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Abstract

The Cold Posterior Effect (CPE) is a phenomenon
in Bayesian Deep Learning (BDL), where temper-
ing the posterior to a cold temperature often im-
proves the predictive performance of the posterior
predictive distribution (PPD). Although the term
‘CPE’ suggests colder temperatures are inherently
better, the BDL community increasingly recog-
nizes that this is not always the case. Despite this,
there remains no systematic method for finding the
optimal temperature beyond grid search. In this
work, we propose a data-driven approach to select
the temperature that maximizes test log-predictive
density, treating the temperature as a model param-
eter and estimating it directly from the data. We
empirically demonstrate that our method performs
comparably to grid search, at a fraction of the cost,
across both regression and classification tasks. Fi-
nally, we highlight the differing perspectives on
CPE between the BDL and Generalized Bayes
communities: while the former primarily empha-
sizes the predictive performance of the PPD, the
latter prioritizes the utility of the posterior under
model misspecification; these distinct objectives
lead to different temperature preferences.

1 INTRODUCTION

Recent decades have seen substantial advances in machine
learning, with deployments across diverse applications.
These range from image recognition and natural language
processing to autonomous vehicles and medical diagnostics.
Driven in no small part by the technological advances that
enables large-scale training of high-fidelity models, these
models obtain impressive generalization performance that
are not readily explained with classical statistical wisdom.

One promising avenue that has been explored for explaining

and enhancing performance, as well as providing much-
needed robustness guarantees, is Bayesian deep learning
(BDL). However, extending classical Bayesian techniques
to the machine learning setting is a formidable task—the
scale of both the data and model size render naïve extensions
intractable. Combined with the fact that neural network mod-
els are typically singular [Wei et al., 2022], the mismatch
between the size of the data and the number of parameters
makes many of the classical asymptotics inappropriate when
applied to problems of interest. Furthermore, a number of
phenomena have been observed when analyzing deep learn-
ing models that were previously considered curiosities or
corner-cases in the classical setting.

A prominent example of this is the so-called cold posterior
effect (CPE). Named in analogy with statistical physics,
tempered posteriors are obtained by raising the posterior
density to the power of an artificial inverse-temperature
parameter. The CPE refers to improved generalization per-
formance of the posterior predictive density (PPD) in both
regression [Adlam et al., 2020] and classification [Wenzel
et al., 2020] tasks when the temperature T is taken to be
cold with 0 < T < 1. This peculiar effect is frequently
viewed as a hack to improve generalization performance,
and has led to a plethora of works that attempt to explain or
‘fix’ the CPE, see Section 5 for a literature review.

Contribution. There is growing recognition in the BDL
community that, despite the term ‘CPE’, colder tempera-
tures do not always result in better predictive performance
for the PPD [Adlam et al., 2020, Zhang et al., 2024]. Unfor-
tunately, the common approach of temperature tuning via
grid search is computationally expensive, as it requires extra
posterior sampling for multiple T across the grid. To address
these issues, we propose a data-driven method to select an
appropriate temperature. To the best of our knowledge, no
such dedicated tool exists without appealing to intermedi-
ate approximations (e.g., variational inference [Laves et al.,
2021]). Our method only requires maximizing a likelihood
function to find a suitable temperature. This can usually be
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done as part of the sampler warm-up phase, and importantly,
does not require any extra posterior sampling.

2 TEMPERED POSTERIORS AND THE
COLD POSTERIOR EFFECT

Let {q(x, y), p(x, y|θ), p(θ)} form a triplet representing the
truth-model-prior, where the data-generating mechanism is
q(x, y) = q(y|x)q(x), the model p(x, y|θ) = p(y|x, θ)q(x)
is indexed by θ ∈ Θ ⊆ Rd representing neural network
weights, and the prior on θ is p(θ). Here, we focus on
a supervised learning setup with a training dataset D =
{(xi, yi)}ni=1 containing n observations drawn from q(x, y).
The standard Bayesian update is derived from Bayes’ theo-
rem, resulting in the standard posterior distribution,

p(θ|D) ∝ p(θ)
∏

(x,y)∈D

p(y|x, θ). (1)

By introducing a ‘temperature’ parameter, we obtain a fam-
ily of tempered posteriors pβ(θ|D) by raising the likelihood
and prior to the power of the inverse temperature β := 1

T
for β > 0,

pβ(θ|D) ∝ p(θ)β
∏

(x,y)∈D

p(y|x, θ)β . (2)

The CPE describes a phenomenon in Bayesian deep learning
where the PPD,

pβ(y|x,D) =
∫
p(y|x, θ)pβ(θ|D) dθ, (3)

which is constructed from Bayesian model averaging, can
achieve better performance (in terms of the test log predic-
tive density defined below) in regression and classification
by artificially tempering the posterior to β > 1 [Wenzel
et al., 2020]. While our construction in (2) follows the con-
vention of tempering both the likelihood and the prior [Wen-
zel et al., 2020, Fortuin et al., 2022], improvements in per-
formance have also been observed when only tempering the
likelihood [Aitchison, 2021, Bachmann et al., 2022, Kapoor
et al., 2022].

Define the test log predictive density (LPD) of a predictive
density p̂(y|x) as

LPD(p̂(y|x)) := Eq(x,y) log p̂(y|x),

where the hat over p indicates dependence on the train-
ing data D, and the expectation is only taken over the
‘new’ observation (x, y). Note that the test LPD is some-
times referred to as the ‘test log-likelihood’ in the litera-
ture, and the negative test LPD is often called ‘negative
log-likelihood (NLL)’. However, we will avoid these terms
as they can sound ambiguous. It can be shown that a pre-
dictive density p̂(y|x) with a higher test LPD is closer
to the truth q(y|x) in Kullback-Leibler (KL) divergence
Eq(x)DKL(q(y|x)∥p̂(y|x)). Our primary interest in this
work is to select β such that the test LPD of (3) is high.

2.1 OUTLINE

Following the reasoning that the aleatoric uncertainty in the
data can be quantified by β [Adlam et al., 2020, Kapoor
et al., 2022], we advocate a likelihood-based approach to
select β directly from the data; details are presented in Sec-
tion 3. We empirically show that our method can select a
β that is near-optimal in terms of test LPD. Experimental
results are presented in Section 4.

We then conclude with a detailed discussion to dispel some
misconceptions surrounding the CPE. In particular, we re-
view recent work in BDL in Section 5, and explains why
colder temperatures do not give better test LPD. We also
address the converse hypothesis sometimes encountered in
Generalized Bayes (GB) — that warmer temperatures are
often better — in Section 6. This hypothesis may hold in
certain contexts, e.g., ensuring posterior consistency [Grün-
wald, 2012], but does not usually improve test LPD.

We emphasize that these two communities prioritize differ-
ent objectives: in BDL, the primary focus is on the PPD
p(y|x,D) (e.g., reliable uncertainty quantification of y),
while in GB, the emphasis lies on the utility of the pos-
terior p(θ|D) (e.g., fast concentration rate as n → ∞, or
credible intervals of θ with good coverage). Furthermore,
the types of statistical models and datasets explored in each
community are notably distinct. In BDL, large-scale neural
networks are trained on extensive, nearly noiseless datasets,
whereas in GB, the datasets are typically smaller, noisier,
and the models are classical regular statistical models. Con-
sequently, it is not surprising that each community arrives
at different recommendations regarding temperature tuning.

3 TEMPERATURE SELECTION FOR
TEST LPD

It is commonly believed that the PPD (3) at β = 1 is opti-
mal for test LPD when the model is well-specified [Adlam
et al., 2020, Aitchison, 2021]. However, this is not always
the case (see Appendix A for a counter-example). In fact, in
the likelihood tempering case, Zhang et al. [2024, Theorem
4] shows that β = 1 can only be optimal if and only if the
training loss,

∑
(x,y)∈D log p(y|x,D) remains unchanged

with the inclusion of new data. We arrived at a similar con-
clusion for posterior tempering; see Appendix B for details.
This motivates the development of an efficient method to
select the optimal β.

3.1 ON THE ROLE OF TEMPERATURE IN PPD
VIA SINGULAR LEARNING THEORY

If we could have some theoretical grasp on how tem-
perature affects the test LPD of the PPD in (3), that is,
LPD(pβ(y|x,D)), then it might suggest a methodology for



temperature selection. A little known result to the BDL and
GB communities is the following from singular learning
theory [Watanabe, 2010a, Lemma 3], which applies to both
regular and singular models p(y|x, θ) 1:

− ED LPD(pβ(y|x,D))
= −EDEq(x,y) log pβ(y|x,D)

= −Eq(x,y) log p(y|x, θ†) +
[
λ− ν(β)

β
+ ν(β)

]
1

n

+ o

(
1

n

)
(4)

where θ† ∈ argminθDKL(q(y|x)∥p(y|x, θ)). Here λ and
ν are strictly positive numbers, respectively known as the
learning coefficient and singular fluctuation. They are invari-
ants of the underlying truth-model-prior triplet. Note that
λ is independent of β while ν is a (complex) function of
β. The functional dependence of ν on β is unknown in the
current singular learning theory literature.

Some comments on (4) are in order. This result allows for
both misspecification (θ† is not necessarily such that the
KL divergence between the truth and p(y|x, θ†) is zero)
and singular models p(y|x, θ), including neural networks,
as well as classical models satisfying standard regularity
conditions. On the other hand, it is an asymptotic result in
the sample size n, and hence the prior plays no role. We
also remark that the relation in (4) pertains to the average
(negative) test LPD of the PPD in (3), with the average
taken over the training set D, as indicated by the notation
ED. More precise interpretation of (4) can be divided into
two settings:

Regular models. Let d be the dimension of θ. For well-
specified regular models, λ = ν(β) = d/2 for all β [Watan-
abe, 2009], and the second term,

[
λ−ν(β)

β + ν(β)
]

1
n , re-

duces to d
2n . This implies that for large n relative to d, tem-

perature has little impact (though it may appear in higher-
order terms in the expansion). This aligns with recent work
by McLatchie et al. [2024], which arrives at a similar con-
clusion using different techniques. Under model misspeci-
fication, the second term can alternatively be expressed as
β
nEDV (n) [Watanabe, 2010b], where V (n) represents the
functional variance and now depends on the temperature in
a non-trivial manner.

Singular models. The asymptotic relation in (4) also
applies to singular models, e.g., neural network models
[Wei et al., 2022]. However, the theoretical values of λ
are generally unknown, except for a few simple models,
such as one-layer tanh or reduced rank regression, in the
well-specification setting [Yamazaki and Watanabe, 2003,

1A model p(y|x, θ) is regular if the corresponding Fisher in-
formation matrix, Eq(x,y)[∇θ log p(y|x, θ)(∇θ log p(y|x, θ))⊤],
is positive-definite. Otherwise, the model is singular.

Aoyagi and Watanabe, 2005, Rusakov and Geiger, 2005,
Zwiernik, 2011]. Similarly, the singular fluctuation and its
temperature dependence are unknown, even in the well-
specification setting.

Since our setup involves modern deep learning models, we
are dealing with singular models, where λ and ν are un-
known. While methods to estimate λ and ν from training
data do exist [Lau et al., 2023, Watanabe, 2010a], they re-
quire posterior sampling over neural network weights. In
principle, we could use these sample-based estimates to
select the optimal β, but this would require posterior sam-
pling at multiple temperatures and is no better than a grid
search. As this approach is computationally challenging for
deep learning applications, we are motivated to propose a
data-driven technique for efficiently determining the optimal
temperature, which we detail in the next section.

3.2 SELECTING TEMPERATURE USING THE
TEMPERED MODEL

In this section, we introduce a method to select β that cor-
responds to high test LPD in both regression and classifica-
tion tasks. Our approach is grounded in the insight that the
tempered posterior can be reverse-engineered as the poste-
rior from an alternative model-prior pair [Zeno et al., 2020,
Zhang et al., 2024]. Following these works, we define the
tempered model,

p(y|x, θ, β) := p(y|x, θ)β∫
p(y′|x, θ)βdy′

. (5)

From here, the tempered posterior in (2) can be equivalently
expressed as

pβ(θ|D) ∝ p̃(θ|β)
∏

(x,y)∈D

p(y|x, θ, β), (6)

where the ‘rest of the terms’, p̃(θ|β) ∝
p(θ)β

∏
x∈D

∫
p(y′|x, θ)βdy′, can be viewed as a prior on

θ with the ‘normalizing constant’ being a function of x in
D. The term p̃(θ|β) can be seen as an input-dependent prior
[Zeno et al., 2020] but we suppress the dependence on x in
the notation. The (inverse) temperature β has an intuitive
interpretation of controlling the ‘spikiness’ of the tempered
model. We give two examples with Gaussian (regression)
and categorical (classification) models:

Regression. Given an arbitrary scalar function µ(x; θ) and
a fixed, known variance σ2, we have a Gaussian model:
p(y|x, θ) = N (y|µ(x; θ), σ2). This leads to

p(y|x, θ, β) = N
(
y

∣∣∣∣µ(x; θ), σ2

β

)
,

p̃(θ|β) ∝ p(θ)β
(

2πσ2

β(2πσ2)β

)n/2

.



Therefore, the temperature effectively scales the model and
prior variance. For brevity, we suppress the dependency of
p(y|x, θ, β) on the fixed σ2 in the notation.

Classification. In K-class classification, we have
p(y|x, θ) = fy(x; θ) for y ∈ {1, . . . ,K}, where fy(·)
denotes the y-th entry of a softmax output f . This leads to

p(y|x, θ, β) = exp(βfy(x; θ))∑K
k=1 exp(βfk(x; θ))

,

p̃(θ|β) ∝ p(θ)β
∏
x∈D

∑
k

[fk(x; θ)]
β .

This tempered model is also known as the tempered softmax
[Hinton et al., 2015, Agarwala et al., 2023]. For large β,
the tempered model will concentrate most of the mass in
one class, and the converse will encourage a more uniform
distribution of mass across all classes. For β > 1, the prior
p̃(θ|β) will also favor f that concentrates mass in one class.

As β can be used to capture aleatoric uncertainty in the
data [Adlam et al., 2020, Kapoor et al., 2022], we propose
selecting β using a maximum likelihood estimator for the
tempered model in (5):

θ̂∗, β̂∗ := argmax
θ,β

1

n

∑
(x,y)∈D

[log p(y|x, θ, β)]. (7)

Standard consistency results imply that, under mild con-
ditions, provided the model is regular and some tempered
model is well-specified, choosing parameters according to
(7) recovers the optimal model as n → ∞ [van der Vaart,
1998, Chapter 5.2]. In practice, we optimize this using SGD,
and stop when the log-likelihood shows no further improve-
ment on a validation set. To ensure that β remains positive,
we reparameterize it as exp(log β) and optimize with re-
spect to log β. Further implementation details are provided
in Appendix C. We also discussed several variants of our
proposed method in Appendix D.

A similar temperature optimization approach was proposed
in Guo et al. [2017] for computing a well-calibrated ‘plug-in’
predictive density p(y|x, θ∗SGD, β), where θ∗SGD is typically
an SGD solution of neural networks from a standard train-
ing workflow. In their method, the optimal β is computed
post hoc by maximizing 1

n

∑
(x,y)∈Dvalid

p(y|x, θ∗SGD, β) on
a validation set, with θ fixed and only β being optimized.
While the difference appears subtle, we find that jointly opti-
mizing θ and β is the key to a good β for constructing PPDs.
Detailed experimental results are provided in Appendix D.

3.3 SUPPORTING THEORY

Ideally, we would like to theoretically show that the tem-
perature selection method in (7) produces high test LPD of
(3). However, it turns out that the theoretical guarantees are
more natural for a related object which is suggested by the

reformulation of the tempered posterior in (6). Namely, we
can consider an alternative PPD that is the expectation of
the tempered model:

Epβ(θ|D)p(y|x, θ, β) =
∫
p(y|x, θ, β)pβ(θ|D)dθ. (8)

This is also the object of study in Adlam et al. [2020] and is
to be contrasted with the PPD in (3). We emphasize that our
temperature selection method can be used with either (3) or
(8), and we will compare the resulting performance of our
method for these two PPDs in the experiments in Section 4.

To study the theoretical properties of the temperature se-
lection method for (8), we consider the objective at the
population level, leading to

θ∗, β∗ := argmax
θ,β

Eq(x,y) log p(y|x, θ, β).

We justify β∗ in the case of Gaussian linear regression, but
our temperature methodology can be applied in far more
general settings as we demonstrate in Section 4. We first
compute the test LPD constructed with (8) and show that β∗

approximately maximizes a lower bound of the test LPD.

Lemma 3.1. Consider a linear regression model
p(y|x, θ) = N (y|x⊤θ, σ2) with a d-dimensional input x
and known variance σ2, and a prior p(θ) = N (θ|0, σ2

p)

with finite variance σ2
p. Let X := (x1, . . . , xn)

⊤ ∈ Rn×d

and Σ := (X⊤X + σ2

σ2
p
I)−1. The test LPD of the PPD

in (8) at a fixed β is bounded from below:

LPD(Epβ(θ|D)[p(y|x, θ, β)])

> Eq(x,y) log p(y|x, θ̂MAP, β)−
1

2
Eq(x,y) log (1 + x⊤Σx),

where θ̂MAP := ΣX⊤y is the maximum-a-posteriori so-
lution of the posterior pβ(θ|D) at β = 1 and y :=
(y1, . . . yn)

⊤ ∈ Rn.

The proof can be found in Appendix E. As our goal is to
select β that maximizes test LPD, a reasonable strategy is
to optimize the lower bound presented in Lemma 3.1 with
respect to β. As the second term in the lower bound is in-
dependent of β, this is therefore equivalent to maximizing
the first term, Eq(x,y) log p(y|x, θ̂MAP, β). However, this ob-
jective function requires θ̂MAP, which is often unavailable in
closed-form. A straightforward solution is to replace it with
an estimate from an iterative optimizer, before optimizing
again with respect to β. This comes at the cost of two opti-
mization runs (and the effort to tune their hyperparameters).
Instead, we propose maximizing the empirical version of
Eq(x,y) log p(y|x, θ, β) with respect to θ and β simultane-
ously, leading us back to (7). We study the efficacy of this
method empirically in the next section.



4 EXPERIMENTS

We now illustrate the behavior of the PPDs, (3) and (8),
across different values of β on a suite of benchmark datasets
for both regression and classification tasks. We refer to (3)
as SM-PD and (8) as TM-PD, where SM and TM stand for
standard model and tempered model, respectively. Notably,
our data-driven procedure for selecting β is agnostic to its
downstream use in either SM-PD or TM-PD. We demon-
strate that the proposed method performs well in both in
terms of test LPD. While our method aims to maximize
test LPD and is supported by the theory discussed in Sec-
tion 3.3, we also evaluate the point predictions of the PPD.
Specifically, we use ŷ = Epβ(y|x,D)[y] to compute mean
squared error (MSE) 1

|Dtest|
∑

(x,y)∈Dtest
(y− ŷ)2 for regres-

sion, and ŷ = argmaxy pβ(y|x,D) to compute accuracy
1

|Dtest|
∑

(x,y)∈Dtest
1[y = ŷ] for classification. By defini-

tion, these point predictions ŷ are identical across SM-PD
and TM-PD, and their results are consolidated in our report-
ing. We compare our method against a grid search over nine
β ∈ {0.1, 0.3, 1, 3, . . . , 1000}, corresponding to increments
of roughly 0.5 on the log10 scale. The optimal β from the
grid search is selected based on test LPD, MSE, or accuracy
on a validation set2, and the optimal β may differ depending
on the metric used.

To illustrate our method, we follow the experimental setup
of Wenzel et al. [2020]. Regression tasks are conducted
using a one-layer ReLU network on UCI datasets (Concrete,
Energy, Naval), while classification is performed using a
CNN on MNIST and a ResNet20 on CIFAR10, both with
and without data augmentation (DA). For the prior on neural
network weights, we restrict p(θ) to a zero-mean isotropic
Gaussian, as this is a common choice for achieving state-of-
the-art performance [Izmailov et al., 2021]. Further details
on the model and prior can be found in Appendix G.

We employ the stochastic-gradient Markov chain Monte
Carlo (SGMCMC) algorithm from [Wenzel et al., 2020]
with a cyclical step-size scheduler [Zhang et al., 2020] to
sample from the posterior (details in Appendix H). Hy-
perparameters are carefully tuned based on the temperature
diagnostics in Wenzel et al. [2020] to ensure sampler conver-
gence to the posterior with the specified β; see Appendix I
and Appendix J for diagnostics and hyperparameters. This
approach contrasts with the common practice of tuning hy-
perparameters for predictive performance. For CIFAR10,
we collect 30 samples per run, and 100 for all other datasets.
Each SGMCMC run is repeated five times with different
initializations to generate five sets of posterior samples.

2In contrast, our method tracks the log-likelihood of
p(y|x, θ, β) on a validation set

4.1 RESULTS

Optimal temperature of SM-PD and TM-PD across mod-
els and datasets. The test LPD across different temper-
atures for SM-PD and TM-PD are shown in Figure 1; see
Appendix K for additional figures and Table 7 and Table 8
for tabular versions of the results. For Concrete, Energy,
Naval and MNIST, we observe that TM-PD generally out-
performs SM-PD. This is perhaps not surprising, as we
expect the former to better account for aleatoric uncertainty.
For Concrete and MNIST, the peaks of SM-PD and TM-PD
also coincide. Surprisingly, TM-PD does not outperform
SM-PD in the CIFAR10 examples.

In terms of the efficacy of our temperature selection method,
we find that it can generally recover β with a good test
LPD. An interesting observation here is that our method
tends to select the optimal β for TM-PD in the regression
examples, and optimal β for SM-PD in the classification
examples. Moreover, as shown in Figure 1, the optimal β for
TM-PD and SM-PD for a given model are usually different.
Therefore, we expect β̂∗, which is computed irrespective
of the construction of the PPD, may only work for either
TM-PD or SM-PD, but not both at the same time.

We also report MSE (for regression) and accuracy (for clas-
sification) to assess the point predictions of the PPDs. As the
point predictions are identical across SM-PD and TM-PD by
definition, we consolidate the results in Table 1. In general,
we observe that SM-PD and TM-PD outperform both SGD
and the PPD at β = 1 across both metrics. Furthermore, our
method can select temperatures that achieves performance
comparable to that of the grid search.

Optimal temperature across data augmentation strength.
It has been frequently observed that data augmentation is
one of the key ingredients for observing CPE, and the op-
timal temperature may depend on the strength of data aug-
mentation [Bachmann et al., 2022]. In view of this, we
conducted an experiment to determine how the optimal tem-
perature differs across different levels of augmentation. Here
we only focus on SM-PD and present the results in Figure 2.
We observe a subtle and gradual increase in the optimal tem-
perature with the strength of data augmentation. Moreover,
our method can also recover temperatures that produce good
test LPD and accuracy under different augmentation levels.
Note that, in addition to the well-known CPE observed in
CIFAR-10 with data augmentation, it also manifests in a
milder form in our CIFAR-10 experiments without data aug-
mentation. This contrasts with previous studies reporting the
absence of CPE in the same setup [Izmailov et al., 2021].

Computation time Our approach requires a single SGD
run to compute the optimal β and a SGMCMC run to gener-
ate the PPD, whereas the grid search requires 9 SGMCMC
runs — one for each temperature in the grid. The wall-clock
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Figure 1: Test LPD plotted against inverse temperature β. We compare two types of PPD: SM-PD (green) as defined in
(3) and TM-PD (blue) as defined in (8). Zoomed-in versions of these curves are also provided in Figure 4 and Figure 5,
respectively. In each example, we have five evaluations of β̂∗ from our method. Each of these β̂∗ has a corresponding test
LPD computed with SM-PD (red circle) and TM-PD (red cross). Some of the red crosses in the CIFAR-10 examples are out
of range. Solid lines and shaded areas represent the mean ± standard error across five repetitions. The vertical dotted lines
indicate the PPD at β = 1. Higher test LPD is better.

times for the main experiment are reported in Table 9 of
Appendix K. Overall, our method is 4 times faster than the
grid search for the smaller regression models and 8 times
faster for the larger classification models.

5 RELATED WORK: CPE THROUGH
THE LENS OF BAYESIAN DEEP
LEARNING

Since the publication of Wenzel et al. [2020], there have
been numerous attempts to explain CPE, with particular
focus on predictive metrics such as test LPD, accuracy (for
classification), and MSE (for regression). In addition to the
arguments presented in Section 3, we provide a summary of
the popular insights into CPE from the BDL literature here.

Poor posterior approximation. One explanation for the
presence or absence of CPE is inadequate posterior approx-
imation, e.g., an inappropriate choice of step size, or the
omission of Metropolis-Hastings steps in the SGMCMC
sampler. However, as shown in Appendices A and B, CPE
is not solely an artifact of poor posterior approximation and
can be observed theoretically.

Likelihood corruption due to data augmentation. It has
been widely observed that the use of data augmentation of-
ten amplifies CPE [Izmailov et al., 2021], while being less
pronounced when data augmentation is turned off. It is ar-

gued that the augmented data violate the usual independent
and identically distributed (i.i.d.) assumption imposed on
the data. However, CPE has been found to persist even af-
ter accounting for this assumption violation [Nabarro et al.,
2022]. Therefore, CPE is unlikely to be a mere artifact
of data augmentation. In a separate analysis, Kapoor et al.
[2022] argues that the SGMCMC sampler will converge to
a tempered posterior in the presence of data augmentation.
They concluded that the likelihood is implicitly raised to a
power equal to the number of augmentations, and raising
the likelihood to a power reciprocal of this number should
approximately recover the standard posterior. However, they
do not find this adjustment alone sufficient to remove CPE
completely.

Model misspecification. It has been argued that data aug-
mentation and curation may lead to model misspecification,
in particular overestimating the aleatoric uncertainty in the
data [Aitchison, 2021, Kapoor et al., 2022]. Therefore, tem-
pering is proposed to be an effective tool for correction. This
finding aligns with Bachmann et al. [2022], which showed
the optimal temperature dependent on both the aleatoric
uncertainty in the data and the ‘invariance’ of the model to
augmented data.

Prior misspecification. While the exact interpretation of
a ‘well-specified prior’ is debatable, Fortuin et al. [2022]
conducted a large-scale experiment to study the effect of



Table 1: MSE (for regression) and accuracy (for classification) of the point predictions of the PPDs at β = 1, β = β̂∗ (our
method), and the optimal β obtained from grid search. We also include the predictions from SGD as a baseline. The results
for SM-PD and TM-PD are consolidated, as both produce identical point predictions by definition. The presented values are
means ± standard error across five repetitions, with the best value among the four methods boldfaced.

METHOD
MSE ↓ (×10−3) ACCURACY ↑

CONCRETE ENERGY NAVAL MNIST CIFAR10 CIFAR10 (DA)

SGD 106± 20 1.7± 0.2 0.149± 0.063 99.05± 0.11 84.9± 3.4 91.9± 0.3
β = 1 75± 7 2.1± 0.1 0.045± 0.005 99.28± 0.04 89.1± 0.3 88.4± 0.2

β = β̂∗ 82± 4 1.6± 0.1 0.032± 0.009 99.38± 0.03 89.9± 0.2 92.8± 0.2
GRID 76± 8 1.4± 0.1 0.027± 0.008 99.32± 0.05 89.9± 0.2 92.8± 0.4
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Figure 2: Test LPD and accuracy of CIFAR-10 plotted against inverse temperature β under various levels of data augmentation
(color). The lines and shaded areas represent the mean ± standard error across five repetitions. There are five dots for each
colored curve, and each of these dots corresponds to a repetition of β̂∗ from our method. The vertical dotted lines indicate
the PPD at β = 1. There is a subtle shift of peaks from left to right as the augmentation strength increases. Higher test LPD
and accuracy indicate better performance.

tempering under Gaussian (isotropic or with correlated co-
variance) and heavy-tailed priors (Student’s-t or Laplace)
on four metrics: test LPD, accuracy, expected calibration
error [Naeini et al., 2015], and out-of-distribution detec-
tion accuracy. They observed that β = 1 is indeed optimal
for test LPD and accuracy when using a heavy-tailed prior.
However, the standard posteriors derived from heavy-tailed
priors also tend to underperform compared to tempered
posteriors derived from Gaussian priors. Notably, warmer
temperatures tend to lower expected calibration error, and
there is no general trend in optimal β for out-of-distribution
detection accuracy. Therefore, their work suggests that the
optimal β is not only dependent on the truth-model-prior
triplet but also on the evaluation metric.

Attempts to ‘fix’ the CPE. Within much of the CPE liter-
ature, tempering is often seen as a ‘hack’ that strays from
the Bayesian principle. This has prompted the development
of various ‘fixes’ — models and priors that induce standard
posteriors with similar predictive performance to tempered

posteriors [see, e.g., Fortuin et al., 2022, Kapoor et al., 2022,
Marek et al., 2024]. However, we argue that this is unneces-
sary, as tempered posteriors of arbitrary β > 0 are special
cases of the generalized Bayes posterior [Bissiri et al., 2016];
see Appendix L for a primer. Therefore, posterior tempering
does not deviate from the Bayesian principle.

6 RELATED WORK: CPE THROUGH
THE LENS OF GENERALIZED BAYES

In GB, it is common to tune β to improve the utility of the
tempered posterior [Zhang, 2006a, Grünwald, 2012, Bissiri
et al., 2016]. Specifically, the likelihood is frequently (but
not always) tempered to a warmer temperature, which con-
trasts with the cold temperature used in BDL. In this section,
we review some recent developments in GB to clarify the
role of tempering in GB and this apparent contradiction.



Ensuring posterior concentration on the KL mini-
mizer. Posterior concentration on the KL minimizer θ† =
argminθDKL(q(y|x)|p(y|x, θ))3 as n→∞ is often a de-
sired property for many statistical applications. Proofs es-
tablishing this property [Barron and Cover, 1991, Zhang,
2006a, Grünwald, 2007] typically assume that the following
inequality holds for all θ in the parameter space:

Eq(x,y)

[(
p(y|x, θ)
p(y|x, θ†)

)β
]
≤ 1, for all θ ∈ Θ.

This inequality holds at β = 1 for well-specified models,
where q(x, y) = p(y|x, θ†)q(x), but the same cannot be
said for misspecified models in general. Grünwald [2012]
shows that this inequality can still hold for many misspeci-
fied models for some warm temperatures β ≤ βcritical < 1,
and proposed the SafeBayes algorithm to determine βcritical.
Therefore, SafeBayes is presented as a tool to achieve pos-
terior concentration on θ†.

However, posterior concentration is not always desirable in
the context of maximizing test LPD under model misspeci-
fication. By taking β ≤ βcritical, the corresponding PPD will
concentrate on the ‘plug-in’ predictive density p(y|x, θ†) as
n→∞. This may be undesirable, since p(y|x, θ†) may not
exhibit good test LPD. For example, when the misspecified
model is non-convex, the PPD can lie outside the model
family and be closer to the truth than p(y|x, θ†). Therefore,
avoiding posterior concentration in this situation can actu-
ally result in a PPD with a higher test LPD.

Calibrating credible and prediction intervals. Con-
structing well-calibrated credible and prediction intervals
with the nominal frequentist coverage probability is known
to be challenging, as obtaining the posterior variance of a
misspecified model is difficult [Kleijn and van der Vaart,
2012, Example 2.1]. These issues can be mitigated by appro-
priately tuning β, which affects the spread of the posterior.
To this end, Syring and Martin [2019] and Wu and Mar-
tin [2021] developed algorithms to select β for calibrating
credible and prediction intervals, respectively.

Calibrating prior-to-posterior information gain. In
decision-theoretic GB [Bissiri et al., 2016, see Appendix L
for a primer], tempered posteriors (with likelihood temper-
ing only) are seen as an update rule that combines data in-
formation with prior belief. From this perspective, β can be
interpreted as a ‘learning rate’ at which information is ‘trans-
ferred’ to the posterior. Hence, it is reasonable to calibrate
the information gain at each update. Temperature selection
algorithms that follow this approach include Holmes and
Walker [2017] and Lyddon et al. [2019].

3In GB, the minimizer is assumed to be unique, though this is
often not true for neural network models.

Improving test LPD. Concurrent to our work, McLatchie
et al. [2024] analyzed the role of β4 in improving test LPD
theoretically. They concluded that, in the moderately large
n regime and assuming posterior concentration at θ†, the
test LPD shows little improvement once β becomes suffi-
ciently large. Although their motivation aligns with ours,
their theoretical results do not extend to neural networks or
over-parameterized models (e.g., ResNet20 on CIFAR10).

6.1 LIMITATIONS OF GENERALIZED BAYES
FOR ANALYZING BDL MODELS

The existing theory in GB, though elegant, is limited to
regular and under-parameterized models and cannot fully
account for CPE observed in BDL. Moreover, the metrics
emphasized by GB often differ from those prioritized by
BDL practitioners, such as test LPD. As a result, GB works
do not provide a prescriptive methodology for selecting
an appropriate temperature in BDL. Additionally, many
current temperature selection algorithms [Grünwald, 2012,
Syring and Martin, 2019, Wu and Martin, 2021] require
repeated posterior computations, making them impractical
for modern deep learning models. Finally, the GB literature
primarily considers posteriors with likelihood tempering
only, i.e., leaving the prior without tempering. However,
since many priors p(θ) encountered in BDL are proper and
bounded, prior tempering can be regarded as rescaling the
prior [Kapoor et al., 2022, Section C.2]. Therefore, many of
the arguments in GB still apply.

7 CONCLUSION

In this work, we proposed a data-driven approach for se-
lecting a good β for use in either of the PPDs (3) and (8).
Our approach circumvents the costly grid search method,
i.e., sampling posterior at each β across the grid, by opti-
mizing a likelihood function (7) to obtain a good β. The β̂∗

obtained via our method was shown to achieve comparable
test LPD to that obtained from a grid search, all without
performing any extra posterior sampling.

Additionally, we presented a detailed discussion to address
the seeming contradiction in the optimal β recommenda-
tions from the BDL and GB communities. We concluded
that the optimal β can differ depending on the specific down-
stream task.

Limitation. Our method is subject to several limitations
that require future attention. Firstly, a poorly-tuned opti-
mization procedure may result in a poor estimation of β̂∗.
Secondly, our method has only been empirically tested with
the ubiquitous Gaussian priors. Lastly, while our method

4In McLatchie et al. [2024], the learning rate and, confusingly,
temperature refer to β in this work.



is empirically effective for modern neural network models
and theoretically justified for Gaussian linear regression, a
formal guarantee for general neural network models is still
lacking.

Future directions. We hope that this work will inspire fur-
ther research on data-driven approaches to select β, aimed
not only at minimizing test LPD but also at optimizing other
metrics, such as expected calibration error.
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A OPTIMAL TEMPERATURE OF A GAUSSIAN TOY MODEL

In this section, we compute the optimal temperature that minimizes the 2-Wasserstein distance and the KL divergence
between the truth and PPD of a toy Gaussian model. We show that: 1) the optimal temperature depends on both the evaluation
metric and the truth-model-prior triplet, and 2) the optimal temperature that maximizes test LPD is not necessarily 1, even in
the case of a well-specified model.

In our setup, we assume a set of i.i.d. samplesD = {xi}ni=1 drawn from a univariate Gaussian truth q(x) = N (x|0, τ2) with
a known variance τ2. Our model is given by p(x|µ) = N (x|µ, σ2) with a fixed variance σ2. We also assume a Gaussian
prior on µ, i.e., p(µ) = N (µ|0, σ2

p). While we focus on the unsupervised setting for the ease of exposition, our argument
also applies to the supervised settings.

The tempered posterior at β = 1
T is given by:

pβ(µ|D) ∝ p(µ)1/T
n∏

i=1

N (xi|µ, σ2T )

= N

(
µ

∣∣∣∣∣nx̄σ2
post

σ2T
, σ2

post

)

= N

(
µ

∣∣∣∣∣x̄
(
σ2

nσ2
p

+ 1

)−1

, σ2
post

)
,

where the posterior variance is given by σ2
post = T

(
1
σ2
p
+ n

σ2

)−1

.

The PPD as defined in (3) is then:

pβ(x|D) =
∫
N (x|µ, σ2)pβ(µ|D)dµ = N

(
x

∣∣∣∣∣nx̄σ2
post

σ2T
, σ2

post + σ2

)

A.1 OPTIMAL TEMPERATURE FOR MINIMIZING 2-WASSERSTEIN DISTANCE

As both q(x) and pβ(x|D) are Gaussian, the 2-Wasserstein distance W2 between these two density has a closed-form
expression:

W2 =

((
σ2

nσ2
p

+ 1

)−1

x̄

)2

+ T

(
1

σ2
p

+
n

σ2

)−1

+ σ2 + τ2 − 2τ

[
T

(
1

σ2
p

+
n

σ2

)−1

+ σ2

]1/2

mailto:<kenyon.ng@monash.edu>?Subject=Your UAI 2025 CPE paper


Taking the gradient of W2 with respect to T and set it to 0, we can derive the optimal temperature T ∗:

∂W2

∂T
=

(
1

σ2
p

+
n

σ2

)−1

− τ

[
T

(
1

σ2
p

+
n

σ2

)−1

+ σ2

]−1/2(
1

σ2
p

+
n

σ2

)−1

= 0

=⇒ T ∗ = (τ2 − σ2)

(
1

σ2
p

+
n

σ2

)
, T ∗ ∈ (0,∞)

Therefore, we can conclude that the optimal T ∗ → 0 in the well-specified case (τ2 = σ2).

A.2 OPTIMAL TEMPERATURE FOR MINIMIZING KL DIVERGENCE

We can also obtain the closed-form expression KL divergence, DKL(q(x)∥pβ(x|D)):

DKL(q(x)∥pβ(x|D)) = Eq(x)

[
log

q(x)

pβ(x|D)

]

=

[(
σ2

nσ2
p

+ 1

)−1

x̄

]2
1

2(σ2
post + σ2)

+
1

2

(
τ2

σ2
post + σ2

− 1− ln
τ2

σ2
post + σ2

)
.

Note that this object directly corresponds to test log predictive density (LPD), which is the primary object of interest in
Bayesian deep learning and our work. Taking the derivative of the divergence with respect to T and set it to 0, we can solve
for the posterior variance that minimizes the divergence:

∂DKL

∂T
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From this posterior variance, we can deduce the optimal T ∗:

T ∗ =
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( 1

σ2
p

+
n

σ2

)

=
( n
σ2
x̄
)2( 1

σ2
p

+
n

σ2

)−1

+ (τ2 − σ2)

(
1

σ2
p

+
n

σ2

)
, T ∗ ∈ (0,∞).

We can see that T ∗ is non-trivial, and T ∗ ̸= 1 in the well-specified case (τ2 = σ2). This contradicts with the popular belief
that the test LPD is maximized by the PPD induced from a well-specified standard posterior [Adlam et al., 2020].

B OPTIMALITY CONDITIONS FOR TEST LPD AT β = 1

In this section, we follow the work of Zhang et al. [2024] (which assumes likelihood tempering rather than full posterior
tempering) and argue that the PPD (3) is rarely optimal in terms of test LPD at β = 1. Our approach is to demonstrate that
the gradient∇β LPD(pβ(y|x,D)) is rarely zero at β = 1.

Lemma B.1. Let p(D, θ) = p(θ)
∏

(x,y)∈D p(y|x, θ), where we suppress the conditional dependency on x in p(D, θ). Then,
the gradient of LPD(pβ(y|x,D)) with respect to β is given by

∇β LPD(pβ(y|x,D)) = Eq(x,y)

[
Epβ(θ|D∪(x,y))[log p(D, θ)]

]
− Epβ(θ|D)[log p(D, θ)],

where pβ(θ|D ∪ (x, y)) ∝ p(y|x, θ)pβ(θ|D) represents an update to the posterior pβ(θ|D) after observing an extra data
point (x, y) from the truth, and the expectation Eq(x,y)[·] integrates over (x, y) in p(θ|D ∪ (x, y)).



Proof. Let Epβ
[·] := Epβ(θ|D)[·] represent the expectation with respect to the tempered posterior pβ(θ|D), and let the

normalizing constant of the tempered posterior be Z(D, β) :=
∫
p(D, θ)βdθ.

We begin by deriving an identity that will be useful for the gradient computation. For any arbitrary f : Rd → R, the
following identity holds:

∇βEpβ
f(θ) =

∫
∇β [f(θ)pβ(θ|D)]dθ

=

∫
f(θ)∇β log pβ(θ|D)pβ(θ|D)dθ

= Epβ
[f(θ)∇β log pβ(θ|D)]

= Epβ
[f(θ)∇β log p(D, θ)β ]− Epβ

[f(θ)]∇β logZ(D, β)
= Epβ

[f(θ) log p(D, θ)]− Epβ
[f(θ)]Epβ

[log p(D, θ)],

where∇β logZ(D, β) in the second last line becomes

∇β logZ(D, β) =
∫
∇βp(D, θ)βdθ
Z(D, β)

=

∫
log p(D, θ)p(D, θ)

β

Z(D, β)
dθ = Epβ

[log p(D, θ)].

The gradient can then be computed as follows:

∇β LPD(pβ(y|x,D)) = ∇βEq(x,y) logEpβ
p(y|x, θ)

= Eq(x,y)

∇βEpβ
p(y|x, θ)

Epβ
p(y|x, θ)

= Eq(x,y)

[Epβ
[p(y|x, θ) log p(D, θ)]

Epβ
p(y|x, θ)

]
− Epβ

[log p(D, θ)]

= Eq(x,y)[Epβ(θ|D∪(x,y)) log p(D, θ)]− Epβ
[log p(D, θ)],

where the term inside Eq(x,y)[·] in the third equality simplifies to

Epβ
[p(y|x, θ) log p(D, θ)]

Epβ
p(y|x, θ)

=

∫
log p(D, θ) p(y|x, θ)pβ(θ|D)∫

p(y|x, θ′)pβ(θ′|D)dθ′
dθ

= Epβ(θ|D∪(x,y)) log p(D, θ).

We can view the terms in the RHS of Lemma B.1 as a training loss under a posterior ρ:

EρL(D, θ) := Eρ[− log p(D, θ)] = Eρ[− log p(θ)−
∑

(x,y)∈D

log p(y|x, θ)].

This is similar to the training loss as defined in Zhang et al. [2024], but with an additional regularizer p(θ) included in the loss.
Then, we can define underfitting as Eq(x,y)[Epβ(θ|D∪(x,y))L(D, θ)] < Epβ(θ|D)L(D, θ), i.e., the posterior pβ(θ|D ∪ (x, y))
will, on average, have a lower training loss than the original pβ(θ|D) after receiving an extra observation (x, y) from the
truth. Similarly, we can define the converse as overfitting.

Therefore, it is not difficult to imagine that the posterior is rarely well-fitted at β = 1, and we should not expect optimality
in terms of the test LPD from the PPD at β = 1.

C DETAILS OF THE TEMPERATURE SELECTION ALGORITHM

Our proposed procedure for constructing a PPD at an optimal temperature is summarized in Algorithm 1 with the following
details:



1. We first run SGD to maximize the log-likelihood of the tempered model on a training set. We track the validation
log-likelihood at the end of every ⌊L/20⌋-th epoch, where L is the total number of epochs, to save computation time.
We then select the temperature with the largest validation log-likelihood as our optimal temperature β̂∗.

2. Subsequently, we run SGMCMC to draw samples from the tempered posterior at β̂∗. We only start collecting samples
after a burn-in phase. During the burn-in phase, we use a linear ramp function to control T = 1

β in (13), i.e. we first run

SGMCMC at T = 0, then ramp up T from 0 to T̂ ∗ = 1
β̂∗ and continue the burn-in at T̂ ∗. This SGMCMC scheme is

almost identical to Wenzel et al. [2020, Appendix A.1], except that we run extra burn-in epochs at T̂ ∗.

Algorithm 1: Procedure to construct a PPD at the optimal temperature.
Input: Training data D, Validation data Dvalid

Initialize θ ← some initializer, β ← 1;
Set (θ̂∗, β̂∗)← (θ, β);
repeat

∆← Compute and scale∇θ,log β

∑
(x,y)∈D log p(y|x, θ, β);

(θ, log β)← (θ, log β) + ∆;
if
∑

(x,y)∈Dvalid
log p(y|x, θ, β) >

∑
(x,y)∈Dvalid

log p(y|x, θ̂∗, β̂∗) then
(θ̂∗, β̂∗)← (θ, β)

end
until Convergence or resource exhausted;
S ← Draw θ from the tempered posterior pβ(θ|D) with SGMCMC at T = 1

β̂∗ ;

Output: The PPD pβ(y|x,D) ≈ |S|−1
∑

θ∈S p(y|x, θ) from the set of samples S

D VARIANTS OF THE TEMPERATURE SELECTION METHOD

In this section, we compare a variant of (7) by solving

argmax
θ,β

1

n

∑
(x,y)∈D

[log p(y|x, θ, β) + log p(θ)]. (9)

We refer to this approach as the maximum-a-posteriori (MAP) method, as θ is now constrained by a prior p(θ). This
contrasts with the maximum likelihood (MLE) method introduced in (7). Additionally, we compare our method to the
popular temperature scaling approach proposed in Guo et al. [2017]. In their method, θ in the objective (7) is fixed to a
solution obtained from the standard training workflow (e.g., θ∗SGD), and the temperature β is optimized by solving

argmax
β

1

n

∑
(x,y)∈Dvalid

log p(y|x, θ∗SGD, β)

on a validation set. In contrast, both MLE and MAP jointly optimizes θ and β within a single SGD run.

We compare the methods on the CIFAR-10 experiments, reporting the test LPD and accuracy in Table 2. The PPDs are
constructed from SM-PD (3). In general, MAP and MLE yield similar β values, while the β obtained from Guo et al. [2017]
differs substantially. Moreover, Guo et al. [2017] generally underperforms relative to MAP and MLE when the CPE is most
pronounced, such as when data augmentation is enabled. This outcome is perhaps unsurprising, as Guo et al. [2017] is
designed for computing a well-calibrated tempered model p(y|x, θ, β), whereas our method targets the PPD pβ(y|x,D).

The results also suggest that optimizing θ and β together is critical for determining a good β. We conjecture that
p(y|x, θ∗, β∗), with both θ∗ and β∗ obtained through our procedure, provides a reasonable approximation of the PPD
with the highest test LPD. In contrast, fixing θ to a predetermined value (e.g., θ∗SGD) limits the search space and leads to a
poor approximation of the PPD.

Another possible strategy here is the ‘marginal likelihood method’ which selects β that maximizes the marginal likelihood
of the tempered posterior. However, marginal likelihood is generally computationally intractable. Existing methods that rely



Table 2: Comparison between methods to select β on the CIFAR10 experiments. Reported values are mean ± standard error
across five repetitions. All values are evaluated on a test set. The accuracy and LPD are all within one standard error of
difference between MAP and MLE.

Data Method Accuracy ↑ LPD ↑ β̂∗

CIFAR10
Guo et al. [2017] 89.86± 0.2 −0.317± 0.003 1.75± 0.18

MAP 89.89± 0.25 −0.321± 0.010 10.54± 9.60
MLE 89.92± 0.25 −0.317± 0.006 10.44± 9.54

CIFAR10 (DA)
Guo et al. [2017] 90.47± 0.14 −0.286± 0.004 1.61± 0.05

MAP 92.81± 0.27 −0.232± 0.008 14.28± 0.52
MLE 92.81± 0.20 −0.232± 0.007 12.79± 3.06

on Laplace approximations Immer et al. [2021] are generally unreliable due to the singularity of neural network models Wei
et al. [2022], although progress has been made to address this limitation [Hodgkinson et al., 2023].

E PROOF OF LEMMA 3.1

Lemma E.1. Consider a linear regression model p(y|x, θ) = N (y|x⊤θ, σ2) with a d-dimensional input x and known
variance σ2, and a prior p(θ) = N (θ|0, σ2

p) with finite variance σ2
p. Let X := (x1, . . . , xn)

⊤ ∈ Rn×d and Σ :=

(X⊤X + σ2

σ2
p
I)−1. The test LPD of the PPD in (8) at a fixed β is bounded from below:

LPD(Epβ(θ|D)[p(y|x, θ, β)]) > Eq(x,y) log p(y|x, θ̂MAP, β)−
1

2
Eq(x,y) log (1 + x⊤Σx),

where θ̂MAP := ΣX⊤y is the maximum-a-posteriori solution of the posterior pβ(θ|D) at β = 1 and y := (y1, . . . yn)
⊤ ∈

Rn.

Proof. Let σ2
β = σ2

β . The tempered posterior can be shown to follow a Gaussian distribution

pβ(θ|D) ∝ N (θ|0, σ2
p/β)

∏
x,y∈D

N (y|x⊤θ, σ2
β) ∝ N (θ|θ̂, σ2

βΣ).

Therefore, the PPD (8) of linear regression can be derived using the identities of conditional Gaussian densities [see Bishop,
2006, Section 2.3.3]

logEpβ(θ|D)[p(y|x, θ, β)] = log

∫
p(y|x, θ, β)pβ(θ|D)dθ

= log

∫
N (y|x⊤θ, σ2

β)N (θ|θ̂, σ2
βΣ)dθ

= logN (y|x⊤θ̂, σ2
β(1 + x⊤Σx))

= −1

2
log
(
1 + x⊤Σx

)
− 1

2
log
(
2πσ2

β

)
− (y − x⊤θ̂)2

2σ2
β(1 + x⊤Σx)

> −1

2
log
(
1 + x⊤Σx

)
− 1

2
log
(
2πσ2

β

)
− (y − x⊤θ̂)2

2σ2
β

= −1

2
log (1 + x⊤Σx) + logN (y|x⊤θ̂, σ2

β)

= −1

2
log (1 + x⊤Σx) + log p(y|x, θ̂, β)

Note that Σ is positive definite, and thus 1 + x⊤Σx > 1 and the inequality holds. Taking expectation with respect to q(x, y)
at both sides of the inequality concludes the claim.



F EVALUATION METRICS

In addition to the LPD evaluated on a test set Dtest,

Eq(x,y)[log pβ(y|x,D)] ≈
1

|Dtest|
∑

x,y∈Dtest

log pβ(y|x,D),

we also report MSE for the regression examples

1

|Dtest|
∑

x,y∈Dtest

(y − ŷ)2, ŷ = Epβ(y|x,D)[y]

and accuracy for the classification examples

1

|Dtest|
∑

x,y∈Dtest

1[y = ŷ], ŷ = argmax
y

pβ(y|x,D)

where 1 is an indicator function. Note that the MSE and accuracy are indifferent to the constructions of PPD (3) and (8), as
they both produce identical point predictions ŷ in our setup.

G MODEL AND PRIOR DETAILS

G.1 NETWORK ARCHITECTURE AND DATASETS

The network architecture and datasets are described in this section. The dimension of x and θ, and the sizes of the training,
validation and testing sets are presented in Table 3.

One-layer ReLU network on UCI datasets. The scalar mean function µ(·; θ) is parameterized with a 64-neuron hidden
layer using ReLU activations. The datasets are Concrete [Yeh, 2007], Naval [Coraddu and Figari, 2014] and Energy [Tsanas
and Xifara, 2012]. They are all provided under the CC BY 4.0 license from UC Irvine Machine Learning Repository.

CNN on MNIST. We utilize the convolutional neural network (CNN) provided in the MNIST example within the Flax
tutorial. In broad terms, it comprises two convolutional layers (with 32 and 64 filters, respectively), followed by two fully
connected layers (with 256 and 10 outputs). The convolutional layers employ 3× 3 convolutions with ReLU activations and
2× 2 average pooling. The MNIST dataset [LeCun et al., 2010] is provided under the CC BY-SA 3.0 license. Code for the
CNN model can be found in https://github.com/google/flax/blob/main/examples/mnist/train.
py under the Apache License, Version 2.0.

ResNet20 on CIFAR10. We use the ResNet20 architecture [He et al., 2016] as implemented and ported from Wenzel et al.
[2020]. We also use the following data augmentation scheme, as in Wenzel et al. [2020]:

• Random left and right flipping, then;

• Border-padding 4 zero values in both horizontal and vertical direction, followed by random cropping of the image to its
original size.

The CIFAR10 dataset [Krizhevsky, 2009] can be found in https://www.cs.toronto.edu/~kriz/cifar.html.
Code for the ResNet20 model can be found in https://github.com/google-research/google-research/
blob/master/cold_posterior_bnn/models.py under the Apache License, Version 2.0.

G.2 ERROR VARIANCE OF THE GAUSSIAN REGRESSION MODEL

As the training data y in our experiment is standardized to unit variance, it is safe to assume that error variance σ2 of the
trained model will be less than 1. Therefore, we set σ2 = 0.1.

G.3 PRIOR VARIANCE

We use an isotropic Gaussian N (0, σ2
p) for the neural network weights. The variance σ2

p is specified in Table 3.

https://github.com/google/flax/blob/main/examples/mnist/train.py
https://github.com/google/flax/blob/main/examples/mnist/train.py
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/google-research/google-research/blob/master/cold_posterior_bnn/models.py
https://github.com/google-research/google-research/blob/master/cold_posterior_bnn/models.py


Table 3: Details of the datasets, size of neural network and prior variance. We use the same prior for both CIFAR10
experiments with or without data augmentation.

CONCRETE ENERGY NAVAL MNIST CIFAR10

dim(x) 8 8 14 28× 28× 1 32× 32× 3
dim(θ) 641 641 1025 824458 273258
|D| 824 614 9547 60000 50000
|Dvalid| 103 77 1194 5000 5000
|Dtest| 103 77 1193 5000 5000
PRIOR VARIANCE σ2

p 0.1 0.1 1 0.1 1

H SGMCMC

We use the implementation of SGMCMC as presented in Wenzel et al. [2020]. This corresponds to the stochastic gradient
Hamiltonian Monte Carlo [Chen et al., 2014] with rescaled hyperparameters and an adaptive scaling on the Gaussian noise
to ensure efficient sampling from a tempered posterior. The samples of pβ(θ|D) ∝ exp{−βU(θ)} = exp{−U(θ)/T},
where U(·) is the posterior energy function defined as

U(θ) := − log p(θ)−
∑

x,y∈D
log p(y|x, θ), (10)

can be drawn by simulating the following Langevin stochastic difference equation (SDE) over θ ∈ Rd and momentum
m ∈ Rd

dθ = M−1m dt, (11)

dm = −∇θU(θ) dt− γm dt+
√
2γTM1/2dW, (12)

for any friction γ > 0. Here, W is a Wiener process, which can be loosely interpreted as a generalized Gaussian distribution
[Leimkuhler and Matthews, 2015]. The mass matrix M is a preconditioner that can help in speeding up the convergence to
the limiting distribution of this SDE. We also prefer working with T instead of the inverse temperature β in the sampler to
facilitate sampler diagnostics and temperature ramp-up.

In practice, the gradient of U(θ) is approximated by a minibatch gradient estimator

∇θŨ(θ) := −∇θ log p(θ)−
|D|
|B|

∑
x,y∈B

∇θ log p(y|x, θ),

where B denotes a minibatch, and |B| and |D| denote the batch size and number of training samples respectively. The SDEs
are then solved numerically with a first-order symplectic Euler discretization scheme using this minibatch gradient estimator,
resulting in the following update equations

m(t) = (1− hγ)m(t−1) − h∇θŨ(θ(t−1)) +
√
2γhTM1/2R(t) (13)

θ(t) = θ(t−1) + hM−1m(t)

where R(t) ∼ N (0, Id) is a standard Gaussian vector. Note that the temperature shows up in the update equations and
effectively scales the random noise. This is helpful for drawing samples from cold posteriors, which tend to have narrow,
high density regions. The scaling prevents the Markov chain from taking steps that are too large and missing the high-density
region.

The step size h is often also modulated with a scheduler C(t) : R+ → [0, 1]

h = h0C(t), (14)

where h0 is the initial step size. Where appropriate, we also use the layerwise preconditioner as proposed in Wenzel et al.
[2020] to speed up convergence and reduce approximation error.



I SGMCMC DIAGNOSTICS

In this work, we use the kinectic temperature diagnostic [Wenzel et al., 2020] to assess the quality of SGMCMC samples.
This is a departure from the common practice of using test LPD as a proxy for the posterior approximation error, since this
been shown to be a poor proxy [Deshpande et al., 2022]. In addition, we also report the rank-normalized split-R̂ statistics
[Vehtari et al., 2021] on the (unnormalized) posterior density, which are invariant to the permutation of neural network
weights.

I.1 KINETIC TEMPERATURE

We report the expected kinetic temperature of each SGMCMC chain at different temperatures, as proposed in Wenzel et al.
[2020, Appendix I]. The kinetic temperature estimator is given by

T̂ (m) =
m⊤M−1m

dim(m)
(15)

where m and M are the (random) momentum and the mass matrix in the SDE (11)-(12). For a perfect simulation of the
SDE, (15) is an unbiased estimator of the temperature of the system, i.e., E[T̂ (m)] = T [Leimkuhler and Matthews, 2015,
Section 6.1.5].

In Table 4, the expected kinetic temperatures were computed by averaging over the temperature samples over the whole
Markov chain. We use these estimates to gauge the simulation quality of the SDEs — an estimate closer to the target
temperature indicates a better approximation of the SDEs. We generally expect the simulation quality to worsen in the lower
temperature regime, due to the errors from both discretization and gradient sub-sampling becoming more prominent relative
to the randomness in m. Otherwise, there is no major concern about the sample quality, as observed in Table 4.

I.2 RANK-NORMALIZED SPLIT-R̂

In Table 5, we report the rank-normalized, split-R̂ [Vehtari et al., 2021] on the potential energy (10), which is invariant
to the permutation of neural network weights. This statistic is a strict improvement over the traditional potential scale
reduction factor R̂ [Gelman and Rubin, 1992] and split-R̂ [Gelman et al., 2013]. The R̂ statistic compares between-chain
and within-chain variances, thus requiring multiple independently-initialized Markov chains to compute. It was designed
based on the idea that, for Markov chains that are mixing well, they should converge to the same limiting distribution
regardless of initialization. Therefore, the between-chain and within-chain variances should roughly be the same, and a R̂
closer to 1 is considered better. The term ‘split’ indicates that the Markov chains are divided in half, resulting in double the
number of Markov chains with half the original length. The variances are computed across these doubled number of Markov
chains to detect poor convergence within an original chain. The ‘traditional’ R̂ is computed on the original values of the
potential energy, while the ‘rank-normalized’ R̂ is computed on the rank-normalized values of the potential energy and does
not require the limiting distribution to have a finite mean or variance.

In Bayesian deep learning, the posterior distribution is almost always multi-modal [Izmailov et al., 2021], and we should not
expect the independently-initialized Markov chains to always converge to the same limiting distribution. Therefore, we
should not be overly alarmed by the relatively ‘large’ readings of R̂ in Table 5. These values are large by the usual standard
in Bayesian statistics but are common in Bayesian deep learning [Izmailov et al., 2021, Fortuin et al., 2022].

J HYPERPARAMETERS AND THE COMPUTE ENVIRONMENT

In this section, we provide a detailed explanation of the hyperparameters for SGD and SGMCMC. The values are summarized
in Table 6. Our source code is available on https://github.com/weiyaw/tempered-posteriors.

Learning rate and scheduler (SGD). This is the learning rate scheduler. The cosine schedule starts from the indicated
learning rate and gradually decreases to 0 throughout the entire SGD run. The ‘piecewise’ scheduler is used in Wenzel
et al. [2020], where the initial learning rate is multiplied by a value at specified epochs. We write it in the format of (epoch,
multiplier): (80, 0.1), (120, 0.01), (160, 0.001), (180, 0.0005).

https://github.com/weiyaw/tempered-posteriors


Weight decay. We subtract a weight decay term from the transformed gradient before scaling the transformed gradient
with a learning rate. This subtraction is performed because we are maximizing the likelihood rather than minimizing a loss.

Gradient clipping. We clip the gradient norm to a specified threshold, as implemented in Optax [DeepMind et al., 2020].
This helps stabilize the training procedure.

Learning rate and momentum (SGMCMC). The learning rate and momentum terms will control both the initial step
size h0 and the friction γ. The relationship between them is given in Wenzel et al. [2020, Appendix B] and is repeated here:

h0 =
√

learning rate/n, γ = (1− momentum)/h0,

where n is the size of the training set.

Scheduler and cycle length (SGMCMC). This is the scheduler C(t) in (14) that modulates h. During the burn-in phase,
the scheduler is fixed at 1, i.e. h = h0. Then, during the sampling phase, the step size is modulated with a cyclical cosine
schedule [Zhang et al., 2020] with a period of the specified epoch. One sample is collected at the end of each cycle.

Ramp start and end. As we run our SGMCMC algorithm from T = 0 and only start increasing T after a specified
number of epochs, these two hyperparameters indicate the epoch when T was gradually increased and the epoch when T
reaches the target temperature.

Burn-in epochs, total epochs and usable samples (SGMCMC). The ‘total epochs’ indicate the total number of epochs
run by SGMCMC, including epochs during the burn-in phase. ‘Usable samples’ indicate the number of samples collected
after the burn-in phase.

J.1 COMPUTATIONAL ENVIRONMENT AND RESOURCES

The algorithms were implemented in JAX [Bradbury et al., 2018]. We used Flax [Heek et al., 2023] and Tensorflow
Probabilities [Dillon et al., 2017] to implement neural networks and models. Plots were generated with tidyverse
[Wickham et al., 2019] and ggplot2 [Wickham, 2016]. Rank-normalized split-R̂ was computed with the posterior
package [Bürkner et al., 2023]. We also used xarray [Hoyer and Hamman, 2017] and arviz [Kumar et al., 2019] to
conduct explanatory analysis, and wandb [Biewald, 2020] to track our experiments. Our code will be released.

The experiment was conducted on Google Cloud Platform utilizing TPU-V3. In each machine, there are 8 TPU cores with
16GB of TPU memory attached to each core (i.e., totaling 128GB of memory in each machine). However, we only utilize
one TPU core due to the difficulty in parallelizing the MCMC chains across different cores, and effectively only have access
to 16GB of memory in each machine.

On a CIFAR10 experiment, a SGD run (for our proposed algorithm) takes roughly 0.5 hour to complete. A SGMCMC run at
a particular temperature takes roughly 4.5 hours. In our main experiment, as we are computing over a grid of 9 temperature
plus the optimal temperature, one repetition of the experiment takes 45.5 hours. Multiplying this by five repetitions and we
get 227.5 hours to produce one of the CIFAR10 subplot in Figure 1. The rest of the subplot are considerably cheaper: 16
hours for MNIST, and less than an hour for each of Concrete, Naval and Energy.

In total, it takes 474 hours to generate the posterior samples for computing Table 1 and Figure 1. It takes an additional 279
hours for the experiment that varies data augmentation strength, i.e., Figure 2. Hyperparamters tuning takes an additional
200 hours. We have also spent roughly 100 compute-hours to try out various prior for β.

J.2 STANDARD ERROR CALCULATION

The standard error (SE) of the means are computed with sd routine in R. More specifically, it computes the square root of
an unbiased estimate of the variance. The upper and lower bound of the shaded areas in all figures are ‘mean + SE’ and
‘mean − SE’ respectively.
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Figure 3: Validation LPD plotted against inverse temperature β. This is computed with SM-PD as defined in (3). Solid lines
and shaded area represent mean ± standard error across five repetitions. The vertical dotted lines indicate the PPD at β = 1.
There are five red dots in each plot, each of them corresponding to a repetition of β̂∗ from our method. Higher LPD indicates
better performance.

K EXTRA FIGURES AND TABLES FROM THE MAIN EXPERIMENT

In this section, we provide additional figures and tables to complement the results presented in the main text.

We first show the validation LPD plotted against the temperature in Figure 3 and find that our method can recover
temperatures in the high-performing regions. We further improve the visualization of Figure 1 by separating the test LPD
computed with SM-PD (3) and TM-PD (8) into Figure 4 and Figure 5, respectively. A tabular version of the results is also
provided in Table 7 and Table 8, with an SGD reference included in all the results.

We also show the performance of point predictions across different temperatures in Figure 6, complementing Table 1. Note
that the point predictions are identical for SM-PD and TM-PD. We observe that predictions from tempered posteriors
generally outperform SGD.

Finally, we show the wall-clock time comparison across the methods in Table 9. Overall, our method is 4 times faster than
the grid search for the smaller regression models and 8 times faster for the larger classification models.
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Figure 4: Test LPD plotted against inverse temperature β with SGMCMC (green, solid). This is computed with SM-PD as
defined in (3). The SGD solution (horizontal, black, dashed) is included as a reference. The SGD reference in MNIST and
CIFAR10 examples performs considerably worse and is out of range. Lines and shaded area represent mean ± standard
error across five repetitions. The vertical dotted lines indicate the PPD at β = 1. There are five red dots in each plot, each of
them corresponding to a repetition of β̂∗ from our method. Higher LPD indicates better performance.
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Figure 5: Test LPD plotted against inverse temperature β with SGMCMC (blue, solid). This is computed with TM-PD as
defined in (8). The SGD solution (horizontal, black, dashed) is included as a reference. Lines and shaded area represent
mean ± standard error across five repetitions. The vertical dotted lines indicate the PPD at β = 1. There are five red dots in
each plot, each of them corresponding to a repetition of β̂∗ from our method. Higher LPD indicates better performance.



0.08

0.10

0.12

0.1 1 10 100 1000

Te
st

 M
S

E
 (

re
ve

rs
e)

Concrete

0.0015

0.0020

0.0025

0.0030

0.1 1 10 100 1000

Energy

0.00005

0.00010

0.00015

0.00020

0.1 1 10 100 1000

Naval

0.988

0.990

0.992

0.994

0.1 1 10 100 1000

Te
st

 A
cc

ur
ac

y

MNIST

0.800

0.825

0.850

0.875

0.900

0.1 1 10 100 1000

CIFAR10

0.88

0.89

0.90

0.91

0.92

0.93

0.1 1 10 100 1000

Inverse temperature T−1

CIFAR10 (DA)

Method

SGD

SGMCMC

Figure 6: Test MSE (Concrete, Energy, Naval) and accuracy (MNIST, CIFAR10) of the point predictions of the PPDs,
plotted against inverse temperature β. The results for SM-PD (3) and TM-PD (8) are consolidated, as both produce identical
point predictions by definition. The SGD solution (horizontal, black, dashed) is included as a reference. Lines and shaded
area represent mean ± standard error across five repetitions. The vertical dotted lines indicate the PPD at β = 1. There
are five red dots in each plot, each of them corresponding to a repetition of β̂∗ from our method. Note the MSE has been
reversed, and higher value indicates better performance in all plots.

L THE DECISION-THEORETIC GENERALIZED BAYESIAN FRAMEWORK

The classical Bayesian rule (1) updating prior belief p(θ) to the posterior belief p(θ|D) arises from Bayes’ Theorem. An
implicit assumption in this procedure for optimal performance is that the model is correctly specified: there exists some
θ0 such that p(y|x, θ0) = q(y|x) for all (x, y). The adage that “all models are wrong” [Box, 1976] highlights that this
assumption should not be expected to hold. Consequently, it does not make sense to infer on a parameter θ that lacks a
connection to the true data-generation distribution.

Using a decision-theoretic argument, Bissiri et al. [2016] offers an alternative justification for using (1), even when the model
is misspecified. Suppose that we are interested in a quantity θ0 that minimizes the expected loss under the truth q(x, y), that
is,

θ0 := argmin
θ

∫
ℓ(θ, x, y)q(x, y) dy dx (16)

for some loss function ℓ. Then, we would like to derive an update rule ψ that takes an observation (x1, y1) and updates our
prior belief on θ0 to a posterior belief,

p(θ|x1, y1) = ψ{ℓ(θ, x1, y1), p(θ)}.

Furthermore, the update rule should be coherent. That is, suppose that we would like to update our posterior with two data
points {(x1, y1), (x2, y2)}, the update rule should satisfy

ψ{ℓ(θ, x2, y2), ψ{ℓ(θ, x1, y1), p(θ)}} ≡ ψ{ℓ(θ, x2, y2) + ℓ(θ, x1, y1), p(θ)}.

The coherent property will ensure that the same posterior arises regardless of the order which the data are processed. Bissiri
et al. [2016] shows that all coherent update rules take the form

pGB(θ|D) ∝ p(θ) exp

− ∑
(x,y)∈D

ℓ(θ, x, y)

 , (17)



which we will refer to as the general Bayesian update, and the associated posterior pGB(θ|D) as the generalized Bayes
posterior, which has been widely analyzed [Zhang, 2006a,b, Jiang and Tanner, 2008, Bhattacharya et al., 2019, Alquier
et al., 2016, Alquier and Ridgway, 2020]. Note that we must take care to have a finite normalizing constant to (17),

0 <

∫
exp

− ∑
(x,y)∈D

ℓ(θ, x, y)

 p(θ)dθ < +∞.

Under certain regularity conditions, the generalized Bayes posterior will concentrate on θ0 as n→∞; a proof can be found
in McLatchie et al. [2024, Lemma 5]. The key advantage of this framework in lies in its ability to directly infer the quantity
of interest (i.e., θ0) using a loss function, without necessitating any probabilistic assumptions that relate θ0 to the data. For
formal proofs, we direct interested readers to [Bissiri et al., 2016, Section 1].

L.1 CALIBRATING INFORMATION GAIN

The tempered posterior, as defined in (2), is a special parameterisation of the generalized Bayes posterior achieved by
setting the loss to be − log p(y|x, θ) and scaling it by a factor of β > 0, i.e. ℓ(θ, x, y) = −β log p(y|x, θ), and concentrating
the prior to an equivalent extent. Therefore, the tempered posterior has an interpretation of a coherent update rule for the
KL minimizer θ† = argminθ −β log p(y|x, θ) = argminθDKL(q(y|x)∥p(y|x, θ)), as defined in the main text. From this
perspective, the temperature has the role of controlling the amount of information being ‘added’ to the prior in each update
step. Holmes and Walker [2017] proposed setting β such that the expected information gain of our setup (LHS of (18))
matches that of a hypothetical experiment (RHS of (18)),∫

D(pβ(θ|D), p(θ))q(x, y)dydx =

∫
D(p(θ|D), p(θ))p(y|x, θ†)q(x)dydx (18)

where D is a divergence that measures the information gain from a prior to a posterior, and pβ is a tempered posterior (with
likelihood tempering only).

On the LHS of (18), we are measuring the expected information gain in our existing setup, i.e., q(x, y) is unknown, from
a prior to a tempered posterior pβ . Note that this integral is a function of β. Then, Holmes and Walker [2017] proposed
picking a β that matches up the expected information gain from a well-specified experiment that targets the same quantity of
interest θ†, i.e., having the truth be p(·|x, θ†)q(x). In the well-specified setting, the optimal β is 1, and thus the information
gain is computed from the prior to a posterior at β = 1. This proposed method is based on the principle that the expected
information gain should match across posteriors that are targeting the same quantity of interest. In their follow up work,
Lyddon et al. [2019] proposed selecting β such that the asymptotic Fisher information number of the generalized Bayes
posterior to match to that derived from the “loss-likelihood” bootstrap method, which is a sampling method for general
Bayes posteriors.

L.2 DATA AUGMENTATION IN GENERALIZED BAYES

Accounting for data augmentation in BDL is non-trivial, as the data are no longer i.i.d. This has led to the development of
several techniques to address this issue [Nabarro et al., 2022, Kapoor et al., 2022]. However, data augmentation can be easily
incorporated into decision-theoretic GB [Bissiri et al., 2016], as the generalized Bayes posterior is derived from iterative
belief updates rather than relying on the independence assumption. We can then regard the posterior as reflecting our belief
in the KL minimizer from the ‘augmented’ truth to our model.

For example, in the ResNet20-CIFAR10 example with SGMCMC in Wenzel et al. [2020], the data was augmented in each
epoch, and we effectively have Mn (instead of n) number of observations in the training set D̃ = {(x̃i, yi)}Mn

i=1 , where M
is the number of epochs, and x̃i represents an augmented image. Then, setting ℓ(x, y, θ) = − log p(y|x, θ) and working
‘backward’, the posterior can be regarded as representing our belief in a new quantity θ̃†. This quantity is the minimizer of
the KL divergence from an ‘augmented’ truth q̃(x, y) = q̃(y|x)q̃(x), from which the augmented data have arisen, to the
model p(y|x, θ)

θ̃† = argmin
θ

Eq̃(x)DKL(q̃(y|x)∥p(y|x, θ)) .



Table 4: The expected kinetic temperatures of each SGMCMC chain are presented here. In this table, the temperatures are
inverted. Kinetic temperatures that are closer to the target indicate better simulation of the SDE. The kinetic temperatures in
the β̂∗ row differ across repetitions due to the variety of β̂∗ obtained from SGD in each repetition.

TARGET β CONCRETE ENERGY NAVAL MNIST CIFAR10 CIFAR10 (DA)

0.1

REP. 1 0.08 0.08 0.10 0.10 0.10 0.10
REP. 2 0.10 0.09 0.10 0.10 0.10 0.10
REP. 3 0.09 0.09 0.10 0.10 0.10 0.10
REP. 4 0.08 0.09 0.10 0.10 0.10 0.10
REP. 5 0.09 0.09 0.10 0.10 0.10 0.10

0.3

REP. 1 0.29 0.24 0.30 0.30 0.30 0.30
REP. 2 0.30 0.29 0.30 0.30 0.30 0.30
REP. 3 0.30 0.30 0.30 0.30 0.30 0.30
REP. 4 0.30 0.26 0.30 0.30 0.30 0.30
REP. 5 0.30 0.25 0.30 0.30 0.30 0.30

1

REP. 1 1.00 1.00 1.00 1.00 1.00 1.00
REP. 2 0.99 1.00 0.98 1.00 1.00 1.00
REP. 3 0.99 0.99 1.00 1.00 1.00 1.00
REP. 4 0.99 1.00 0.99 1.00 1.00 1.00
REP. 5 1.00 0.99 0.99 1.00 1.00 1.00

3

REP. 1 2.98 2.97 2.98 3.00 2.99 2.99
REP. 2 2.95 3.00 2.95 3.00 2.99 2.99
REP. 3 2.98 2.99 2.98 3.00 2.99 2.99
REP. 4 2.98 2.99 2.95 3.00 2.99 2.99
REP. 5 2.96 2.98 2.96 3.00 2.99 2.99

10

REP. 1 9.87 9.94 9.82 9.99 9.96 9.92
REP. 2 9.88 10.00 9.69 9.99 9.96 9.93
REP. 3 9.87 9.97 9.89 9.99 9.96 9.92
REP. 4 9.88 9.97 9.68 9.99 9.96 9.93
REP. 5 9.90 9.97 9.78 9.99 9.96 9.93

30

REP. 1 29.61 29.80 28.48 29.98 29.77 29.50
REP. 2 29.28 29.85 28.64 29.98 29.77 29.59
REP. 3 29.39 29.76 28.73 29.96 29.77 29.54
REP. 4 28.93 29.91 27.61 29.96 29.77 29.55
REP. 5 29.04 29.85 28.73 29.97 29.77 29.63

100

REP. 1 95.81 99.07 84.76 99.87 98.21 96.34
REP. 2 92.08 98.88 85.24 99.88 98.20 97.12
REP. 3 92.25 97.94 85.66 99.83 98.19 96.58
REP. 4 92.20 99.26 72.74 99.81 98.15 96.69
REP. 5 91.28 98.51 87.84 99.86 98.21 97.34

300

REP. 1 259.87 293.28 196.04 299.19 285.58 276.00
REP. 2 248.86 293.13 207.08 299.19 285.32 280.62
REP. 3 228.33 287.56 187.88 299.06 285.15 276.42
REP. 4 221.00 289.86 133.78 298.99 285.40 276.79
REP. 5 229.55 293.08 213.83 299.14 285.24 281.91

1000

REP. 1 547.10 939.37 346.19 992.38 860.32 775.48
REP. 2 649.51 943.01 399.87 992.25 857.79 821.73
REP. 3 503.20 875.31 286.99 991.97 853.45 792.92
REP. 4 436.40 880.59 202.85 991.61 853.14 798.56
REP. 5 446.14 958.23 432.83 991.98 855.56 844.81

β̂∗

REP. 1 0.16 7.44 47.53 2.65 21.04 7.28
REP. 2 0.17 4.86 44.12 2.68 3.49 13.93
REP. 3 0.11 7.91 33.33 4.13 3.44 13.72
REP. 4 0.08 4.12 42.88 3.58 3.46 14.17
REP. 5 0.10 4.58 27.26 2.03 20.48 14.28



Table 5: The split-R̂ values for the log-posterior at different (inverse) temperatures. These split-R̂ values are computed from
5 SGMCMC chains initialized at different θ. Values closer to 1 indicate better mixing of the Markov chains. β̂∗ is left out as
the temperature (and hence the posterior) differs across repetitions.

β CONCRETE ENERGY NAVAL MNIST CIFAR10 CIFAR10 (DA)

0.1 1.26 1.19 1.82 1.07 1.01 1.04
0.3 1.04 1.16 1.83 1.03 1.02 1.08
1 1.54 1.09 1.94 1.02 1.13 1.07
3 2.09 1.10 2.24 1.03 1.17 1.46

10 2.79 1.30 2.78 1.14 1.69 1.99
30 2.68 1.77 3.07 1.27 1.42 2.30

100 2.83 2.38 3.25 1.27 1.24 2.29
300 2.81 2.40 3.10 1.19 1.19 2.19

1000 3.97 2.87 3.20 1.16 1.15 2.38

Table 6: Hyperparameters for SGD and SGMCMC. We use the same set of hyperparameters for both CIFAR-10 experiments,
with or without data augmentation.

CONCRETE ENERGY NAVAL MNIST CIFAR10

S
G

D

LEARNING RATE 10−6 10−6 10−8 10−6 10−6

SCHEDULER COSINE COSINE COSINE COSINE PIECEWISE

MOMENTUM 0.9 0.9 0.9 0.9 0.9
NESTEROV NO NO NO NO NO

WEIGHT DECAY 1 1 1 1 500
BATCH SIZE FULL FULL 128 128 128
TOTAL EPOCHS 15000 15000 10000 10 200
GRADIENT CLIPPING 106 106 104 106 106

S
G

M
C

M
C

LEARNING RATE 10−3 10−3 10−4 0.01 0.1
SCHEDULER CYCLICAL CYCLICAL CYCLICAL CYCLICAL CYCLICAL

CYCLE LENGTH 200 200 100 10 50
PRECONDITIONER NONE NONE NONE NONE LAYERWISE

MOMENTUM 0.98 0.98 0.98 0.98 0.98
BATCH SIZE FULL FULL 128 128 128
RAMP START (EPOCH) 4800 4800 900 10 100
RAMP END (EPOCH) 5000 5000 1000 20 150
BURN-IN EPOCHS 10000 10000 5000 200 500
TOTAL EPOCHS 30000 30000 15000 1200 2000
USABLE SAMPLES 100 100 100 100 30
GRADIENT CLIPPING 106 106 106 106 106



Table 7: Test LPD of the regression models. The values presented are means ± standard errors across five repetitions, with
the best value among the four methods highlighted in bold. TM-PDs generally have better performance for the regression
models. Higher LPD indicates better performance.

METHOD CONCRETE ENERGY NAVAL
S

M
-P

D
SGD −3.904± 1.000 1.299± 0.011 1.376± 0.003
β = 1 −0.506± 0.255 1.221± 0.005 1.376± 0.000

β = β̂∗ −0.186± 0.049 1.287± 0.009 1.382± 0.000
GRID −0.216± 0.121 1.312± 0.003 1.382± 0.001

T
M

-P
D

SGD −0.319± 0.076 1.75± 0.054 2.95± 0.162
β = 1 −0.506± 0.255 1.22± 0.005 1.38± 0.000

β = β̂∗ −0.13± 0.069 1.78± 0.063 3.16± 0.106
GRID 0.019± 0.035 1.85± 0.017 3.71± 0.194

Table 8: Test LPD of the classification models. The presented values are the means ± standard error across five repetitions,
with the best value among the four methods boldfaced. SM-PDs tend to perform better on CIFAR-10, while SM-PD and
TM-PD have similar performance on MNIST. Higher LPD indicates better performance.

METHOD MNIST CIFAR10 CIFAR10 (DA)

S
M

-P
D

SGD −0.076± 0.032 −1.138± 0.306 −1.234± 0.176
β = 1 −0.021± 0.000 −0.333± 0.001 −0.343± 0.002

β = β̂∗ −0.018± 0.000 −0.317± 0.006 −0.232± 0.007
GRID −0.018± 0.000 −0.319± 0.003 −0.229± 0.004

T
M

-P
D

SGD −0.030± 0.003 −0.55± 0.036 −0.284± 0.004
β = 1 −0.021± 0.000 −0.333± 0.001 −0.343± 0.002

β = β̂∗ −0.017± 0.000 −0.719± 0.443 −0.811± 0.221
GRID −0.017± 0.001 −0.333± 0.001 −0.279± 0.007

Table 9: Wall-clock time comparison across methods. Times are averaged over five repetitions.

METHOD
WALL-CLOCK TIME (MINUTES)

CONCRETE ENERGY NAVAL MNIST CIFAR10 CIFAR10 (DA)

SGD 0.17 0.16 0.78 1.93 27.90 34.84
β = 1 0.20 0.19 1.40 18.83 260.52 327.12
β = β̂∗ (OURS) 0.37 0.36 2.19 20.77 288.42 361.96
GRID 1.76 1.74 12.64 169.51 2344.15 2944.01
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