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ABSTRACT

In this paper, we present a machine learning approach for
fast indoor radio map generation assisted by sample measure-
ments in the target environment as extra input. Our solution
is developed for MLSP 2025 The Sampling-Assisted Pathloss
Radio Map Prediction Data Competition. In addition to fea-
ture engineering for input augmentation, we design a shortcut
path in the convolutional neural network that routes the sam-
ple input channel directly to the deeper layers, which facili-
tates efficient refinement of the output radio map. We further
propose selective sampling strategies for measurement loca-
tions to enhance the accuracy of the generated radio maps.
The proposed method demonstrates particularly strong per-
formance under conditions of relatively high sampling rates.

Index Terms— Wireless communications, radio maps,
machine learning, computer vision

1. INTRODUCTION

Radio maps, in the form of an overall signal strength for
each location in a given environment, can serve as a powerful
tool for designing and optimizing wireless communication
systems. Ray tracing techniques have been the foundation
of radio map generation, providing versatility in environment
simulation as well as accurate results. However, due to their
intense demand for computational resources, generating ra-
dio map via ray tracing suffers from significant computational
delay. Additionally, ray tracers require precise modeling of
propagation environment (e.g., material characteristics) to
produce reliable outputs, and they are unable to model (even
slightly different) unseen environments. These limitations
hinders their applicability in real systems. With the rise of
graphics-processing-unit (GPU) based ray tracing tools (such
as, e.g., Sionna [1])), the aforementioned challenge in terms
of delay is tackled through increased computational capabil-
ities, while the stringent modeling requirements and limited
applicability remain.
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With the recent advances in the field of computer vision
and machine learning (ML), neural networks (NNs) have been
explored for radio map generation thanks to mature image-
based techniques and readily available resources for develop-
ing and training models. ML models, especially those based
on NN, capable of modeling complex nonlinearities between
the input and target output, serve as a suitable tool for captur-
ing the intrinsics of electromagnetic propagation. With op-
timized GPU-toolkit, the deployment of a NN is highly par-
allelized and fast. The aforementioned advantages of NNs
showcase a promising frontier in radio map generation tech-
niques.

Following the breakthrough work of [2], where a UNet
[3] model is applied for outdoor radio map generation, the
ML techniques have been further refined [4]] and utilized in
a wider scope of scenarios, e.g., indoor radio map generation
[S]. Compared to outdoor propagation environment, indoor
wireless propagation is typically more challenging due to the
increased dominance of diffraction and reflection [6].

To this end, the First Indoor Pathloss Radio Map Pre-
diction Challenge [7] was organized and various approaches
have been proposed by the participants to address the issues.
Our participation in the previous challenge resulted in a fruit-
ful outcome. However, the challenges in modeling diffrac-
tion and reflection remain in place, as we observe the major
erroneous predictions in the radio map are located in the re-
gion where reflections and diffractions dominate. To tackle
the remaining issues, the Sampling-Assisted Pathloss Radio
Map Prediction Data Competition [8] is proposed, which aims
to combine the existing techniques in ML-based radio map
with realistic but limited support from ray tracing or measure-
ments. The residual input, provided as ground truth samples,
aims to guide the learning process toward correcting regions
with high prediction errors, often caused by effects such as
reflection and diffraction.

In this paper, we propose a neural network architecture
tailored to the integration and processing of additional ground
truth samples. We further improve the feature engineering
algorithms proposed in our previous work [9]] by reducing
computational complexity. We also derive selective sampling
methods according to different sampling rates. These strate-



gies aim to make the most efficient use of the costly and time-
consuming ray tracing or measurement process by prioritizing
sample locations that yield the greatest predictive benefit.

Our solution provides significant improvement in terms
of radio map accuracy (around 43% reduction in errors under
high sampling rate), consequently ranking sixth in the chal-
lenge.

2. CHALLENGE DESCRIPTION

The MLSP 2025 Sampling-Assisted Pathloss Radio Map Pre-
diction Challenge [8]] comprises two tasks, both targeting the
prediction of radio maps simulated at 868 MHz with an omni-
directional antenna. The dataset, which is a subset of the pre-
vious challenge [[10], includes training data from 25 buildings,
each with 50 transmitter locations. To support generalization,
radio maps at 1.8 GHz and 3.5 GHz are also deployed for
training. The two tasks differ in how sample measurements
can be utilized: in Task 1, sampling locations for both 0.5%
and 0.02% sampling rates are randomly generated, whereas in
Task 2, participants are free to select the sampling locations
under the same rate constraints.

3. PROPOSED SOLUTION

This section details our solution and is organized into: fea-
ture engineering, ML model structure, sampling location se-
lection, concluding with specifics of the training process.

3.1. Data Processing

Based on the provided features (reflectance, transmittance,
distance to the transmitter (Tx), as shown in Figure |I|), we
derive two extra features as direct guidance to wireless prop-
agation characteristics.

(b) Transmittance (c) Distance to Tx

(a) Reflectance

Fig. 1: Original features with color representing pixels’ nu-
merical values.

3.1.1. Ray-Marching Feature

The original features of reflectance and transmittance visu-
ally represent the indoor environment, with non-zero pixels
corresponding to the walls/objects. From the numerical per-
spective, the inputs features of reflectance and transmittance

are sparse matrices while the target pathloss is dense and con-
tinuous. To this end, in our previous work [9], we derived
an extra feature based on the sparse feature channel of trans-
mittance but match the characteristics of continuity in the de-
sired output. For clarity and also providing improvement on
the previous solution, we report the corresponding procedures
here as well.

Put into the context of radio propagation, for each pixel,
our algorithm casts a ray from the transmitter’s location and
accumulates the transmittance values of the walls between the
destination and source, which can be interpreted as an initial
estimate of pathloss considering attenuation due to material
absorption only.

We name the computed ray-marching feature based on
transmittance as transmittance-spread, which can be ex-
pressed as:

Tspread (SC, y) = Z

peL(zo0,y0—(z,y))

t(p),

where ¢(-) denotes the value of transmittance feature at a loca-
tion, and L(z¢, yo — (z,y)) is a line formed by pixels com-
puted by the Bresenham’s line algorithm [11]. The results of
this preprocessing operation is visually depicted in Figure2a]
In practice, only the pixels on the edge of image are selected
as the target location and all the pixels along the ray from
the source is filled with the computed values sequentially. To
manage pixel overlaps between Bresenham’s lines computed
for adjacent edge targets, each new line begins filling pix-
els from the first point where it diverges from the previously
drawn line.

Our algorithm achieves single-thread runtime of less than
100 ms. With parallelization of the algorithm on different
sample inputs, an average run time of 7 ms is achieved.

(b) Free-Space
Pathloss

(a) Transmittance
Spread

Fig. 2: Derived features with color representing pixels’ nu-
merical values

3.1.2. Free-Space Pathloss

Another estimation of the pathloss considering free-space
propagation only is the large-scale pathloss. Expressed in
decibels, the feature is computed as:

47d,
Lys =20 -logy (Cf) )



where d is the propagation distance, c is the speed of light,
and f is the frequency of the transmitter’s signal. A sample
free-space pathloss feature is shown in Figure [2b]

3.2. Sampling Measurements

For each task in the challenge, pathloss values are provided
for a subset of locations, which can be used to enhance pre-
diction accuracy. In our solution, we incorporate an additional
input channel where sampled pathloss values are placed at
their corresponding pixel locations, with all other pixels set
to zero. This channel is used during both training and predic-
tion. We illustrate the target pathloss, 0.5%-sampled pathloss,
and 0.02%-sampled pathloss in Figure 3]

(a) Target Pathloss

(b) 0.5%-Sampled
Pathloss

(c) 0.02%-Sampled
Pathloss

Fig. 3: Target pathloss and sampled pathloss with color rep-
resenting pixels’ numerical values.

3.3. Data Augmentation

All features, including the original, the derived, and the sam-
ple channel are resized to 512 x 512 pixels with bilinear in-
terpolation. Moreover, random flipping and rotation of the
inputs are performed during training.

3.4. Model Structure

As the radio map prediction conforms to an image-to-image
translation problem, we employ a U-Net based model for the
task at hand. Unlike in our previous work [9]], where sparse
features and dense features are processed through two parallel
encoder-decoder streams, we opt here for a simpler process-
ing based on a single up/down convolutional stream. The mo-
tivation behind this design is to not only reduce training and
inference time, but also enable the sample channel to guide
the correction of features related to free-space pathloss and
transmittance spread. Before each upsampling and downsam-
pling operation in the U-Net architecture, we apply a dou-
ble convolution with residual connection, where both of the
blocks or the second block use stacked dilated convolution to
effectively capture and process sparse features.

Specifics of the stacked dilated convolution are shown in
Table |I|, with the number of convolution units (channels) de-
crease as the dilation rate increases.

Table 1: Components of stacked dilated convolution

Name Kernel Size Dilation Channel
rl 3x3 1 n/2

3 3x3 3 n/4

6 3x3 6 n/8

9 3x3 9 n/16
r12 3x3 12 n/16

Table 2: Structure of customized double convolution for tasks

Tusk Sampling  Double ' g}(;?lrtl)rllﬂg
Rate (%) Convolution Base (1)

L 05 tcked dilaed O

1002 retacked dilated &4

> 05 aacked dilaed 80

5 0.02 stacked dilated 64

+stacked dilated

To directly refine the predicted pathloss, we introduce
a shortcut pathway that connects the sample input chan-
nel to the later stages of the U-Net architecture. As illus-
trated in Figure ] the sample channel is processed through
both the main U-Net stream and this shortcut connection,
which merges with the U-Net’s output. To propagate sampled
pathloss information to nearby regions, we apply a transposed
convolution along the shortcut path, effectively “diffusing”
the values to neighboring pixels. The kernel size of the trans-
posed convolution is set to 3 x 3 for a higher sampling rate
of 0.5%, and 5 x 5 for a lower sampling rate of 0.02%. The
resulting diffused sample features are concatenated with the
U-Net output and passed through two additional standard
convolutional layers to produce the final prediction.

In the U-Net architecture, the number of channels doubles
progressively toward the bottleneck layer. For Task 2, which
uses a sampling rate of 0.5%, we increase the initial number
of channels to 80—higher than the standard 64 used in other
tasks—to more effectively capture the additional information
provided by the densely-sampled grid points. The configura-
tions of the double convolution units employed for each task
are detailed in Table

3.5. Sampling Locations

The second task of the challenge allows participants to se-
lect sampling locations strategically to acquire pathloss val-
ues that can inform and improve prediction accuracy. For the
case of high sampling rate, the sampling density on one axis
is around 7%. With the aforementioned diffusion layer (size
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Fig. 4: A 4-layer U-Net with customized double convolution blocks and shortcut pathway for sample channel.

3 x 3) spreading the sampled values to two neighboring pix-
els, it is possible to achieve a coverage of 20% on each axis.
As a result, a straightforward uniform grid sampling strategy
— excluding points near the transmitter to comply with the
sampling location limit — proves to be an effective and prac-
tical choice. Resulting sampling locations are illustrated in
Figure[5al This approach allows the generation of a uniform
feature channel via transposed convolution using uniformly
spaced samples, while excluding regions near the transmitter
where propagation is generally less complex.

In the second task, which involves a sparse sampling rate,
it is essential to strategically select sampling locations that
are likely to correspond to regions with higher prediction er-
rors. Based on insights from our earlier work [9]], we suppose
that areas with strong reflection effects pose particular mod-
eling challenges. To address this in Task 2, we first apply the
Hough Line Transform [12] to the reflectance feature in order
to detect wall structures. For each detected wall, we identify
the pixel with the highest reflectance value—referred to as
the most reflective point—and estimate the wall’s orientation
based on its start and end coordinates. Using this informa-
tion, our algorithm casts rays toward the reflector (tx_ray in
Figure[5b) and selects one pixel along the estimated reflection
path (rf_ray in Figure [5b) as a sample point. This procedure
is repeated until the predefined number of sample points is
reached.

(a) Grid Sampling

(b) One sampling location
based on Reflection

Fig. 5: Two sampling methods

Table 3: Official evaluation results on both tasks under dif-
ferent sampling rates

Task Sampling RMSE on Test Inference
Rate (%) Training Data RMSE  Time (ms)
1 0.5 4.00 4.18 41.37
1 0.02 4.81 6.91 54.35
2 0.5 2.95 3.81 51.37
2 0.02 4.80 6.91 55.54

3.6. Training

Models are trained separately for each task and sampling rate,
using a batch size of 2 and an initial learning rate of 0.002.
The learning rate is managed with a scheduler that reduces it
when the validation performance plateaus. For Task 1, early
stopping is applied based on performance on a held-out test
set. For Task 2, where no dedicated test set is available, we
employ cross-validation to determine the point at which the
model begins to overfit, as indicated by a rise in validation
eITor.

We use a composite training loss that combines mean
squared error (MSE) with the structural similarity index mea-
sure (SSIM) [13]], formulated as: L = 0.8 - MSE + 0.2 -
(1 — SSIM). This convex combination balances pixel-wise
accuracy with perceptual similarity. For final evaluation, the
models are typically trained for 27 epochs on the full training
dataset, except for Task 2 with a 0.5% sampling rate, which
is trained for 23 epochs.

4. RESULTS AND DISCUSSIONS

We show the prediction error on a training data sample in a
heatmap of the same scale in Figure [6] as well as the root
mean squared errors (RMSE) in Table|3] Note that the Task 1
model for 0.02% sampling rate is also directly used for Task
2 of 0.02% sampling rate with reflector-based sampling.
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Fig. 6: Comparison of model prediction errors at different
sampling rates for a representative training sample.

We observe that grid-based sampling in Task 2 with a
higher sampling rate of 0.5% leads to a significant improve-
ment in prediction performance, achieving a 9% reduction in
RMSE compared with random sampling in Task 1. In con-
trast, our reflection-based sampling at a lower rate of 0.02%
has not proven effective in enhancing prediction. A likely rea-
son for this ineffectiveness is the difficulty in reliably identi-
fying wall locations. Our analysis shows that the current line-
extraction algorithm fails for certain building layouts, either
missing walls entirely or producing incorrect angle informa-
tion. These inaccuracies can misguide the estimation of re-
flection directions, thereby degrading the performance of the
model.

Table 4: Ablation study A: Model without shortcut pathway
and without sample input

Model Structure ~ RMSE on Test Inference
Corresponding to  Training Data RMSE  Time (ms)
Task 1 0.5 % 4.89 7.31 38.57
Task 1 0.02% 4.88 6.71 53.32
Task 2 0.5 % 4.70 6.75 49.26
Task 2 0.02% 4.88 6.71 53.32

To evaluate the roles of the sample pathloss inputs and
the shortcut pathway, we conducted an ablation study with
three sets of experiments: A. Conventional U-Net-style mod-
els without shortcut pathway and without sample pathloss in-
put (see results in Table[d), B. Models with the shortcut path-
way but trained with zero-valued sample inputs, disabling the
influence of samples (see Table E]), and C. Conventional U-
Net-style models without shortcut pathway but trained with
sample pathloss as an additional input channel (see Table [6)).

Our final competition submission (shortcut pathway with
valid sample pathloss input) consistently performed best on
the training data across all configurations. However, in the

official evaluation, our method only outperformed the abla-
tion variants in Task 2 with the higher sampling rate (0.5%),
suggesting that the shortcut-enhanced design is most effec-
tive when paired with grid-based, uniformly distributed sam-
ples. This behavior can be explained by the nature of the
shortcut pathway, which directly influences the output based
on the sample inputs. When the samples are uniformly dis-
tributed (as in Task 2), they systematically guide the correc-
tion of the predicted map. In contrast, randomly placed sam-
ples (as in Task 1) may lead to unreliable corrections: overlap-
ping or clustered samples can introduce noise, while sample-
sparse regions may lack sufficient guidance. This explains
the slightly worse performance of our official Task 1 model
compared to the ablation variant C (4.18 vs 4.15).

In terms of sampling effectiveness, we observed that at the
higher sampling rate of 0.5%, incorporating sample pathloss
information—regardless of whether a shortcut pathway was
used—Iled to approximately a 40% reduction in test RMSE.
This is evident when comparing the official evaluation result
to that of ablation variant B, as well as comparing variant C to
A. These findings validate the effectiveness of high-rate sam-
pling, demonstrating that the inclusion of pathloss samples
can significantly enhance prediction accuracy when sufficient
measurement data is available.

At the lower sampling rate (0.02%), the advantages of us-
ing sparse samples reversed. Both our official solution and
ablation study C performed worse than models that excluded
sample input (variants A and B). This is consistent with obser-
vations from the top-ranked team [|14]], who noted that highly
sparse and randomly located samples are not representative of
the true propagation patterns, and may even degrade perfor-
mance when used as direct inputs during training. The prob-
lem is further exacerbated by our shortcut design: the sparse
sample “noise” is propagated directly through the shortcut
and further processed by the two subsequent convolution lay-
ers, leading to stronger overfitting or misguidance. This is
reflected in the official evaluation score being worse than that
of ablation variant C (6.91 vs. 6.82). In contrast, when there is
no disturbance from sparse sample “noise”, the two extra con-
volution layers help the model to better exploit the other input
features. This is evidenced by ablation variant B outperform-
ing variant A (6.53 vs 6.71). These results highlight the need
for further refinement of both the architecture and sampling
strategy—particularly in low-sample regimes—to ensure that
sparse measurements are utilized effectively rather than be-
coming a source of noise or overfitting.

5. CONCLUSIONS AND FUTURE WORK

In summary, our experiments demonstrate that integrating
sample inputs and architectural enhancements can signifi-
cantly boost radio map prediction accuracy, particularly at
higher sampling rates. However, at extremely low sampling
rates, the current approach struggles to generalize effectively,



Table 5: Ablation study B: Model with shortcut pathway but
trained with zero-valued sample input

Model Structure ~ RMSE on Test Inference
Corresponding to  Training Data RMSE  Time (ms)
Task 1 0.5 % 4.83 6.95 42.88
Task 1 0.02% 4.93 6.53 54.72
Task 2 0.5 % 4.79 6.86 50.89
Task 2 0.02% 4.93 6.53 54.72

Table 6: Ablation study C: Model without shortcut pathway
but using sample pathloss input

Task Sampling RMSE on Test Inference
Rate (%) Training Data RMSE  Time (ms)
1 0.5 4.00 4.15 38.76
1 0.02 5.04 6.82 51.37
2 0.5 2.97 3.88 47.88
2 0.02 5.04 6.81 51.78

indicating limitations in both the sampling strategy and model
robustness. Future work will investigate whether prediction
errors correlate with strong reflection effects and refine the
line-extraction algorithm to improve wall detection accuracy.
Enhancements to the neural network architecture — such as
more effective shortcut pathways and tailored convolutional
layers — will also be explored. Furthermore, inspired by the
success of other top-performing teams, future research will
consider refinement-based training strategy, and also design-
ing task-specific loss functions to better capture the complex
propagation characteristics inherent in indoor environments.
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