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ABSTRACT

Fraudulent transactions have been on the rise, leading to significant financial
losses annually. In credit card fraud detection (CCFD), various predictive mod-
els aim to mitigate these losses by assessing transaction risk. While GNN-based
methods have been employed to capture spatio-temporal transaction features, they
often suffer from oversmoothing as graph layers increase, causing fraudulent and
legitimate transactions to become indistinguishable. Existing semi-supervised
methods that mask some labels have not fully resolved this issue. To address
this, we propose the Multi-head Attention Conditional Variational Autoencoder
(Ma-CVAE), which leverages weight distributions from imbalanced datasets and
the Gumbel softmax distribution to construct more diverse reconstructed features,
reducing feature homogenization. Then, we utilize Temporal Graph Attention
Networks (TGAT) with a Multi-Attention mechanism to model risk propagation
among transactions. Finally, classification probabilities are mapped to risk scores
via a Multi-Layer Perceptron (MLP). Our approach achieves state-of-the-art per-
formance, improving AUC scores by 1.45%, 3.05%, and 0.83% on three semi-
supervised datasets: FFSD, YelpChi, and Amazon, respectively.

1 INTRODUCTION

The rise of online commerce has transformed commodity trading, with over 2.28 billion credit cards
issued in a single quarter Bin Sulaiman et al. (2022). Credit cards have become a widely preferred
payment method Wu et al. (2019); Zhu et al. (2023), significantly boosting transaction efficiency.
Consequently, many predictive models have been developed to detect fraud and generate risk scores,
functioning as binary classifiers. These models assist financial experts in prioritizing high-risk trans-
actions and refining model performance.

Recently, deep learning models such as LSTM Jurgovsky et al. (2018), CNN Chen & Lai (2021);
Muppalaneni et al. (2019), Transformer Benchaji et al. (2021), and generative models such as GAN
Fiore et al. (2019); Ibrahim et al. (2020) have gained traction in CCFD tasks. However, these meth-
ods often overlook relational dependencies between transactions, leading to a disjointed learning
process for different label types. This limitation underscores the need for models that can effec-
tively capture these dependencies and improve the accuracy of fraud detection.

To address this, GNN-based models have been proposed to leverage relational information, showing
promising results Zhang et al. (2020); Qiao et al. (2023); Liu et al. (2021a); You et al. (2024).
Deeper layers in GNNs have the potential to capture complex and subtle features more effectively,
as they allow the model to aggregate information from a larger neighborhood, leading to a richer
understanding of the underlying data structure. However, with increasing depth, these models often
suffer from over-smoothing, where node representations become overly similar, resulting in feature
homogeneity. This causes performance to peak at a certain shallow depth before degrading with
further layer stacking Rusch et al. (2023); Giraldo et al. (2023); Liang et al. (2024); Shen et al.
(2024). Even state-of-the-art (SOTA) models like TGAT Xiang et al. (2023) are not immune to
this issue, as the aggregation process diminishes the distinction between fraudulent and legitimate
features when excessive layers are used. To qualitatively assess feature diversity and differentiation,
we use the clustering method suggested by Tang et al. (2024a;b). As shown in Figure ??(a), the
original features are projected into a 2D space using PCA and clustered with DBSCAN Ester et al.
(1996); Bai et al. (2021). The lack of clear cluster separation in Figure (a) indicates high feature
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Figure 1: Illustration of diversity enhancement after Ma-CVAE processing. Input features are pro-
jected into a 2D space using PCA for visualization, followed by DBSCAN to identify clusters in
dense regions. Under identical parameters, the unprocessed features in Figure 1 (a) form only one
cluster. This shows that Ma-CVAE enhances feature diversity as illustrated in Figure 1 (b), leading
to greater dispersion and variation.

similarity, highlighting the homogeneity issue that potentially leads to a loss of distinction between
fraudulent and legitimate features.

Therefore, this paper proposes a Multi-head Attention-Conditional Variational Autoencoder (Ma-
CVAE) model that integrates numerical, categorical, and transaction-related features. These features
are mapped into the Gumbel-Softmax space Jang et al. (2017) to enhance diversity and simulate
evolving fraud strategies, mitigating over-smoothing and over-squashing issues observed in GNN-
based models Xiang et al. (2023); Dong et al. (2024); Cheng et al. (2020); Liu et al. (2020). As
shown in Figure 1, features before and after Ma-CVAE processing demonstrate a higher number of
clusters with the same number of features, indicating greater feature differentiation and diversity,
thereby alleviating the issue of feature homogeneity as the number of feature layers increases. To
handle the challenge of large volumes of unlabeled real-time data Xiang et al. (2023); Wang et al.
(2019b), a semi-supervised dataset is simulated, with some feature labels randomly masked. The
Ma-CVAE reconstructs these features, which are then passed through a Gated Temporal Attention
Network Xiang et al. (2023) with a multi-head attention to capture spatial-temporal patterns and
focuses on fraudulent transactions and their surrounding contexts. Finally, a two-layer MLP gener-
ates a transaction risk score based on these processed features. The contributions of this paper are
outlined as follows:

• Our model enhances feature diversity during training and improves sensitivity to varia-
tions by mapping features into the Gumbel-Softmax space, effectively mitigating over-
smoothing issues in graph-based methods.

• By applying a multi-head attention mechanism to label information, the method better han-
dles label distributions, maximizing the benefits of semi-supervised learning.

• The model surpasses state-of-the-art methods across multiple metrics on the FFSD, Ama-
zon, and YelpChi datasets, demonstrating superior performance in fraud detection tasks.

2 RELATED WORK

Various machine learning techniques have been explored to address credit card fraud detection.
Early attempts Maes et al. (2002) involved methods such as Bayesian belief networks (BBN) and
artificial neural networks (ANN), with ANN showing superior performance in real-world datasets.
In subsequent studies, neural networks consistently outperformed decision trees Sahin & Duman
(2011) in fraud detection tasks. Convolutional models Chen & Lai (2021); Muppalaneni et al.
(2019) also demonstrated improved accuracy by capturing spatial patterns more effectively than
traditional methods like SVM Sahin & Duman (2011), Random Forest Xuan et al. (2018), and
XGBoost Trisanto et al. (2021); Ileberi et al. (2021). Additionally, ensemble techniques such as Ad-
aBoost Freund & Schapire (1997) and majority voting were employed to further enhance detection
accuracy. More recent work proposed an improved LSTM Jurgovsky et al. (2018) model to better
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Figure 2: The illustration of the overview of the adaptivae semi-supervied method for CCFD.

capture temporal patterns in transaction sequences. However, traditional machine learning methods
rely on manually designed features, limiting their ability to capture complex patterns, while earlier
deep learning approaches struggle to integrate both spatial and temporal patterns, hindering their
effectiveness in large-scale, real-world fraud detection systems. Graph-based learning models have
gained popularity in CCFD, where each transaction is represented as a node with features such as
account details and merchants, and the connections between transactions are modeled as edges. Re-
cent works like those of Shi et al. (2022) and Liu et al. (2021a) have shown that GNNs, particularly
when using attention and temporal structures, perform well in fraud detection tasks.

3 METHODS

3.1 MODEL ARCHITECTURE

Problem Formalization Given a series of credit card transactions defined as R =
{R1,R2, . . . ,Rn}, each transaction Rn comprises various attributes Rn = {S,L,Ta,Ty}. Here,
S denotes the source of the transaction initiator, L indicates the transaction location, Ta represents
the target party receiving the payment, and Ty refers to the transaction type, such as online shopping
or cash withdrawals. The subset D ⊆ R consists of target transaction events for fraud detection,
aiming to predict the probability of credit card fraud in the target transaction ti+1 based on historical
records t1, . . . , ti.

3.1.1 FEATURE PREPROCESSING AND ATTRIBUTE EMBEDDING

Following Xiang et al. (2023), all user transaction records are retained, including those with few
authorized transactions, to avoid overlooking potential fraud cases. Time-series features are con-
structed by sorting all transactions in the dataset R chronologically by timestamp. For each time
window, features are extracted from historical transactions t1, . . . , ti and the target transaction ti+1,
with the target’s label serving as the time window label. Inspired by Fu et al. (2016), metrics such
as average, total, standard deviation of transaction amounts, and the difference between current and
average amounts are calculated. Following Cheng et al. (2020), the number of transactions, distinct
targets (merchants), transaction locations, and types of transactions within the time window are also
counted. These computed features, combined with original transaction attributes (source S, loca-
tion L, target Ta, type Ty), create a comprehensive feature set for the CCFD model, denoted as
U ∈ RN×d, where N is the number of transaction records and d is the feature dimension.
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To enhance feature representation, following Xiang et al. (2023), a time window T is set to compute
transaction features over a specific period. Numerical attributes such as transaction amount and
distinct categories associated with the user are calculated within this window, resulting in the eight
features listed in Appendix Table 4. These, combined with the original numerical attributes of the
target transaction, form the new numerical attribute set Xna, providing better temporal correlations
and relationships between transactions that isolated features cannot capture.

As shown in Figure 2 (a), the CCFD model consists of feature preprocessing and risk embedding.
The Feature Preprocessor extracts three inputs from U ∈ RN×d: Numerical attributes Xna, Cat-
egorical attributes Xca, and Risk information Xr. Numerical attributes are extracted from U as
Xna ∈ RN×dna . Categorical attributes are one-hot encoded to Xca ∈ RN×d

ca , with dca = dna = d.
For risk information Xr, inspired by Shi et al. (2020), a unified approach for label and feature prop-
agation is proposed, allowing simultaneous updates of node features and labels. Each transaction’s
manually labeled status (’legitimate’ or ’fraud’) is treated as a node feature, while ’unlabeled’ nodes
are assigned zero embeddings, producing Xr ∈ RN×dr , where dr = d.

The categorical attributes Xca, numerical attributes Xna, and risk information Xr are then combined
to form the node feature representation Xh ∈ RN×d, input to Ma-CVAE as shown in Figure 2(b).

Xh = OneHot(Ucategorical) + fmlp(Unumerical) + fe(Yr) = Xca +Xna +Xr (1)

3.1.2 MULTIHEAD ATTENTION - CONDITIONAL VARIATIONAL AUTOENCODER

To simulate a realistic scenario, the Random Label Masking (RLM) model randomly masks some
labels as ’unknown’ (value 2), creating semi-supervised data. This mitigates overfitting issues asso-
ciated with self-loops and GNN-based models Shi et al. (2020); Giraldo et al. (2023); Rusch et al.
(2023). The processed labels, represented as Xl ∈ RN , are used as inputs for the Ma-CVAE model,
as shown in Figure 2 (b). A label embedding function maps Xl to the dimension of spatial features,
resulting in X

′

l ∈ RN×d. However, some legitimate labels are too similar to fraud labels, potentially
misleading the learning process. To address this, a Multi-Head Attention mechanism Vaswani et al.
(2017) enhances feature representation by focusing on label information with clear distinguishing
characteristics.

Then, the Multi-Head Attention mechanism processes the input X
′

l by first adding a dimension,
transforming it into Rn×1×d. It is then passed through fully connected layers and multiplied by
the weight matrices Wq ∈ Rd×k, Wk ∈ Rd×k, and Wv ∈ Rd×dv . Scaled dot-product attention
scores are calculated and normalized to form the attention matrix, which is then multiplied by Vl to
focus on specific label information. Each attention head outputs a different perspective on the label
relationships, preventing bias toward a small subset of features Duan et al. (2022). The attention
outputs from multiple heads are concatenated and transformed using a linear layer, Wh ∈ Rhdv×d,
represented as Concat(x1, x2, . . . , xhead). The result, Xa ∈ Rn×1×d, is then squeezed to remove the
second dimension, producing X′

a ∈ Rn×d. The final output is calculated as:
C = LN(squeeze(WhConcat(x1, x2, . . . , xhead))) +X′

l (2)
In Eq. 2, Wh is the transformation matrix, and LN denotes layer normalization. The residual
connection between X′

a and the original input X′
l improves feature representation. The resulting

matrix, C ∈ Rn×d, serves as a condition for subsequent Gumbel distribution sampling in the latent
space Jang et al. (2017).

Inspired by Sohn et al. (2015), supervised learning often faces challenges in learning complex rep-
resentations, leading to representation bias. In the CCFD task, capturing diverse fraud features is
similarly difficult. To tackle this, features are sampled from a latent space informed by conditional
prior information, such as label data, enhancing the model’s ability to capture complex structures.

Traditional graph-based models frequently encounter oversmoothing, where node representations
converge to indistinguishable values as the number of layers increases. This phenomenon can be
formally quantified using a node similarity measure µ : RN×d → R≥0, which evaluates the diversity
among node features. Oversmoothing occurs when the node similarity measure converges to zero
over time, defined as:

lim
l→∞

µ(X(l)) = 0. (3)

In particular, oversmoothing occurs at an exponential rate, where the constant C1 > 0 represents the
initial value of the similarity measure at l = 0, and C2 > 0 controls the rate of decay. A larger C2
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results in faster decay, meaning node features become similar more quickly as the number of layers
increases. Specifically, for any l ∈ N, the following holds:

µ(X(l)) ≤ C1e
−C2t. (4)

For our TGAT models, the similarity measure µ(X) is computed as:

µ(X) = ∥X− 1γX∥F , (5)

where γX = 1⊤X
N represents the average of the node features. As µ(X) decreases, node representa-

tions become increasingly similar, leading to a loss of feature diversity.

To mitigate this issue, the Ma-CVAE model introduces a mechanism that increases feature diversity
through a combination of conditional sampling and the Gumbel-Softmax distribution. In Equation
6, the input features Xh and the condition C′, weighted by Attention, are concatenated and passed
through the encoder to obtain Zlogits. This step is crucial for maintaining diversity among node
features and reducing the risk of oversmoothing, as the added condition information helps prevent
the convergence of node representations to similar values, thereby keeping µ(X) sufficiently high.

Zlogits = Encoder(Concat(Xh,C
′)) (6)

In the traditional VAE model, the latent space is often represented by a Gaussian distribution, which
may not be suitable for capturing the discrete and complex nature of features in CCFD tasks. This
limitation can exacerbate oversmoothing as it leads to poor feature differentiation. To overcome
this, the Ma-CVAE employs the Gumbel-Softmax distribution for discrete sampling, as shown in
Appendix Figure 4, which helps in maintaining feature diversity by providing a better fit for cate-
gorical features. This approach can be mathematically represented as:

G(µ, β) =
1

β
exp

(
−x− µ

β
+ exp

(
−x− µ

β

))
(7)

The Gumbel distribution perturbs the logits, enabling a differentiable approximation of categorical
variables. This allows for more effective gradient propagation through the sampling process, en-
hancing the model’s ability to learn diverse representations and maintain a higher node similarity
measure µ(X). By using the Gumbel-Max trick, the one-hot encoded variable Z is obtained as
a discrete latent variable, increasing feature diversity and preventing the homogenization of node
features. As shown in the first part of Eq. 8:

Z = Onehot
(
argmax

i
[gi + logZlogits,i]

)
(8)

where i represents different categories of features. However, the argmax function used in Eq. 8
is not differentiable. Inspired by Jang et al. (2017), a softmax function is used to approximate and
simplify this process as shown in Eq. 9, resulting in Z ∈ Rn×d.

Z = Softmax
(
Zlogits + g

τ

)
(9)

In Eq. 9, τ serves as a hyperparameter for feature distribution. The temperature parameter τ controls
the smoothness of the distribution and helps maintain a balance between discrete and continuous rep-
resentations. Choosing a larger τ value (τ ≥ 10) promotes uniform learning across features, further
enhancing diversity and preventing the dominance of certain features, thus effectively reducing the
oversmoothing effect. The final decoded output, Xcvae ∈ Rn×d, combines the resampled result Z
with the condition C′ and passes through a decoder composed of fully connected layers, as shown
in the following equation:

Xcvae = Decoder(Z ∥ C′) +Xh (10)
By incorporating the condition C′ as an additional guide for learning, the Ma-CVAE model effec-
tively captures the latent distribution of data points and the unique characteristics of each transaction.

3.1.3 GATED TEMPORAL ATTENTION NETWORK

After the Ma-CVAE generates the latent feature representations, temporal information features can
be represented as Xtemp = {xt0 , xt1 , . . . , xtn}, where xti = xti

n + xti
c . Here, xti

n and xti
c denote the

numerical and categorical features that vary over time, respectively. Setting h = Xtemp, the TGAT
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model, integrated with a two-layer MLP as proposed by. Xiang et al. (2023), is employed for risk
prediction by learning the temporal features Xtemp.

Traditional GCN and GNN models use static graph structures for information aggregation, with
GNNs applying uniform weights to all neighbors, risking noise amplification. While GCNs mitigate
this by normalizing node contributions, both struggle with dynamic environments like temporal
graphs. The TGAT model Xiang et al. (2023), based on GAT, is particularly effective for such
graphs. Unlike GCNs that rely on Laplacian transformations, TGAT utilizes can dynamically assign
weights to neighboring node features based on their relevance, as illustrated in Figure 6 (b). Each
single-head operation in TGAT can be expressed as follows.

A learnable parameter W(l) ∈ Rd×d is used to obtain the hidden layer features through a linear
transformation. Then, the attention score e

(l)
ij between the target node i and its neighbor node j

is calculated. This attention score quantifies the weight of information flow from node j to node
i and represents the unnormalized attention score for the edge (i, j) in layer l. Specifically, the
features of the target node and its neighbor, z(l)i and z

(l)
j , are concatenated. Then, this concatenated

feature vector is multiplied by a learnable weight vector a(l)T , and the result is passed through the
LeakyReLU activation function to obtain the attention score. Then, the attention score e

(l)
ij is then

normalized to map it to the range [0, 1], ensuring that the sum of attention scores for each target node
across its different neighbors equals 1:

α
(l)
ij =

exp(e
(l)
ij )∑

k∈N (i) exp(e
(l)
ik )

(11)

After obtaining the attention scores, the features of all neighboring nodes of the target node are
aggregated together, weighted by their respective attention scores. This aggregated feature vector is
then passed through the activation function σ to provide a non-linear transformation, generating the
feature representation for the next layer:

h
(l+1)
i = σ

 ∑
j∈N (i)

α
(l)
ij z

(l)
j

 (12)

The principle diagram of TGAT is shown in Appendix Figure 6.

3.1.4 GATED RESIDUAL

To maintain a balance between preserving original information and introducing new information,
and to prevent either from excessively influencing the model’s training, which could lead to in-
creased training error as the network depth increases, an Attribute-driven Gated Residual approach,
as proposed by Xiang et al. (2023), is employed. This approach provides a shorter backpropaga-
tion path, allowing gradients to flow more easily to the shallower layers, effectively mitigating the
problem of gradient vanishing or explosion.

A learnable parameter Wskip is used to perform a linear transformation on the feature h
(l)
i of node

i at layer l, yielding the skip feature hskip. This allows the feature from the previous layer to be
introduced into the current layer:

hskip = Wskiph
(l)
i (13)

Subsequently, a gating value gi is introduced to determine the fusion ratio between the skip feature
hskip and the new feature h

(l+1)
i . Specifically, the skip feature, the new feature, and their difference

are first concatenated, then passed through a learnable weight matrix Wgate for a linear transforma-
tion, and finally processed by an activation function σ to obtain the gating value gi. The gating value
ranges between [0, 1] and is used to control the degree of mixing between the original information
and the new information in the final output. The formula is as follows:

gi = σ
(
Wgate

[
hskip ∥ h

(l+1)
i ∥

(
hskip − h

(l+1)
i

)])
(14)

where ∥ denotes the concatenation of the input vectors. The output feature representation h
(l+1)
i is

then computed as a weighted sum of the skip feature and the newly aggregated feature, controlled
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by the gating value:
h
(l+1)
i = gi ⊙ hskip + (1− gi)⊙ h

(l+1)
i (15)

where ⊙ denotes element-wise multiplication. The Gated Residual, instead of a simple concate-
nated residual, allows the model to adaptively balance original and transformed features. Then, to
accelerate convergence, layer normalization and an activation function are then applied to the output
features.

Xout = σ(LayerNorm(hout)) (16)

where Xout is the final output representation of the TGAT model, σ denotes the activation function,
and LayerNorm represents the layer normalization operation applied to the input feature hout.

3.1.5 LOSS FUNCTIONS AND OPTIMIZATION

Fraud Risk Prediction After obtaining the output Xout from TGAT Xiang et al. (2023), it is used
in a multi-layer MLP to calculate the probability of a fraud label in the CCFD task. The probability
is computed as r̂ = σ(α(XoutW1 + c1)W2 + c2), where σ is the activation function mapping the
probability to the range [0,1]. A cross-entropy loss is then used to measure the quality of the model
predictions, resulting in the loss function for each training iteration, which is used for backpropaga-
tion:

L1 = − 1

M

M∑
j=0

[zj · log q(r̂j |Y,A) + (1− zj) · log(1− q(r̂j |Y,A))] , (17)

where A represents the prior information input to the model, z denotes the target label of transac-
tions, and M represents the total number of transactions.

Reconstructed and KL Loss To prevent excessive dispersion in VAE-based models from causing
reconstruction distortion, Kingma & Welling (2013) introduced reconstruction loss to constrain the
model during backpropagation. Similarly, in the Ma-CVAE model, a reconstruction loss Lre =
MSE(X′

h,Xh) and a KL divergence loss LKL = DKL (q(Z|Xh,C
′)∥p(Z|C′)) are combined to

form the total loss, weighted by a factor α. Finally, the model’s fraud risk prediction loss L1 and the
Ma-CVAE’s loss L2 = Lre + αLKL are weighted by a factor β and summed together for parameter
updates. The total loss is expressed as:

Ltotal = L1 + βL2 = L1 + β (Lre + αLKL) (18)

4 EXPERIENCES

4.1 EXPERIMENT SETTINGS

The proposed model is evaluated on the Financial Fraud Semi-supervised Dataset (FFSD) Xiang
et al. (2023) and two review fraud detection datasets: the Amazon review dataset Jha et al. (2018)
and the YelpChi review dataset Rayana & Akoglu (2015), as shown in Appendix Figure 5. The
FFSD contains 1,820,840 transaction records (90.35% unlabeled, 7.79% legitimate, 1.86% fraud-
ulent) and 31,619,440 connections. The Amazon dataset consists of 11,948 review nodes and
8,808,728 connections (93.13% legitimate, 6.87% fraudulent), focusing on fraudulent reviews in
the Musical Instrument category. The YelpChi dataset includes 45,954 review nodes and 3,846,979
connections (85.47% legitimate, 14.53% fraudulent), targeting hotel and restaurant reviews. Our
model is compared with 9 SOTA fraud detection models: GEM Liu et al. (2018), Player2Vec Wang
et al. (2019c), FdGars Zhang et al. (2019), Semi-GNN Wang et al. (2019a), GraphSAGE Hamil-
ton et al. (2017), GraphConsis Liu et al. (2020), CARE-GNN Dou et al. (2020), PC-GNN Liu et al.
(2021b), and TGAT Xiang et al. (2023). Performance on CCFD and opinion fraud detection datasets
is evaluated using AUC, F1-macro, and AP, which assess precision-recall balance and classification
capability based on True Positives (TP), False Positives (FP), and False Negatives (FN).

4.2 DETECTION PERFORMANCE ACROSS DATASETS

To comprehensively evaluate the performance of various models across different datasets, Tables 1
and 4.2 summarize the AUC, F1, and AP metrics for the YelpChi, Amazon, and FFSD datasets. The
results demonstrate that the Ma-CVAE+TGAT model consistently outperforms other state-of-the-art
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methods. However, the publicly available FFSD is a simulated version of the complete datasets,
specifically mentioned in TGAT Xiang et al. (2023). Consequently, the simulated FFSD dataset
serves as a baseline for testing in Table 1, with entries marked with * indicating results obtained
using this dataset. For further comparison with previous methods, results on the simulated FFSD
dataset are presented in the appendix (Table A).

Dataset FFSD
AUC F1 AP

GEM 0.5383 0.1490 0.1889
Player2Vec 0.5278 0.2147 0.2041
FdGars 0.6965 0.4089 0.2449
Semi-GNN 0.5473 0.4485 0.2758
GraphSAGE 0.6527 0.5370 0.3844
GraphConsis 0.6579 0.5466 0.3876
CARE-GNN 0.6623 0.5771 0.4060
PC-GNN 0.6795 0.6077 0.4487
TGAT 0.7616 0.6764 0.5767
TGAT* 0.8286 0.7336 0.6585
Ma-CVAE + TGAT* 0.8406 0.7362 0.7104

Table 1: Comparison of the performance on FFSD dataset.

The Ma-CVAE+TGAT model exhibited
outstanding performance across multiple
datasets. On the simulated FFSD dataset,
it achieved an AUC of 0.8406, an F1 score
of 0.7362, and an AP of 0.7104, surpass-
ing the previous SOTA method, TGAT*,
which recorded an AUC of 0.8286, an F1
of 0.7336, and an AP of 0.6585. This rep-
resents improvements of 1.45% in AUC,
0.35% in F1, and 7.86% in AP, highlight-
ing Ma-CVAE+TGAT’s strong capabilities.
Although the complete FFSD dataset is not
publicly available, the robust performance
of TGAT on the full dataset suggests that
Ma-CVAE+TGAT would also excel in that
context. On the YelpChi dataset, the model
reached an AUC of 0.9486, an F1 of 0.8446,
and an AP of 0.8192, outperforming other
models such as PC-GNN and CARE-GNN, with notable improvements of 3.05% in AUC, 3.82% in
F1, and 7.88% in AP compared to the best baseline, TGAT. Additionally, for the Amazon dataset,
Ma-CVAE+TGAT recorded an AUC of 0.9713, an F1 of 0.9242, and an AP of 0.8970, exceeding
TGAT by 0.86% in AUC, 0.31% in F1, and 1.49% in AP. These substantial gains, particularly in
the AP metric, emphasize the model’s effectiveness in scenarios with fewer anomalies and lower
anomaly rates, solidifying its position as a leading method in fraud detection tasks.

Dataset YelpChi Amazon
AUC F1 AP AUC F1 AP

GEM 0.5270 0.1060 0.1807 0.5261 0.0941 0.1159
Player2Vec 0.7003 0.4121 0.2473 0.6185 0.2451 0.1291
FdGars 0.7332 0.4420 0.2709 0.6556 0.2713 0.1438
Semi-GNN 0.5161 0.1023 0.1811 0.7063 0.5492 0.2254
GraphSAGE 0.5364 0.4508 0.1712 0.7502 0.5795 0.2624
GraphConsis 0.7060 0.6041 0.3331 0.8782 0.7819 0.7336
CARE-GNN 0.7934 0.6493 0.4268 0.9115 0.8531 0.8219
PC-GNN 0.8174 0.6682 0.4810 0.9581 0.9153 0.8549
TGAT 0.9241 0.7988 0.7513 0.9630 0.9213 0.8838
Ma-CVAE+TGAT 0.9486 0.8446 0.8192 0.9713 0.9242 0.8970

Table 2: Comparison of performance on YelpChi and Amazon Datasets.

4.3 IMPACT OF THE NUMBER OF LAYERS

In Figure 3, the performance of Ma-CVAE + TGAT and TGAT models with varying numbers of
layers (L = 1 to 5) on the FFSD dataset is compared to analyze the impact of model depth on
capturing temporal patterns. As the number of layers increases from 1 to 4, both models show
improvements, with Ma-CVAE + TGAT achieving a peak AUC of 0.8406, F1 of 0.7362, and AP
of 0.7104 at L = 4, representing increases of 5.94%, 2.42%, and 15.00% respectively compared
to L = 1. This demonstrates the model’s enhanced ability to capture temporal dependencies with
additional layers. However, performance declines when the number of layers increases to L = 5,
indicating the onset of over-smoothing, where node features become indistinguishable. The Ma-
CVAE model mitigates this issue by using Gumbel distribution for feature sampling, maintaining
distinct features and supporting deeper models. This is evident from the better performance of Ma-
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Figure 3: Comparison of Ma-CVAE + TGAT and TGAT model performance across different layers
(L = 1 to L = 5) on the FSSD dataset.

CVAE + TGAT at L = 4 compared to TGAT alone at L = 2, highlighting its capacity to utilize
deeper layers effectively without significant performance degradation.

4.4 ABLATION STUDY

This subsection aims to examine: 1) the effectiveness of the MA-CVAE module, 2) the impact of
various feature preprocessing methods, and 3) the influence of different distribution techniques. 1

Dataset FSSD Amazon YelpChi
AUC F1 AP AUC F1 AP AUC F1 AP

w/o 0.8223 0.7287 0.6840 0.9520 0.9150 0.8604 0.8920 0.7405 0.6601
w 0.8406 0.7362 0.7104 0.9713 0.9242 0.8970 0.9486 0.8446 0.8192

Table 3: Comparison of the performance across FSSD, Amazon, and YelpChi datasets without Ma-
CVAE (w/o) and with Ma-CVAE (w).

To evaluate the contribution of Ma-CVAE, ablation experiments were conducted on the FSSD, Ama-
zon, and YelpChi datasets. As shown in Table 3, the inclusion of Ma-CVAE (w) significantly im-
proved performance across all three datasets compared to the version without it (w/o). Specifically,
on the FSSD dataset, the AUC increased from 0.8223 to 0.8406, F1 from 0.7287 to 0.7362, and AP
from 0.6840 to 0.7104, representing relative improvements of 2.23%, 1.03%, and 3.86%, respec-
tively. In the Amazon dataset, Ma-CVAE boosted the AUC from 0.9520 to 0.9713 and AP from
0.8604 to 0.8970, reflecting gains of 2.03% and 4.25%. The slight decrease in F1 from 0.9150
to 0.9242 can be attributed to the already high baseline value, making further improvements chal-
lenging. The most notable enhancements were observed on the YelpChi dataset, where the AUC
increased from 0.8920 to 0.9486 (6.35%), F1 from 0.7405 to 0.8446 (14.06%), and AP from 0.6601
to 0.8192 (24.09%). These results underscore the crucial role of Ma-CVAE in capturing complex
feature distributions and effectively handling imbalanced datasets, particularly in challenging clas-
sification scenarios where accurate representation of minority classes is essential.

5 CONCLUSION

This paper presents the Ma-CVAE+TGAT model for credit card fraud detection, integrating multi-
head attention and variational autoencoding to effectively capture diverse transactional features and
mitigate the over-smoothing problem inherent in GNN-based models. Experimental results on the
FFSD, Amazon, and YelpChi datasets demonstrate the model’s superior performance, achieving
notable improvements in AUC, F1, and AP metrics over existing state-of-the-art methods. Despite
these advances, there are still areas for future improvement. Future work could explore incorporating
real-time adaptation mechanisms to address the dynamic nature of fraud patterns and further enhance
model robustness.

1Due to space constraints, a detailed analysis of the impact of feature preprocessing methods and distribution
techniques can be found in the Appendix.
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A APPENDIX

Feature Types Description
Trans amount avg Average amount of the transactions
Trans amount total Total amount of the transactions
Trans amount stddev Standard deviation of the transaction amounts during the past period
Trans amount bias The difference between the amount of this transaction and the average
Trans count Total number of the transactions
Trans target count Number of unique target accounts involved in transactions
Trans location count Number of unique transaction locations
Trans type count Number of unique transaction types

Table 4: Given a time window T , the data for each transaction and account type is aggregated and
further processed to derive eight new features. The table includes descriptions of each feature type
for CCFD tasks.

Figure 4: An illustration of the Ma-CVAE model, showcasing the use of the Gumbel-Softmax dis-
tribution Jang et al. (2017) to map data through a discrete latent space.

Figure 5: The illustration of the FFSD, Amazon, and Yelp datasets, where red represents records,
blue represents legitimate records, green represents fraudulent records, and orange represents un-
labelled records. These different categories are manually labeled. Due to the significantly larger
number of records in the FFSD dataset compared to Amazon and Yelp, the cost of manual labeling
increases substantially, resulting in a large number of unlabelled records.

A.1 PERFORMANCE COMPARISON OF FEATURE PROCESSING MODELS

As highlighted in the Introduction, GNN-based models with an increasing number of layers can suf-
fer from feature homogenization, which negatively impacts risk prediction accuracy. To address this
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Dataset FSSD

AUC F1 AP

MCNN* 0.7414 0.6285 0.3126
STAN* 0.7468 0.6399 0.3201
STAGN* 0.7008 0.5437 0.2659
GADGNN* 0.7746 0.7136 0.5981
TGAT* 0.8286 0.7336 0.6585

Ma-CVAE + TGAT* 0.8406 0.7362 0.7104

Table 5: Comparison of the performance on the simulated versions of the FFSD dataset.

Figure 6: This illustration demonstrates the working principle of the TGAT model, which applies a
Temporal Transaction Graph based on the Graph Attention Networks (GAT) Veličković et al. (2018).
The figure is composed of three subfigures: (a) shows the Temporal Transaction Graph obtained
through data processing; (b) illustrates how each node in the Temporal Transaction Graph calculates
the Attention by applying learned weight parameters to the features of both its neighbors and itself,
followed by a softmax activation function; (c) depicts the multi-head attention mechanism, where
each color represents a different attention head. Compared to a single attention mechanism, the
multi-head attention mechanism is better at learning the latent representations of features.

issue, the proposed Ma-CVAE model was compared with other mainstream generative and feature
processing models, including the Variational AutoEncoder (VAE) Kingma & Welling (2013), Con-
ditional Diffusion Zhang et al. (2023), AutoEncoder (AE) Hinton & Salakhutdinov (2006), and Con-
volutional AutoEncoder (ConvAE) Thill et al. (2021). The goal was to alleviate the over-smoothing
problem present in the TGAT model. The results of these experiments, conducted on three datasets
(FSSD, Amazon, and YelpChi), are summarized in Table 6. The evaluation metrics used were AUC,
F1, and AP, with the best values highlighted in bold.

The Ma-CVAE model demonstrated superior performance across all three datasets. On the FSSD
dataset, Ma-CVAE achieved an AUC score of 0.8406, outperforming the AE Hinton & Salakhutdi-
nov (2006) model by 0.1040, representing an improvement of 14.12%. This indicates that Ma-CVAE
effectively captures the differences between positive and negative samples. In terms of F1 and AP,
Ma-CVAE also showed significant enhancements, reaching scores of 0.7362 and 0.7104, respec-
tively, which correspond to improvements of 63.08% and 45.70% over the AE model. These results
emphasize Ma-CVAE’s capability in handling imbalanced datasets effectively.

For the Amazon dataset, the Ma-CVAE model achieved an AUC score of 0.9713, surpassing the
AE model by 0.0513. This result underscores Ma-CVAE’s ability to adaptively focus on important
features through its multi-head attention mechanism, particularly in high-risk transactions. Addi-
tionally, Ma-CVAE outperformed other models in terms of F1 and AP, achieving scores of 0.9142
and 0.8970, respectively, indicating its robustness in feature extraction under complex scenarios.
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Dataset FSSD Amazon YelpChi

AUC F1 AP AUC F1 AP AUC F1 AP

AE 0.7366 0.4513 0.4876 0.9200 0.9091 0.8081 0.8823 0.7429 0.6472
ConvAE 0.7469 0.4513 0.5005 0.9559 0.9189 0.8682 0.8701 0.7034 0.6120
VAE 0.8069 0.7325 0.6357 0.9592 0.9206 0.8724 0.8687 0.7174 0.6048
Con-Diffusion 0.7929 0.7277 0.6268 0.9559 0.9189 0.8682 0.8765 0.7264 0.6244

Ma-CVAE 0.8406 0.7362 0.7104 0.9713 0.9142 0.8970 0.9486 0.8446 0.8192

Table 6: Comparison of the proposed Ma-CVAE model with other feature processing models, such
as the generative model VAE Kingma & Welling (2013) and the diffusion model Con-Diffusion
Zhang et al. (2023), across three datasets: FSSD, Amazon, and YelpChi. The evaluation metrics
used are AUC, F1, and AP, with the best values highlighted in bold.

On the YelpChi dataset, the Ma-CVAE model maintained its leading position with an AUC score of
0.9486, representing a 7.52% increase over the AE model. The F1 and AP scores also exhibited sub-
stantial gains, reaching 0.8446 and 0.8192, respectively. This demonstrates the model’s adaptability
and robustness across different datasets, effectively handling a variety of data distributions.

The experiments further explored the impact of Conditional supervision on model performance. It
was found that incorporating label information into the learning process led to modest performance
gains for models like AE and ConvAE. However, the proposed Ma-CVAE model went a step further
by integrating a multi-head attention mechanism, which selectively emphasizes high-risk transac-
tion labels and their associated features, resulting in significant improvements across all metrics. To
overcome the limitations of traditional VAE models in fitting discrete data, the Ma-CVAE model
employed the Gumbel-softmax sampling technique Jang et al. (2017). This method mitigates the
challenges associated with Gaussian distributions in handling categorical data, resulting in more sta-
ble gradient propagation and higher-quality generated data. Compared to the VAE model, Ma-CVAE
achieved an AUC improvement of 0.0337 on the FSSD dataset, and 0.0121 and 0.0799 on the Ama-
zon and YelpChi datasets, respectively. Although diffusion models like Con-Diffusion Zhang et al.
(2023) showed some potential, their performance was lower than that of the VAE model, especially
on the FSSD dataset, where an AUC of only 0.7929 was achieved. This performance lag might be
due to the intrinsic challenges of modeling diverse data distributions using noisy data. The results
indicate that the Ma-CVAE model, with its adaptive attention mechanism and effective handling
of discrete features, provides a significant performance boost over existing models, particularly in
complex, real-world scenarios.

B COMPARISON OF DISTRIBUTION METHODS IN MA-CVAE

Dataset YelpChi

AUC F1 AP

No Ma-CVAE 0.8920 0.7405 0.6601
Ma-CVAE(Gaussian) 0.9448 0.7739 0.7670
Ma-CVAE(Gumbel) 0.9486 0.8446 0.8192

Table 7: Comparison of the performance on the YelpChi dataset without Ma-CVAE and with Ma-
CVAE using two different sampling methods: Gumbel Jang et al. (2017) and Gaussian distributions.

To effectively learn the latent representations of features, Ma-CVAE utilizes a method that encodes
these features into a latent space, applying a specific distribution to model them Rezende et al.
(2014); Kingma & Welling (2013); Kingma et al. (2015). The traditional VAE, which relies on
Gaussian distribution for resampling, often struggles with discrete data. As shown in Figure 2, cate-
gorical and numerical attributes are combined and input into the model. When these features exhibit
discrete characteristics, forcing them to conform to a Gaussian distribution can lead to mismatches
in the latent variable distribution, thereby affecting the training process.
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In experiments on the FFSD, Amazon, and YelpChi datasets, using Gaussian distribution sampling
proved challenging, particularly for the FFSD and Amazon datasets, due to their discrete feature
characteristics. As illustrated in Figure 5, the FFSD and Amazon datasets exhibit significantly
greater variability in their features compared to the YelpChi dataset. Inspired by Jang et al. (2017),
the Gumbel-Softmax technique was adopted for these datasets to better handle the discrete features
during the sampling process.

On the YelpChi dataset, which exhibits more continuous characteristics, the Ma-CVAE(Gaussian)
method achieved slightly lower performance compared to the Ma-CVAE(Gumbel) method, with a
0.38% drop in AUC. However, this performance gap was more pronounced in the F1 and AP metrics,
where the Gumbel method outperformed by 7.06% and 5.22%, respectively, as shown in Table 7.
This indicates that the Gumbel-Softmax distribution is better suited for handling features with dis-
crete and mixed characteristics, even on a dataset that contains both discrete and continuous features.
For the FFSD and Amazon datasets, significant gradient propagation issues were encountered with
the Ma-CVAE(Gaussian) approach. To ensure a consistent comparison across all datasets and to mit-
igate these issues, the Ma-CVAE(Gumbel) method was used in all reported experiments in Tables
1 and 4.2. This choice was made to maintain consistency and comparability with other state-of-
the-art methods. the Ma-CVAE(Gumbel) method demonstrates robust performance improvements
over both the baseline model without Ma-CVAE and the Ma-CVAE(Gaussian) method, particularly
on datasets with mixed feature distributions, confirming its effectiveness in handling complex data
characteristics.
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