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Report-Concept Textual-Prompt Learning for Enhancing X-ray
Diagnosis

Anonymous Authors

ABSTRACT
Despite significant advances in image-text medical visual language
modeling, the high cost of fine-grained annotation of images to
align radiology reports has led current approaches to focus primar-
ily on semantic alignment between the image and the full report,
neglecting the critical diagnostic information contained in the text.
This is insufficient in medical scenarios demanding high explainabil-
ity. To address this problem, in this paper, we introduce radiology
reports as images in prompt learning. Specifically, we extract key
clinical concepts, lesion locations, and positive labels from easily
accessible radiology reports and combine them with an external
medical knowledge base to form fine-grained self-supervised sig-
nals. Moreover, we propose a novel Report-Concept Textual-Prompt
Learning (RC-TPL), which aligns radiology reports at multiple levels.
In the inference phase, report-level and concept-level prompts pro-
vide rich global and local semantic understanding for X-ray images.
Extensive experiments on X-ray image datasets demonstrate the
superior performance of our approach with respect to various base-
lines, especially in the presence of scarce imaging data. Our study
not only significantly improves the accuracy of data-constrained
medical X-ray diagnosis, but also demonstrates how the integration
of domain-specific conceptual knowledge can enhance the explain-
ability of medical image analysis. The implementation code will
be publicly available. The implementation code will be available at
https://anonymous.4open.science/r/RC-TPL

CCS CONCEPTS
• Applied computing→ Health informatics.

KEYWORDS
X-ray Diagnosis, Vision-Language models, Prompt Learning, Multi-
modality

1 INTRODUCTION
Deep learning models have demonstrated remarkable potential in
the analysis of chest X-rays (CXR), such as disease classification
[9]. However, the training of these models relies on a large number
of annotated images, which limits their application in practical
settings [21]. Pre-trained language models, such as BERT [17], have
provided new perspectives for medical vision and language pre-
training [24, 37]. Recently, large-scale visual-language pre-training
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… Atelectasis suspected in the 

left upper lobe, minimal pleural 

effusion in the left lower lobe, 

and a mass shadow observed 

in the right middle lobe…

(a) Unexplainable report-level semantic alignment

(b) Explainable concept-level semantic alignment

… Atelectasis suspected in the 

left upper lobe, minimal pleural 

effusion in the left lower lobe, 

and a mass shadow observed 

in the right middle lobe…

Figure 1: A comparison between a coarse-grained image-
report pairing (a) and a fine-grained image-concept pairing
(b). Radiologic reports contain a rich set of information that
reflect the specific pathologic and anatomic status of the
radiographic image. Semantic alignment using these fine-
grained clinical concepts enables explainable diagnosis.

(VLP) models that utilize naturally paired image-text contrastive
learning, such as CLIP [24] and BLIP [18], have made significant
progress in visual tasks. Nevertheless, transforming foundational
vision-language pre-trainingmodels into actual clinical applications
remains challenging.

First, the limited availability of medical imaging data presents a
challenge for language models to comprehend free-form reports [3].
Unlike natural images that can be annotated with relative ease, med-
ical image annotation requires verification by experienced domain
experts, such as clinical physicians, resulting in high thresholds and
costs. This leads to a scarcity of annotated medical images, while
an abundance of unpaired radiology reports remain underutilized.
Although MedCLIP [33] learns from these unpaired texts, there is
still a necessity for image involvement. The majority of current
medical VLP models merely pair CXR images directly with raw
radiology reports, as shown in Figure 1 (a), neglecting the mod-
eling of fine-grained relationships between the semantic content
in images and the concepts in reports. Despite efforts to denoise
radiology reports and integrate multi-source medical knowledge
into pre-training [5, 20, 34], overcoming the limitations of coarse-
grained knowledge and reliance on image data remains elusive.
Thirdly, explainability is critical. Linking diagnostic outcomes with
visual evidence is crucial for aiding radiologists’ comprehension of
the system and building trust between patients and technology.

https://anonymous.4open.science/r/RC-TPL
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

To address the above challenges, we advocate learning from
prompts by treating radiology reports as medical images. This by-
passes the need for time-consuming and laborious image annota-
tion. It is feasible as in pre-trained visual-linguistic models [14]
where an image encoder and a text encoder encode images and
text into a shared space. For a given image and its radiology report,
the visual features produced by the image encoder will be close
to the text features of the radiology report produced by the text
encoder. This has also been demonstrated on generalized visual
multi-classification tasks [8]. Second, when target task data are con-
strained, prompt learning as a representative parametric learning
paradigm has emerged and served as an effective way to adapt VLP
models to downstream tasks. For example, CoOp [40] learns from
annotated images. DualCoOp [27] learns from annotated images
by training positive and negative cue pairs with partially labeled
images.

Radiology reports usually contain information from two perspec-
tives, anatomy and pathology, as in Figure 1 (b). Pathologic informa-
tion is the clinical concept of the chest X-ray examination, e.g., Mass.
Anatomical structure describes the anatomical structure and loca-
tion, e.g., right middle lobe. A recent work, MedKLIP [34], provides
a promising approach for decomposing textual information into
anatomical and pathological dimensions, but their approach does
not have explainable analysis. In this paper, we extract key anatomi-
cal and pathological information, including clinical concepts, lesion
locations, and positive labels, from easily accessible radiology re-
ports and combine them with an external medical knowledge base
to form fine-grained self-supervised signals. Furthermore, we pro-
pose a novel Report-Concept Textual-Prompt Learning (RC-TPL),
which aligns radiology reports at multiple levels. In the inference
phase, report-level and concept-level prompts provide rich global
and local semantic understanding of X-ray images. Note that al-
though these prompts are learned only from textual descriptions,
they can be easily used to classify entire images as well as image
blocks during testing (see Figure 1 (b)).

To sum up, the contributions of this work include.

• We propose to use radiology reports as medical images in
prompt learning to adapt medical VLP models to X-ray im-
age diagnosis. Radiology reports are easily accessible and
their class labels can be directly exported compared to im-
ages. Compared to prompting from images, our method is
less affected by the problems of image data limitations and
labeling restrictions.

• We extract rich pathological and anatomical information
from radiology reports and inject medical knowledge en-
hancing medical VLP from a knowledge-base or LLMs. It
can be flexibly applied to medical classification tasks with
or without image annotation.

• We present Report-Concept Textual-Prompt Learning (i.e.
RC-TPL) to extract both coarse-grained and fine-grained
prompt embeddings for enhancing X-ray Diagnosis.

• The experimental results show that our RC-TPL method out-
performs state-of-the-art methods by a large margin on sev-
eral benchmarks (e.g., ChestX-ray14, CheXpert, and COVID-
19) without using any labeled images. Meanwhile, it has well
explainable ability.

2 RELATEDWORK
2.1 Medical Vision-Language models
Large-scale pre-trained visual language models (VLMs) have been
widely applied across various general domains [18, 19]. For instance,
the CLIP [24] was trained on a dataset of 400 million image-text
pairs collected from the internet, resulting in an effective alignment
of visual and textual encoders. However, due to the complexity of
medical reports and the scarcity of large-scale medical image-text
datasets, pre-trained visual language models in the medical domain
are still being explored. To utilize the medical image-text data, the
contrastive learning framework has also been extensively adopted
[11, 32]. Many studies utilize precisely matched medical image
and text data for contrastive learning, such as ConVIRT [36]. In
contrast, MedCLIP [33] introduced a novel approach by decoupling
the strict pairing relationship between images and texts, which not
only expanded the range of available training data but also reduced
the risk of false negatives.

Additionally, some strategies incorporate medical knowledge as
part of the model input or as guidance during the model training
process [4], such as MedKLIP [34], KAD [35], Med-UniC [30], DeV-
iDe [20]. Although these methods have facilitated the integration
of knowledge in the training of VLMs, there is still a lack of effec-
tive means to integrate the fine-grained discriminative knowledge
required in the diagnostic process.

2.2 Prompt learning
Prompt learning developed from the field of natural language pro-
cessing which is motivated by the use of pre-trained language
models as a knowledge base from which valuable information can
be elicited for downstream tasks using prompt templates [38]. Re-
cently, prompt learning has become a parameter-efficient way to
transfer pre-trained knowledge to downstream tasks in data-limited
environments [6, 15]. CoOp [40] learns prompts using a few an-
notated images per category in the target dataset. CoCoOp [39]
further improves upon CoOp by formulating prompts in an image-
conditional manner. CoCoOp [39]achieves impressive zero-shot
inference performance for previously unseen categories under low-
resource conditions. In themedical domain, Qin et al. [23] developed
a method for automatically generating medical prompts to enhance
the knowledge transfer capability of pre-trained visual language
models for medical object detection. MedPrompt [38] enables low-
cost medical image classification through prompt learning. Most
related to our work is XCoOp [2], which leverages medical knowl-
edge by aligning the semantics of images and learning fine-grained
knowledge through trainable prompts.

Despite the significant performance achieved by existing prompt
learning methods on downstream tasks, they typically require im-
ages and some class labels as inputs to learn prompts, making them
less applicable in the medical context where image annotation is
costly. Other research has developed methods that avoid the need
for images in the prompt learning process [8, 41]. Guo et al. pro-
posed TaI [8], which treats text as image learning prompts. Inspired
by TaI, we utilize readily available radiology report descriptions to
learn prompts. After training, the prompts learned in text can be
easily applied to test images.
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…
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…

Global-prompt

Local-prompt
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Encoder
Nodule
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Covid-19 …

…

… … …

…

…

Image

Encoder …

…

Image-Prompt

Alignment

…

…

:  Frozen Parameters:  Trainable Parameters

Training Testing

Concept Location Positive

Left upper 1

1Mass

Null 0

…… …

Rad-Graph Knowledge Base vAtelectasis

Pneumonia

Right middle 
Mass refers to... a tissue lump, …  located at right middle lobe.

Atelectasis refers to... collapse of the lungs, …  located at left 

upper lobe.

Pneumonia  refers to... infiltration , …  Not present.

.   .   .

Knowledge injection

Preparation of Clinical Concept

:Element-wise Sum:Concatenate

Figure 2: The pipeline of our approach. The key insight of RC-TPL is using textual descriptions instead of labeled images to train
the prompts to enhance the informativeness and explainability of the prompts, guided by multi-granularity concept-based
medical knowledge. During training, we use two identical text encoders from the pre-trained MedCLIP to extract report
and concept class embeddings, and report text and concept description embeddings from prompts and radiology reports,
respectively. During testing, we replace the input from text descriptions to images. The report and concept class embeddings
distinguish target classes from global and local image features. The final classification result is obtained by combining the
scores of the two branches.

3 METHODOLOGY
In this section, we detail our proposed RC-TPL, including concept
extraction and knowledge injection, definition of report-level and
concept-level prompts, training and inference. As shown in Figure
2.

3.1 Preparation of Clinical Concept
3.1.1 Concept Extractor. To obtain sufficient clinical concept infor-
mation for the identification of X-ray images, we must ensure that
the collected reports contain detailed descriptions of diseases. The
content of the reports needs to cover all clinical concepts as com-
prehensively as possible to represent all categories of diseases. To
guarantee reproducibility, we use existing radiology reports from
public X-ray image datasets (e.g., MIMIC-CXR [16]). It is impor-
tant to note that although each radiology report is paired with the
corresponding image and human-annotated labels, we only utilize
the radiology reports themselves and do not use information from
images and labels during the training process.

For a target X-ray dataset D that has a clinical concept set C =

{𝑐1, 𝑐2, 𝑐3, . . . , 𝑐𝐿}, Where 𝐿 denotes the number of concepts and
𝑐𝑖 denotes particular concept name like “effusion”, “mass”, etc. .
Given a radiology report T with multiple sentences, we follow
[34] employ the named entity recognition method Rad-Graph[13]
to extract (Concept, Location, Positive) triplets from the
radiology reports, as shown in the top of figture 2. Here, "Concept"

refers to clinical pathological observation emerge from CXR image
(e.g., "Mass"). "Location" indicates the specific anatomical body
part related to the clinical observation, such as "left lower lobe."
Additionally, there is a "Positive" label to indicate whether the
clinical observation reported is positive (present), negative (not
present), or uncertain result, which will be used as a supervisory
signal for subsequent concept-level semantic alignment. Based on
this, we can obtain a set of triplets to describe the fine-grained
information from the radiology reports:

Tconcepts = (c𝑖 , l𝑖 , pos𝑖 ), 𝑖 ∈ N (1)

where N represents the total number of concepts contained in one
radiology report. We only search for radiology reports that contain
at least one concept name in C.

3.1.2 Clinical Knowledge Injector. To achieve fine-grained seman-
tic alignment, we enhance the comprehensibility of the extracted
triplets by connecting themwith externalmedical knowledge. Specif-
ically, we query publicly accessible medical knowledge bases (such
as Wikipedia 1) or utilize large language models (such as ChatGPT
2) to translate clinical concept entities into detailed descriptions. For
instance, for "Concept(["MASS"])", we could generate a description
like: "Mass refers to... a tissue lump whose density is significantly dif-
ferent from the surrounding normal tissue...".. Although this process
1Wikipedia https://en.wikipedia.org/wiki/
2ChatGPT https://chat.openai.com/

https://en.wikipedia.org/wiki/
https://chat.openai.com/
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may seem simple, transforming entities into descriptions is crucial
for more reliable and zero-shot diagnosis, as it breaks down the
professional clinical concept into basic attributes shared by vari-
ous diseases, encouraging the model to deeply understand visual
evidence. Regarding the "Position" information, we use prompts
such as "It is located in position" to construct sentences. Then, we
concatenate these to form a new fine-grained text that guides the
learning of concept-level Prompts.

3.2 Report-Concept Textual-Prompt Learning
After extensive large-scale image-text contrastive pre-training, tex-
tual features have achieved complete consistency with image fea-
tures of the same semantics [8]. Therefore, radiology text features
used to describe specific diagnostic categories also exhibit classi-
fiable recognizability. Based on this alignment of visual-language
(VL) representations, we propose a novel perspective that assume
the necessity of images for prompt learning, we suggest using tex-
tual features describing specific diagnostic categories as substitutes
for image features.

Furthermore, medical diagnoses often rely on various clinical
concepts (symptoms) observable within specific local regions of
images. Considering that different clinical concepts may corre-
spond to different subregions of medical images, we propose Report-
Concept Textual-Prompt Learning (i.e., RC-TPL), which uses two
sets of prompts to process report-level (i.e., coarsest-grained level)
and concept-level (i.e., finer-grained level) features in two parallel
branches, respectively. Specific details are shown in Figure 2.

3.2.1 Report-level Prompt. Following [8], a report-level is defined
as:

𝒕𝑅𝑖 = [𝒑1,𝒑2,𝒑3, . . . ,𝒑𝑀 , 𝑐𝑖 ] (2)
Where 𝑖 is the concept index, 𝑐𝑖 denotes word embedding of the

𝑖-th concept name. For 𝑗 ∈ {1, 2, . . . , 𝑀}, 𝒑 𝑗 is a learnable word
embeddingwhose dimension is the same as the dimension of normal
word embeddings in the vocabulary. Then the 𝒕𝑅

𝑖
is fed to a copy of

the text encoder Enc𝑇 of MedCLIP to generate report-level prompt
embeddings for each concept.

𝑬𝑅 = {𝑬𝑅𝑖 }
𝐿
𝑖=1, 𝑬

𝑅
𝑖 = Enc𝑇 (𝒕𝑅𝑖 ) (3)

3.2.2 Concept-level Prompt. In general, global features are suffi-
cient for common image classification because the target object is
usually prominent in the picture. However, in X-ray images, there
exists information at the anatomical and pathological levels. There-
fore, it motivates us to explore fine-grained features. We propose
concept-level prompt definitions as follows:

𝒕𝐶𝑖 = [𝒑′
1,𝒑

′
2,𝒑

′
3, . . . ,𝒑

′
𝑀 , 𝑐𝑖 ] (4)

Where 𝒑′
𝑗 is a learnable word embedding that concatenated

with word embedding 𝑐𝑖 of the 𝑖-th concept to obtain the concept
prompt. Similarity, the 𝒕𝐶

𝑖
is fed to a copy of the text encoder Enc𝑇

of MedCLIP to generate concept-level prompt embeddings for each
concept.

𝑬𝐶 = {𝑬𝐶𝑖 }
𝐿
𝑖=1, 𝑬

𝐶
𝑖 = Enc𝑇 (𝒕𝐶𝑖 ) (5)

3.2.3 Report and concept description embedding. For radiology re-
ports, we similarly utilize the text encoder in MedCLIP to encode
and then take the embedding of the [𝐶𝐿𝑆] token. For each concept,

a series of sentence descriptions obtained after external medical
knowledge injection, we encode them separately. Report text em-
bedding and concepts description embedding define as:

𝒉 = Enc𝑇 (𝒓) [𝐶𝐿𝑆 ]

𝑯 = {ℎ′𝑖
[𝐶𝐿𝑆 ] }N𝑖=1, ℎ

′ = Enc𝑇 (Knowledge(c𝑖 ))
(6)

where 𝒓 denotes a complete radiology report. 𝒉 ∈ R𝐷 are the
extracted global text features. 𝑯 ∈ R𝐿×𝐷 are the extracted concept
description features.

Just like in previous methods[40], the prompts are learned by max-
imizing the probability of classifying each concept description into
its ground-truth class. Then, the report-level and concept-level
similarities are computed by:

𝒑𝒊 = ⟨𝒖, 𝑬𝑅𝑖 ⟩, 𝑷𝑖, 𝑗 = ⟨𝑼 𝑗 , 𝑬
𝐶
𝑖 ⟩ (7)

where 𝒖 denotes either language feature 𝒉 in training or visual
feature 𝒇 in testing of image 𝒙 , and 𝑼 denotes 𝑯 or the flattened
dense image features 𝑭 coordinately. Information in local branch 𝑷
is aggregated in a spatially weighted manner:

𝒑′
𝑖 =

𝐿∑︁
𝑗=1

exp(𝑷𝑖 𝑗/𝜏𝑐 )∑𝐿
𝑗=1 exp(𝑷𝑖 𝑗/𝜏𝑐 )

· 𝑷𝑖 𝑗 (8)

where 𝜏𝑐 accommodates the extent of focusing on a specific location.

3.3 Training
Following [8], We adopt the ranking loss[7] to measure the dis-
crepancy between classification scores and ground-truth labels
extracted from report for each concept. Specifically, L𝑟𝑒𝑝𝑜𝑟𝑡 and
L𝑙𝑜𝑐𝑎𝑙 are formulated as follows:

L𝑟𝑒𝑝𝑜𝑟𝑡 =
∑︁

𝑖∈{𝑐+ }

∑︁
𝑗∈{𝑐− }

𝑚𝑎𝑥 (0,𝑚 − 𝒑𝑖 + 𝒑 𝑗 ),

L𝑙𝑜𝑐𝑎𝑙 =
∑︁

𝑖∈{𝑐+ }

∑︁
𝑗∈{𝑐− }

𝑚𝑎𝑥 (0,𝑚 − 𝒑′
𝑖 + 𝒑′

𝑗 )
(9)

where 𝒑 and 𝒑′ are report-levle and aggregated concept-level simi-
larities described in above.𝑚 is the margin controlling how much
higher the similarity score with the positive classes is than with the
negative classes. During training, we minimize the overall objective
L = L𝑟𝑒𝑝𝑜𝑟𝑡 + L𝑙𝑜𝑐𝑎𝑙 with frozen text encoders, by optimizing the
global and local prompts.

3.4 Inference
At inference time, given a test image, we can directly infer the exis-
tence of certain concepts/disease, and ground their visual evidence.
Given an X-ray image scan X ∈ R𝐻×𝑊 ×3, we can compute the
visual features 𝒇 and flattened dense image features 𝑭 with a visual
backbone

{𝑓 , 𝐹 } = Enc𝐼 (X) (10)
where 𝒇 ∈ R𝐷 and 𝑭 ∈ R𝐿𝐼 × 𝐷 , and 𝐿𝐼 = 𝐻 ×𝑊 denotes the

flattened spatial dimension of visual feature. Then, the report 𝒑 and
concept 𝒑′ similarities are computed and combined to obtain the
final classification score.
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4 EXPERIMENT
4.1 Experimental Setup
4.1.1 Pre-training Dataset.

MIMIC-CXR. [16] is a large chest X-ray database composed
of more than 227k paired image-report data research, collected
from 65,379 different scans of patients in the Beth Israel Deaconess
Medical Center in Boston. It is important to note that. We only use
the freely available text radiology reports of this dataset for prompt
learning in training. For better training, we excluded lateral views
and reports that included fewer than two concepts, resulting in a
pre-training dataset with 223,673 MIMIC-CXR image-text pairs.

4.1.2 Datasets for Downstream Tasks.

CheXpert. [12] is a dataset containing 224,316 chest X-rays with
14 observation labels, covering 65,240 patients who underwent
radiological examinations at Stanford Medical Center.

ChestX-ray14. [31] consists of 112,120 frontal x-ray images
with 14 common diseases labeled from 30,805 patients collected by
the National Institutes of Health (NIH) in the United States.

COVIDx CXR-3 and COVID Rural. [22, 28] aim to evaluate on
diagnosing COVID-19. COVIDx CXR-2 contains 29,986 X-rays with
the COVID-19 classification labels. We used it as a classification
dataset. In addition, we use the COVID Rural dataset for COVID-19
segmentation, which contains more than 200 chest radiographs
with segmentation masks.

RSNA Pneumonia. [26] is a chest X-ray image dataset publicly
provided by the NIH, which consists more than 260k chest X-rays
with corresponding pneumonia opacity masks. It can be used as
both a classification and grounding task.

SIIM Pneumothorax. is a more than 12k frontal chest radio-
graph dataset with pneumothorax mask collected by the Society
for Imaging Informatics in Medicine and the American College of
Radiology. Similar to the RSNA pneumonia dataset, it can be used
as both a classification and grounding task.

4.1.3 Baselines. We evaluate our method against a range of state-
of-the-art (SOTA) methods for medical VLP, including ConVIRT
(2022) [36],GLORIA (2021) [11],MedCLIP-ViT (2022) [33],BioViL
(2022) [3],CheXzero (2022) [29]MedKLIP (2023) [34],MedPrompt-
ViT (2024) [38],MeDSLIP (2024) [5].

ConVIRT trains twomodality-specific encoders by bidirectional
contrastive loss to learn visual representations. GLoRIA utilizes
both global and fine-grained features for medical VLP.MedCLIP-
ViT decouple images and texts for multimodal contrastive learn-
ing, and we choose ViT as the image encoder. BioViL proposes a
radiology-specific text encoder for the subsequent classical pipeline
of VLP. CheXzero retrains one CLIP model with a corpus of the
medical domain. MedKLIP designs one novel entity extraction
and transition module to inject domain-specific knowledge into
the process of VLP. MedPrompt-ViT uses a weakly supervised
prompt learningmethod to automatically generate medical prompts.
MeDSLIP establishes vision-language fine-grained alignments via
disentangling visual and textual representations.

4.1.4 Metrics. AUC andACC are measured for classification tasks.
Pointing Game and Dice are used for evaluating the grounding
performance. In specific, we extract the region withmax response in
the output heat-map, for one instance, if the region hit the ground-
truthmask, it is considered a positive prediction, otherwise negative.
Finally, accuracy can be calculated as the pointing game score.
We report the maximal Dice score for each model. Precision and
Recall refer to the detection Precision and Recall. For medical, in
some hard cases, especially for the zero-shot setting, Dice may be
too strict to reflect the performance difference. Precision and recall
scores can compensate for these. Precision@𝐾 is used for measure
the performance of various models in Image-Text retrieval task.

4.1.5 Implementation. We adopt MedCLIP [33] with ResNet-50
[10] as the image encoder, and use the MedCLIP with BioClinical-
BERT [1] as the text encoder. During training, the parameters of
the two encoders are kept frozen, and only learnable prompts are
optimized. Our learnable prompts are shared between classes across
all datasets. Following [8], we used Gaussian noise sampled from
N (0.02) to initialize the value of each prompt parameter. The length
of both the report prompts and the conceptual prompts are set to
𝑀 = 12, while longer sequences bring negligible improvement.

We pre-train on the MIMIC-CXR dataset involves a batch size of
64, an AdamW optimizer with learning rates 2𝑒 − 5, and a cosine
scheduler. And for all datasets, the number of training epochs is set
to 20 on 4×V100 GPUs.

4.2 Experimental Results
4.2.1 Zero-shot Classification. We conduct zero-shot image clas-
sification evaluation on four datasets: ChestX-ray14, CheXpert,
COVID, and RSNA. Through matching the encoded image embed-
ding and the embeddings of learned report-level and concept-level
prompts for each disease class to achieve zero-shot prediction. We
illustrate the results in Table 1. We analyze and discuss separately
the categories that were seen in the pre-training and the categories
of chest diseases that were not seen.

Seen Diseases. The pre-training dataset MIMIC-CXR includes
14 disease labels. The specific categories are consistent with the
disease categories included in CheXpert, as listed in Figure 3 (right).
On both the CheXpert and RSNA pneumonia datasets, their diseases
were seen in the pre-training text. Despite the fact that the images
were collected by different hospitals at the time, our model improves
the AUC from 0.83 to 0.85 on CheXpert, and from 0.86 to 0.89 on the
RSNA dataset. For the ChestX-ray14 dataset, which has half of the
disease labels not included in MIMIC-CXR, our model improves the
AUC from 0.78 to 0.83. This suggests that our approach can better
handle multi-center, multi-disease data distribution in medical.

Unseen Diseases. We are considering a strict set for open-set
classification, in particular, we utilize Covid-19 to evaluate the
model. Covid is a new disease that only appeared in 2019, and the
MIMIC-CXR reports collected in 2015 do not include any Covid
entities, so it requires the model to have the ability to diagnose
truly unseen diseases. As shown in Table 1, it is difficult to make
a correct diagnosis with existing methods that rely only on the
name of the disease. In contrast, methods that introduce medical
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Table 1: Comparison with other state-of-the-art methods on zero-shot classification task. AUC and ACC scores are reported.
For ChestX-ray14 and CheXpert, the metrics all refer to the macro average on the all diseases. ∗ represents partial overlap of
disease categories seen in the pre-training data, and ∗∗ represents disease categories that did not seen in the pre-training data.

Methods ChestX-ray14∗ CheXpert COVID∗∗ RSNA
AUC↑ ACC↑ AUC↑ ACC↑ AUC↑ ACC↑ AUC↑ ACC↑

ConVIRT 0.6101 0.7102 0.6640 0.7229 0.6208 0.6093 0.8042 0.7611
GLoRIA 0.6608 0.7616 0.6872 0.7472 0.6539 0.6090 0.7145 0.7129

MedCLIP-ViT 0.6696 0.7008 0.7222 0.7698 0.6221 0.5361 0.7260 0.7311
BioViL 0.6910 0.7844 0.5768 0.6446 0.5538 0.5375 0.8280 0.7669

CheXzero 0.7263 0.8278 0.7529 0.8119 0.6556 0.6578 0.8577 0.7942
MedKLIP 0.7628 0.8645 0.8389 0.8680 0.7396 0.7009 0.8693 0.7998

MedPrompt-ViT 0.7604 0.8532 0.8256 0.8087 0.6853 0.6701 0.8386 0.7884
MeDSLIP 0.7834 0.8883 0.8339 0.8572 0.7556 0.7267 0.8649 0.8098
Ours 0.8327 0.8906 0.8518 0.8732 0.7732 0.7651 0.8888 0.8072

ChestX-ray14 CheXpert

Figure 3: Fine-category performance of different methods on ChestX-ray14 (left) and CheXpert (right). AUC scores of each
category are displayed. Red font indicates that the category is not in the MIMIC-CXR pre-training data and is considered an
unseen disease.

knowledge including MedKLIP, MeDSLIP and our method can sub-
stantially improve the model performance. Our method improves
the introduction of fine-grained concept descriptions that can be
generalized to new chest diseases, since images of Covid-19 also
show similar pathological features such as "Lung opacity". Com-
pared to state-of-the-art methods that do not incorporate medical
knowledge, our method significantly improves the performance
of AUC from 0.68 to 0.77 and ACC from 0.67 to 0.76, suggesting
that the introduction of fine-grained concept medical knowledge
is crucial for unseen diseases classification. This is also confirmed
on unseen diseases in the ChestX-ray14 dataset, as shown in the
disease classification performance highlighted in red font in Figure
3 (left).

4.2.2 Zero-shot Region Grounding. Beyond plain diagnosis, ex-
plainability is equally crucial in healthcare to improve the relia-
bility and trustworthiness of machine learning systems. Here, we
consider providing explainability by grounding anomalies in pre-
dictions and compare it with existing methods to demonstrate the
effectiveness of our proposed concept prompt learning for explain-
ability. Similarly, we split the diseases into seen and unseen ones,
depending on whether their names have peared in the medical
reports. Specifically, “Pneumonia” and “Pneumothorax” are treated
as seen, and “Covid-19” is treated as unseen.

Seen Diseases. Tabel 2 and Table 3 shows the results on RSNA
Pneumonia dataset and SIIM-ACR Pneumothorax dataset respec-
tively. Follow [34], we only consider pointing game, recall, and
precision, as the pneumothorax region tends to be thin and nar-
row, and grounding is more challenging. Our approach leads to
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better performance on different metrics, especially on fixed-point
game scores, especially on the pointing game score. Other baseline
methods can not realize this function. As shown in Table 2, our
proposed model outperforms existing methods in all metrics, such
as increasing the fixed-point game score from 0.88 to 0.90. Overrall,
our method can achieve better performance than previous methods.

Unseen Diseases. As shown in Table 4, we also conducted a
zero-shot grounding experiment on the unseen disease Covid-19.
Our model shows consistent improvements across all metrics, e.g.,
increasing the pointing game score from 0.54 to 0.62. Our model
with knowledge-enhanced concept-level prompt embedding facili-
tates the iamge encoder to learn potential evidence related to the
disease, and therefore produces more explainable representations
compared to previous methods.

Table 2: Comparison with other state-of-the-art methods for
the zero-shot region grounding tasks on RSNA pneumonia
dataset.

Methods Pointing Game↑ Recall↑ Precision↑ Dice↑
GLoRIA 0.7607 0.8330 0.1621 0.3468
BioViL 0.8342 0.8521 0.5034 0.4386

MedKLIP 0.8721 0.8661 0.6320 0.4649
MeDSLIP 0.8857 0.8682 0.6471 0.4955
Ours 0.9011 0.8732 0.6920 0.5087

Table 3: Comparison with other state-of-the-art methods
for the zero-shot region grounding tasks on the SIIM-ACR
Pneumothorax dataset.

Methods Pointing Game↑ Recall↑ Precision↑
GLoRIA 0.0651 0.2377 0.0585
BioViL 0.0252 0.1963 0.1429

MedKLIP 0.1975 0.3562 0.1940
MeDSLIP 0.2278 0.3632 0.1962
Ours 0.2531 0.3825 0.2071

Table 4: Comparison with other state-of-the-art methods for
the zero-shot region grounding tasks on covid-19 opacity
region grounding task.

Methods Pointing Game↑ Recall↑ Precision↑
GLoRIA 0.2727 0.2821 0.1336
BioViL 0.1818 0.2393 0.1637

MedKLIP 0.5818 0.5214 0.4959
MeDSLIP 0.5436 0.5362 0.4421
Ours 0.6214 0.5833 0.5018

4.2.3 Zero-shot Image-Text Retrieval. To better validate the effec-
tiveness of our proposed method in text senmantic alignment. We
followed the experimental setup in MedCLIP [33] and evaluated
the semantic richness of the representations learned by the model
through image-text retrieval tasks in CheXpert testing split of five
disease categories, including Atelectasis, Cardioomegaly, Edema,
Pleural, and Effusion. Due to the lack of publicly available report
data for CheXpert, we used the MIMIC-CXR dataset to generate
reports/sentences. We sampled 200 sentences for each of the five
classes present in the CheXpert-5x200 dataset. This generated 1000
images and 1000 sentences as the retrieval dataset. The results
are shown in Table 5. Our method achieved better performance,
which proves that it effectively provides the semantic information
required for retrieving text.

Table 5: Results of Image-Text retrieval tasks on CheX-
pert5x200 dataset.

Methods P@1↑ P@2↑ P@5↑ P@10↑
ConVIRT 0.20 0.20 0.20 0.21
GLoRIA 0.47 0.47 0.46 0.46

MedCLIP-ViT 0.46 0.49 0.49 0.51
MedKLIP 0.49 0.52 0.50 0.55
Ours 0.52 0.58 0.59 0.61

4.3 Ablation studies
4.3.1 The number of prompts𝑀 . We conduct ablation studies on
CheXpert following the same setting as in Table 1. The result in
Figure 4 (left) shows that the model achieves the best performance
when𝑀 = 12. When the prompt length is too long, both the training
efficiency and the computation budget will be increased.

Further, we performed ablation experiments on Report-level and
Concept-level at𝑀=12. From Figure 4 (left), we can conclude that
our recept-level can achieve better results by injecting external
medical knowledge.

4.3.2 Knowledge injection compare. We further explored different
knowledge injection approaches in the preparation of the concept
description phase. Specifically, we used five concept knowledge
injection settings, including without knowledge (W/O KG), general
knowledge (i.e., a fixed format for knowledge without a specific
clinical concept, e.g., a photo of [concept name].) , medical knowl-
edge generated based on Large Language Models (LLMs) (LLMs
KG), medical knowledge without anatomical location based on
clinical knowledge base (KB KG W/O position), and clinical knowl-
edge base knowledge with anatomical location (KB KG). Similarly,
the previous three knowledge injection settings splice anatomical
location information. Specifically, we take the unseen Covid-19
dataset as an example. Figures 4(middle) and 4 (right) show that
without external medical knowledge or general knowledge leads
to degraded model performance. Secondly, without incorporating
the disease concept in the anatomical location information of the
image brings a degradation to the model performance , especially
in the grounding task. Finally, we observed that clinical knowledge
generated with LLMs is also comparable to specialized knowledge



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 4: Left image shows the change in AUC of the number of prompts𝑀 on the CheXpert dataset, as well as the ablation
results for report-prompt and accept-prompt. Middle and right images show the change in performance of classification and
grouding tasks for our prompt learning on the unseen Covid-19 dataset for different external knowledge injection methods.

mass

pneumonia

atelectasis masseffusion

Figure 5: Visualization of the selected disease class with the
learned concept prompts in the same image usingGrad-CAM.

bases. The comprehension capabilities of LLMs can be utilized for
more research extensions in the future.

4.3.3 Visualization of prompts. To verify that different prompts do
reflect different image attributes, we visualize the image contents
corresponding to different prompts using Grad-CAM [25].

Specifically, given a test image, a feature map 𝑭 is obtained by
image encoder. Concept-levle prompt and each disease category 𝑖
are concatenated and then passed through the text encoder to obtain
concept prompt embedding 𝑬𝑅

𝑖
. 𝑭 and𝑬𝑅

𝑖
then used to calculate

similarity 𝑷 , which is adopted to highlight the corresponding image
contents using Grad-CAM.

In Figure 5, the image contents in different columns correspond
to the activation regions of different disease categories. As can be
seen in Figure 5, for the same X-ray image, concept prompts with
different disease category do reflect different regions in the image,
indicating the validity and diversity of the learned prompts.

To verify whether the learned concept prompts indeed reflect
image attributes with high-level semantics, we visualize the content
of the same disease category (e.g., mass) on different images in in
Figure 6. It can be seen that our method can focus on different
anatomical locations of the same disease category on different im-
ages. This suggests that the concept prompts effectively learns key
attributes that can be generalized across images, thereby improving
the performance of X-ray diagnostics.

mass

pneumonia

atelectasis masseffusion

Figure 6: Visualization of the same disease class with the
learned concept prompts on different X-ray images using
Grad-CAM.

5 CONCLUSION
In this paper, we propose a new perspective on prompt learning
that treats radiology reports as X-ray images, which learns prompts
from the discriminative features of concept descriptions.. Compared
to previous prompt learning methods trained with images, our
method benefits from the easy accessibility of scalable content-rich
radiology reports, which enables prompt learning for visual diag-
nostic tasks even without downstream X-ray data. Report-level and
concept-level prompts are introduced to leverage global and fine-
grained features for better X-ray diagnosis ability. Our approach
outperforms other prompt learning methods while retaining the
inherent explainability of visual and textual interpretation. Exten-
sive experiments and explainability analyses on variety of datasets
show that our method achieves both excellent performance and
explainability.
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