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Abstract

We present MathBode, a dynamic diagnostic for mathematical reasoning in large
language models (LLMs). Instead of one-shot accuracy, MathBode treats each
parametric problem as a system: we drive a single parameter sinusoidally and
fit first-harmonic responses of model outputs and exact solutions. This yields
interpretable, frequency-resolved metrics—gain (amplitude tracking) and phase
(lag)—that form Bode-style fingerprints. Across five closed-form families (linear
solve, ratio/saturation, compound interest, 2×2 linear systems, similar triangles),
the diagnostic surfaces systematic low-pass behavior and growing phase lag that
accuracy alone obscures. We compare several models against a symbolic baseline
that calibrates the instrument (G ≈ 1, ϕ ≈ 0). Results separate frontier from
mid-tier models on dynamics, providing a compact, reproducible protocol that
complements standard benchmarks with actionable measurements of reasoning
fidelity and consistency. We open-source the dataset and code to enable further
research and adoption. Code | Dataset

1 Introduction

Large language models (LLMs) now score highly on math benchmarks, but final–answer accuracy
obscures how they reason and whether behavior is stable under controlled changes. We propose a
dynamic evaluation: treat each parametric problem as a system, drive one parameter sinusoidally,
and summarize the model’s response by gain (amplitude tracking) and phase (lag) over frequency.
MathBode implements this across five closed-form families, fitting first-harmonic responses to
produce Bode-style fingerprints that reveal low-pass behavior and growing phase lag even when
static accuracy ties. The protocol is simple (short prompts, deterministic decoding) and includes a
symbolic baseline to calibrate the instrument (ideal G≈1, ϕ≈0). We report G(ω), |ϕ(ω)|, mid-band
aggregates, residual autocorrelation, and first-harmonic fit quality (R2), providing a complementary
lens on reasoning fidelity, consistency, and prompt sensitivity that accuracy alone cannot capture.

Context. Progress in mathematical reasoning is typically reported on static, final-answer datasets
such as GSM8K and MATH, with domain-tuned systems (e.g., Minerva) pushing scores higher
[Cobbe et al., 2021, Hendrycks et al., 2021, Lewkowycz et al., 2022]. Newer suites emphasize expert
difficulty and recency—OlympiadBench, Omni-MATH, FrontierMath—yet still follow the one-
input/one-answer paradigm [He et al., 2024, Gao et al., 2024, Glazer et al., 2024]. A parallel thread
probes robustness: small semantic edits can flip answers (SVAMP; MATH-Perturb), while sampling
strategies like self-consistency improve end accuracy without measuring stability [Patel et al., 2021,
Huang et al., 2025, Wang et al., 2022]. Meta-reasoning probes and repeated-trial consistency
likewise show models can be correct once yet unreliable across paraphrases or restarts [Zeng et al.,
2023]. Together, these observations motivate metrics that capture reliability and invariance, not just
correctness.
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Why a frequency/phase view? Interpretability results suggest a principled bridge to the frequency
domain: transformers trained on arithmetic learn sinusoidal/rotational internal codes; modular
addition emerges via Fourier-like features and rotations; recent work describes clock-like number
embeddings and trigonometric operations [Nanda et al., 2023, Kantamneni and Tegmark, 2025, Li
et al., 2024]. If numeric reasoning is expressed in amplitude and phase, then frequency-response
style probing is natural rather than metaphorical.

What MathBode measures. For each family, we generate a parameter trajectory pt = p0 +
ϵ sin(ωt), decode a single numeric line with temperature 0, and fit {1, sin(ωt), cos(ωt)} to both
ground truth and model outputs. From the fitted coefficients we recover amplitude and phase and com-
pute G(ω) = amp(ŷ)/amp(y∗) and ϕ(ω) = wrap

(
ϕ(ŷ) − ϕ(y∗)

)
. We sweep ω ∈ {1, 2, 4, 8, 16}

(64 steps), optionally vary start phase to assess phase stability, and include a symbolic baseline
that realizes the ideal response. The resulting frequency-resolved curves and aggregates expose
amplitude fidelity, timing lag, and prompt-surface sensitivity—even when static accuracy saturates or
training-data familiarity blurs the line between recall and robust computation. Deterministic decoding
and strict numeric parsing ensure we compare numeric sequences, not templates. A generic pattern
or echo policy would typically yield incorrect amplitude/timing (non-unity G, shifted ϕ) and elevated
residual autocorrelation, even if surface formatting looked consistent.

2 Benchmark

Instrument. We probe dynamic mathematical reasoning by driving one problem parameter with a
sinusoid and fitting first-harmonic responses of model outputs against exact solutions. For a sweep of
length T and angular frequency ω we instantiate prompts with

pt = p0 + ϵ sin(ωt+ ϕ0), t = 1, . . . , T,

decode deterministically (temperature 0) to a single numeric line (FINAL: <number>), and parse
the model series ŷt alongside the exact series y∗t . Each series is regressed onto {sin(ωt), cos(ωt), 1};
from the fitted coefficients (a, b, c) we recover amplitude and phase

amp(y) =
√
a2 + b2, ϕ(y) = atan2(b, a).

We then report

G(ω) =
amp(ŷ)

amp(y∗)
, ϕ(ω) = wrap(−π,π]

(
ϕ(ŷ)− ϕ(y∗)

)
,

along with first-harmonic R2 (fit quality), residual RMS (normalized), residual ACF(1), and a
nonlinearity proxy H2/H1 from a joint fit at ω and 2ω. A symbolic solver baseline runs through the
identical pipeline, providing the ideal reference (G≈1, ϕ≈0).

Although gain and phase originate in linear systems, we do not assume linear time–invariant behavior.
The sinusoid is used purely as a controlled probe: we project both exact and model series onto the first
harmonic to summarize amplitude fidelity (gain) and timing (phase), while residual diagnostics and
H2/H1 explicitly capture departures from a single-tone (e.g., nonlinearity and memory). Mechanistic
findings of sinusoidal/rotational number codes [Nanda et al., 2023, Kantamneni and Tegmark, 2025,
Li et al., 2024] motivate this descriptive frequency lens rather than a modeling assumption.

Families. We evaluate five closed-form families with fixed domains and three question variants
each: Linear Solve (a=p: solve x in ax+b=c), Ratio Saturation (p/(p+k)), Exponential Interest
(A(1+p)t), Linear System (solve x in a 2×2 system with a=p), and Similar Triangles (scaling
s′ = s p). Families expose (prange, p0, ϵ) via code, and inputs are clipped in-range.

Frequency grid and phases. We choose T=64 and sweep Ω = {1, 2, 4, 8, 16} cycles per 64 steps.
To assess phase robustness we use start phases {0◦, 120◦, 240◦}. Defaults set ϵ to roughly 10% of
the family’s half-range.

All experiments use temperature 0 (deterministic decoding) and strict numeric parsing with compli-
ance filtering. At ω=16 (16 cycles over T=64), the drive approaches the Nyquist limit; small dips in
R2 or phase swings can include aliasing artefacts, so we emphasize the mid-band {4, 8} region for
ranking.
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Why this design? Gain and phase isolate amplitude tracking and lag—two core behaviors that
final-answer accuracy obscures—while R2 and residual diagnostics validate the first-harmonic
approximation and expose structure left unexplained by it. The frequency grid (with tri-phase repeats)
yields stability bands rather than single-shot outcomes, and the symbolic baseline calibrates the
measurement end-to-end. The result is an inexpensive, reproducible instrument that complements
static accuracy with a frequency-domain lens on reasoning fidelity and consistency.

3 Dataset Details

Cardinality. MATHBODE contains 9,408 rows per family and 47,040 rows total across five
families.

Table 1: Dataset rows by family.

Family Rows

Exponential Interest 9,408
Linear Solve 9,408
Linear System 9,408
Ratio Saturation 9,408
Similar Triangles 9,408

Total 47,040

Attribute Type Description

family string One of {exponential_interest, linear_solve, linear_system,
ratio_saturation, similar_triangles}.

question_id int Variant index within a family.
signal_type string Drive label: {sinusoid, chirp, step}.
amplitude_scale float Relative amplitude (e.g., 0.5, 1.0, 2.5).
frequency_cycles float Frequency label (cycles per 64 steps).
phase_deg float Start phase (degrees).
time_step int Index within the rendered sequence.
p_value float Concrete parameter value used to render the prompt.
prompt string Fully-rendered natural-language question for the instance.
ground_truth float Exact numerical answer.

4 Evaluation

Scores. For each family and frequency we compute G(ω) = amp(ŷ)/amp(y∗) and ϕ(ω) =
wrap

(
ϕ(ŷ)−ϕ(y∗)

)
from the first-harmonic fit. MB-Core aggregates mid-band {4, 8} deviations via

a normalized combination of |G−1| and |ϕ| across families. MB-Plus applies multiplicative down-
weights derived from first-harmonic R2, residual RMS/ACF(1), and H2/H1, penalizing responses
that are poorly explained or exhibit nonlinear distortion. (Implementation details and ranges are in
code; the same normalization is used for all models.)

Why these views? Final-answer accuracy hides how a model tracks controlled variation. We
therefore summarize each family’s response along four complementary axes: (i) gain (amplitude
tracking), (ii) phase error (timing/lag), (iii) residual autocorrelation ACF(1) (leftover temporal
structure not captured by the first harmonic), and (iv) first-harmonic fit quality R2. Together these
expose low-pass behavior, timing slippage, and prompt-surface sensitivity even when accuracy ties.
Additional diagnostics (H2/H1 nonlinearity, compliance, phase-stability across start phases) appear
in the appendix.

Takeaway (Gain). Most models are low-pass: gain declines with frequency in Linear Solve and
Exponential Interest; Similar Triangles stays near G≈1 (instrument check). Linear System amplifies
between-model differences.
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Figure 1: Gain vs. frequency. Panels are families; curves overlay models (unity G=1 dashed).
Mid-band ({4,8}) deviations indicate under/over-reaction despite identical ground truth.

Figure 2: Phase error vs. frequency. Signed model–truth phase (rad), wrapped to (−π, π]; 0◦
implies perfect timing.

Takeaway (Phase). Phase lag typically grows with frequency (delayed tracking). Closed-form
proportional families (e.g., Similar Triangles) remain near 0◦; Linear System shows the largest swings
(coupling sensitivity).

Figure 3: Residual ACF(1) vs. frequency. Near-zero ACF(1) means little temporal structure remains
after the harmonic fit; negative values align with alternating over/undershoots at higher frequencies.

Takeaway (Residuals). Residual ACF(1) trends toward 0 or negative with frequency, indicating the
first harmonic explains most structure and that remaining errors alternate rather than drift. Residual
RMS and H2/H1 curves are provided in the appendix.
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Figure 4: First-harmonic fit quality (R2) vs. frequency. High R2 validates a single-sinusoid
description; dips signal nonlinear distortion or prompt-surface effects.

Takeaway (R2). R2 is near 1 for Similar Triangles and in the mid-band elsewhere; drops in
Exponential Interest and Linear System co-locate with the largest gain/phase deviations, pointing to
emergent nonlinearities rather than random noise.

Table 2: Overall MathBode scores. MB-Core aggregates mid-band gain/phase deviations; MB-Plus
additionally downweights responses with poor fit quality (R2), high residual structure (RMS/ACF),
or nonlinearity (H2/H1). DeepSeek V3.1 leads overall on both MB-Core and MB-Plus.

Model MB-Core MB-Plus

DeepSeek V3.1 0.834 0.656
Qwen3 235B Instruct 0.782 0.576
GPT-4o 0.778 0.566
Llama 4 Instruct 0.644 0.433
Mixtral 8×7B 0.360 0.281

Table 3: Per-family MB-Core (mean mid-band performance).

Model Exponential Interest Linear Solve Linear System Ratio Saturation Similar Triangles

DeepSeek V3.1 0.848 0.995 0.331 0.997 1.000
GPT-4o 0.497 0.993 0.418 0.980 1.000
Llama 4 Instruct 0.461 0.489 0.450 0.821 1.000
Mixtral 8×7B 0.500 0.494 0.029 0.000 0.779
Qwen3 235B Instruct 0.467 0.982 0.471 0.990 1.000

5 Conclusion.

MathBode reframes mathematical evaluation as a dynamic, frequency–domain probe, yielding
interpretable gain/phase curves rather than only final answers, moving evaluations towards more
reliable mathematical reasoning. Across five closed-form families, models consistently exhibit low-
pass behavior and growing phase lag, while the symbolic baseline and our MB-Core/MB-Plus scores
summarize these dynamics in a comparable and robust way. The results indicate that strong static
accuracy can mask systematic amplitude and timing errors that degrade stability and consistency of
reasoning. Practically, the frequency fingerprints provide a compact diagnostic for model selection
and ablation studies, complementing standard benchmarks with measurements that are reproducible
and easy to interpret. We release the dataset and reference code to support transparent replication
and extension. Our use of a sinusoidal drive is an analytical probe rather than an LTI assumption;
MB-Core captures mid-band amplitude/timing fidelity, while MB-Plus incorporates explicit penalties
for unexplained structure and nonlinearity. Limitations include the small number of families and
single-tone drives; future work will expand the task set, add richer inputs (chirps, steps), and link
frequency fingerprints to internal mechanisms (e.g., attention dynamics, layer-wise delays).
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A Appendix

B Presets

Table 4: Inference presets. Tri-phase indicates whether phases {0,120,240} are used.

Preset Frequencies Phases Tri-phase coverage K (base keys/family)

SMOKE {4, 8} {0} none 2
MVP {4, 8, 16} {0} none 2
MVP_PLUS {1, 2, 4, 8, 16} {0}* only for {4, 8} 2
FULL {1, 2, 4, 8, 16} {0, 120, 240} all frequencies 2

Note* In MVP_PLUS, phases {0,120,240} are applied only at mid-band frequencies {4, 8}; other
frequencies use phase {0}.

C Answer Format & Strict Parsing

Models output [answer_start] X.YYYYYY [answer_end] where the payload is a fixed-precision
decimal with exactly six places.

Parsing. From the raw response we (i) find the last complete
[answer_start] ... [answer_end] pair, (ii) scan inside for decimal literals (ASCII dig-
its only; no scientific notation, separators, or units), (iii) take the last literal found, and (iv) truncate
to exactly six decimals (pad with zeros if fewer; cut off if more). Non-finite values (NaN/Inf) or
missing tags are non-compliant.

Compliance. Rows that pass this pipeline count as compliant; only compliant rows are used for
harmonic fitting and residual diagnostics. Non-compliant rows still contribute to compliance statistics.

D Figures & Tables

Table 5: A.1 Mean |G−1| at mid-frequencies (4 & 8 cycles). Lower is better. EI and LS dominate
amplitude error; DeepSeek is best on EI gain, while Mixtral is worst on RS.

DeepSeek V3.1 GPT-4o Llama 4 Instruct Mixtral 8×7B Qwen3 235B

Exponential Interest 0.051 6.819 6.512 8.418 0.323
Linear Solve 0.002 0.003 0.312 0.313 0.009
Linear System 0.188 0.308 4.714 0.622 1.453
Ratio Saturation 0.002 0.010 0.087 5.059 0.005
Similar Triangles 0.000 0.000 0.000 0.110 0.000

Implications. Mid-band amplitude fidelity matters for stability: EI exposes large magnitude
distortions in GPT-4o/Llama/Mixtral, so downstream pipelines that depend on accurate scaling (e.g.,
compounding, normalization, controller gains) will drift unless corrected. DeepSeek’s best-in-class
EI gain suggests safer use when amplitude tracking dominates, whereas Mixtral’s large RS error flags
sensitivity to saturating transforms. Family-level selection thus changes which model is “best” for a
given deployment.
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Table 6: A.2 Mean |Phase Error| (deg) at mid-frequencies (4 & 8 cycles). Lower is better. LS is
the timing bottleneck (largest lags/leads); Qwen is best on LS, while Mixtral collapses on RS.

DeepSeek V3.1 GPT-4o Llama 4 Instruct Mixtral 8×7B Qwen3 235B

Exponential Interest 4.47 0.24 3.54 0.04 2.97
Linear Solve 0.02 0.01 1.02 0.56 0.03
Linear System 26.38 7.38 4.49 42.40 2.61
Ratio Saturation 0.01 0.01 0.38 58.42 0.01
Similar Triangles 0.00 0.00 0.00 0.05 0.00

Implications. Phase governs timing consistency: large LS phase errors (Mixtral, DeepSeek) imply
lag/lead that can destabilize iterative procedures (solvers, rollouts) and corrupt ablations that assume
time alignment. Qwen’s low LS phase is attractive for timing-sensitive use cases even if its gain is
not always best. When choosing models for pipelines with feedback or chaining, prioritize low phase
on the relevant family.

Figure 5: A3. Compliance by family. Compliance is perfect overall.

Implications. Near-perfect compliance removes formatting as a confound: observed dynamics
(gain/phase/residuals) reflect model behavior rather than parse failures. This also means MB-Plus
penalties primarily capture quality, not I/O brittleness, and reproductions should match our curves
given the same row IDs.

Figure 6: A4. H2/H1 vs. frequency. Nonlinearity concentrates in EI and LS; Similar Triangles stays
near zero.

Implications. Elevated H2/H1 indicates distortion rather than pure linear gain/phase behavior.
Peaks in EI/LS suggest that prompts with compounding or coupled relations will exhibit waveform
deformation under parameter sweeps—use multi-tone tests or chirps to separate memory effects from
static nonlinearity, and avoid using single-sinusoid fingerprints alone to claim linearity.

Implications. High residuals mean a first-harmonic model is insufficient: EI/LS retain structure
after removing the main tone, so downstream diagnostics should include richer inputs (chirps, steps,
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Figure 7: A5. Residual RMS (normalized). Single-sinusoid fits leave the largest residuals in EI and
LS; simpler families fit tightly.

two-tone mixtures) before attributing errors solely to amplitude or timing. Low residuals on simpler
families justify using mid-band summaries (MB-Core/MB-Plus) as compact, reliable proxies there.

E API Settings

For all model calls (Together and OpenAI), we used the following fixed decoding settings:

• Temperature: 0.0
• Max tokens: 1028

To ensure stable throughput and reproducibility, we applied simple rate limiters:

• Together: 600 requests per minute (RPM)
• OpenAI: 20,000 tokens per minute (TPM)

These settings were held constant across all experiments unless explicitly noted elsewhere.
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