, rapid progress in deep
learning has given birth to numerous more powerful, expressive, and efficient models in a short
time, which results in both benchmarking and accelerator development lagging behind. For example,
squeeze-and-excite with global pooling and SiLU/Swish non-linearity (Ramachandran et al., 2017;
Elfwing et al., 2018) are found to be useful in EfficientNet (Tan & Le, 2019), however, neither
can currently execute efficiently even on a highly specialized accelerator. We need to evolve the
accelerator design more rapidly.

On the other hand, platform-aware neural architecture search (Tan et al., 2019; Wu et al., 2019;
Cai et al., 2018) optimizes the neural architectures for a target inference device. The target device
has a fixed hardware configuration that can significantly limit NAS flexibility and performance.
For example, the target device may have a sub-optimal compute and memory ratio for the target
application combined with a inference latency target, which can shift the optimal NAS model
distributions and result in underperformance.
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We propose NAHAS, a new paradigm of software and hardware co-design, by parameterizing neural
architecture search and hardware accelerator search in a unified joint search space. We use a highly
parameterized industry-standard ML accelerator as our target device, which has a tunable set of
important hardware parameters. These knobs fundamentally determine hardware characteristics
such as number of compute units, amount of parallelism, compute to memory ratio, bandwidth, etc.,
which we found very critical to model performance. We formulate the optimization problem as a
bi-level optimization with hardware resource constraints on chip area and model latency.

Unlike conventional hardware optimization, NAHAS is a task driven approach, where the task
is a problem (e.g. image classification, object detection) or a domain of problems (e.g. vision,
NLP), not a set of fixed programs or graphs (e.g. ResNet, Transformers). This effectively creates
generalization across the vertical stack, making the hardware evolve with the applications. NAHAS
can be practically used to design customized accelerators for autonomous driving and mobile SoC
(system-on-chip) where a set of highly optimized accelerators are combined into a system.

We also propose a latency-driven optimization that maximizes model accuracy while meeting a
latency constraint under a chip area budget. Conventional platform-aware NAS typically focuses
on searching efficient NAS models with higher accuracy, lower parameters and FLOPs (number of
multiply-add operations). However, optimizing for lower parameters and FLOPs is not necessarily
good for performance (Wu et al., 2019). For example, a multi-branch network like NasNet (Zoph
et al., 2017) has lower parameters and FLOPs compared to layer-wise network such as ResNet and
MobileNet, but its fragmented cell-level structure is not hardware friendly and can be evaluated
very slowly on the target device. As a matter of fact, the number of parameters and FLOPs are
only indirect metrics that could affect a direct metric such as latency and power negatively if not
considered. For example, the model can run out of memory if the number of parameters is too large.
However, a direct optimization on indirect metrics won’t necessarily improve the direct metrics.
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Figure 1: Motivating example (a) and high level work flow (b). In (a) different accelerator configurations
have different pareto frontiers consisting of different NAS models (left) and joint search effectively extends the
pareto frontier by joining multiple frontiers (right).

Figure 1 shows a motivating example of using joint search and a high level workflow of NAHAS.
While conventional platform-aware NAS selects models along the pareto frontier with different
latency and accuracy tradeoffs for one target device, as indicated in Figure 1a left, NAHAS further
expands the pareto frontier by enabling different hardware accelerator configurations. To summarize
our contributions:

• We develop a fully automated framework that can jointly optimize neural architectures
and hardware accelerators. For the first time, we demonstrate the effectiveness of co-
optimizing neural architecture search with the parameterization of a highly optimized
industry-standard accelerator.

• We propose a latency-driven search method, which is hardware-agnostic and achieves
state-of-the-art results across multiple search spaces. NAHAS outperforms MnasNet and
EfficientNet on all latency targets by 0.5%-1% in ImageNet accuracy and 20% in latency.

• We observe that different model sizes combined with different latency targets require
completely different hardware accelerator configurations. Customizing accelerators for
different model sizes and latency targets becomes essential when co-designing neural
architectures and accelerators for domains such as autonomous driving.
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• We compare different optimization strategies and find that joint search consistently
outperforms optimizing NAS and HAS in an alternating fashion. Oneshot search can
significantly reduce search cost (total number of samples and search time), however, it
is less suitable for large models when constructing the super network is too costly.

2 RELATED WORKS

ML-driven architecture search: Design space exploration in computer systems has become more
crucial due to the surge of specialized hardware (Parsa et al., 2020; Iqbal et al., 2020; Sun et al., 2020;
Nardi et al., 2019; Cong et al., 2018; Koeplinger et al., 2018; Balaprakash et al., 2016; Ansel et al.,
2014). Hierarchical-PABO (Parsa et al., 2020) and FlexiBO (Iqbal et al., 2020) use multi-objective
Bayesian optimization for neural network accelerator design. In order to reduce computational cost,
(Sun et al., 2020) apply genetic algorithm to design CNN models without modifying the underlying
architecture. HyperMapper (Nardi et al., 2019) uses random forest in automatic tuning of hardware
accelerator parameters in a multi-objective setting.

Platform-aware neural architecture search: MnasNet (Tan et al., 2019) pioneered platform-aware
neural architecture search where for the first time NAS models are tailored for a target hardware
device and resource-efficient models are identified. ProxylessNAS (Cai et al., 2018) directly learns
the architectures for ImageNet by proposing a gradient-based approach to train binarized parameters.
FBNet (Wu et al., 2019) proposes a differentiable platform-aware NAS using Gumbel Softmax and
ChamNet (Dai et al., 2019) proposes a neural architecture adaptation method using efficient accuracy
and resource predictors. Accelerator-aware NAS (Gupta & Akin, 2020) for the first time targets
industry-standard accelerators and identified SoTA models for an edge TPU. However, none of these
work optimizes the underlying hardware accelerators together with NAS.

Co-design: There is a growing body of work exploring neural architecture search and hardware
design (Jiang et al., 2020a; Choi et al., 2020; Jiang et al., 2020b; Achararit et al., 2020; Yang
et al., 2020; Kwon et al., 2018; Yang et al., 2018). However, most of the work target FPGAs or
academic accelerators such as Eyeriss Chen et al. (2016), where the hardware is less optimized
on real workloads (e.g. ImageNet) and the performance model is less accurate. NAHAS, however,
targets a highly optimized industry-standard ML accelerator and the performance simulator is cycle-
accurate that has been validated. Moreover, NAHAS demonstrates effectiveness on real ImageNet
workload, outperforming SoTA models on two different search spaces.

3 METHOD

In this section, we will formulate the joint optimization problem of NAHAS and present two
different approaches.

3.1 FORMULATION

The objective for NAHAS it to find a neural architecture parameter α and hardware accelerator
parameter h such that the validation accuracy on a ImageNet classification task can be maximized
while meeting a chip area and latency target.

min
α,h
L(α, h,w∗

α,Dval) s.t. w∗
α = argmin

wα

L(α, h,wα,Dtrain)

Latency(α, h) ≤ Tlatency, Area(h) ≤ Tarea.

where L indicates the objective function of the tasks (e.g., cross-entropy for classification) and
wα denotes the weights of the architecture α. NAHAS introduces a broader search space than
NAS (neural architecture search) or HAS (hardware accelerator search) alone, with the flexibility
to fix either α or h therefore, the optimization problem is reduced to NAS or HAS. We empirically
compared different optimization strategies in Section 4.4.

3.2 NAS SEARCH SPACE

MobileNetV2: We build the architecture search space S1 based on the standard MobileNetV2. The
search space is tailored for mobile edge processors, therefore, consists mostly of efficient operations
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such as mobile inverted bottleneck convolution (MBConv). Specifically, we search for the kernel
size from {3, 5, 7} for each MBConv, and we also search for the expansion ratio from {3, 6} for
each block except for the first one, which has the default expansion ratio of 1. In MobileNetV2,
there are 17 inverted residual blocks, and thus the cardinality of S1 is about 8.4e12.

EfficientNet: In order to create larger NAS models and to better leverage modern edge accelerators
which has larger number of compute units and memory capacities, we build the architecture search
space S2 based on the standard EfficientNet-B0. Similar to S1, we also search for the kernel size
from {3, 5, 7} and the expansion ratio from {3, 6}. Since there are 16 inverted residual blocks in
EfficientNet-B0, the cardinality of S2 is about 1.4e12.

3.3 HAS SEARCH SPACE

The target device is an industry-standard, highly parameterized edge accelerator which allows us to
create various configurations in a large design space with tradeoffs between performance, power,
area, and cost. The accelerator features a set of parallel processing elements (PE) organized in a 2D
tile. The number of PEs in each dimension determines the aspect ratio of the chip. In each PE there
are multiple compute lanes that shares a local memory and each lane has a register file and a series of
single-instruction multiple-data (SIMD) style multiply-accumulate (MAC) compute units. Each of
these architecture components provide a degree of parallelism and a corresponding area cost. With
a fixed chip area budget, HAS optimizes the on-chip resource allocation, balancing the compute and
memory and searching for the best chip parameterization for a given application.

Table 1: Edge Accelerator Search Space

parameters type search space parameters type search space
PEs in x dimension int 1, 2, 4, 6, 8 local memory MB int 0.5, 1, 2, 3, 4
PEs in y dimension int 1, 2, 4, 6, 8 compute lanes int 1, 2, 4, 8
SIMD units int 16, 32, 64, 128 io bandwidth gbps float 5, 10, 15, 20, 25
register file KB int 8, 16, 32, 64, 128

As baseline we take the default accelerator configuration which is optimized while considering a
series of production workloads from multiple domains. The baseline configuration features 4x4 PEs
where each PE has 2 MB local memory and 4 compute lanes. Each compute lane has a 32 KB
register file and 64 4-way SIMD units. Since the accelerator is targeted for edge use cases, SIMD
units can sustain the peak throughput for 8-bit quantized operations. This baseline configuration can
deliver a peak throughput of 26 TOPS/s at 0.8 GHz.

Unlike the NAS search space, the HAS search space contains many invalid points, which makes
training a cost model or joint search with the in-house simulator more challenging. Invalid
configurations can be caused by many reasons. For example, the created accelerator configuration
in combined with the NAS model is not supported by the compiler or a NAS model is created too
large for the generated HAS configuration, etc.

3.4 SEARCH OBJECTIVE

While power and area can be other important metrics to be considered for efficient accelerator
design, we focus on maximizing model accuracy while meeting an inference latency constraint on a
target device. We also impose a chip area constraint, which is set equal to the baseline accelerator
design. The paper does not minimize chip area or latency, as in practise they don’t need to be
minimized. However, the chip resource constraint can be set to area, power, energy, or a combination
of many, however, this paper focuses on an area constraint only.

Similar to Mnasnet (Tan et al., 2019), we use a customized weighted product to encourage Pareto
optimal solutions. More specifically, we have a optimization metric of model accuracy and two
hardware constrain metrics of model latency and chip area. The optimization goal is to maximize
model accuracy while meeting the latency and area constraints.

max
α,h

Accuracy(α, h)× [
Latency(α, h)

Tlatency
]w0 × [

Area(h)

Tarea
]w1
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where w0, w1 are the weight factors:

w0 =

{
p, if Latency(α, h) ≤ Tlatency
q, otherwise

w1 =

{
p, if Area(h) ≤ Tarea
q, otherwise

When p = 0, q = −1, the reward function imposes a hard latency constraint and we simply use
accuracy as the objective if the measured latency is meeting the latency target T and only sharply
penalize the objective value if the sample violates the latency constraint. When p = q = −0.071,
the reward becomes a soft constraint function. In the NAHAS evaluations, we use both rewards for
different experiments.

3.5 OPTIMIZING THE JOINT SEARCH SPACE WITHOUT WEIGHT SHARING

Similarly as NASNet (Zoph et al., 2017) and MNASNet (Tan et al., 2019), we use PPO (Schulman
et al., 2017) as the controller algorithm to optimize the joint search space from NAS and HAS.
The controller samples the search space using a recurrent network, each sample is trained by a
child program. For the MobileNetV2 search space, we use a proxy task that trains each sample on
ImageNet for only 5 epochs and it takes 5000 samples for the controller to converge. For larger
models using EfficientNet search space, we find that training the proxy task for 15 epochs while
reducing the total number of samples to 2000 improves the results.

3.6 OPTIMIZING THE JOINT SEARCH SPACE WITH WEIGHT SHARING

To further reduce the search cost, we employ an efficient search method with weight sharing.
Similarly as ProxylessNAS (Cai et al., 2018) and TuNAS (Bender et al., 2020), we use the controller
decisions from the NAS space to construct a super-network for optimizing the architecture,
meanwhile using the decisions from the HAS space to create a sub-graph for computing the cost.
Decision points from both spaces are optimized by a RL algorithm within the same graph. For each
training step, we train the model weights and the controller decision points in an interleaved way. To
achieve better results, we apply the absolute reward function and RL warm-up procedure introduced
in TuNAS.

To estimate the latency of the model on a given accelerator configuration, we train a cost model with
random generated samples using an in-house accelerator simulator. We need a cost model because as
NAS becomes much faster with oneshot search, the query to the accelerator performance simulator
for chip area and inference latency becomes the new bottleneck for NAHAS oneshot search. Given a
sampled neural architecture configuration and an accelerator configuration, the cost model predicts
the accelerator area fa(h) and model accuracy fl(α, h). We use a MLP network with ReLU to
encapsulate the non-linearity in the latency prediction. The area predictor and latency predictor
largely share parameters with only separate parameterization in the prediction heads.

Loss =MSE(La, fa(h)) + λMSE(Ll, fl(α, h))

The cost model was trained with 500k labeled data randomly generated by permuting the neural
architecture configurations and accelerator configurations. We use a 3-layer MLP of hidden size
256 and apply a dropout of 0.1 to mitigate overfitting at each layer.

4 EVALUATION

4.1 EXPERIMENT SETUP

Accelerator Performance Simulator: Evaluating the candidate neural and hardware architectures
accurately is a key requirement for the NAHAS framework. Simply using number of MACs or
parameters of the neural model as a proxy for performance can be highly inaccurate as their
performance highly depends on how the neural network is mapped on the hardware architecture
and their unique compute characteristics. To this end, we have utilized an in-house cycle-accurate
performance simulator and an analytical area model based on hardware synthesis. We deployed

1Tan et al. (2019) found -0.07 to empirically ensure Pareto-optimal solutions have similar reward under
different accuracy-latency trade-offs.
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both of these estimators as a service where multiple NAHAS clients can send parallel requests. This
provides a flexible way to scale-up the performance and area evaluation tasks.

Search Hyperparameters: For the end2end search, we choose PPO as it is tested by time. We use
the average performance of 10 trials as a reward. We use Adam optimizer with the learning rate
of 0.0005 to update the controller, where the policy gradients are clipped by 1.0. For each trial,
we train the sampled candidate by five epochs using RMSProp. For these five epochs, we will first
warm up the model by two epochs using the learning rate from 0 to 0.66, and then cosine decay it
from 0.66 to 0 for the rest three epochs. For the oneshot search, we utilize REINFORCE to optimize
the controller following TuNAS. We use Adam with a learning rate of 0.0048 to optimize it and use
the momentum as 0.95 for baseline. In addition, we use RMSProp to optimize the shared weights
following the same learning rate schedule as TuNAS. The latency predictor is pre-trained.

Cost Model Hyperparameters: The cost model described in Section 3.6 was trained with
hyperparameters defined in Table 2. In the oneshot search, we replace the accelerator performance
simulator with the trained cost model and search for the best model for five different latency targets
(0.3ms, 0.5ms, 0.8ms, 1.1ms, and 1.3ms). The average error between the latency target and the
estimated latency of the best model using the accelerator performance simulator is only 0.4%.

Figure 2: Cost Model Accuracy.

Optimizer Adam
Loss Re-weight λ 10
Batch size 128
Hidden dimension 256
Learning rate 0.001
Training steps 600k
Input feature size 394

Table 2: Cost Model Hyperparameters.

4.2 SAMPLE DISTRIBUTIONS

To study the sample distribution during search, we first compare our NAHAS search with previous
platform-aware NAS, as shown in Figure 3a and Figure 3b. Search is performed on two search
spaces: EfficientNet-B0 (relatively small) and EfficientNet-B1 (relatively large). In platform-aware
NAS, the target device is fixed to the baseline accelerator design, as described in Section 3.3;
whereas in NAHAS search, the target chip area is set to the same as the target device of platform-
aware search. Latency targets are set of 1ms and 2ms for these two search spaces. We observe that
without the flexibility to change the hardware configuration, platform-aware NAS always converges
to sub-optimal solutions of either higher latency or lower accuracy. For NAHAS, not all the samples
traversed meet the chip area constraint. However, traversing through samples violating the resource
constraints (red points in the figure) can help converge to more pareto-optimal samples eventually
with both higher accuracy and lower inference latency.

Figure 3c and Figure 3d also compare two variants of NAHAS: joint search and phase search. In a
joint NAHAS search, the two search spaces (NAS and HAS) are unified and a sample is taken from
the joined search spaces. However in a phase NAHAS search, we fix one search space of the two
while searching the other, aiming for a similar boost in optimization performance similar to using
coordinate descent. Empirically, we observe that with the same number of samples, NAHAS joint
search consistently outperforms NAHAS phase search, producing models with higher accuracy and
lower latency. It is possible that fixing one search space results in a loss surface with more saddle
points such that the optimization algorithms can easily get stuck.

In summary, Figure 3 demonstrates the intuition of the selection of a NAHAS joint search approach.

4.3 NAHAS SEARCH RESULTS

We compare NAHAS with MnasNet, Fixed hardware NAS (NAHAS with default accelerator
configuration), and EfficientNetB0-B2, by scaling the latency targets from 0.3ms (on the smaller
MobileNetV2 search space) to 2.0ms (on the larger EfficientNet search space), and find that NAHAS
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(a) NAHAS and Platform-aware NAS on
Efficientnet-B0

(b) NAHAS and Platform-aware NAS on
Efficientnet-B1

(c) NAHAS Joinst Search and NAHAS
Phase Search on Efficientnet-B0

(d) NAHAS Joinst Search and NAHAS
Phase Search on Efficientnet-B1

Figure 3: Searched sample distributions comparisons.

(a) End-to-end NAHAS (b) NAHAS Variants

Figure 4: ImageNet Top1 Accuracy vs. Inference Latency.

is about 0.5% to 1% better in accuracy at every latency target, as shown in Figure 4a. The lessons
we learnt from this experiments include:

• Changing the hardware accelerator configurations helps identify higher accuracy models
that cannot be identified by a fixed hardware NAS.
• Larger models (e.g. EfficientNetB2) requires a higher memory-to-compute ratio in the

accelerator design, compared to smaller models (e.g. MobileNetV2 or ProxylessNAS).
• Customizing the hardware accelerator for different model sizes and latency targets is

beneficial to model performance and hardware efficiency.

In addition to the accuracy gains, we also observe latency reduction and chip area reduction when
co-optimizing the neural architectures and hardware accelerators, as shown in Table 3.

• Oneshot search is more effective than end-to-end search for smaller models with lower than
1ms latency. NAHAS-oneshot can identify models 2% better in accuracy than MnasNet
with a lower latency.

• NAHAS can identify accelerator configurations of much lower area, compared to the
baseline default. Apart from improving model accuracy and latency, NAHAS can be
applied to reduce chip area and power consumption (with a different reward).
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• Phase-NAHAS performance depends on the initial fixed NAS configuration and can often
lead to constraint violation. For example, Phase-NAHAS identifies models of 1% higher
accuracy than EfficientNetB0, however, it violates the latency constraint.

Table 3: Comparison on accuracy v.s. latency with previous approaches. Models are grouped to different
regimes and sorted by accuracy. On the fast latency regime, NAHAS-oneshot has the best performance, while
on the high accuracy regime, NAHAS-end2end achieves the best performance.

Model Top-1 Acc. Latency (us) Normalized
chip area

MobileNetV2 (Sandler et al., 2018) 74.4% 0.3 1.0
Mnasnet-B1 (Tan et al., 2019) 74.5% 0.41 1.0
ProxylessNAS (Cai et al., 2018) 74.8% 0.42 1.0
NAHAS-end2end 74.9% 0.3 1.0
NAHAS-oneshot 76.5% 0.35 0.52

Mnasnet-D1 (Tan et al., 2019) 75.1% 0.51 1.0
NAHAS-end2end-0 75.1% 0.47 0.5
NAHAS-end2end-1 75.4% 0.48 1.0
NAHAS-end2end-2 76.1% 0.66 1.0
Phase-NAHAS-end2end 76.4% 0.45 1.4
NANAS-oneshot 76.8% 0.49 0.64

EfficientNet-B0 (Tan & Le, 2019) 76.8% 1.44 1.0
NAHAS-oneshot-0 77.2% 1.09 0.78
NAHAS-oneshot-1 77.4% 1.19 0.78
NAHAS-end2end 77.4% 1.2 1.0
Phase-NAHAS-end2end 77.8% 1.40 1.0

EfficientNet-B1 (Tan & Le, 2019) 78% 2.0 1.0
Phase-NAHAS-end2end 77.7% 2.0 0.93
NAHAS-end2end 78.6% 2.0 0.93

4.4 OPTIMIZATION STRATEGIES

Figure 4b compares variants of NAHAS. More particularly, we compare the end-to-end NAHAS
joint search with oneshot search, and phase-based NAHAS. In a phase-based NAHAS, we start
with a HAS on a fixed initial neural architecture in the searc-h space (Mobil-eNetV2, EfficientNet-
B0, EfficientNet-B1, and EfficientNet-B2) with a soft constraint function described in Section 3.4,
aiming to find a accelerator configuration which is pareto-optimal in terms of latency and chip area.
Then we apply a NAS with a hard constraint function described in Section 3.4 on the selected best
accelerator configuration, aiming to identify good neural architectures that strictly meet the hardware
latency constrain. We compare phase NAHAS with 1x and 2x total searched samples compared to
the NAHAS end-to-end joint search baseline.

Comparing end-to-end with oneshot, we find that oneshot is more effective for smaller models with
lower latencies where constructing a super network is more practical. Oneshot NAHAS reduces the
search cost from 32 TPU-days to 1 TPU-day for a MobileNetV2 search space. However, oneshot is
not suitable for large models such as models in EfficientNet search spaces.

NAHAS phase search with the same number of searched samples performs much worse than the
NAHAS end-to-end joint search. Doubling the total searched samples (total search time) improves
the quality of results. However, depending on the search space, latency target, and the initial
accelerator configuration, performance varies significantly using NAHAS phase search.

5 CONCLUSION

We propose NAHAS, a software/hardware co-design that jointly optimizes neural architecture
search and hardware accelerator search on a industry-standard ML accelerator. Jointly optimizing
the application and hardware expands the Pareto frontier that enables more accurate models for any
given latency targets. Moreover, it enables more rapid evolution of hardware along with the software
stack.

8



Under review as a conference paper at ICLR 2021

REFERENCES

Mlperf. URL https://mlperf.org/.

Spec cpu 2006. URL https://www.spec.org/cpu2006/.

Tpu. URL https://cloud.google.com/tpu/.

Paniti Achararit, Muhammad Abdullah Hanif, Rachmad Vidya Wicaksana Putra, Muhammad
Shafique, and Yuko Hara-Azumi. Apnas: Accuracy-and-performance-aware neural architecture
search for neural hardware accelerators. IEEE Access, 8:165319–165334, 2020.

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom,
Una-May O’Reilly, and Saman Amarasinghe. OpenTuner: An extensible framework for program
autotuning. In Proceedings of the 23rd international conference on Parallel architectures and
compilation, pp. 303–316, 2014.

Prasanna Balaprakash, Ananta Tiwari, Stefan M Wild, Laura Carrington, and Paul D Hovland.
AutoMOMML: Automatic multi-objective modeling with machine learning. In International
Conference on High Performance Computing, pp. 219–239. Springer, 2016.

Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan Kindermans, and
Quoc V Le. Can weight sharing outperform random architecture search? an investigation with
tunas. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 14323–14332, 2020.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target
task and hardware. CoRR, abs/1812.00332, 2018. URL http://arxiv.org/abs/1812.
00332.

Yu-Hsin Chen, Joel S. Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks. In 43rd ACM/IEEE Annual International Symposium
on Computer Architecture, ISCA 2016, Seoul, South Korea, June 18-22, 2016, pp. 367–379. IEEE
Computer Society, 2016. doi: 10.1109/ISCA.2016.40. URL https://doi.org/10.1109/
ISCA.2016.40.

Kanghyun Choi, Deokki Hong, Hojae Yoon, Joonsang Yu, Youngsok Kim, and Jinho Lee. Dance:
Differentiable accelerator/network co-exploration. arXiv preprint arXiv:2009.06237, 2020.

Jason Cong, Peng Wei, Cody Hao Yu, and Peng Zhang. Automated accelerator generation and
optimization with composable, parallel and pipeline architecture. In 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), pp. 1–6. IEEE, 2018.

Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang, Marat Dukhan,
Yunqing Hu, Yiming Wu, Yangqing Jia, Peter Vajda, Matt Uyttendaele, and Niraj K. Jha.
Chamnet: Towards efficient network design through platform-aware model adaptation. In CVPR,
pp. 11398–11407, 2019.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

Suyog Gupta and Berkin Akin. Accelerator-aware neural network design using automl. CoRR,
abs/2003.02838, 2020. URL https://arxiv.org/abs/2003.02838.

Md Shahriar Iqbal, Jianhai Su, Lars Kotthoff, and Pooyan Jamshidi. Flexibo: Cost-aware multi-
objective optimization of deep neural networks. arXiv preprint arXiv:2001.06588, 2020.

Weiwen Jiang, Lei Yang, Sakyasingha Dasgupta, Jingtong Hu, and Yiyu Shi. Standing on the
shoulders of giants: Hardware and neural architecture co-search with hot start. arXiv preprint
arXiv:2007.09087, 2020a.

Weiwen Jiang, Lei Yang, Edwin H-M Sha, Qingfeng Zhuge, Shouzhen Gu, Sakyasingha Dasgupta,
Yiyu Shi, and Jingtong Hu. Hardware/software co-exploration of neural architectures. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020b.

9

https://mlperf.org/
https://www.spec.org/cpu2006/
https://cloud.google.com/tpu/
http://arxiv.org/abs/1812.00332
http://arxiv.org/abs/1812.00332
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://arxiv.org/abs/2003.02838


Under review as a conference paper at ICLR 2021

David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben Fiszel,
Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, et al. Spatial: A language and
compiler for application accelerators. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 296–311, 2018.

Kiseok Kwon, Alon Amid, Amir Gholami, Bichen Wu, Krste Asanovic, and Kurt Keutzer. Co-
design of deep neural nets and neural net accelerators for embedded vision applications. CoRR,
abs/1804.10642, 2018. URL http://arxiv.org/abs/1804.10642.

Luigi Nardi, David Koeplinger, and Kunle Olukotun. Practical design space exploration. In 2019
IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pp. 347–358. IEEE, 2019.

Maryam Parsa, John P Mitchell, Catherine D Schuman, Robert M Patton, Thomas E Potok, and
Kaushik Roy. Bayesian multi-objective hyperparameter optimization for accurate, fast, and
efficient neural network accelerator design. Frontiers in Neuroscience, 14:667, 2020.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. CoRR,
abs/1710.05941, 2017. URL http://arxiv.org/abs/1710.05941.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Jiancheng Lv. Automatically designing
cnn architectures using the genetic algorithm for image classification. IEEE Transactions on
Cybernetics, 2020.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. ICML, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V. Le. Mnasnet: Platform-
aware neural architecture search for mobile. CVPR, 2019.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In CVPR, June 2019.

Andrew Yang. Deep learning training at scale spring crest deep learning accelerator (intel R©
nervanaTM nnp-t). In Proceedings of the Hot Chips, August 2019.

Lei Yang, Zheyu Yan, Meng Li, Hyoukjun Kwon, Liangzhen Lai, Tushar Krishna, Vikas Chandra,
Weiwen Jiang, and Yiyu Shi. Co-exploration of neural architectures and heterogeneous asic
accelerator designs targeting multiple tasks, 2020.

Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gambardella,
Michaela Blott, Luciano Lavagno, Kees A. Vissers, John Wawrzynek, and Kurt Keutzer.
Synetgy: Algorithm-hardware co-design for convnet accelerators on embedded fpgas. CoRR,
abs/1811.08634, 2018. URL http://arxiv.org/abs/1811.08634.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. CoRR, abs/1707.07012, 2017. URL http://arxiv.org/
abs/1707.07012.

10

http://arxiv.org/abs/1804.10642
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1811.08634
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012

	Introduction
	Related Works
	Method
	Formulation
	NAS Search Space
	HAS Search Space
	Search Objective
	Optimizing the joint search space without weight sharing
	Optimizing the joint search space with weight sharing

	Evaluation
	Experiment Setup
	Sample Distributions
	NAHAS Search Results
	Optimization Strategies

	Conclusion

