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Abstract

Hypergraphs are important objects to model ternary or higher-order relations of
objects, and have a number of applications in analysing many complex datasets
occurring in practice. In this work we study a new heat diffusion process in
hypergraphs, and employ this process to design a polynomial-time algorithm that
approximately finds bipartite components in a hypergraph. We theoretically prove
the performance of our proposed algorithm, and compare it against the previous
state-of-the-art through extensive experimental analysis on both synthetic and
real-world datasets. We find that our new algorithm consistently and significantly
outperforms the previous state-of-the-art across a wide range of hypergraphs.

1 Introduction

Spectral methods study the efficient matrix representation of graphs and datasets, and apply the
algebraic properties of these matrices to design efficient algorithms. Over the last three decades,
spectral methods have become one of the most powerful techniques in machine learning, and have
had comprehensive applications in a wide range of domains, including clustering [24, 31], image and
video segmentation [26], and network analysis [25], among many others. While the success of this
line of research is based on our rich understanding of Laplacian operators of graphs, there has been a
sequence of very recent work studying non-linear Laplacian operators for more complex objects (i.e.,
hypergraphs) and employing these non-linear operators to design hypergraph algorithms with better
performance.

1.1 Our contribution

In this work, we study the non-linear Laplacian-type operators for hypergraphs, and employ such an
operator to design a polynomial-time algorithm for finding bipartite components in hypergraphs. The
main contribution of our work is as follows:

First of all, we introduce and study a non-linear Laplacian-type operator JH for any hypergraph H .
While we’ll formally define the operator JH in Section 3, one can informally think about JH as a
variant of the standard non-linear hypergraph Laplacian LH studied in [5, 20, 27], and this variation
is needed to study the other end of the spectrum of LH . We present a polynomial-time algorithm
that finds some eigenvalue λ and its associated eigenvector of JH , and our algorithm is based on
the following heat diffusion process: starting from an arbitrary vector f0 ∈ Rn that describes the
initial heat distribution among the vertices, we use f0 to construct some 2-graph1 G0, and use the
diffusion process in G0 to represent the one in the original hypergraph H and update ft; this process
continues until the time at which G0 cannot be used to appropriately simulate the diffusion process
in H any more. At this point, we use the currently maintained ft to construct another 2-graph Gt

1Throughout the paper, we refer to non-hyper graphs as 2-graphs. Similarly, we always use LH to refer to
the non-linear hypergraph Laplacian operator, and use LG as the standard 2-graph Laplacian.
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Figure 1: Illustration of our proposed diffusion process. In each time step, we construct a 2-graph G based
on the current vector ft, and update ft with the JG operator. Notice that the graph G changes throughout
the execution of the algorithm, and that the final ft vector can be used to partition the vertices of H into two
well-connected sets (all the edges are adjacent to both sets), by splitting according to positive and negative entries.
This specific example with ft values is generated by the publicly available implementation of our algorithm.

to simulate the diffusion process in H , and update ft. This process continues until the vector ft
converges; see Figure 1 for illustration. We theoretically prove that this heat diffusion process is
unique, well-defined, and our maintained vector ft converges to some eigenvector of JH . While this
result is quite interesting on its own and forms the basis of our second result, our analysis shows that,
for certain hypergraphs H , both the operator JH and LH could have ω(1) eigenvectors. This result
answers an open question in [5], which asks whether LH could have more than 2 eigenvectors2.

Secondly, we present a polynomial-time algorithm that, given a hypergraph H = (VH , EH , w) as
input, finds disjoint subsets L,R ⊂ VH that are highly connected with each other. The key to our
algorithm is a Cheeger-type inequality for hypergraphs that relates the spectrum of JH and the
bipartiteness ratio of H , an analog of βG studied in [28] for 2-graphs. Both the design and analysis
of our algorithm is inspired by [28], however our analysis is much more involved because of the
non-linear operator JH and hyperedges of different ranks. Our second result alone answers an
open question posed by [33], which asks whether there is a hypergraph operator which satisfies a
Cheeger-type inequality for bipartiteness.

The significance of our work is further demonstrated by extensive experimental studies of our
algorithms on both synthetic and real-world datasets. In particular, on the well-known Penn Treebank
corpus that contains 49, 208 sentences and over 1 million words, our purely unsupervised algorithm
is able to identify a significant fraction of verbs from non-verbs in its two output clusters. Hence,
we believe that our work could potentially have many applications in unsupervised learning for
hypergraphs. Using the publicly available code of our implementation, we welcome the reader to
explore further applications of our work in even more diverse datasets.

1.2 Related work

The spectral theory of hypergraphs using non-linear operators is introduced in [5] and generalised
in [33]. The operator they describe is applied for hypergraph clustering applications in [20, 27].
There are many approaches for finding clusters in hypergraphs by constructing a 2-graph which
approximates the hypergraph and using a 2-graph clustering algorithm directly [7, 19, 35]. Another

2We underline that, while the operator LG of a 2-graph G has n eigenvalues, the number of eigenvalues of
LH is unknown because of its non-linearity. As answering this open question isn’t the main point of our work,
we refer the reader to Appendix C for detailed discussion.
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approach for hypergraph clustering is based on tensor spectral decomposition [15, 18]. [21, 23, 36]
consider the problem of finding densely connected clusters in 2-graphs. Heat diffusion processes
are used for clustering 2-graphs in [10, 17]. [14] studies a different, flow-based diffusion process
for finding clusters in 2-graphs, and [13] generalises this to hypergraphs. We note that all of these
methods solve a different problem to ours, and cannot be compared directly. Our algorithm is related
to the hypergraph max cut problem, and the state-of-the-art approximation algorithm is given by [34].
[28] introduces graph bipartiteness and gives an approximation algorithm for the 2-graph max cut
problem. To the best of our knowledge, we are the first to generalise this notion of bipartiteness to
hypergraphs. Finally, we note that there have been recent improvements in the time complexity for
solving linear programs [11, 29] although we do not take these into account in our analysis since the
goal of this paper is not to obtain the fastest algorithm possible.

2 Notation

2-graphs. Throughout the paper, we call a non-hyper graph a 2-graph [4, 8]. We always use
G = (VG, EG, w) to express a 2-graph, in which every edge e ∈ EG consists of two vertices in VG
and we let n = |VG|. The degree of any vertex u ∈ VG is defined by dG(u) ,

∑
v∈VG

w(u, v),
and for any S ⊆ V the volume of S is defined by volG(S) ,

∑
u∈S dG(u). Following [28], the

bipartiteness ratio of any disjoint sets L,R ⊂ VG is defined by

βG(L,R) ,
2w(L,L) + 2w(R,R) + w(L ∪R,L ∪R)

volG(L ∪R)

where w(A,B) =
∑

(u,v)∈A×B w(u, v), and we further define βG , minS⊂V βG(S, V \S). Notice
that a low βG-value means that there is a dense cut between L andR, and there is a sparse cut between
L ∪R and V \ (L ∪R). In particular, βG = 0 implies that (L,R) forms a bipartite component of G.
We use DG to denote the n× n diagonal matrix whose entries are (DG)uu = dG(u), for all u ∈ V .
Moreover, we use AG to denote the n× n adjacency matrix whose entries are (AG)uv = w(u, v),
for all u, v ∈ V . The Laplacian matrix is defined by LG , DG − AG. In addition, we define
JG , DG +AG, and JG , D

−1/2
G JGD

−1/2
G . For any real and symmetric matrix A, the eigenvalues

of A are denoted by λ1(A) ≤ · · · ≤ λn(A), and the eigenvector associated with λi(A) is denoted by
fi(A) for 1 ≤ i ≤ n.

Hypergraphs. Let H = (VH , EH , w) be a hypergraph with n = |VH | vertices and weight function
w : EH 7→ R+. For any vertex v ∈ VH , the degree of v is defined by dH(v) ,

∑
e∈EH

w(e) ·
I [v ∈ e], where I[X] = 1 if event X holds and I[X] = 0 otherwise. The rank of edge e ∈ EH is the
total number of vertices in e. For any A,B ⊂ VH , the cut value between A and B is defined by

w(A,B) ,
∑
e∈EH

w(e) · I [e ∩A 6= ∅ ∧ e ∩B 6= ∅] .

Sometimes, we are required to analyse the weights of edges that intersect some vertex sets and not
others. To this end, we define for any A,B,C ⊆ VH that

w(A,B | C) ,
∑
e∈EH

w(e) · I [e ∩A 6= ∅ ∧ e ∩B 6= ∅ ∧ e ∩ C = ∅] ,

and we sometimes write w(A | C) , w(A,A | C) for simplicity. Generalising the notion of the
bipartiteness ratio of a 2-graph, the bipartiteness ratio of sets L,R in a hypergraph H is defined by

βH(L,R) ,
2w(L|L) + 2w(R|R) + w(L,L ∪R|R) + w(R,L ∪R|L)

vol(L ∪R)
,

and we define βH , minS⊂V βH(S, V \ S). For any hypergraph H and f ∈ Rn, we define the
discrepancy of an edge e ∈ EH with respect to f as

∆f (e) , max
u∈e

f(u) + min
v∈e

f(v).

For any non-linear operator J : Rn 7→ Rn, we say that (λ, f) is an eigen-pair if and only if Jf = λf
and note that in general, a non-linear operator can have any number of eigenvalues and eigenvectors.

3



It is important to remember that throughout the paper, we always use the letter H to represent a
hypergraph, and G to represent a 2-graph.

Clique reduction. The clique reduction of a hypergraph H is a 2-graph G such that VG = VH
and for every edge e ∈ EH , G contains a clique on the vertices in e with edge weights 1/(re − 1)
where re is the rank of the edge e. The clique reduction is a common tool for designing hypergraph
algorithms [1, 7, 35], and for this reason we use it as a baseline algorithm in this paper. We note that
hypergraph algorithms based on the clique reduction often perform less well when there are edges
with large rank in the hypergraph. Specifically, in Appendix C we use two r-uniform hypergraphs as
examples to show that no matter how we weight the edges in the clique reduction, some cuts cannot
be approximated better than a factor of O(r). This is one of the main reasons to develop spectral
theory for hypergraphs through heat diffusion processes [5, 27, 33].

3 Diffusion process and the algorithm

In this section, we propose a new diffusion process in hypergraphs and use it to design a polynomial-
time algorithm for finding bipartite components in hypergraphs. We first study 2-graphs to give some
intuition, and then generalise to hypergraphs and describe our algorithm. Finally, we sketch some of
the detailed analysis which proves that the diffusion process is well defined.

3.1 The diffusion process in 2-graphs

To discuss the intuition behind our designed diffusion process, let us look at the case of 2-graphs. Let
G = (V,E,w) be a 2-graph, and we have for any x ∈ Rn that

xᵀJGx
xᵀx

=
xᵀ(I +D

−1/2
G AGD

−1/2
G )x

xᵀx
.

By setting x = D
1/2
G y, we have that

xᵀJGx
xᵀx

=
yᵀD

1/2
G JGD

1/2
G y

yᵀDGy
=
yᵀ(DG +AG)y

yᵀDGy
=

∑
{u,v}∈EG

w(u, v) · (y(u) + y(v))2∑
u∈VG

dG(u) · y(u)2
. (1)

It is easy to see that λ1(JG) = 0 if G is bipartite, and it is known that λ1(JG) and its corresponding
eigenvector f1(JG) are closely related to two densely connected components of G [28]. Moreover,
similar to the heat equation for graph Laplacians LG, suppose DGft ∈ Rn is some measure on the
vertices of G, then a diffusion process defined by the differential equation

dft
dt

= −D−1G JGft (2)

will converge to the minimum eigenvalue of D−1G JG and can be employed to find two densely
connected components of the underlying 2-graph.3

3.2 The hypergraph diffusion and our algorithm

Now we study whether one can construct a new hypergraph operator JH which generalises the
diffusion in 2-graphs to hypergraphs. First of all, we focus on a fixed time t with measure vector
DHft ∈ Rn and ask whether we can follow (2) and define the rate of change

dft
dt

= −D−1H JHft

so that the diffusion can proceed for an infinitesimal time step. Our intuition is that the rate of change
due to some edge e ∈ EH should involve only the vertices in e with the maximum or minimum value
in the normalised measure ft. To formalise this, for any edge e ∈ EH , we define

Sf (e) , {v ∈ e : ft(v) = max
u∈e

ft(u)} and If (e) , {v ∈ e : ft(v) = min
u∈e

ft(u)}.

3For the reader familiar with the heat diffusion process of 2-graphs (e.g., [9, 17]), we remark that the
above-defined process essentially employs the operation JG to replace the Laplacian LG when defining the heat
diffusion: through JG, the heat diffusion can be used to find two densely connected components of G.
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That is, for any edge e and normalised measure ft, Sf (e) ⊆ e consists of the vertices v adjacent to e
whose ft(v) values are maximum and If (e) ⊆ e consists of the vertices v adjacent to e whose ft(v)
values are minimum. See Figure 2 for an example. Then, applying the JH operator to a vector ft
should be equivalent to applying the operator JG for some 2-graph G which we construct by splitting
the weight of each hyperedge e ∈ EH between the edges in Sf (e)× If (e). Similar to the case for
2-graphs and (1), for any x = D

1/2
H ft this will give us the quadratic form

xᵀD
−1/2
H JHD

−1/2
H x

xᵀx
=

fᵀt JGft
fᵀt DHft

=

∑
{u,v}∈EG

wG(u, v) · (ft(u) + ft(v))2∑
u∈VG

dH(u) · ft(u)2

=

∑
e∈EH

wH(e)(maxu∈e ft(u) + minv∈e ft(v))2∑
u∈VH

dH(u) · ft(u)2
,

where wG(u, v) is the weight of the edge {u, v} in G, and wH(e) is the weight of the edge e in
H . We will show in the proof of Theorem 1 that JH has an eigenvalue of 0 if the hypergraph is
2-colourable4, and that the spectrum of JH is closely related to the hypergraph bipartiteness.

−2 −2

0 1

31

Hyperedge e

If (e)

Sf (e)

Figure 2: Illustration of Sf (e) and
If (e). Vertices are labelled with their
value in ft.

For this reason, we would expect that the diffusion process
based on the operator JH can be used to find sets with small
hypergraph bipartiteness. However, one needs to be very cau-
tious here as, by the nature of the diffusion process, the values
ft(v) of all the vertices v change over time and, as a result, the
sets Sf (e) and If (e) that consist of the vertices with the maxi-
mum and minimum ft-value might change after an infinitesimal
time step; this will prevent the process from continuing. We
will discuss this issue in detail through the so-called Diffusion
Continuity Condition in Section 3.3. In essence, the diffusion
continuity condition ensures that one can always construct a
2-graph G by allocating the weight of each hyperedge e to the
edges in Sf (e)× If (e) such that the sets Sf (e) and If (e) will
not change in infinitesimal time although ft changes according
to (dft)/(dt) = −D−1H JGft. We will also present an efficient
procedure in Section 3.3 to compute the weights of edges in Sf (e)× If (e). All of these guarantee
that (i) every 2-graph that corresponds to the hypergraph diffusion process at any time step can be
efficiently constructed; (ii) with this sequence of constructed 2-graphs, the diffusion process defined
by JH is able to continue until the heat distribution converges. With this, we summarise the main
idea of our presented algorithm as follows:

• First of all, we introduce some arbitrary f0 ∈ Rn as the initial diffusion vector, and a step size
parameter ε > 0 to discretise the diffusion process. At each step, the algorithm constructs the
2-graph G guaranteed by the diffusion continuity condition, and updates ft ∈ Rn according
to the rate of change (dft)/(dt) = −D−1H JGft. The algorithm terminates when ft has
converged, i.e., the ratio between the current Rayleigh quotient (fᵀt JGft)/(f

ᵀ
t DHft) and

the one in the previous time step is bounded by some predefined constant.
• Secondly, similar to many previous spectral graph clustering algorithms (e.g. [3, 27, 28]),

the algorithm constructs the sweep sets defined by ft and returns the two sets with minimum
βH -value among all the constructed sweep sets. Specifically, for every 1 ≤ i ≤ n, the
algorithm constructs Lj = {vi : |ft(vi)| ≥ |ft(vj)| ∧ ft(vi) < 0} and Rj = {vi :
|ft(vi)| ≥ |ft(vj)|∧ft(vi) ≥ 0}. Then, between the n pairs (Lj , Rj), the algorithm returns
the one with the minimum βH -value.

See Algorithm 1 for the formal description, and its performance is summarised in Theorem 1.
Theorem 1 (Main Result). Given a hypergraph H = (VH , EH , w) and parameter ε > 0, the
following holds:

1. There is an algorithm that finds an eigen-pair (λ, f ) of the operator JH such that λ ≤
λ1(JG), where G is the clique reduction of H and the inequality is strict if mine∈EH

re > 2
where re is the rank of e. The algorithm runs in poly(|VH |, |EH |, 1/ε) time.

4Hypergraph H is 2-colourable if there are disjoint sets L,R ⊂ VH such that every edge intersects L and R.
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2. Given an eigen-pair (λ, f) of the operator JH , there is an algorithm that constructs the
two-sided sweep sets defined on f , and finds sets L and R such that βH(L,R) ≤

√
2λ. The

algorithm runs in poly(|VH |, |EH |) time.

Algorithm 1: FINDBIPARTITECOMPONENTS

Input :Hypergraph H , starting vector f0 ∈ Rn, step size ε > 0
Output :Sets L and R
t := 0
while ft has not converged do

Use ft to construct 2-graph G satisfying the diffusion continuity condition
ft+ε := ft − εD−1H JGft
t := t+ ε

end
Set j := arg min1≤i≤n βH(Li, Ri)
return (Lj , Rj)

Remark 1. We make the important remark that there is no polynomial-time algorithm which guaran-
tees any multiplicative approximation of the minimum hypergraph bipartiteness value βH , unless
P = NP. We prove this in Appendix C by a reduction from the NP-complete HYPERGRAPH 2-
COLOURABILITY problem. This means that the problem we consider in this work is fundamentally
more difficult than the equivalent problem for 2-graphs, as well as the problem of finding a sparse cut
in a hypergraph. For this reason, the analysis of the non-linear hypergraph Laplacian operator [5, 27]
cannot be applied in our case.

3.3 Dealing with the diffusion continuity condition

It remains for us to discuss the diffusion continuity condition, which guarantees that Sf (e) and If (e)
will not change in infinitesimal time and the diffusion process will eventually converge to some stable
distribution. Formally, let ft be the normalised measure on the vertices of H , and let

r ,
dft
dt

= −D−1H JHft

be the derivative of ft, which describes the rate of change for every vertex at the current time t.
We write r(v) for any v ∈ VH as r(v) =

∑
e∈EH

re(v), where re(v) is the contribution of edge e
towards the rate of change of v. Now we discuss three rules that we expect the diffusion process to
satisfy, and later prove that these three rules uniquely define the rate of change r.

First of all, as we mentioned in Section 3.2, we expect that only the vertices in Sf (e) ∪ If (e) will
participate in the diffusion process, i.e., re(u) = 0 unless u ∈ Sf (e) ∪ If (e). Moreover, any vertex
u participating in the diffusion process must satisfy the following:

• Rule (0a): if |re(u)| > 0 and u ∈ Sf (e), then r(u) = maxv∈Sf (e){r(v)}.
• Rule (0b): if |re(u)| > 0 and u ∈ If (e), then r(u) = minv∈If (e){r(v)}.

To explain Rule (0), notice that for an infinitesimal time, ft(u) will be increased according to
(dft/dt) (u) = r(u). Hence, by Rule (0) we know that, if u ∈ Sf (e) (resp. u ∈ If (e)) participates
in the diffusion process in edge e, then in an infinitesimal time f(u) will remain the maximum (resp.
minimum) among the vertices in e. Such a rule is necessary to ensure that the vertices involved in the
diffusion in edge e do not change in infinitesimal time, and the diffusion process is able to continue.

Our next rule states that the total rate of change of the measure due to edge e is equal to−w(e)·∆f (e):

• Rule (1):
∑
v∈Sf (e)

d(v)re(v) =
∑
v∈If (e) d(v)re(v) = −w(e) ·∆f (e) for all e ∈ EH .

This rule is a generalisation from the operator JG in 2-graphs. In particular, since D−1G JGft(u) =∑
{u,v}∈EG

wG(u, v)(ft(u)+ft(v))/dG(u), the rate of change of ft(u) due to the edge {u, v} ∈ EG
is−wG(u, v)(ft(u) + ft(v))/dG(u). Rule (1) states that in the hypergraph case the rate of change of
the vertices in Sf (e) and If (e) together behave like the rate of change of u and v in the 2-graph case.
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One might have expected that these two rules together will define a unique process. Unfortunately,
this isn’t the case and we present a counterexample in Appendix A. To overcome this, we introduce
the following stronger rule to replace Rule (0):

• Rule (2a): Assume that |re(u)| > 0 and u ∈ Sf (e).

– If ∆f (e) > 0, then r(u) = maxv∈Sf (e){r(v)};
– If ∆f (e) < 0, then r(u) = r(v) for all v ∈ Sf (e).

• Rule (2b): Assume that |re(u)| > 0 and u ∈ If (e):

– If ∆f (e) < 0, then r(u) = minv∈If (e){r(v)};
– If ∆f (e) > 0, then r(u) = r(v) for all v ∈ If (e).

Notice that the first conditions of Rules (2a) and (2b) correspond to Rules (0a) and (0b) respectively;
the second conditions are introduced for purely technical reasons: they state that, if the discrepancy
of e is negative (resp. positive), then all the vertices u ∈ Sf (e) (resp. u ∈ If (e)) will have the same
value of r(u). Theorem 2 shows that there is a unique r ∈ Rn that satisfies Rules (1) and (2), and r
can be computed in polynomial time. Therefore, our two rules uniquely define a diffusion process,
and we can use the computed r to simulate the continuous diffusion process with a discretised
version.5

Theorem 2. For any given ft ∈ Rn, there is a unique r = dft/dt and associated {re(v)}e∈E,v∈V
that satisfy Rule (1) and (2), and r can be computed in polynomial time by linear programming.
Remark 2. The rules we define and the proof of Theorem 2 are more involved than those used
in [5] to define the hypergraph Laplacian operator. In particular, in contrast to [5], in our case the
discrepancy ∆f (e) within a hyperedge e can be either positive or negative. This results in the four
different cases in Rule (2) which must be carefully considered throughout the proof of Theorem 2.

4 Experiments

In this section, we evaluate the performance of our new algorithm on synthetic and real-world
datasets. All algorithms are implemented in Python 3.6, using the scipy library for sparse matrix rep-
resentations and linear programs. The experiments are performed using an Intel(R) Core(TM)
i5-8500 CPU @ 3.00GHz processor, with 16 GB RAM. Our code can be downloaded from
https://github.com/pmacg/hypergraph-bipartite-components.

Since ours is the first proposed algorithm for approximating hypergraph bipartiteness, we will
compare it to a simple and natural baseline algorithm, which we call CLIQUECUT (CC). In this
algorithm, we construct the clique reduction of the hypergraph and use the two-sided sweep-set
algorithm described in [28] to find a set with low bipartiteness in the clique reduction.6

Additionally, we will compare two versions of our proposed algorithm. FINDBIPARTITECOMPO-
NENTS (FBC) is our new algorithm described in Algorithm 1 and FBCAPPROX (FBCA) is an
approximate version in which we do not solve the linear programs in Theorem 2 to compute the graph
G. Instead, at each step of the algorithm, we construct G by splitting the weight of each hyperedge e
evenly between the edges in S(e)× I(e).

We always set the parameter ε = 1 for FBC and FBCA, and we set the starting vector f0 ∈ Rn for
the diffusion to be the eigenvector corresponding to the minimum eigenvalue of JG, where G is the
clique reduction of the hypergraph H .

4.1 Synthetic datasets

We first evaluate the algorithms using a random hypergraph model. Given the parameters n, r, p, and
q, we generate an n-vertex r-uniform hypergraph in the following way: the vertex set V is divided

5Note that the graph G used for the diffusion at time t can be easily computed from the {re(v)} values,
although in practice this is not actually needed since the r(u) values can be used to update the diffusion directly.

6We choose to use the algorithm in [28] here since, as far we know, this is the only non-SDP based algorithm
for solving the MAX-CUT problem for 2-graphs. Notice that, although SDP-based algorithms achieve a better
approximation ratio for the MAX-CUT problem, they are not practical even for hypergraphs of medium sizes.
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into two clusters L and R of size n/2. For every set S ⊂ V with |S| = r, if S ⊂ L or S ⊂ R we
add the hyperedge S with probability p and otherwise we add the hyperedge with probability q. We
remark that this is a special case of the hypergraph stochastic block model (e.g., [6]). We limit the
number of free parameters for simplicity while maintaining enough flexibility to generate random
hypergraphs with a wide range of optimal βH -values.

We will compare the algorithms’ performance using four metrics: the hypergraph bipartiteness ratio
βH(L,R), the clique graph bipartiteness ratio βG(L,R), the F1-score [30] of the returned clustering,
and the runtime of the algorithm. Throughout this subsection, we always report the average result on
10 hypergraphs randomly generated with each parameter configuration.

Comparison of FBC and FBCA. We first fix the values n = 200, r = 3, and p = 10−4 and vary
the ratio of q/p from 2 to 6 which produces hypergraphs with 250 to 650 edges. The performance of
each algorithm on these hypergraphs is shown in Figure 3 from which we can make the following
observations:

• From Figure 3 (a) we observe that FBC and FBCA find sets with very similar bipartiteness
and they perform better than the CLIQUECUT baseline.

• From Figure 3 (b) we can see that our proposed algorithms produce output with a lower
βG-value than the output of the CLIQUECUT algorithm. This is a surprising result given
that CLIQUECUT operates directly on the clique graph.

• Figure 3 (c) shows that the FBCA algorithm is much faster than FBC.

From these observations, we conclude that in practice it is sufficient to use the much faster FBCA
algorithm in place of the FBC algorithm.
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Figure 3: The average performance and standard error of each algorithm when n = 200, r = 3 and
p = 10−4.

Table 1: The runtime in seconds of the FBCA and
CC algorithms.

Avg. Runtime

r p Avg. |EH | FBCA CC

10−9 1239 1.15 0.12
4 10−8 12479 10.14 0.86

10−7 124717 89.92 9.08

10−11 5177 3.99 0.62
5 10−10 51385 44.10 6.50

10−9 514375 368.48 69.25

Experiments on larger graphs. We now
compare only the FBCA and CLIQUECUT algo-
rithms, which allows us to run on hypergraphs
with higher rank and number of vertices. We
fix the parameters n = 2000, r = 5, and
p = 10−11, producing hypergraphs with be-
tween 5000 and 75000 edges7 and show the re-
sults in Figure 4. Our algorithm consistently
and significantly outperforms the baseline on
every metric and across a wide variety of input
hypergraphs.

To compare the algorithms’ runtime, we fix the
parameter n = 2000 and the ratio q = 2p and
report the runtime of the FBCA and CC algo-
rithms on a variety of hypergraphs in Table 1.
Our proposed algorithm takes more time than

7In our model, a very small value of p and q is needed since in an n-vertex, r-uniform hypergraph there are(
n
r

)
possible edges which can be a very large number. In this case,

(
2000
5

)
≈ 2.6× 1014.
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the baseline CC algorithm but both appear to scale linearly in the size of the input hypergraph8 which
suggests that our algorithm’s runtime is roughly a constant factor multiple of the baseline.
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Figure 4: The average performance of each algorithm when n = 2000, r = 5, and p = 10−11. We
omit the error bars because they are too small to read.

4.2 Real-world datasets

Next, we demonstrate the broad utility of our algorithm on complex real-world datasets with higher-
order relationships which are most naturally represented by hypergraphs. Moreover, the hypergraphs
are inhomogeneous, meaning that they contain vertices of different types, although this information is
not available to the algorithm and so an algorithm has to treat every vertex identically. We demonstrate
that our algorithm is able to find clusters which correspond to the vertices of different types. Table 2
shows the F1-score of the clustering produced by our algorithm on each dataset and demonstrates
that it consistently outperforms the CLIQUECUT algorithm.

Table 2: The performance of the FBCA and CC
algorithms on real world datasets.

F1-Score

Dataset Cluster FBCA CC

Penn
Treebank

Verbs 0.73 0.69
Non-Verbs 0.59 0.56

DBLP Conferences 1.00 0.25
Authors 1.00 0.98

Penn Treebank. The Penn Treebank dataset
is an English-language corpus with examples of
written American English from several sources,
including fiction and journalism [22]. The
dataset contains 49, 208 sentences and over 1
million words, which are labelled with their part
of speech. We construct a hypergraph in the
following way: the vertex set consists of all
the verbs, adverbs, and adjectives which occur
at least 10 times in the corpus, and for every
4-gram (a sequence of 4 words) we add a hyper-
edge containing the co-occurring words. This
results in a hypergraph with 4, 686 vertices and
176, 286 edges. The clustering returned by our algorithm correctly distinguishes between verbs and
non-verbs with an accuracy of 67%. This experiment demonstrates that our unsupervised general
purpose algorithm is capable of recovering non-trivial structure in a dataset which would ordinarily
be clustered using significant domain knowledge, or a complex pre-trained model [2, 16].

DBLP. We construct a hypergraph from a subset of the DBLP network consisting of 14, 376 papers
published in artificial intelligence and machine learning conferences [12, 32]. For each paper, we
include a hyperedge linking the authors of the paper with the conference in which it was published,
giving a hypergraph with 14, 495 vertices and 14, 376 edges. The clusters returned by our algorithm
successfully separate the authors from the conferences with an accuracy of 100%.

5 Concluding remarks

In this paper, we introduce a new hypergraph Laplacian-type operator and apply this operator to
design an algorithm that finds almost bipartite components in hypergraphs. Our experimental results

8Although n is fixed, the CLIQUECUT algorithm’s runtime is not constant since the time to compute an
eigenvalue of the sparse adjacency matrix scales with the number and rank of the hyperedges.
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demonstrate the potentially wide applications of spectral hypergraph theory, and so we believe that
designing faster spectral hypergraph algorithms is an important future research direction in algorithms
and machine learning. This will allow spectral hypergraph techniques to be applied more effectively
to analyse the complex datasets which occur with increasing frequency in the real world.
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