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Abstract001

Object detection on roadways is crucial for au-002

tonomous driving and advanced driver assistance003

systems. However, adverse weather conditions, par-004

ticularly rain, significantly degrade the performance005

of these systems. This paper presents a novel ap-006

proach to enhance road object detection in rainy007

weather scenarios by applying a modified YOLOv8008

model. The proposed YOLOv8++ model includes009

specialized data augmentation techniques to simu-010

late rainy conditions, adjustments in the network011

architecture to improve robustness against rain-012

induced noise, and optimized training strategies to013

enhance model performance. The study leverages014

BDD100K, Cityscapes and DAWN-Rainy datasets015

consisting of various road scenarios under different016

intensities of rain. We systematically augment these017

datasets to ensure the model learns to identify ob-018

jects obscured by rain streaks and reflections. Our019

YOLOv8++ model introduces enhancements in the020

feature extraction layers, enabling better handling021

of occlusions and reduced visibility. Extensive exper-022

iments demonstrate that our model outperforms the023

baseline YOLOv8 and other state-of-the-art object024

detection models in terms of mean Average Preci-025

sion (mAP) under rainy conditions. Additionally,026

to ensure the model’s efficiency and suitability for027

real-time applications, we apply a network prun-028

ing technique, which reduces the model size and029

computational requirements without sacrificing per-030

formance. This research contributes to the field of031

autonomous driving by providing a more reliable ob-032

ject detection system for adverse weather conditions,033

enhancing overall road safety.034

1 Introduction035

Road object detection is a cornerstone of au-036

tonomous driving systems and advanced driver assis-037

tance systems (ADAS) [1]. This technology plays a038

crucial role in identifying and classifying objects such039

as vehicles, pedestrians, traffic signs, and obstacles040

within the driving environment. The accuracy and041

reliability of these detection systems are paramount042

for ensuring safety and enhancing the overall driving043

experience. With the rapid advancements in deep044

learning, the YOLO (You Only Look Once) family045

of models [2] has emerged as a leading approach046

in object detection, thanks to its high speed and 047

precision. YOLO models are renowned for their 048

efficiency as they perform object detection in a sin- 049

gle forward pass, unlike two-stage detectors such as 050

Faster R-CNN, which involves separate stages for 051

region proposal and object classification. YOLOv11, 052

the latest iteration in the YOLO series, has fur- 053

ther improved upon previous models with enhanced 054

architecture and training techniques, setting new 055

benchmarks for performance. 056

Despite these advancements, road object detection 057

remains a challenging task, especially under adverse 058

weather conditions like rain [3]. Rain presents unique 059

difficulties that can significantly impair the effective- 060

ness of detection systems. The presence of rain can 061

obscure visibility through the camera lens, creating 062

blurred images that make it harder for detection al- 063

gorithms to identify objects accurately. Additionally, 064

reflections and glare from wet surfaces can introduce 065

noise and distortions, further complicating the de- 066

tection process. These issues are compounded by 067

the dynamic nature of rainy weather, where the 068

intensity of rainfall, splashes, and mist can vary 069

widely, making it difficult to maintain consistent 070

performance across different conditions. Moreover, 071

the availability of annotated datasets specifically for 072

rainy weather is limited, which hampers the ability 073

to train and evaluate models effectively for such 074

scenarios. 075

To address these challenges, researchers have ex- 076

plored various methods to improve object detection 077

in adverse weather. Data augmentation techniques 078

[3] have been employed to simulate rainy conditions 079

and enhance the diversity of training datasets. Spe- 080

cialized network architectures have been designed 081

to improve robustness to noise and distortions. Ad- 082

ditionally, the incorporation of sensor data from 083

sources like LiDAR and radar has been investigated 084

to complement camera-based detection. Despite 085

these efforts, there is still a need for more robust 086

and efficient solutions that can effectively handle 087

the complexities introduced by rainy weather. 088

In this study, we propose a modified YOLOv8 089

model specifically designed to improve road object 090

detection in rainy weather scenarios. Our approach 091

involves several key modifications aimed at enhanc- 092

ing the model’s performance under challenging con- 093

ditions. First, we employ advanced data augmen- 094

tation techniques to create a diverse set of training 095
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samples that mimic various rainy conditions. This096

includes simulating rain streaks, droplets, fog, and097

glare, which helps the model learn to recognize road098

objects despite these distortions. By training the099

model on such augmented data, we aim to improve100

its ability to detect objects in real-world rainy sce-101

narios. Second, we introduce enhancements to the102

YOLOv8 [4] architecture to improve feature extrac-103

tion and robustness. Our modifications include the104

integration of specialized layers and modules that105

are designed to handle noise and distortions more106

effectively. These enhancements aim to improve the107

model’s ability to extract meaningful features from108

the input images, even when they are obscured by109

rain or other adverse conditions. By strengthen-110

ing the feature extraction capabilities, we hope to111

achieve more accurate and reliable detections.112

Furthermore, to ensure that our modified113

YOLOv8 [4] model is accurate and efficient, we ap-114

ply a network pruning technique. Network pruning115

[5] involves removing redundant and less significant116

parameters from the neural network, resulting in a117

smaller model size and reduced computational com-118

plexity. This process helps to achieve faster infer-119

ence times, which is crucial for real-time applications120

in autonomous driving systems. By reducing the121

number of computations required, pruning enables122

the model to operate more efficiently on resource-123

constrained devices, such as in-vehicle computers124

and embedded systems.125

The application of network pruning provides sev-126

eral benefits. Firstly, it leads to a smaller model size,127

which is easier to deploy and manage in practical sys-128

tems. A smaller model also consumes less memory,129

making it suitable for deployment on devices with130

limited storage capacity. Secondly, faster inference131

times are achieved through pruning, which is critical132

for real-time decision-making in autonomous vehi-133

cles. Real-time performance is essential for ensuring134

timely responses to dynamic driving situations, and135

pruning helps to meet this requirement by reduc-136

ing the time needed for model predictions. Lastly,137

network pruning contributes to lower power con-138

sumption, which is beneficial for battery-powered139

devices and overall system sustainability.140

The significance of this work lies in its contribu-141

tion to improving road object detection under rainy142

weather conditions. By addressing the specific chal-143

lenges associated with rain, our modified YOLOv8144

model enhances the reliability and robustness of145

object detection systems. This improvement has im-146

portant implications for the safety and effectiveness147

of autonomous driving systems, as it ensures more148

accurate detection of objects even in adverse weather.149

Additionally, the application of network pruning not150

only enhances the efficiency of the model but also151

makes it practical for real-world deployment. More-152

over, the techniques and modifications proposed in153

this study can be extended to other challenging 154

weather conditions, such as snow, fog, and low-light 155

environments. This broadens the applicability of 156

our approach and provides a foundation for future 157

research in developing robust detection systems for 158

various adverse scenarios. The use of advanced data 159

augmentation techniques also contributes to the cre- 160

ation of more diverse and comprehensive training 161

datasets, benefiting the broader research commu- 162

nity by providing better resources for training and 163

evaluating models. 164

2 Proposed Model 165

Modifying YOLOv8 [4] based on compound scal- 166

ing involves optimizing the architecture to improve 167

performance by adjusting key parameters such as 168

depth, width, and channels. Compound scaling, 169

introduced in models like EfficientNet [6], allows 170

for a systematic way to scale different dimensions 171

of the network simultaneously, leading to a more 172

balanced and effective model. The core idea is to 173

achieve a better trade-off between accuracy and ef- 174

ficiency by uniformly scaling these three aspects 175

rather than scaling them independently. The scal- 176

ing coefficients are determined through a compound 177

coefficient, which is used to guide how much each 178

dimension should be scaled. 179

YOLOv8 is already a powerful object detection 180

model, but incorporating compound scaling can en- 181

hance its performance, especially for specialized 182

tasks such as road object detection in adverse 183

weather conditions. The modification involves ad- 184

justing three key parameters, as listed in Table 1: 185

• Depth Scaling: This involves increasing or de- 186

creasing the number of layers in the network. In 187

YOLOv8, increasing the depth means adding 188

more convolutional layers or residual blocks, 189

which can help the model learn more complex 190

features. However, this also increases compu- 191

tational complexity, so it’s essential to find a 192

balance that maintains real-time performance. 193

• Width Scaling: Width scaling adjusts the num- 194

ber of channels in each layer. By increasing 195

the width, the model can capture more fea- 196

tures at each layer, improving its ability to 197

detect smaller or more complex objects. How- 198

ever, increasing the width also increases the 199

memory footprint and computational cost. For 200

YOLOv8, careful tuning of the width parameter 201

can lead to better detection accuracy without 202

significantly compromising speed. 203

• Max Channels: Max channels refer to the upper 204

limit on the number of channels in any network 205

layer. By optimizing this parameter, the model 206

can be tailored to handle specific tasks more 207
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Figure 1. Architecture of YOLOv8++

efficiently. For instance, in scenarios like rainy208

weather object detection, where reflections and209

low contrast are issues, adjusting the maximum210

number of channels can help the model focus211

on the most relevant features without being212

overwhelmed by noise.213

Table 1. Compound Scaling Parameters

Model Depth Width Max Channels

YOLOv8 1.00 1.00 512
YOLOv8++ 1.25 0.80 768

One ConvModule is added to the existing214

YOLOv8 architecture. Adding this to the existing215

architecture aims to reduce the effect of rain streaks,216

noise and distortion created during the data aug-217

mentation method. This module would increase the218

number of architecture parameters, which are further219

reduced during the pruning phase. The modified220

architecture of YOLOv8, which is now YOLOv8++,221

is shown in Fig. 1. The number of parameters of222

YOLOv8++ is higher than YOLOv8. Further, the223

model shifts its focus to reducing the number of pa-224

rameters, using weight pruning, without capitalizing 225

much on the accuracy. 226

Magnitude-based weight pruning is a technique 227

that effectively reduces the size and complexity of 228

neural networks by selectively removing weights with 229

the smallest magnitudes, which are often deemed 230

less critical for the network’s performance [7]. When 231

applying this pruning method to the YOLOv8++ 232

model, it enhances computational efficiency without 233

significantly affecting detection accuracy, making 234

it highly suitable for real-time applications, espe- 235

cially in environments with limited computational 236

resources. A detailed description of weight pruning 237

is shown in Algorithm 1. 238

Applying the suggested changes to form 239

YOLOv8++, which may involve adjustments such 240

as increased depth or width through compound scal- 241

ing and pruning, can be particularly beneficial. The 242

increased model size from these modifications typi- 243

cally results in a higher number of parameters, many 244

of which may be redundant or contribute minimally 245

to the network’s overall performance. By remov- 246

ing these insignificant weights, the pruning process 247

reduces the computational load, leading to a more 248

compact model with faster inference times. 249
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However, it is important to monitor the trade-off250

between the pruning level and the model’s accuracy.251

If the pruning threshold is set too high, resulting252

in an excessive number of weights being pruned,253

the network’s accuracy may degrade, especially in254

complex tasks like detecting road objects under chal-255

lenging conditions such as rain. This loss in accuracy256

can be mitigated by fine-tuning the network after257

pruning, where the remaining weights are adjusted258

to compensate for the pruned parameters.259

3 Experimental Evaluation260

3.1 Dataset Description261

For this study, we utilized the BDD100K [8],262

Cityscapes [9] and DAWN-Rainy [10] datasets, which263

contain 100K, 5K and 200 annotated images, respec-264

tively, depicting a variety of road scenarios, including265

urban, rural, and highway driving, with diverse light-266

ing and weather conditions. The dataset includes267

labels for multiple object categories, such as vehicles,268

pedestrians, traffic lights, and traffic signs, making269

it suitable for training object detection models in270

complex environments. BDD100K and Cityscapes271

datasets are clear weather datasets, while DAWN-272

Rainy is the real rain dataset.273

Synthetic rain generation typically involves over-274

laying rain streaks, droplets, and splashes onto im-275

ages while simulating real-world effects like motion276

blur, light scattering, and refraction. These rain pat-277

terns can be generated using various methods, such278

as procedural rendering, physics-based models, or279

even generative adversarial networks (GANs). The280

aim is to replicate the visual distortions caused by281

rain, allowing models to learn how to identify ob-282

jects and road elements even under difficult weather283

conditions.284

Augmenting datasets like BDD100K or Cityscapes285

with synthetic rain (to become BDD100K-Rainy and286

Cityscapes-Rainy) can simulate diverse rainy con-287

ditions (light drizzle, heavy downpours) without288

needing extensive real-world data collection. This289

helps train more resilient models to generalize better290

across different weather scenarios. Such augmented291

data ensures autonomous vehicles’ safe and reliable292

operation in real-world driving conditions, particu-293

larly in areas prone to rain.294

To simulate rainy weather conditions and enhance295

the model’s ability to detect objects under adverse296

weather, we applied the data augmentation shown297

in Algorithm 2. This augmentation process ensured298

the model could generalize well to real-world rainy299

conditions and is applied to the original BDD100K300

and Cityscapes datasets. The qualitative evaluation301

of YOLOv8++ over a few sample synthetic rain-302

generated images is shown in Fig. 2.303

Algorithm 1 Weight Pruning Algorithm for
YOLOv8++ Model
Input:

1: Pre-trained YOLOv8++ model weights W .
2: Pruning ratio r, the fraction of weights to prune.
3: Pruning criterion: L1-norm or magnitude-based

criterion.
4: Fine-tuning dataset D, for retraining after prun-

ing.
5: Maximum pruning iterations K.
6: Penalty parameter ρ (for regularization-based

pruning, if needed).

Output: Pruned and fine-tuned YOLOv8++ model
weights W ∗.

1: Initialization: Formulate the pruning objective
as follows:

min
W

L(W ) subject to ∥W∥0 ≤ k

whereW is the weight matrix, and k is the target
number of remaining weights determined by the
pruning ratio r.

2: Compute Weight Importance: Use the L1-
norm or magnitude criterion to calculate the
importance of each weight wi:

Importance(wi) = |wi|

For structured pruning (e.g., filter pruning),
compute the importance of each filter Fj as:

Importance(Fj) =

nj∑
i=1

|wij |

where nj is the number of weights in filter Fj .
3: Apply Pruning: Prune the lowest r% of

weights based on importance scores by creat-
ing a binary mask M :

M [i] =

{
0, if |wi| < threshold

1, otherwise

Then update the weight matrix:

Wpruned = W ⊙M

where ⊙ denotes element-wise multiplication be-
tween W and the mask M .

4: Fine-Tuning the Pruned Model: Fine-tune
the pruned model Wpruned using the dataset D:

W ∗ = argmin
W

L(Wpruned)

This helps recover accuracy after pruning.
5: Evaluate the Pruned Model: After fine-

tuning, evaluate the pruned model W ∗ to ensure
that it maintains high performance in object de-
tection tasks.
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Algorithm 2 Synthetic Rain Generation and Aug-
mentation for Dataset Images

Input:

1: X: Original dataset of images (e.g., BDD100K
or Cityscapes)

2: N : Number of rain streaks
3: θ: Rain streak angle (in degrees)
4: L: Rain streak length (in pixels)
5: Phflip: Probability of horizontal flip
6: S: Scaling factor range for resizing
7: α: Brightness adjustment factor
8: σ: Standard deviation for Gaussian blur
9: β: Rain opacity factor

Output: Augmented dataset of images Xaug with
synthetic rain and other augmentations.

1: Step 1: Add Rain Streaks
2: for each image x ∈ X do
3: Get image dimensions W,H.
4: for i = 1 to N do ▷ Generate rain streaks
5: Randomly select a starting point (x0, y0),

where x0 ∈ [0,W ] and y0 ∈ [0, H].
6: Compute endpoint (x1, y1):

x1 = x0 + L · cos(θ)

y1 = y0 + L · sin(θ)

7: Draw a line between (x0, y0) and (x1, y1).
8: end for
9: Apply motion blur to rain streaks with Gaus-

sian kernel G(x, y):

G(x, y) =
1√
2πσ

exp

(
−x2 + y2

2σ2

)
10: Blend rain streaks with the image using opac-

ity factor β:

Iaug(x, y) = (1− β) · I(x, y) + β ·R(x, y)

11: end for
12: Step 2: Data Augmentation
13: Perform random horizontal flip with probability

Phflip:
Iflip(x, y) = I(W − x, y)

14: Randomly scale the image by a factor s ∈ S.
15: Adjust brightness with factor α:

Ibright(x, y) = α · I(x, y)

16: Apply Gaussian blur to simulate light scattering
with kernel size k:

Iblur(x, y) =

k∑
i=−k

k∑
j=−k

I(x+ i, y + j) ·G(i, j)

17: Step 3: Final Augmented Dataset
18: Save augmented image Iaug in Xaug.
19: Repeat for all images in the dataset X.

Figure 2. Qualitative evaluation of YOLOv8++ over
synthetic rain generated and augmented data. Column
1: Original images, Column 2: Rain-augmented im-
ages, and Column 3: Bounding boxes generated by
YOLOv8++ model

3.2 Training and Metrics 304

The training of the YOLOv8++ model was con- 305

ducted using the three original (two without rain 306

and one with rain) and two rain-augmented datasets 307

with an 80:20 training-testing split ratio. We em- 308

ployed the Adam optimizer with an initial learning 309

rate of 0.001, which decayed by a factor of 0.1 after 310

every 20 epochs. The batch size was set to 16, and 311

training was performed for 250 epochs. The model 312

was trained on NVIDIA RTX 4090 dual GPUs of 313

24 GB each, leveraging the mixed precision training 314

to speed up the process while maintaining computa- 315

tional efficiency. 316

To evaluate the model’s performance, we used 317

mAP, the mean Average Precision calculated at the 318

Intersection over Union thresholds of 0.5, to assess 319

the precision and recall trade-off, the number of 320

model parameters and the compression ratio. 321

3.3 Performance Results 322

Our YOLOv8++ model is compared against the 323

baseline YOLOv8 and other state-of-the-art object 324

detection models over mAP@50, as shown in Table 2. 325

The best and second-best results are marked in bold 326

and underlined, respectively. It can be seen that 327

the proposed YOLOv8++ outperforms YOLOv8 328

and the recent versions like YOLO-NAS, YOLOv10 329

and the latest YOLOv11 models. However, when 330

compared in terms of the number of parameters, 331

YOLOv8++ is on the higher side. 332

The weights pruning-based ablation study is done 333

on the YOLOv8++ model, and the results obtained 334

over mAP@50 and the number of parameters can be 335

seen in Table 3, where the best and second-best re- 336

sults are marked in bold and underlined, respectively. 337

It can be seen that pruning done at 50% has com- 338

parable performance with the original YOLOv8++ 339
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model. The performance of YOLO8++ (mAP@50340

with 50% pruning - 57.8) is marginally better than341

YOLOv8 (mAP@50 - 57.6) but with a reduced num-342

ber of parameters (YOLOv8++ with 50% pruning343

- 21.897 M params vs YOLOv8 - 43.69 M params)344

achieving the 2x compression ratio. This makes345

the proposed model an excellent candidate for real-346

time object detection in adverse weather conditions,347

specifically for autonomous vehicles and ADAS.348

Table 2. mAP@50 results and Params of YOLO vari-
ants

Dataset/Model YOLO-NAS YOLOv8 YOLOv10 YOLOv11 YOLOv8++

BDD100K 47.5 56.7 57.8 57.7 57.7
Cityscapes 46.4 55.7 49.3 49.3 55.9
DAWN-Rainy 52.7 69.9 67.8 61.3 70.7
BDD100K-Rainy 46.5 57.1 57.4 57.2 57.3
Cityscapes-Rainy 45.6 48.8 48.7 49.3 49.3

Average mAP@50 47.7 57.6 56.2 55.0 58.2

Params (M) 66.90 43.69 25.89 25.30 43.692

Table 3. mAP@50 results, Params and Compression
ratio based on weights pruning

Dataset/Pruning 0% 10% 20% 30% 40% 50% 60%

BDD100K 57.73 57.71 57.70 57.71 57.74 57.46 56.89
Cityscapes 55.94 54.96 54.75 54.32 54.59 52.72 45.83
DAWN-Rainy 70.72 70.48 60.80 70.67 60.88 72.43 57.80
BDD100K-Rainy 57.25 57.05 57.17 57.30 56.97 57.06 56.34
Cityscapes-Rainy 49.32 48.63 48.62 48.65 48.69 49.31 49.15

Average mAP@50 58.19 57.77 55.81 57.73 56.07 57.80 53.20

Params (M) 43.692 39.333 34.974 30.615 26.256 21.897 17.538
Compression Ratio 1x 1.11x 1.25x 1.43x 1.66x 2x 2.49x

4 Conclusion349

This study presents a significant advancement in350

road object detection under rainy weather scenar-351

ios by proposing the YOLOv8++ model with net-352

work pruning techniques. The combination of en-353

hanced accuracy, robustness, and efficiency makes354

our approach a valuable contribution to developing355

reliable and practical autonomous driving systems.356

Through rigorous evaluation and comparative anal-357

ysis, we demonstrate the effectiveness of our modi-358

fications and provide a solid foundation for future359

research in this area. Our work addresses critical360

challenges in adverse weather conditions and paves361

the way for more reliable and efficient object detec-362

tion in autonomous driving applications. Magnitude-363

based weight pruning, when applied to a modified364

YOLOv8++ model, results in a more efficient net-365

work by eliminating less important weights. This366

leads to a leaner, faster model with a reduced com-367

putational footprint, making it ideal for deployment368

in real-time systems where resource constraints are369

critical. The careful balance between pruning and370

fine-tuning ensures that the network maintains high371

accuracy while operating more efficiently, particu-372

larly in demanding environments like autonomous373

driving under adverse weather conditions.374
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