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ABSTRACT

Traffic systems are inherently multi-scale: microscopic vehicle interactions and
macroscopic flow co-evolve nonlinearly. Microscopic models capture local inter-
actions but miss flow evolution; macroscopic models enforce aggregated consis-
tency yet overlook stochastic vehicle-level dynamics. We propose Micro–Macro
Coupled Koopman Modeling (MMCKM), which lifts the coupled dynamics to
a high-dimensional linear observation space for a unified linear-operator repre-
sentation. Unlike grid-based discretizations, MMCKM adopts a vehicle-centric
dynamic graph that preserves microscopic perturbations while respecting macro-
scopic conservation laws by discretizing PDEs onto this graph. At the micro scale,
scenario-adaptive Koopman evolvers selected by an Intent Discriminator are de-
signed to model vehicle dynamics. A Koopman control module explicitly for-
mulate how flow state influences individual vehicles, yielding bidirectional cou-
plings. To our knowledge, this is the first work to jointly model vehicle trajecto-
ries and traffic flow density using a unified Koopman framework without requiring
historical trajectories. The proposed MMCKM is validated for trajectory predic-
tion on NGSIM and HighD. While MMCKM uses only real-time measurement,
it achieves comparable or even higher accuracy than history-dependent baselines.
We further analyze the effect of the operator interval and provide ablations to show
the improvement by intent inference, macro-to-micro control, and diffusion. Code
and implementation details are included to facilitate reproducibility.

1 INTRODUCTION

Traffic flow modeling is a fundamental challenge in intelligent transportation systems, since it re-
quires simultaneously understanding of intrinsically coupled microscopic vehicle behaviors and
macroscopic flow dynamics. Individual vehicle maneuvers aggregate to form traffic patterns, while
macroscopic states constrain and influence microscopic driving decisions. The bidirectional cou-
pling creates a complex nonlinear system (Wang et al., 2024). Existing methods typically adopt
either a microscopic or macroscopic perspective, failing to capture the critical cross-scale interac-
tions. Microscopic-based approaches model individual vehicle dynamics through causal temporal
inference (Mukherjee et al., 2020; Messaoud et al., 2020) or multi-agent interactions on spatial do-
main (Rahmani et al., 2023; Shi et al., 2024; Gao et al., 2025). While these methods capture local
behaviors and stochastic events, they struggle to maintain global flow consistency and scale poorly
with vehicle numbers. On the other side, macroscopic models use partial differential equations
(PDEs) such as the Lighthill-Whitham-Richards (LWR) model to ensure conservation laws and flow
continuity (Hu et al., 2022; Mahjourian et al., 2022), but they are deficient at responding to indi-
vidual vehicle events that critically influence traffic evolution (Haghighi & El Amine Hamri, 2024;
Rowan et al., 2025).

Despite recent advances, a fundamental gap remains: few existing methods simultaneously bridge
microscopic and macroscopic traffic while maintaining computational tractability and physical inter-
pretability. Recent efforts to bridge micro-macro scales through game-theoretic frameworks(Huang
et al., 2020) or kinematic limits(Cristiani & Sahu, 2016) offer theoretical insights, but they either
assume homogeneous drivers or asymptotic regimes, limiting their real-world applicability. (Lat-
tanzio & Piccoli, 2010; Bellomo et al., 2014; Wang et al., 2024; Fan et al., 2025). The fundamental
challenge remains how to model the nonlinear, bidirectional coupling in a unified, computationally
tractable framework.
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Figure 1: We propose a Micro-Macro Coupled Koopman Modeling (MMCKM) framework that
lifts microscopic vehicle trajectories and macroscopic flow evolution into linear observation spaces,
enabling unified prediction. The traffic environment is formulated as a directed graph. At the macro-
scopic level, vehicle-centric graph discretization captures how microscopic perturbations affect wave
propagation. At the microscopic level, scenario-adaptive Koopman operators and Koopman control
incorporate macroscopic flow conditions into vehicle dynamics.

We propose a Micro-Macro Coupled Koopman Modeling (MMCKM) framework that leverages
Koopman operator theory to transform nonlinear multi-scale dynamics into high-dimensional linear
observation spaces, enabling unified prediction through linear operators as in Fig. 1. Our key insight
is that both microscopic vehicle trajectories and macroscopic flow evolution can be lifted into respec-
tive observation spaces where their dynamics become approximately linear. Besides, the Koopman
operator exhibits the Markovian property when observation functions are time-invariant (Wu & Noé,
2020; Kostic et al., 2022; Tafazzol et al., 2024). Therefore, our framework relies solely on current
state information without requiring historical tracking or continuous object detection. The bidirec-
tional coupling is achieved through the following mechanisms: microscopic vehicle events influence
macroscopic flow through a diffusion term added to the LWR model, capturing how individual ve-
hicle perturbations propagate through traffic flow. Unlike existing approaches that discretize traffic
flow on fixed spatial grids of the Euclidean coordinate, we propose a vehicle-centric graph dis-
cretization on the Lagrangian coordinate that preserves microscopic perturbations while maintain-
ing macroscopic conservation laws. For the microscopic dynamics, we design a scenario-adaptive
Koopman operator selection mechanism to capture vehicle dynamics in different driving scenarios.
And macroscopic flow states affect microscopic vehicle dynamics through Koopman control, where
flow conditions serve as external inputs to affect individual vehicle dynamics.

Our framework makes three major contributions:

1. Vehicle centric PDE on graphs: We derive an advection–diffusion evolution on a dynamic
vehicle graph with skew-symmetric advection and positive semi-definite diffusion, ensur-
ing energy-preserving advection and nonnegative diffusion process, with a constructive
parameterization for antisymmetry.

2. Unified history-free Koopman modeling: We show how macro/micro observables can be
evolved by time-invariant Koopman operators, enabling accurate trajectory prediction from
a single snapshot; we align Koopman spectra with graph-PDE spectra to improve stability
and interpretability.

3. Physics-guided multi-regime micro dynamics: A lightweight intent discriminator selects
among parameter-bounded Koopman evolvers; a Koopman-control path injects macro flow
with ISS-style bounds on control/output, reducing long-horizon drift.

Beyond predictive performance, our framework provides explicit insights through learned edge
weights that quantify interaction intensities between vehicles. These weights evolve dynamically
to reflect changing driving conditions, offering interpretable measures for downstream decision-
making modules in autonomous driving systems, a capability unique to our vehicle-centric graph
formulation.
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2 BACKGROUND KNOWLEDGE

2.1 KOOPMAN OPERATOR THEORY & KOOPMAN CONTROL THEORY

The Koopman operator provides a powerful framework for analyzing nonlinear dynamical systems
through linearization in an observation space. Considering a discrete-time nonlinear dynamical
system:

xt+1 = f(xt), xt ∈ Rn (1)
By Koopman operator theory, there exists an infinite-dimensional Hilbert space of observable func-
tions:

g := {ϕi}∞i=1 , Rn → R (2)
where system dynamics become linear. The Koopman operator K acts on observables as:

Kg = g ◦ f (3)

where K is a linear (though infinite-dimensional) operator. In the lifted observation zt = g(xt) =
[ϕ1(xt), ϕ1(xt), ...]

⊤, the evolution becomes:

zt+1 = Kzt (4)

The original state can be recovered through reconstruction functions ψ : z 7→ x.

Finite-dimensional approximation via DMD: While Koopman operator requires infinite dimen-
sions, Dynamical Mode Decomposition (DMD) enables finite-dimensional approximation suitable
for practical applications(Brunton et al., 2016). DMD identifies a finite set of modes that capture the
dominant dynamics, with each mode characterized by an eigenvalue λj whose real part determines
growth/decay rates and imaginary part captures oscillation (Avila & Mezić, 2020).

Neural network parameterization: Recent advances leverage neural network’s universal approx-
imation capabilities to learn both observable functions ϕ : Rn 7→ Rd and reconstruction functions
ψ : Rd 7→ Rn(Lusch et al., 2018). The key insight is to learn a representation where the Koopman
operator becomes approximately diagonal:

xt+1 = ψ(Kϕ(xt)) (5)

where K ≈ diag(λ1, ...λd). The diagonalization enables efficient evolution:

zjt+1 = eλjzjt (6)

providing both computational efficiency and interpretability through modal decomposition.

Extension to controlled system: For systems with external inputs:

xt+1 = f(xt, ut) (7)

Koopman control theory introduces an actuation operator B that lifts control inputs into the obser-
vation space(Proctor et al., 2018; Strässer et al., 2023):

zt+1 = Kzt + But (8)

This formulation maintains linearity in the observation space while accommodating external influ-
ences. Crucially, the framework imposes minimal constraints on the control structure, allowing us to
model abstract influences, such as macroscopic traffic flow effects on individual vehicles, as control
inputs. This flexibility is particularly valuable for multi-scale systems where cross-scale interactions
lack explicit mathematical forms but significantly impact dynamics.

The Markovian property of the Koopman evolution, when observation functions are time-invariant,
enables prediction using only current state information—eliminating the need for historical tracking
that burdens conventional sequence-based methods.

2.2 MACROSCOPIC TRAFFIC FLOW MODELS

Macroscopic models treat traffic as a continuum fluid, with the LWR model serving as the funda-
mental first-order theory. The traditional LWR model describes traffic density evolution through a
conservation equation describing the fluid propagation dynamics:

∂ρ

∂t
+∇ · Q(ρ) = 0 (9)
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where ρ(x, t) represents traffic density and Q(ρ) = ρv(ρ) is the flux function with v(ρ) denoting
the density-dependent velocity and wave propagation speed field direction which can be viewed as
an advection process.

Traditional PDE discretization methods for traffic flow work on the Euclidean coordinate and divide
roads into fixed spatial cells. This approach fundamentally limits their ability to capture vehicle-
level perturbations. Stochastic behaviors are averaged within each cell, which eliminates the high-
frequency dynamics that is crucial for understanding traffic flow. Our work addresses this limitation
by introducing a Lagrangian discretization on vehicle-centric graphs.

3 PROBLEM FORMULATION

We address the multi-scale traffic flow modeling problem where both individual vehicle dynamics
and macroscopic traffic density evolution are jointly considered. Unlike traditional models that focus
solely on vehicle behaviors or flow modeling, our framework captures the bidirectional coupling
between microscopic vehicle dynamics and macroscopic flow patterns.

We assume that the ego vehicle can only get measurements of surrounding vehicles within a detec-
tion range rmax. At each time step t, we represent the traffic system as a dynamical weighted directed
graph Gt = (Vt, Et,Wt), where:

• Nodes Vt represent vehicles. For a vehicle i, its state xit includes position pit ∈ R2, velocity
vit ∈ R2, lane ID lit and vehicle size si ∈ {0, 1} with si = 0 being large vehicles whose
length is longer than 6.5 m and si = 1 being small vehicles. For the ego vehicle, we use
the notation as xet = [pet , v

e
t , l

e
t , s

e
t ].

• Edges Et describe spatial interaction between vehicles. We construct using k-nearest neigh-
bors (k-NN) based on Euclidean distance to balance computational efficiency with inter-
action coverage. We use incidence matrix Bt to represent the interaction between them.
For two vehicles i and j, we set Bt,ij = 1 if there is an edge from vj to vi is interaction
between them and Bij = 0 otherwise.

• Edge weights Wt quantifies vehicle interaction intensity and traffic flow propagation effi-
ciency. To reflect the propagation of traffic flow and the effect of vehicle interaction on
traffic flow, we use two edge weights and learn them from node features.

Usually, the graph topology is described by graph Laplacian operator L = BWB⊤ = D−A, where
D is the degree matrix and A is the adjacency matrix. The graph Laplacian L has a conjugate edge
Laplacian Le = B⊤WB which has the same non-zero eigenvalues L. This formulation enables us
to express traffic dynamics through graph operators that preserve physical laws.

We adopt Koopman-based approach to lift the nonlinear coupling micro-macro system to a higher-
dimensional linear observation space. A critical advantage of Koopman-based approach is its
Markovian property, which enables us to predict using only current state information Gt without
requiring historical trajectories. The model predicts the ego vehicle future trajectory position and
traffic density evolution over Tf prediction.

4 METHODOLOGY

In this paper, we model the cross-scale traffic dynamics. The framework is illustrated in Fig.1.

4.1 TRAFFIC FLOW EVOLUTION ON GRAPH

Traditional spatial discretization fundamentally cannot capture how individual vehicle perturbations
propagate through traffic. We pioneer a Lagrangian approach that discretizes PDEs directly onto
vehicles as graph nodes. This is not merely a change of coordinates—it fundamentally preserves
information that spatial methods inherently lose. We give the detailed proof in Appendix.A.1 which
is one of the core innovation in this paper. The evolution on graph is:

ρ̇ = −Cadvρ+ Ldiffρ, Cadv = B⊤W advB, Ldiff = B⊤W diffB (10)
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Figure 2: Illustration of traffic flow evolution on vehicle-centric Lagrangian Graph. (a) Lagrangian
discretization: Unlike traditional Eulerian methods that discretize space into fixed grids, we treat
vehicles as dynamic nodes Vt in the graph Gt. The mesh moves with the traffic flow, allowing the
model to preserve high-frequency microscopic perturbations. (b) Edge flux decomposition: The
advection flux captures velocity-induced transport via a skew-symmetric Cadv, while the diffusion
flux captures density-gradient interactions via a PSD operator Ldiff.

where ρ = [ρ1, ..., ρN ] is a vector with ρi being the density at the position of vehicle i,N is the num-
ber of vehicle, Cadv is the advection operator which is an antisymmetric matrix describing the traffic
flow, and Ldiff is the diffusion operator which is a positive semi-definite (PSD) matrix representing
the perturbation from surrounding vehicles. We use two edge weight matrices W adv and W diff to
denote the advection and diffusion coefficients respectively. This formulation is fundamentally dif-
ferent from previous work that discretize space on the Euclidean coordinate and calculate density as
average traffic state within cells. Instead, we discretize on the Lagrangian coordinate and get density
values around each vehicles. Therefore, how each vehicle affects flow propagation is explicitly for-
mulated. Specifically, we use edge weights W adv and W diff to explicitly encode vehicle-to-vehicle
interaction strengths, providing interpretable measures that are unavailable in grid-based methods.

According to graph spectrum thoery, if Ldiff and Cadv are commute, i.e., LdiffCadv = CadvLdiff ,
they can be diagonalized by the same eigenvectors U :

L̃diff := U∗LdiffU = Diag(η1, · · · , ηN ),

C̃adv := U∗CadvU = Diag(jξ1, · · · , jξN ),
(11)

where j2 = −1 is the imaginary unit, η are the eigenvalues of Ldiff and jξ are the eigenvalues of
Cadv, n and m are the number of eigenvalue. Since Ldiff is positive semi-definite, all eigenvalues
are all real number. The advection term Cadv is antisymmetric, so the eigenvalues are all conjugate
pure imaginary or 0. We further project the density ρ through U and get dynamics in the projected
space as:

˙̂ρ = −U∗CadvU ρ̂+ U∗LdiffU ρ̂ = (Diag(η)− jDiag(ξ))ρ̂, (12)

where ρ̂ = Uρ. The solution for the ODE equation 12 is:

ρ̂ = eDiag(η)−Diag(jξ)ρ̂(0), (13)

In traffic flow, Ldiff and Cadv are usually not commute, leading them generally not simultaneously
diagonalizable in finite dimensions, however, Koopman lifting enables us to approximate their joint
evolution in a higher-dimensional linear space, where eigen-decomposition is no longer strictly re-
quired.

4.2 MACRO DYNAMICS WITH VEHICLE INTERACTION

The dynamics of ρ̂ in equation 12 share the same structure as the linear dynamics in the observation
space in Koopman theory, which inspires us to lift the macro dynamics to a linear space.

5
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At each time-step, the edge weights W consists of two matrices W adv and W diff, which are usually
unknown directly from measurements. To reflect how vehicle interactions affect flow dynamics, we
use two GNNs to get the edge weights W = {W diff ,W adv}. The two GNN takes (V, E) as inputs,
and outputs the diffusion and advection weights respectively.

To reflect their different physical properties, we design specific structure for diffusion operator and
advection operator to ensure Ldiff PSD and Cadv antisymmetric. For diffusion operator, we initialize
the diffusion edge undirected and adopt Softplus activation forW diff to keep PSD for diffusion oper-
ator. While in advection operator, we reconstruct the graph into a directed graph with edges aligned
with the direction of speed field, after obtaining the weights W adv via advection network, we add a
reverse edge of equal weight for each original edge to ensure the antisymmetric. Therefore the cor-
responding diffusion operator Ldiff is symmetric and the advection operator Cadv is antisymmetric.

Inspired by the linear dynamics in the projected space ρ̂, we lift the graph features to an observation
space Zt by the Koopman Operator theory.

Encoder : Zt = ϕZ(Gt), (14)
Evolver : Zt+1 = KZZt, (15)
Decoder : ρt+1 = ψZ(Zt+1), (16)

where ϕZ is a GNN to lift the graph features to the observation space Z, ψZ is an MLP to decode
Z to density, and KZ are a learnable matrix that represents the linear dynamics in the observation
space.

We design the loss function for the encoder and decoder as:

Lmacro
encode = ||ϕZ(Gt+1)−KZϕZ(Gt)||22, Lmacro

decode = ||ρ̄t+1 − ρt+1||21 (17)

where ρ̄ is the ground truth density as label when training.

In practical traffic flow, the diffusion operator Ldiff and advection operator Cadv generally do not
commute. We therefore do not assume exact commutation, instead, we penalize the commutator:

LJAD = ∥LdiffCadv − CadvLdiff∥2F (18)

where the subscript F is Frobenius norm. This design reduces basis rotation and improves operator-
splitting stability under the Lie-Trotter scheme:

e∆t(Ldiff−Cadv) ≈ e∆tLdiff
e−∆tCadv

(19)

this regularizer is fully differentiable and requires no eigen-decomposition thus being numerically
stable and further motivates aligning the Koopman operator equation 6.

To ensure the consistence between Koopman operator K with diffusion operator Ldiff and advection
operator Cadv, we set θ = 1

∆t log(K) (principal matrix logarithm) and align real θ with λ(Ldiff) and
imaginary θ with ω(Cadv), formally:

Lspec = min
Π

(||Re(λ(θ))−ΠλL||22 + ||Im(λ(θ)) + Πω(λC)||22) (20)

Π is permutation operator, we compute log(K) via a numerically stable real Schur form with small
Tikhonov regularization on near unit eigenvalues. When K is not diagonalisable, the Schur-log
remains well-defined and differentiable almost everywhere, avoiding branch ambiguities. This ex-
plicitly couples the Koopman dynamics to the learned graph-PDE operators, consistent with the
splitting used in training.

4.3 MICRO DYNAMICS WITH FLOW PROPAGATION

Similar to macroscopic traffic dynamics, vehicle behaviors are also highly nonlinear. Besides, when
drivers make decisions, they often consider not only the motion state of themselves, but also sur-
rounding traffic. Therefore, the macroscopic flow propagation also have a direct impact on mi-
croscopic dynamics. To avoid the analysis and computation complexity, we also lift the original
measurement of vehicle state xet to a higher linear observation space. To reflect how flow propa-
gation affects microscopic vehicle behaviors, we adopt the Koopman Control Theory and design a
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CrossAttention block to take the role of Actuation Operator that projects macroscopic influence into
the vehicle observation space:

Encoder : zt = ϕz(x
e
t ) (21)

Evolver : zt+1 = Kzzt +Bzut, ut = CA(zt, Zt) (22)
Decoder : pet+1 = ψz(zt+1) (23)

where CA is CrossAttention block fusing zt from micro and Zt from macro, ϕz ,ψz are MLP, Kz

and Bz are trainable matrix, pet+1 is predicted trajectory. We choose a CrossAttention module rather
than a simple linear projection for ut because traffic influence is highly context-dependent: vehicles
in different positions or modes contribute unequally. Attention naturally captures this heterogeneity,
aligning with the actuation operator role. To ensure the design of Koopman control is input-state sta-
ble (ISS), we need to constrain the output of CrossAttention ut as bounded and the spectrum radius
κ(Kz) < 1 which ensures that errors decay geometrically with rate κ(Kz) and that external influ-
ences remain bounded. This provides a formal guarantee that MMCKM will not suffer unbounded
error growth over iterative Koopman applications. The detailed proof is provided in Appendix.A.2.

In practical driving process, the microscopic dynamics always present varying features in different
driving scenarios: free flow, car-following, lane changing, merging, and emergency maneuvers.
Driver intent is commonly modeled as discrete variable and can switch abruptly, implying that a
single operator must account for different dynamical regimes. However, directly increasing the
dimension of Koopman operator matrix Kz is computationally prohibitive when we calculate the
eigenvalue decomposition. Furthermore, different modes may present distinct Koopman spectra and
control response. For example, in free flow, drivers tend to keep a constant maximum speed. The
spectrum radius κ(Kz) is approximate one. The imaginary part of the eigenvalues is small since
the oscillation in trajectory present a low frequency variance. Besides, since there is few vehicles,
its interaction with surrounding vehicles is weak, and the injects from Cross Attention is small.
However, in the lane-changing scenario, vehicles have longitudinal and lateral interaction, leading
the coupled oscillation at both real and imaginary eigenvalues of Koopman operator.

To capture various driving scenarios with a low computation cost, we construct a family of Koop-
man operators consists of multiple 2 × 2 complex-valued blocks and diagonal real-valued blocks
with distinct initialization schemes such that each operator presents a distinct driving mode. The
variation among these operators is achieved by (i) imposing different bounds on the spectral radius
of Kz reflecting stability margin, (ii) tuning the coefficients of the complex block control terms θ to
adjust oscillation frequency, and (iii) constraining the maximum actuation operator Bmax for actua-
tion strength. The detailed settings and their physical interpretations are provided in Appendix A.2.
To determine which operator is most consistent with current traffic environment, we design an Intent
Discriminator, which is implemented as a mixture-of-experts (MoE) that evaluates the current vehi-
cle state xet and the graph-based observation Zt to accordingly select the most plausible Koopman
operator from the candidate set. We implement this Intent Discriminator by a MLP through super-
vised learning, training label are generated in data preprocessing calibrated by acceleration and lane
variance. In this way, the high computation burden of a single, over-generalized Koopman operator
is alleviated. Instead, the system leverages a structured ensemble of specialized operators, with the
Intent Discriminator serving as the gating mechanism that adaptively aligns operator selection with
the underlying driving intent.

For the loss function design, the loss functions for the micro encode and decode are calculated by:

Lmicro
encode = ||ϕz(xet+1)−Kzϕz(x

e
t )||22, Lmicro

decode = ||ŷet+1 − yet+1||22 (24)

Finally, after training, we only obtain Koopman encoder (GNN and MLP), Koopman operator (ma-
trix) and decoder (MLP) without any eigendecomposition. The computation cost focuses on GNN
forward passes and linear Koopman operator iteration.

5 EXPERIMENTS

5.1 DATASETS

We use trajectory prediction and traffic flow prediction to validate the proposed method. We utilize
two highway datasets for our experiments: NGSIM and HighD. We use NGSIM US-101 highway

7
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Table 1: RMSE on NGSIM Dataset. Trajectory error are reported as RMSE. The operator interval
in our model is set to 0.1s and 1.0s

With historical data Without historical data
Prediction

Horizon (sec) BAT MS-STGCN Vit-Traj CV Ours
1.0sec

Ours
0.1sec

1 0.27 0.42 0.39 0.64 0.54 0.33
2 0.90 1.00 0.95 1.48 0.98 0.92
3 1.43 1.66 1.58 2.63 1.57 1.63
4 2.76 2.44 2.22 4.33 2.26 3.17
5 3.80 3.05 2.89 5.62 2.93 4.65

Table 2: Comparison of accuracy of Different Operator Interval on the HighD dataset
Interval 0.04s 0.1s 0.2s 0.4s(*) 1s

ADE 2.84 2.06 1.88 1.65 2.90

subset, which captures vehicle trajectories sampled at 10 Hz. The HighD datsaset is collected in
German highways with a frequency at 25 Hz.

5.2 EXPERIMENT SETTINGS

We establish a perception space centered on the ego vehicle, covering three lanes (the ego vehicle
lane and two adjacent lanes) over a longitudinal range of 90 m ahead and 60 m behind. The k-NN al-
gorithm is set to identify the 6 nearest vehicles within the perception space to build edge connections.
We use kernel density estimation to get density from vehicle positions. We use Gaussian Kernel and
set the kernel bandwidth to 25 m. We set the dimension of the observation space Z and z both as
128. For the Intent Discriminator, we set five driving modes: free flow, car-following, lane changing,
merging, and emergency. Intent labels are derived directly from raw trajectories using simple, de-
terministic rules based on longitudinal acceleration, relative headway, and lateral displacement. We
assign free flow when vehicles move with stable high speed and minimal interaction; car-following
when longitudinal motion is governed by a leading vehicle with reduced headway; lane changing
when sustained lateral motion accompanies a lane transition; merging when lateral entry is initiated
from on-ramp; and emergency when abrupt braking or rapid acceleration indicates evasive maneu-
vers. These labels are fully reproducible and require no learned classifier or manual annotation.

We compare against widely-cited recent baselines that are representative of history-dependent pre-
dictors: BAT (Liao et al., 2024), MS-STGCN (Tang et al., 2023), Vit-Traj (Cheng et al., 2025).
Because history-dependent methods assume access to 3 8 s of trajectories while ours is strictly
history-free, our comparison focuses on identical prediction horizons and the same current-state in-
puts, thereby take CV (Mercat et al., 2019) as a history-free reference. Where intervals differ across
papers, we adopt each method’s native setting and report our model at matching horizons to avoid
conflating sampling effects with modeling capacity. We view these results as conservative for our
approach, since removing historical inputs typically disfavors accuracy.

To our knowledge, no prior work evaluates vehicle-centric graph discretization of LWR with diffu-
sion on highway data with publicly-standardized density labels. We therefore treat KDE-estimated
density as operational ground truth and report absolute errors to KDE as an internal consistency
metric. The default bandwidth of KDE kernel is 25 meters. KDE provides a consistent operational
definition, though we acknowledge its limitations and encourage future benchmarks with sensor-
derived density labels. Through ablation study, we identify the efficiency of diffusion operator.
Cross-paper macro density SOTA comparison are left for future benchmarks.

5.3 RESULTS

Table.1 presents prediction accuracy on the NGSIM dataset. We see that the proposed method has
a lower prediction error than the SOTA CV method for all prediction horizons. Remarkably, our
approach, as a completely history-free model, achieves performance comparable to state-of-the-art
methods that require historical trajectory data during the past 3-8 seconds. Traditional sequence-
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based methods like BAT and MS-STGCN impose substantial computational overhead through tra-
jectory tracking and storage, limiting real-time applicability. Our Markovian approach eliminates
these requirements and also maintains competitive accuracy.

From Table 1, we observe that the operator interval plays a central role in the error accumulation
pattern. Our method exhibits an approximately linear growth of error with respect to the number of
iterative steps, which is governed by the Koopman sampling interval. The 0.1s operator achieves
excellent short-term accuracy (RMSE=0.33 @ 1s) approaching history-dependent models. Never-
theless, its error accumulates more rapidly over longer horizons because each prediction requires
repeated applications of the operator. For example, forecasting 5 seconds ahead involves 50 itera-
tions. In contrast, the 1.0 s operator begins with a higher short-term error but demonstrates superior
long-term prediction accuracy. For the prediction over 5 seconds, only five iterations are required.
This controlled growth in error stands in clear contrast to the exponential error amplification often
observed in recurrent architectures. These results suggest that, over extended horizons, our approach
can surpass existing algorithms as the dependence on initial historical data diminishes.

To further examine the effect of operator intervals, we use the HighD dataset, which has a higher
sampling frequency and provides a more suitable data for evaluating how interval settings affect
prediction. We evaluate prediction accuracy for operator intervals at 0.04s, 0.1s, 0.2s, 0.4s, and 1.0s.
We compare the Average Displacement Error (ADE) in Table. 2. There is a trade-off between the
ability to capture high-frequency and numerical stability: small intervals preserve high-frequency
dynamics but suffer numerical instability, while large intervals ensure stability but sacrifice dynamic
fidelity. An excessively small interval (e.g., 0.04s) forces each operator to represent minimal dy-
namic changes, causing eigenvalues to cluster near unity and creating a numerically ill-conditioned
system highly sensitive to noise. This configuration requires numerous iterations for prediction, am-
plifying computational errors. On the other side, an overly large interval (e.g., 1.0s) cannot capture
high-frequency dynamics because within a single second, significant portions of driving maneuvers
occur compared to complete steering actions typically span 5-6 seconds. The optimal interval of 0.4s
achieves the best ADE performance, balancing dynamic representation with numerical stability.

5.4 ABLATION STUDY

Component-wise Analysis To validate our bidirectional coupling mechanism, we systematically ab-
late the Intent Discriminator and CrossAttention modules. Table 3 presents RMSE comparisons for
four variants: the complete model (MMCKM), Intent Discriminator ablation (MMCKM-I), Koop-
man control ablation (MMCKM-C), and both components removed (MMCKM-IC).

The results demonstrate complementary roles in multi-scale coupling: The Intent Discriminator pri-
marily enhances short-term predictions (29% improvement at 1s), effectively selecting appropriate
dynamics for immediate vehicle behaviors. However, its effectiveness diminishes over longer hori-
zons as the latent macroscopic state Zt evolves independently, accumulating errors that degrade
intent classification accuracy. Maintaining accurate Intent Discrimination would require simultane-
ous state updates for all surrounding vehicles leading a computationally prohibitive requirement that
would negate our method’s efficiency advantages.

The Koopman control module proves crucial for long-term stability, reducing error by 37% at 5
seconds compared to MMCKM-C. By injecting macroscopic flow information as control inputs, it
maintains the bidirectional coupling essential for accurate long-horizon prediction. Removing this
module reduces the system to a single-operator framework, eliminating the critical macro-to-micro
influence that constrains vehicle trajectories within physically plausible flow patterns.

Validation of Diffusion Term Comparing the complete advection-diffusion model (LC) with
advection-only variant (C) on NGSIM. From Table.4, the dramatic degradation confirms our the-
oretical framework: the diffusion operator Ldiff captures how microscopic vehicle perturbations
propagate through traffic flow, a phenomenon completely absent in traditional LWR models. With-
out this term, the model reverts to deterministic flow evolution, unable to represent the stochastic
perturbations that characterize real traffic. This result validates our fundamental contribution: the
first successful incorporation of microscopic stochasticity into macroscopic PDE models through
vehicle-centric discretization.

9
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Table 3: Ablation Study of Different Components on HighD, Operator Interval at 0.2s
Model 1s 2s 3s 4s 5s

MMCKM 0.29 0.60 1.21 1.72 2.73
MMCKM-I 0.74 1.39 1.96 2.90 3.81
MMCKM-C 0.41 1.01 1.89 2.50 3.46
MMCKM-IC 0.80 1.74 2.54 3.48 4.62

Table 4: Comparison of Removal Diffusion Term on NGSIM
Model 1s 2s 3s 4s 5s

LC 3.2% 4.1% 5.6% 7.4% 9.5%
C 6.1% 7.2% 10.7% 12.0% 14.1%

Table 5: Comparison of Different KDE Bandwidth on NGSIM
Bandwidth 1s 2s 3s 4s 5s

10 6.4% 7.7% 11.6% 12.8% 14.0%
20 4.7% 5.9% 7.3% 9.6% 11.1%
25 3.2% 4.1% 5.6% 7.4% 9.5%
30 4.0% 5.2% 7.0% 9.2% 10.4%
40 4.8% 6.3% 8.0% 10.5% 11.7%
50 5.5% 6.6% 8.5% 11.1% 12.6%

Analysis of KDE Bandwidth Sensitivity The KDE bandwidth implicitly determines the spatial
frequency content of the density field, and thus affects the supervision signal for learning dif-
fusion and advection operators. We compare the performance of macro module with bandwidth
h ∈ {10 m, 20 m, 25 m, 30 m, 40 m, 50 m} and report the macro-level RMSE at Table. 5. The band-
width at 25 meters achieves the best accuracy, while both extremely small and excessively large
bandwidths lead to a lower prediction accuracy. By comparing the advection-only variant (C) model
in Table. 4 and the complete model (LC) with different kernel length values in Table. 5, we see that
the proposed model achieves more accurate under a wide range of bandwidth values, from 20 m to
50 m. We also note that with a extreme small bandwidth of 10 m, LC has a worse prediction than
the C model. The possible reason is explained as follows. When the KDE bandwidth is reduced
to 10 meters, the density labels become dominated by high-frequency noise, causing arbitrary ve-
hicle perturbation to variance in diffusion term. In other words, according to Eq. 32, small KDE
bandwidth brings noise on the density prediction. To fit this noisy, the learned Wdiff amplifies the
noise rather than capturing genuine perturbation propagation. With the perturbation of Wdiff, the
commutator of LJAD and spectral alignment of Lspec is disrupted, leading the macro evolver KZ to a
wrong direction. As a result, LC with bandwidth 10 performs even worse than C. This result reveals
an important insight: diffusion improves macro prediction only when the density supervision carries
physically meaningful gradients; otherwise, diffusion becomes a harmful channel that injects noise
into operator learning.

6 CONCLUSION

We introduce Micro-Macro Coupled Koopman Modeling for traffic prediction, unifying microscopic
vehicle dynamics and macroscopic flow evolution within a single Koopman-based architecture. On
macro side, we discretize advection-diffusion traffic flow PDE onto vehicle-centric dynamic graph
and construct diffusion operator and advection operator ensuring the physical property on graphs.
On micro side, we design scenario-adaptive Koopman evolvers selected by Intent Discriminator
and utilize Koopman control to inject macro-flow influence into vehicle dynamics. Experiments
and ablation studies validate the roles of operator interval, intent gating, KDE kernel sensitivity and
macro-to-micro control. Future work will leverage learned edge weights for interpretable interaction
measures in vehicle planning and control. Another direction is to expand the framework into urban
scenarios under heterogeneous graph structure.

10
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7 ETHICS STATEMENT

This research does not involve human subjects, personally identifiable information, or sensitive data.
All experiments were conducted on publicly available datasets (HighD, NGSIM), which are widely
used in the transportation research community. No personally identifiable information is included
in these datasets. The potential societal impact of this work lies in its application to intelligent
transportation systems, where improved modeling and prediction could enhance traffic safety and
efficiency. At the same time, we acknowledge possible risks, such as misuse in surveillance or
decision-making systems that may raise fairness concerns if applied without proper consideration.
We encourage responsible and transparent deployment of the proposed methods.

8 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. To this end, we provide detailed
descriptions of our model architecture, training procedures, and evaluation metrics in the main pa-
per and appendix. The datasets used in this study (HighD, NGSIM) are publicly available. We
will release our code, including data preprocessing pipelines and training scripts, in an anonymous
repository upon publication. Hyperparameters and implementation details are also provided in the
supplementary materials to facilitate replication of our results.
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A APPENDIX

A.1 TRAFFIC FLOW EVOLUTION ON GRAPH

Starting from the 2D LWR equation with diffusion on a multi-lane highway in equation 9, where
density ρ is described in a Eulerian coordinate x − y, and decompose the flux into advection and
diffusion components:

∂ρ

∂t
+∇ ·Q = 0 (25)

To avoid averaging vehicle perturbation within cell segmented discretization, instead of discretizing
on a fixed Eulerian grid, we adopt a Lagrangian perspective in a dynamical directed weighted graph
Gt = (Vt, Et,Wt) where vehicles form nodes. At time t, we have nodes Vt = {v1, ..., vN} rep-
resenting N vehicles perceived within in range rmax containing node positions xi = (xi, yi) in 2D
space, while density at nodes ρi(t) representing local traffic density around vehicle i. The vehicles
are connected using k-NN to form edges Et based on Euclidean distance. Each edge eij from node i
to j defines a direction vector dij =

xj−xi
||xj−xj || and decomposed diffusion weight wdiff

ij and advection
weight wadv

ij to be determined based on vehicle relative states wij = f(vi, vj). These edges form
a non-orthogonal, redundant directional template for approximate gradients. Unlike a regular grid
with two orthogonal directions (x and y), we have k directions per node that sample the 2D space
irregularly and totally M edges.

In a continuous space, a difference is essentially the functional difference between adjacent points,
while the gradient is the spatial derivative of the function:

∆f(x) = f(x+∆x)− f(x), ∇f(x) ≈ f(x+∆x)− f(x)

∆x
(26)

While on graph, there is no regular grid ∆x and density ρ is discretized, but exists the adjacent
relationship connected by eij . Assume two adjacent nodes i and j carry a scale field ρi and ρj re-
spectively, the whole density on discretized nodes on graph is collected by a vector ρ = [ρ1, ..., ρN ]
where N is the vehicle number which depicts the density scalar at the position of each vehicle, the
difference alongside edge eij equals:

(∇Gρ)eij = ρj − ρi (27)

the relationship can be denoted as incident matrix B:

(Bρ)eij = −ρi + ρj = ρj − ρi (28)

Thereby, the gradient on graph can be written as:

∇Gρ = Bρ (29)

Similarly, the divergence on the graph computes computes the net flux on a node across all incident
edges:

∇ · Q = divGQ = B⊤Q (30)

We take the total flux Q as a summarization of advection flux Qadv + ∇ · Qdiff and diffusion flux,
where advection flux Qadv = ρv transported by velocity field v and diffusion flux Qdiff = −D∇ρ
follows Fick’s law for density gradients, D is the diffusion coefficient.

Diffusion Term According to Fick’s Law, the diffusion flux Qdiff = −D∇ρ can be discretized
on graph according equation 29, and consider diffusion coefficient D is anisotropy but related to
adjacent dynamical node features, we can derive:

Qdiff = −W diffBρ, W diff
ij = f diff(vi, vj) (31)

Finally, we calculate the divergence according to equation 30:

ρ̇diff = −∇ · Qdiff = −divGQdiff = B⊤W diffBρ := Ldiffρ (32)

According to graph Laplacian definition L = BWB⊤, this equation can be described through a
diffusion operator Ldiff, which is not a graph Laplacian but called edge Laplacian:

ρ̇diff := Ldiffρ, Ldiff = B⊤W diffB (33)

13
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In diffusion term which describes the stochastic perturbation propagates along density gradient, it’s
an entropy production process, leading the dissipation entropy nonnegative:

d

dt
E(ρ) = d

dt
(
1

2
||ρ||22) = ρ⊤ρ̇ = ρ⊤(B⊤W diffB)ρ = (Bρ)⊤W diff(Bρ) ≥ 0 (34)

define y = Bρ, this equation turns to:

y⊤W diffy ≥ 0 (35)

thereby, W diff must be positive seimi-definite (PSD).

Advection Term In continuous space, Qadv = ρ(x, t) · v(x, t), which is a vector field, represents
density transported by speed field. On graph, there is no more continuous speed field v(x), but
discretized nodes and edges. In this setting, the direction of speed field v(x) is not solely 2D x and
y coordinates, but formed by M non-orthogonal, redundant direction vector dij =

xj−xi
||xj−xj || .

In continuous condition, the flux via a section A is:

Qadv =

∫
ρv · n · dA (36)

where n is the normal vector of section A. While in graph, there is no more section vertical to speed
field but connected with edge channels. We account the flux passing the edge between node i and
j. The flux on edge is bidirectional Qij = (Qadv

i→j − Qadv
j→i), and the flux on edge for one direction

equals:
Qadv

i→j = ρi · (vi · dij) · dAij

Qadv
j→i = ρj · (vj · dji) · dAji

(37)

define:
aij := (vi · dij) · dAij , aji := −(vj · dij) · dAji (38)

we decompose ρi and ρj to average and difference:

ρi = ρ̄+
1

2
(ρi − ρj), ρj = ρ̄− 1

2
(ρi − ρj), ρ̄ =

1

2
(ρi + ρj) (39)

then, the advection flux on edge is converted to:

Qij = Qadv
i→j − Qadv

j→i = aijρi − ajiρj =
1

2
(ρi − ρj)(aij + aji) + ρ̄(aij − aji) (40)

the first term can be rewritten on graph as W advBρ and W adv = 1
2 (aij + aji).

According to equation 25, we calculate the divergence on node:

ρ̇adv = −∇ · Qadv = −divGQadv = −B⊤Qadv (41)

and the discrete conservation law requires the total density is preserved:

1⊤ρ̇adv = −1⊤B⊤Qadv = 0 (42)

since B1 = 0, this is guaranteed if Qadv depends only on the difference Bρ and the second term
ρ̄(aij − aji) vanished.

Finally, the equation 41 can written as:

ρ̇adv = −B⊤W advBρ (43)

use a Laplacian operator Cadv to denote:

ρ̇adv := −Cadvρ, Cadv = B⊤W advB (44)

Furthermore, according to physical law, we require advection is energy-preserving because it’s non-
dissipative:

d

dt
(
1

2
||ρ||22) = ρ⊤ρ̇ = ρ⊤Cadvρ = 0 (45)
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this requires Cadv to be an antisymmetric matrix Cadv⊤ = −Cadv. To ensure Cadv, we develop a
special parameterization method built from original graph.

We first reconstruct the graph into a directed graph with edges aligned with the direction of speed
field, and let Aline ∈ {0, 1}M×M denote the line-graph adjacency, where Aline[e, e′] = 1 iff edges e
and e′ share a node. Define a symmetric locality mask:

M loc :=
1

2
(Aline +Aline⊤ − I) (46)

and introduce an unconstrained parameter matrix P ∈ RM×M . We parameterize the advection
weights and operator by:

W adv :=M loc ◦ (P − P⊤), Cadv := B⊤WadvB (47)

where ◦ is the Hadamard product and B is incident matrix. Because M loc is symmetric and P −P⊤

is skew-symmetric, we have:

(W adv)⊤ =M loc ◦ (P⊤ − P ) = −W adv (48)

hence, we can get:
Cadv⊤ = (B⊤W advB) = B⊤(W adv)⊤B = −Cadv (49)

therefore Cadv is antisymmetric, ensuring non-dissipative advection term.

In summary, equation 25 can be discretized on graph:

ρ̇ = −Cadvρ+ Ldiffρ (50)

A.2 KOOPMAN OPERATOR DESIGN

In equation 22, even if Kz is stable, if control ut is infinite and no constrain on Bz , zt is also diver-
gent. Furthermore, in practice, the augmented Koopman operator [Kz|Bz] of vehicle dynamics is
constraint by physical limitations such as limited steering angle, throttle and acceleration. Thereby,
we need to ensure ut is input-state stable (ISS), equals to:

∃ const c ≥ 1, λ ∈ (0, 1)

s.t. ||zt|| ≤ cλt||z0||+
cBz

1− λ
sup

0≤τ≤t−1
||uτ || ≤ cλt||z0||+

cBz

1− λ
Umax

(51)

To ensure that the observation z is always bounded, we require that the output of CrossAttention ut
is bounded and |λ| < 1. For the first requirement, we add a Sigmoid operator before the final output
of the CrossAttention module.

For the second requirement, it equals to ensure the spectrum radius κ(Kz) < 1. In our design,
the Koopman operator Kz(λ) is a trainable approximately diagonal matrix with real and complex
eigenvalues. We use Nc 2× 2 complex blocks and Nr 1× 1 real blocks to construct Kz(λ), where
Nc and Nr is a hyperparameter related to Koopman operator dimension. To ensure κ(Kz) < 1,
we need to simultaneously promise the mode of each complex and real blocks strictly less than 1.
For each complex block, we construct it with two learnable parameter, radius R and rotation θ to
parameterize the complex conjugate eigenvalue pairs λ = Re(±iθ), apply to 2× 2 blocks:

Kc = R×
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(52)

we further constrain each radius R less than 1 by applying R = κmax × sigmoid(η), where η is
the eigenvalue of advection operator Cadv which governs the traffic flow propagation, while θmean
and θstd represents the vibration frequency as diffusion operator Ldiff . In real block, we apply same
constraint on R = κmax × sigmoid(η) to ensure stability. Furthermore, through this design, we can
directly record max(R) to quickly estimate spectrum radius of each Koopman operator.

Even if we ensure ut is bounded by a Sigmoid operator, while training, Bz is possible to divergence
to big enough to break the physical constraint, to avoid it, we constrain it by Bmax × Tanh(Bz).
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Table 6: The Hyperparameter of Each Mode
Mode κmax Bmax θstd θmean

free flow 0.95 0.20 0.01 0.00
car-following 0.85 0.60 0.02 0.00
lane changing 0.90 0.75 0.08 0.25

merging 0.88 0.80 0.05 -0.15
emergency 0.70 0.40 0.01 0.00

These design is convenient for us to introduce prior knowledge into different Koopman operator
because we only need to set different κmax, θstd, θmean and Bmax for different driving mode. In
free flow mode, persist speed and fixed direction is reflected by the slowly decaying rate, equals
to (κmax → 1), small perturbation from stochastic vehicle behavior (θstd, θmean → 0), and trivial
external influence (Bmax → 0), the difference of car-following mainly comes from front vehicle
influence which can be reflected by a larger Bmax > 0. While in lane-changing and merging, the
external influence is obvious (Bmax → 1) and there is explicit vibration period (θmean ̸= 0), here we
set lane changing initialized to be larger than 0 and merging initialized to be smaller than zero is to
avoid lane changing and merging to be trained to same mode quickly. Finally, for emergency mode,
vehicle accelerates quickly, represented by κmax < 1 while suffered from larger external influence
Bmax > 0.

We list all parameter setting in Table.6

A.3 RUNTIME EFFICIENCY ANALYSIS

Our Koopman-based formulation provides a clear inference-time advantage over conventional spa-
tiotemporal models. Unlike recurrent or attention-based architectures that must repeatedly unroll
temporal dynamics or compute global pairwise attention, our approach decouples temporal evo-
lution into single linear Koopman operator propagations, allowing the full multi-step future to be
generated in one pass. Consequently, the inference complexity is dominated by a sparse graph
message passing stage with O(Ed) cost, where E = k · N is the number of edges, plus Koop-
man evolution whose cost depends solely on the latent dimension d of complexity O(Td2), totally
O(kNd + Td2). Compared to the complexity of spatiotemporal GNN of O(T (Nd2 + kNd)) and
spatiotemporal Transformer O(T 2N2d), the computation complexity is greatly reduced.

Experientially, on an NVIDIA 4090, our model achieves an average inference time 0.20 s for 10
batches with a batchsize of 128, which already satisfies the real-time deployment.

A.4 USE OF LLMS STATEMENT

We used large language models (LLMs) during the process of preparing this manuscript. Specif-
ically, LLMs were employed for language polishing, grammar checking, and improving clarity of
expression in certain sections of the paper. All technical content, derivations, experiments, and re-
sults were designed, implemented, and verified by the authors. The authors take full responsibility
for the correctness and integrity of the scientific contributions presented in this work.

16


	Introduction
	Background Knowledge
	Koopman Operator Theory & Koopman Control Theory
	Macroscopic Traffic Flow Models

	Problem Formulation
	Methodology
	Traffic Flow Evolution on Graph
	Macro dynamics with vehicle interaction
	Micro dynamics with flow propagation

	Experiments
	Datasets
	Experiment settings
	Results
	Ablation study

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Traffic Flow Evolution on Graph
	Koopman Operator Design
	Runtime Efficiency Analysis
	Use of LLMs Statement


