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Abstract

Many methods for Model-based Reinforcement Learning (MBRL) provide guaran-1

tees for the accuracy of the Markov decision process (MDP) model they can deliver.2

At the same time, state abstraction techniques allow for a reduction of the size of3

an MDP while maintaining a bounded loss with respect to the original problem.4

It may come as a surprise, therefore, that no such guarantees are available when5

combining both techniques, i.e., where MBRL merely observes abstract states. Our6

theoretical analysis shows that abstraction can introduce a dependence between7

samples collected online (i.e., in the real world), which invalidates most results8

for MBRLs in this setting. Collecting samples using a simulator can avoid this9

problem. We conclude that we should be careful when applying MBRL methods10

to abstracted real-world data.11

1 Introduction12

When trying to find good solutions to MDPs using Reinforcement Learning (RL) a fundamental13

problem is the exploration-exploitation dilemma: when to take actions to obtain more information,14

and when to take actions that maximize reward based on the current knowledge. Tabular MBRL15

methods have found good ways to deal with this dilemma [7, 28, 14].16

However, MDPs can be very large, which can be problematic for these methods. One way to deal17

with this is to reduce the size of the MDP. State abstractions are one way to do this [17, 1]. We18

are interested in approximate state abstractions since they allow for greater reductions of the MDP,19

though there is a trade-off with solution quality [1]. Specifically, we assume we have an approximate20

model similarity abstraction function φ [1] that maps states to abstract states. The environment21

returns states s, but the agent receives φ(s), see Figure 1. This setting, which was considered before22

[22, 2], is what we call Abstracted RL, and is the topic of this paper.23

Figure 1: Abstracted RL, the agent observes s̄ =
φ(s) instead of s. Image based on Abel et al. [2]

Abstracted RL corresponds to RL in a Partially24

Observable MDP (POMDP), as previously de-25

scribed [5]. It is well known that policies for26

POMDPs that only base their action on the last27

observation φ(s) could be arbitrarily bad [26].28

However, when we assume that φ is an approx-29

imate model similarity abstraction [1] this worst30

case may not apply: Based on the observed ab-31

stract states the agent learns an (empirical) abstract model. If we could show that this learned model32

is close to an ‘abstract MDP’ (details in Section 2.2), we could give finite-sample guarantees on the33

performance in the original MDP by combining results from MBRL and abstraction.34
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However, in MBRL, to guarantee (with high probability) that the learned model is close to the actual35

environment model, it is typical (e.g., [28, 14]) to use concentration inequalities such as Theorem36

2 from Weissman et al. [30]. But this theorem relies on independent and identically distributed37

(i.i.d.) samples for each state-action pair. In this paper, we analyze online collection of such samples38

in Abstracted RL and show that they are not independent1, which means that most guarantees for39

existing MBRL methods do not hold in the online Abstracted RL setting.240

On the positive side, when we have access to a simulator, we show how this can be used to collect the41

data such that the typical MBRL guarantees hold and we can learn an accurate model. We discuss42

that emulating this in the real world is possible, but extremely sample inefficient, thus highlighting43

the difficulty of assuming that we would have access to an i.i.d. dataset, as in some earlier works.44

2 Preliminaries45

We assume the environment the agent is acting in can be represented by an infinite horizon MDP46

M := 〈S,A, T,R, γ〉. Where S is a finite set of states s ∈ S, A a finite set of actions a ∈ A, T47

a transition function T (s′|s, a) = Pr(s′|s, a), R a reward function R(s, a) which gives the reward48

received when the agent executes action a in state s, and γ the discount factor (0 ≤ γ < 1).49

In RL the goal of the agent is to find an optimal policy π∗ : S → A which maximizes the expectation50

of the discounted cumulative reward. V π(s) denotes the expected value of the discounted cumulative51

reward under policy π starting from state s. Similarly, Qπ(s, a) denotes the expected value of the52

discounted cumulative reward when first taking action a from state s and then following policy π.53

2.1 Model-Based RL54

MBRL methods learn a model from the experiences, these are obtained by the agent acting in the55

MDP. The learned model is usually the empirical model, directly based on the experience the agent56

obtains [7, 28, 14]. Per state-action pair the agent stores the next-states reached after taking action a57

from state s in sequence Ys,a: Ys,a : {s′(1), s′(2), · · · , s′(m)}. We use Y to refer to the collection of58

all Ys,a. From this the empirical, or learned, model TY is constructed, that just counts how often we59

have seen the transition to a next-state, and normalizes this:60

∀s′∈S TY (s′|s, a) ,
1

m

m∑
i=1

1{Y (i)
s,a = s′}, (1)

where 1{·} denotes the indicator function of the specified event, i.e., it is 1 if Y (i)
s,a = s′ and 061

otherwise.62

To give finite-sample guarantees on the accuracy of the estimate TY , 3 concentration bounds such as63

Theorem 2.1 from Weissman et al. [30] are often used, e.g. in Strehl and Littman [28], Jaksch et al.64

[14]. However, these typically make use of the fact that samples are i.i.d. In most MBRL settings this65

is not a problem under some assumptions, e.g. when the MDP is communicating [25]. In this case66

due to the Markov property the obtained samples are i.i.d.67

In general, of course the hope is that with enough samples the learned model TY becomes accurate.68

With accurate we mean that the distance between TY (·|s, a) and T (·|s, a) will be small, where the69

distance is measured using the L1 norm, defined as:70

||TY (·|s, a)− T (·|s, a)||1 ,
∑
s′∈S
|TY (s′|s, a)− T (s′|s, a)|. (2)

Part of theorem 2.1 from Weissman et al. [30], slightly reworded, then gives a guarantee of accuracy:71

1We also show that samples are not identically distributed, but demonstrate that that problem would be
resolvable.

2The reader might be puzzled by this statement, since certain guarantees on the combination of abstraction
and RL are known. This can be explained by the generality of Abstracted RL: in this setting there is a non-
stationarity caused by the clustering of states with different dynamics. There is a lot of related work in other
abstraction settings (e.g., state aggregation) where this complication does not occur due to the particularities of
their setting [24, 11, 19, 20, 23, 10]. In section 4 we give details to back up our claim for individual papers.

3This is a crucial element in being able to guarantee good performance, where performance can be measured
in different ways, e.g. in PAC-MDP terms [28] or in terms of regret [14]. We focus on the model quality.
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Lemma 1 (L1 inequality [30]). Let Y s,a = Y (1), Y (2), · · · , Y (m) be i.i.d. random variables72

distributed according to T (·|s, a). Then, for all ε > 0,73

Pr(||TY (·|s, a)− T (·|s, a)||1 ≥ ε) ≤ (2|S| − 2)e−
1
2mε

2

. (3)

In this way, MBRL can upper bound the probability that the learned model, based on m samples, for74

a state-action pair (s, a) TY (·|s, a) will be far away (≥ ε) from the true model T (·|s, a).75

The situation is more subtle if the MDP is not communicating, i.e., if there exists s1, s2 ∈ S for which76

there is no deterministic policy that eventually leads from s1 to s2. This can create a dependence77

between the samples [28]. Intuitively this happens because, if we look at one particular state-action78

pair (s, a), there might be a transition to state s′ such that the probability to return to s is 0. Thus if79

we would have n outcomes of (s, a) we would immediately know that at least n− 1 outcomes were80

not state s′. Since as soon as we observe s′, we know the agent would not be able to return to state s.81

Strehl and Littman [28] show that in this setting it is still possible to use Lemma 3 as an upper bound.82

2.2 State abstraction for given models83

In the planning setting, where the model is known a priori, a state abstraction can be formulated as84

a grouping or mapping from ground states to abstract states [18]. This is done with an abstraction85

function φ, a surjective function that maps from ground states, s ∈ S, to abstract states s̄ ∈ S̄:86

φ(s) : S → S̄. Here S̄ is defined as S̄ = {φ(s)|s ∈ S}.We use the ¯ notation to refer to the abstract87

space. We slightly overload notation and let s̄ both denote an abstract state as well as the set of88

ground states that map to the abstract state s̄, i.e., s̄ = {g ∈ S | φ(g) = s̄}, if s̄ ∈ S̄. The use should89

be clear from the context. We define the probability to transition to an abstract state Pr(s̄′|s, a) as90

follows:91

Pr(s̄′|s, a) ,
∑
s′∈s̄′

T (s′|s, a). (4)

This is a very general form of state abstraction, that clusters together states with different dynamics92

into abstract states. Note that we do assume that the given state abstraction deterministically maps93

states to an abstract state. This in contrast to some related work on problems with block structure94

[10], where a Markov state can lead to multiple observations (abstract states in our terminology) that95

need to be aggregated appropriately to result in a small MDP [4, 10].96

Approximate model similarity abstraction Many different abstraction criteria exist [17], here we97

focus on approximate model similarity abstraction [1]. In this abstraction two states can map to the98

same abstract state if their behavior is similar, i.e., when the reward function and the transitions to99

abstract states are close. Approximate model-similarity is defined as follows:100

Definition 1. An approximate model-similarity abstraction, φmodel,η , for fixed η, satisfies:101

φmodel,η(s1) = φmodel,η(s2) =⇒ ∀a |R(s1, a)−R(s2, a)| ≤ η,
∀s̄′∈S̄,a |Pr(s̄′|s1, a)− Pr(s̄′|s2, a)| ≤ η. (5)

From now on we will just refer to φmodel,η as φ.102

We note that the abstraction we consider, approximate model-similarity abstraction, is still quite103

generic. It can cluster together states that have different transition and reward functions. However, in104

the online Abstracted RL setting, the differences in dynamics can cause a dependence between the105

samples, as we will show in detail in section 3. E.g. looking at (s̄, a), the probability that we reach a106

state s′ depends both on the probability that we reach a particular state s ∈ s̄ and then state s′ from s.107

Returning to abstraction of a given model, it is possible to construct an abstract MDP M̄ω from108

the model of an MDP M and an abstraction function φ, where ω is an action-specific4 weighting109

function, defined as follows:110

4The action-specific weighting function is a more general weighting function than is typically used, e.g. by
Li et al. [18], which is not action-specific, i.e., it only depends on the state s. More formally it is the case where
∀a,a′∈A, s∈S ω(s, a) = ω(s, a′).
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Definition 2. We refer to the weight associated with a ground state, s ∈ S, and action, a ∈ A, by111

ω(s, a). We have: ∀s∈S, a∈A 0 ≤ ω(s, a) ≤ 1 and
∑
s′∈φ(s) ω(s′, a) = 1.112

The weighting function can be used to create abstract transition and reward functions, which are a113

weighted average of the ground function. In this way, from M , φ and any ω we can construct an114

abstract MDP M̄ω:115

Definition 3. Given an MDP M , φ, and ω, M̄ω = 〈S̄, A, T̄ω, R̄ω, γ〉 is constructed as:116

S̄ = {φ(s) | s ∈ S}, A = A, γ = γ, (6)

∀s̄∈S̄, a∈A R̄ω(s̄, a) =
∑
s∈s̄

ω(s, a)R(s, a), (7)

∀s̄,s̄′∈S̄, a∈A T̄ω(s̄′|s̄, a) =
∑
s∈s̄

∑
s′∈s̄′

ω(s, a)T (s′|s, a). (8)

An abstract MDP M̄ω is just an MDP . This means we can use any planning method we like to find117

an optimal policy π̄∗ for M̄ω .118

What we are interested in is the performance of a policy on the abstract space, when applied on the119

original problemM . Any policy on the abstract space π̄ can be used inM as follows π̄(s) := π̄(φ(s)),120

leading to V π̄
∗
. It has been shown that we can upper bound the loss in performance due to using an121

optimal policy for M̄ω , π̄∗ in M instead of using the optimal solution for M [8, 1, 29]:122

Lemma 2 (Lemma 4 [29]). An approximate model similarity abstraction (Definition 1), has sub-123

optimality bounded in η: ∀s∈S V ∗(s)− V π̄
∗
(s) ≤ 2η+2γ(|S̄|−1)η

(1−γ)2 .124

3 Abstracted MBRL and the problem of online data collection125

As explained, we are interested in Abstracted RL, where we have an approximate model similarity126

abstraction function φ and an MDP M . The agent acts in M but only observes φ(s) using abstraction127

function φ, as in Figure 1. This setting can also be seen as a POMDP, where the states are hidden and128

there is a deterministic observation function, o = φ(s). However, in contrast to the usual POMDP129

settings, we look for a myopic (memoryless) policy. While we know that in general this can lead to130

arbitrarily bad results [26], in this case the value loss would be bounded in the planning setting by131

Lemma 2. However, now we assume we are in the Abstracted RL setting, and the result for planning132

may not hold for the learned model.133

We assume we know S,A,R, γ, and φ (and thus S̄), but do not know the transition function.5 Since134

we do not know the transition function we can neither simply do planning on M nor can we construct135

an abstract MDP, using Definition 3, and solve that. Instead, we let the agent interact with M but136

use φ to let the agent observe φ(s), instead of s, and build a learned (abstract) model from the137

observations it obtains. We show the general Abstracted MBRL procedure in Algorithm 1.138

The agent collects data for every abstract state-action pair (s̄, a), which is stored as sequences Ȳs̄,a:139

Ȳs̄,a : {s̄′(1), s̄′(2), · · · , s̄′(m)}. (9)

Similar to before in (1), we construct a learned model T̄Y , now looking at the abstract next-states that140

were reached:141

T̄Y (s̄′|s̄, a) ,
1

m

m∑
i=1

1{Ȳ (i)
s̄,a = s̄′}. (10)

If this model would be equal, or close, to the transition function T̄ω of an abstract MDP M̄ω, for142

some valid ω, we could upper bound the loss in performance due to applying learned policy π̄∗ to M143

instead of the optimal policy π∗ [1, 29].144

5The assumption that the reward function is known simplifies our arguments but can be relaxed.
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Algorithm 1 Procedure: Abstracted MBRL
Input: M,φ, δ, ε, π
Ȳ = COLLECTSAMPLES(M,φ, δ, ε, π)
The sampling results in sequences Ȳs̄,a, one for
every pair (s̄, a):
Ȳs̄,a = φ(s′(1)), · · · , φ(s′(m))

= s̄′(1), · · · , s̄′(m)

for all (s̄, a, s̄′) ∈ S̄ ×A× S̄ do
T̄Y (s̄′|s̄, a) = 1

m

∑m
i=1 1{Ȳ

(i)
s̄,a = s̄′}

end for
M̄Y := 〈S̄, A, T̄Y , R̄, γ〉
π̄∗Y = Value Iteration(M̄Y )
Apply π̄∗Y to M

Algorithm 2 COLLECTSAMPLES Online
Input: M,φ, δ, ε, π
s = initial state
// The number of samples m is based on the
simulator analysis, Theorem 1.
κ = δ/(|S̄||A|)
m = d 2[ln(2|S̄|−2)−ln(κ)]

ε2 e
for all s̄ ∈ S̄ do
Ȳs̄,a = [ ]

end for
while min(s̄,a) |Ys̄,a| < m do
s̄ = φ(s)
a = π(s̄)
s′ = Step(s, a)
Ȳs̄,a.append(φ(s′))
s = s′

end while
Return: Return all Ȳs̄,a

145

Our main question is: do the finite-sample model learning guarantees of MBRL algorithms still hold146

in the Abstracted RL setting?147

3.1 Online data collection148

In this section we follow the MBRL method from Algorithm 1, collecting samples online using149

Algorithm 2.6 Starting from an initial state the agent follows a policy π. Instead of observing the150

states s, the agent observes abstract states s̄ = φ(s), see Figure 1.151

We make two important assumptions in order to make analysis possible. We assume that the MDP152

is ergodic [25] 7 and that the policy assigns a positive probability to every action in every abstract153

state. Together this can guarantee that Algorithm 2 can obtain any finite number of samples for every154

abstract state-action pair within finite time.155

Our question is, can we still use Lemma 1 to guarantee that we learn an accurate model?156

Since we learn an abstract transition model T̄Y , we want to be able to guarantee that this learned157

model will be close to the transition model of some abstract MDP. To define this transition model,158

we first look at how the data is collected.159

In the online data collection, a sample in Ȳs̄,a is drawn when the agent takes action a when it is160

in a ground state s ∈ s̄. Specifically the i-th abstract Ȳ (i)
s̄,a = s̄′ is drawn from (ground) state161

X
(i)
s̄,a = s ∈ s̄:162

Ȳ
(i)
s̄,a ∼ Pr(·|X(i)

s̄,a = s, a). (11)

Let Xs̄,a = (X
(i)
s̄,a)mi=1 denote the sequence of ground states s ∈ s̄ from which the agent took action163

a. Each ground state gets a weight according to how often it was sampled from, which we formalize164

with the weighting function ωX : ∀(s̄,a),s∈s̄ ωX(s, a) , 1
m

∑m
i=1 1{X

(i)
s̄,a = s}. We use ωX to define165

T̄ωX
analogous to (8):166

∀(s̄,a),s̄′ T̄ωX
(s̄′|s̄, a) =

∑
s∈s̄

ωX(s, a)
∑
s′∈s̄′

T (s′|s, a). (12)

6The order of m in Algorithm 2, the number of samples we want to collect, is based on the analysis of
Model-based Interval Estimation (MBIE) [28].

7An ergodic, or recurrent, MDP is an MDP where, under every stationary policy, every state is recurrent (i.e.,
asymptotically every state will be visited infinitely often) [25].
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We want to have a concentration inequality to provide bounds on the deviation of the learned model167

T̄Y from T̄ωX
, we refer to this inequality as the abstract L1 inequality, similar in form to (3):168

P (|T̄Y (·|s̄, a)− T̄ωX
(·|s̄, a)|1 ≥ ε) ≤ δ, (13)

where T̄Y (·|s̄, a) is defined according to (10) and T̄ωX
according to (12).169

If we could directly obtain i.i.d. samples from T̄ωX
and base our learned model T̄Y on the obtained170

samples, then we would be able to show that the abstract L1 inequality holds by applying Lemma 1.171

Since in this case, we would have m i.i.d. samples per abstract state-action pair, distributed according172

to T̄ωX
(·|s̄, a).173

However, the samples are not guaranteed to be i.i.d. when the agent follows Algorithm 2 to collect174

the samples. Since every sample Ȳ (i) was obtained after taking action a from state X(i)
s̄,a = s ∈ s̄, as175

in (11). These can have different distributions if X(i)
s̄,a 6= X

(j)
s̄,a .176

Non Identically Distributed While Lemma 1 assumes i.i.d. random variables, we show that it also177

holds when the random variables are independent but not (necessarily) identically distributed.178

Lemma 3. Let Xs̄,a = s1, · · · , sm be a sequence of states s ∈ s̄ and let179

Ȳ s̄,a = Ȳ (1), Ȳ (2), · · · , Ȳ (m) be independent random variables distributed according to180

Pr(·|s1, a), · · · ,Pr(·|sm, a) (Eqn. 4). Then, for all ε > 0,181

Pr(||T̄Y (·|s̄, a)− T̄ωX
(·|s̄, a)||1 ≥ ε) ≤ (2|S̄| − 2)e−

1
2mε

2

. (14)

The proof can be found in Appendix B. It mostly follows the proof by Weissman et al. [30], which uses182

Hoeffding’s inequality [12] and the union bound [6].8 Lemma 3 shows that the fact that Hoeffding’s183

inequality does not need identically distributed data can be carried over to the setting from Lemma 1.184

Independence We may be tempted to assume the samples are independent, i.e.,185

∀s̄1,··· ,s̄m∈(S̄)m Pr(Ȳ
(1)
s̄,a = s̄1, · · · , Ȳ (m)

s̄,a = s̄m) = Pr(Ȳ
(1)
s̄,a = s̄1) · · ·P (Ȳ

(m)
s̄,a = s̄m) (15)

however, this may not be the case:186

Observation 1. When collecting samples online, i.e., based on Algorithm 2, the samples cannot be187

assumed to be independent.188

The following counterexample illustrates this.189

Figure 2: Simple MDP, with
only 1 action, and abstraction.
The small circles are ground
states (1,2,3,4). A, B and C are
the abstract states. The num-
bers along the arrows show
the transition probabilities, e.g.
P (3|1) = 0.6.

Counterexample To show that the samples may not be indepen-190

dent, we will give a counterexample. We use the example MDP and191

abstraction in Figure 2, where we have 4 (ground) states, 3 abstract192

states and only 1 action. We look at the transition probability from193

abstract state A, T̄Y (·|A).194

We will consider two samples and show that for at least one com-195

bination of s̄1 and s̄2 the samples are not independent. Consider196

s̄1 = s̄2 = B. That is, the first two times that we experience a197

transition from the abstract state A, we end up in B.198

Let state 1 be the starting state. Then we have Pr(Ȳ
(1)
A = B) =199

Pr(B|1) = 0.6 and200

Pr(Ȳ
(2)
A = B) =

∑
s̄∈S̄

Pr(Ȳ
(2)
A = B|Ȳ (1)

A = s̄) Pr(Ȳ
(1)
A = s̄)

(16)
= 0 + 0.6 · 0.6 + 0.4 · 0.4 = 0.52. (17)

So then we end up with: Pr(Ȳ
(1)
A = B) Pr(Ȳ

(2)
A = B) = 0.6 · 0.52 = 0.321. And for the joint201

probability: Pr(Ȳ
(1)
A = B, Ȳ

(2)
A = B) = Pr(Ȳ

(1)
A = B) Pr(Ȳ

(2)
A = B|Ȳ (1)

A = B) = 0.6 · 0.6 =202

0.36.203

8Hoeffding’s inequality and the union bound can be found in Appendix A.
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Thus we have that Pr(Ȳ
(1)
A = B, Ȳ

(2)
A = B) 6= Pr(Ȳ

(1)
A = B) Pr(Ȳ

(2)
A = B), the samples are not204

independent. Leading us to the second observation:205

Observation 2. As independence cannot be guaranteed, Lemmas 1 and 3 cannot be readily applied206

to show that the abstract L1 inequality holds.207

3.2 Simulator data collection208

Here we also want to give a guarantee in the form of the abstract L1 inequality from (13). While in209

the previous section we found this was not possible because the samples were dependent, here we210

assume that we have access to a simulator. To some extent this is not surprising, but to the best of our211

knowledge, this is the first work that explicitly shows how to combine MBRL and abstraction, using212

a simulator. We assume that this allows us to select (or move to) any state and draw a sample from its213

transition function. This we call the independent samples assumption:214

Assumption 1 (Independent samples). We assume we can obtain independent samples, e.g. for any215

state-action pair (s, a) we can draw samples directly from its transition function T (·|s, a).216

In case a simulator of the MDP is available this is a reasonable assumption. For every (s̄, a) the217

simulator sampling procedure (Algorithm 3 in Appendix B) selects a prototype xs̄,a ∈ s̄ to sample218

from. We define a weighting function ωx(s, a) that has weight 1 if s is the prototype xs̄,a and 0219

otherwise:220

∀(s̄,a),s∈s̄ ωx(s, a) , 1{s = xs̄,a}. (18)

Then we use this ωx to define the abstract transition function T̄ωX
according to (8). T̄ωx

(s̄′|s̄, a) =221 ∑
s′∈s̄′ T (s′|s = xs̄,a, a). This way the samples that we collect for one pair (s̄, a) are i.i.d., they are222

independent because of our assumption of independent samples and identically distributed because223

we sample from the prototype. This means we can use Lemma 1. We show that with the simulator224

we can combine MBRL and abstraction, and still learn an accurate model, that is, we can guarantee225

that T̄Y will be close to T̄ωx , with high probability:226

Theorem 1. Under assumption 1, and following the procedure in Algorithm 1, with the data227

collection from Algorithm 3 (Appendix B), with inputs |S̄|, A, ε and δ. For T̄Y constructed by the228

algorithm we have that with probability 1− δ, the following holds:229

∀(s̄,a) ||T̄Y (·|s̄, a)− T̄ωx
(·|s̄, a)||1 ≤ ε. (19)

By Assumption 1 we can obtain any number of independent samples for each abstract state action230

pair (s̄, a). Using Lemma 1 we can then derive the number of samples m that is required for each231

pair (s̄, a) such that, after applying a union bound, we obtain the bounds in (19). The full proof can232

be found in Appendix B.233

4 Related work234

There is a lot of work that considers the combination of abstraction with either planning or (online)235

RL. In a lot of these works the dependence of samples that arises in Abstracted RL is not an issue236

due to various assumptions, similarly to how in MBRL dependence of samples is often not an issue237

because of the Markov property and the assumption that the MDP is communicating [25]. Often238

this is either due the assumption that data has been obtained i.i.d., the specific type of abstraction, or239

because access to an MDP model is assumed.240

One paper that does give a result for the Abstracted RL setting is the work by Abel et al. [2].241

They show that in this setting R-MAX [7] no longer maintains its guarantees when paired with any242

type of state-abstraction function, though their example is specifically for approximate Q-function243

abstractions. They also show that the expected trajectory of a learning agent in a constructed244

abstract MDP (Definition 3) is not the same as in Abstracted RL. Their work makes clear there is a245

complication when combining MBRL and abstraction, here we further investigated the cause of this246

complication, the dependence between samples.247

For planning in constructed abstract MDPs, some main results for exact state-abstractions come248

from Li et al. [18] and for approximate state-abstractions from Abel et al. [1]. The results from Abel249

et al. [1] allow for quantifying an upper bound on performance for policies found in a constructed250
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abstract MDP, as in section 2.2. Taïga et al. [29] build on this by giving a result for performing251

RL on top of the constructed abstract MDP. They provide upper bounds for this setting when using252

MBIE with exploratory bonus (MBIE-EB) [28]. In addition, they give an example to show that in253

this combination you cannot guarantee optimal performance in the original MDP. Still, they show254

that an upper bound on the loss in value can be given.255

Both Paduraru et al. [24] and Jiang et al. [15] deal with the issue of dependence by making the256

explicit assumption that samples are obtained i.i.d. Paduraru et al. [24] consider the setting where257

we are given a dataset for a continuous domain and then use discretization to aggregate states into258

abstract states. They then give PAC-style guarantees on the learned abstract model and the value that259

a policy based on this model can achieve in the real MDP. Instead of using the L1 deviation bound260

from Weissman et al. [30], Paduraru et al. [24] use a similar bound for i.i.d. samples by Devroye and261

Gyorfi [9], which requires a minimum amount of samples. Another difference is that their results262

calculate the probability that the model will be ε-accurate given a fixed dataset. They assume that the263

data has been gathered i.i.d., but our Lemma 3 shows that merely independent data would be enough.264

At the same time, our results show that when we collect data online in the Abstracted RL setting,265

their guarantees will not hold.266

Jiang et al. [15] operate in the abstraction selection setting, where the agent is provided with a set of267

abstraction functions (state representations). They do not assume that any of the abstraction functions268

results in a Markov model, but they do assume a given dataset, with data that was collected i.i.d. They269

give a bound directly on how accurate the Q-values based on the (implicitly) learned model will be,270

rather than on the accuracy of the model itself. As we showed, the assumption that the data is i.i.d.271

is not a trivial assumption, since it means the data cannot just have been collected online. They do272

mention that samples will not be strictly independent if a fixed exploration policy is used to collect273

data but do not mention what the implications are.274

There are quite a few other papers in the abstraction selection setting, several of these assume that275

the given set of state representations contains a Markov model [11, 19, 23]. Hallak et al. [11] give276

asymptotic guarantees for selecting the correct model and on building an exact MDP model. The277

assumption that there is an MDP model in the given set of representations is crucial in their analysis278

since for this ‘true model’ the samples are i.i.d. Similarly, both Maillard et al. [19] and Ortner279

et al. [23] also assume that the given set of state representations contains a Markov model. They280

create an algorithm for which they obtain regret bounds, their analysis also makes use of the Markov281

representation.282

Other work in the abstraction selection setting does not assume that the set of abstraction functions283

contains a Markov model [16, 22]. However, Ortner et al. [22] use Theorem 2.1 from Weissman284

et al. [30] that requires i.i.d. samples, which we have shown here cannot be guaranteed in this setting.285

Lattimore et al. [16] operate in a setting more general than MDPs, where the dynamics of the true286

environment depend arbitrarily on a history of actions, rewards, and observations. The agent gets287

as input a finite set of environments, one of which is the true environment. Since the input includes288

the full model of each environment, the agent does not have to learn a transition model. Instead, to289

obtain regret bounds, they directly compare the rewards the agent obtains to the expected rewards of290

the given environments and eliminate environments that are implausible given the observed rewards.291

Another way to deal with the issue of dependence is by looking at convergence in the limit [27, 13, 20].292

Singh et al. [27] give an asymptotic result for the convergence of Q-learning and TD(0) in MDPs293

with soft state aggregation. Soft state aggregation means that a state s belongs to a cluster x with294

some probability P (x|s), this means a state s can belong to several clusters. The state-abstraction295

functions we consider are a special case of this, where each state is part of exactly one abstract state296

(or cluster). Their result relies on having a stationary policy that assigns a non-zero probability to297

every action in every state and the assumption that the MDP is ergodic. Together these imply there is298

a limiting state distribution, and using this they show convergence asymptotically. Our main interest299

is in finite-samples guarantees with policies that change due to exploration, whereas this work gives300

convergence guarantees in the limit using a fixed policy.301

Hutter [13] gives a variety of results focusing on both approximate and exact abstractions in envi-302

ronments without MDP assumptions. Several of these are in the planning setting, similar to those of303

Abel et al. [1]. Most relevant for us is their Theorem 12, which for online RL shows convergence in304

the limit of the empirical transition function under weak conditions, e.g. if the abstract process itself305
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is an MDP. Under this condition however the problem reduces to RL in an (abstract) MDP, rather306

than Abstracted RL.307

Majeed and Hutter [20] build on the work by Hutter [13] and focus on the combination of model-free308

RL and exact abstraction. They show that, under the condition of state uniformity, q-learning can be309

shown to converge in the limit to the optimal solution. State uniformity means that histories that are310

grouped together have the same optimal q-values. In contrast to our setting, they look at an exact311

abstraction, extending it to approximate aggregation was left as an open question.312

Other related work is in the area of MDPs with rich observations or block structure [4, 10]. However,313

in that setting each observation can be generated only from a single hidden state, which means that314

the issue of non-i.i.d. data due to abstraction does not arise. In contrast, in our setting multiple315

(hidden) states generate the same observation. Azizzadenesheli et al. [4] state their setting can be316

seen as an aggregation problem, where the observations can be aggregated to form a small (latent)317

MDP. But in our case, we do not try to learn the MDP (as it is not small). Du et al. [10] describe318

that their setting is similar to exact model similarity (or bisimulation), but we focus on approximate319

model similarity which is what introduces the problems as described here.320

5 Discussion321

When collecting samples online in Abstracted RL, there is a potential dependence between samples,322

meaning we cannot use the typically used concentration results that assume i.i.d. samples, e.g.323

Theorem 2.1 from Weissman et al. [30], the empirical Bernstein inequality [3, 21] or the Chernoff324

bound. In case the samples are only weakly dependent, it may be that concentration inequalities325

for (weakly) dependent variables are a viable alternative through which we can come to guarantees326

on the learned model. Alternatively, it may be possible to change the sampling process to ensure327

independent samples. One way to ensure independent samples is to, as in the simulator setting, select328

a prototype state and only use the samples collected from this state. Though in this case, we will be329

discarding information when we reach a state s ∈ s̄ that is not the prototype.330

Our assumption on the simulator that we can go/reset to any state to draw samples from it can be331

relaxed, though it may mean that the procedure takes considerably more time. Consider the case332

where we cannot just reset the simulator to the state s from which we want to sample, and instead, it333

would behave like the MDP. In this case, we would have to take the right actions to arrive at the state334

s from which we would like to sample. Since we assume we do not know T , this may take a long335

time. This also shows the difficulty of assuming that in the MBRL setting somehow have access to an336

i.i.d. dataset, as has been assumed in some earlier work [24, 15].337

6 Conclusion338

We analyzed Abstracted RL: the combination of MBRL and state abstraction when the model of339

the MDP is not available. We have shown that in Abstracted RL samples obtained online cannot340

be assumed to be independent. Since many current guarantees from MBRL methods rely on this341

assumption, their guarantees do not hold in this setting. And in fact, no current methods exist that342

give (correct) finite-sample quality guarantees for the models learned in this setting. This also means343

that current results that rely on an i.i.d. assumption cannot be readily transferred to the Abstracted344

RL setting.345

In addition, we show that with a simulator, since we can draw independent samples, it is still possible346

to give guarantees on the accuracy of the model. However, having access to a simulator may often347

not be possible. An important step is to see if the MBRL guarantees can be adapted to Abstracted RL348

for online sample collection.349
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