

000 001 002 003 004 005 MICRO-MACRO COUPLED KOOPMAN MODELING ON 006 GRAPH FOR TRAFFIC FLOW PREDICTION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Traffic systems are inherently multi-scale: microscopic vehicle interactions and
032 macroscopic flow co-evolve nonlinearly. Microscopic models capture local inter-
033 actions but miss flow evolution; macroscopic models enforce aggregated consis-
034 tency yet overlook stochastic vehicle-level dynamics. We propose Micro-Macro
035 Coupled Koopman Modeling (MMCKM), which lifts the coupled dynamics to
036 a high-dimensional linear observation space for a unified linear-operator repres-
037 entation. Unlike grid-based discretizations, MMCKM adopts a vehicle-centric
038 dynamic graph that preserves microscopic perturbations while respecting macro-
039 scopic conservation laws by discretizing PDEs onto this graph. At the micro scale,
040 scenario-adaptive Koopman evolvers selected by an Intent Discriminator are de-
041 signed to model vehicle dynamics. A Koopman control module explicitly for-
042 mulate how flow state influences individual vehicles, yielding bidirectional cou-
043 plings. To our knowledge, this is the first work to jointly model vehicle trajec-
044 tories and traffic flow density using a unified Koopman framework without requiring
045 historical trajectories. The proposed MMCKM is validated for trajectory predic-
046 tion on NGSIM and HighD. While MMCKM uses only real-time measurement,
047 it achieves comparable or even higher accuracy than history-dependent baselines.
048 We further analyze the effect of the operator interval and provide ablations to show
049 the improvement by intent inference, macro-to-micro control, and diffusion. Code
050 and implementation details are included to facilitate reproducibility.
051
052

1 INTRODUCTION

053 Traffic flow modeling is a fundamental challenge in intelligent transportation systems, since it re-
054 quires simultaneously understanding of intrinsically coupled microscopic vehicle behaviors and
055 macroscopic flow dynamics. Individual vehicle maneuvers aggregate to form traffic patterns, while
056 macroscopic states constrain and influence microscopic driving decisions. The bidirectional cou-
057 pling creates a complex nonlinear system (Wang et al., 2024). Existing methods typically adopt
058 either a microscopic or macroscopic perspective, failing to capture the critical cross-scale interac-
059 tions. Microscopic-based approaches model individual vehicle dynamics through causal temporal
060 inference (Mukherjee et al., 2020; Messaoud et al., 2020) or multi-agent interactions on spatial do-
061 main (Rahmani et al., 2023; Shi et al., 2024; Gao et al., 2025). While these methods capture local
062 behaviors and stochastic events, they struggle to maintain global flow consistency and scale poorly
063 with vehicle numbers. On the other side, macroscopic models use partial differential equations
064 (PDEs) such as the Lighthill-Whitham-Richards (LWR) model to ensure conservation laws and flow
065 continuity (Hu et al., 2022; Mahjourian et al., 2022), but they are deficient at responding to indi-
066 vidual vehicle events that critically influence traffic evolution (Haghghi & El Amine Hamri, 2024;
067 Rowan et al., 2025).

068 Despite recent advances, a fundamental gap remains: few existing methods simultaneously bridge
069 microscopic and macroscopic traffic while maintaining computational tractability and physical inter-
070 pretability. Recent efforts to bridge micro-macro scales through game-theoretic frameworks(Huang
071 et al., 2020) or kinematic limits(Cristiani & Sahu, 2016) offer theoretical insights, but they either
072 assume homogeneous drivers or asymptotic regimes, limiting their real-world applicability. (Lat-
073 tanzio & Piccoli, 2010; Bellomo et al., 2014; Wang et al., 2024; Fan et al., 2025). The fundamental
074 challenge remains how to model the nonlinear, bidirectional coupling in a unified, computationally
075 tractable framework.

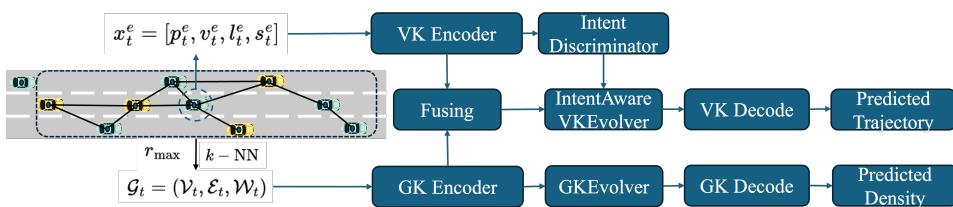


Figure 1: We propose a Micro-Macro Coupled Koopman Modeling (MMCKM) framework that lifts microscopic vehicle trajectories and macroscopic flow evolution into linear observation spaces, enabling unified prediction. The traffic environment is formulated as a directed graph. At the macroscopic level, vehicle-centric graph discretization captures how microscopic perturbations affect wave propagation. At the microscopic level, scenario-adaptive Koopman operators and Koopman control incorporate macroscopic flow conditions into vehicle dynamics.

We propose a Micro-Macro Coupled Koopman Modeling (MMCKM) framework that leverages Koopman operator theory to transform nonlinear multi-scale dynamics into high-dimensional linear observation spaces, enabling unified prediction through linear operators as in Fig. 1. Our key insight is that both microscopic vehicle trajectories and macroscopic flow evolution can be lifted into respective observation spaces where their dynamics become approximately linear. Besides, the Koopman operator exhibits the Markovian property when observation functions are time-invariant (Wu & Noé, 2020; Kostic et al., 2022; Tafazzol et al., 2024). Therefore, our framework relies solely on current state information without requiring historical tracking or continuous object detection. The bidirectional coupling is achieved through the following mechanisms: microscopic vehicle events influence macroscopic flow through a diffusion term added to the LWR model, capturing how individual vehicle perturbations propagate through traffic flow. Unlike existing approaches that discretize traffic flow on fixed spatial grids of the Euclidean coordinate, we propose a vehicle-centric graph discretization on the Lagrangian coordinate that preserves microscopic perturbations while maintaining macroscopic conservation laws. For the microscopic dynamics, we design a scenario-adaptive Koopman operator selection mechanism to capture vehicle dynamics in different driving scenarios. And macroscopic flow states affect microscopic vehicle dynamics through Koopman control, where flow conditions serve as external inputs to affect individual vehicle dynamics.

Our framework makes three major contributions:

1. **Vehicle centric PDE on graphs:** We derive an advection–diffusion evolution on a dynamic vehicle graph with skew-symmetric advection and positive semi-definite diffusion, ensuring energy-preserving advection and nonnegative diffusion process, with a constructive parameterization for antisymmetry.
2. **Unified history-free Koopman modeling:** We show how macro/micro observables can be evolved by time-invariant Koopman operators, enabling accurate trajectory prediction from a single snapshot; we align Koopman spectra with graph-PDE spectra to improve stability and interpretability.
3. **Physics-guided multi-regime micro dynamics:** A lightweight intent discriminator selects among parameter-bounded Koopman evolvers; a Koopman-control path injects macro flow with ISS-style bounds on control/output, reducing long-horizon drift.

Beyond predictive performance, our framework provides explicit insights through learned edge weights that quantify interaction intensities between vehicles. These weights evolve dynamically to reflect changing driving conditions, offering interpretable measures for downstream decision-making modules in autonomous driving systems, a capability unique to our vehicle-centric graph formulation.

108 **2 BACKGROUND KNOWLEDGE**
109110 **2.1 KOOPMAN OPERATOR THEORY & KOOPMAN CONTROL THEORY**
111112 The Koopman operator provides a powerful framework for analyzing nonlinear dynamical systems
113 through linearization in an observation space. Considering a discrete-time nonlinear dynamical
114 system:

115
$$x_{t+1} = f(x_t), \quad x_t \in \mathbb{R}^n \quad (1)$$

116 By Koopman operator theory, there exists an infinite-dimensional Hilbert space of observable func-
117 tions:

118
$$g := \{\phi_i\}_{i=1}^{\infty}, \quad \mathbb{R}^n \rightarrow \mathbb{R} \quad (2)$$

119 where system dynamics become linear. The Koopman operator \mathcal{K} acts on observables as:

120
$$\mathcal{K}g = g \circ f \quad (3)$$

121 where \mathcal{K} is a linear (though infinite-dimensional) operator. In the lifted observation $z_t = g(x_t) =$
122 $[\phi_1(x_t), \phi_2(x_t), \dots]^T$, the evolution becomes:

123
$$z_{t+1} = \mathcal{K}z_t \quad (4)$$

124 The original state can be recovered through reconstruction functions $\psi : z \mapsto x$.125 **Finite-dimensional approximation via DMD:** While Koopman operator requires infinite dimensions,
126 Dynamical Mode Decomposition (DMD) enables finite-dimensional approximation suitable
127 for practical applications(Brunton et al., 2016). DMD identifies a finite set of modes that capture the
128 dominant dynamics, with each mode characterized by an eigenvalue λ_j whose real part determines
129 growth/decay rates and imaginary part captures oscillation (Avila & Mezić, 2020).130 **Neural network parameterization:** Recent advances leverage neural network’s universal approxi-
131 mation capabilities to learn both observable functions $\phi : \mathbb{R}^n \mapsto \mathbb{R}^d$ and reconstruction functions
132 $\psi : \mathbb{R}^d \mapsto \mathbb{R}^n$ (Lusch et al., 2018). The key insight is to learn a representation where the Koopman
133 operator becomes approximately diagonal:

134
$$x_{t+1} = \psi(K\phi(x_t)) \quad (5)$$

135 where $K \approx \text{diag}(\lambda_1, \dots, \lambda_d)$. The diagonalization enables efficient evolution:

136
$$z_{t+1}^j = e^{\lambda_j} z_t^j \quad (6)$$

137 providing both computational efficiency and interpretability through modal decomposition.

138 **Extension to controlled system:** For systems with external inputs:

139
$$x_{t+1} = f(x_t, u_t) \quad (7)$$

140 Koopman control theory introduces an actuation operator \mathcal{B} that lifts control inputs into the obser-
141 vation space(Proctor et al., 2018; Strässer et al., 2023):

142
$$z_{t+1} = \mathcal{K}z_t + \mathcal{B}u_t \quad (8)$$

143 This formulation maintains linearity in the observation space while accommodating external influ-
144 ences. Crucially, the framework imposes minimal constraints on the control structure, allowing us to
145 model abstract influences, such as macroscopic traffic flow effects on individual vehicles, as control
146 inputs. This flexibility is particularly valuable for multi-scale systems where cross-scale interactions
147 lack explicit mathematical forms but significantly impact dynamics.148 The Markovian property of the Koopman evolution, when observation functions are time-invariant,
149 enables prediction using only current state information—eliminating the need for historical tracking
150 that burdens conventional sequence-based methods.151 **2.2 MACROSCOPIC TRAFFIC FLOW MODELS**
152153 Macroscopic models treat traffic as a continuum fluid, with the LWR model serving as the funda-
154 mental first-order theory. The traditional LWR model describes traffic density evolution through a
155 conservation equation describing the fluid propagation dynamics:

156
$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{Q}(\rho) = 0 \quad (9)$$

162 where $\rho(x, t)$ represents traffic density and $\mathbf{Q}(\rho) = \rho\mathbf{v}(\rho)$ is the flux function with $\mathbf{v}(\rho)$ denoting
 163 the density-dependent velocity and wave propagation speed field direction which can be viewed as
 164 an advection process.

165 Traditional PDE discretization methods for traffic flow work on the Euclidean coordinate and divide
 166 roads into fixed spatial cells. This approach fundamentally limits their ability to capture vehicle-
 167 level perturbations. Stochastic behaviors are averaged within each cell, which eliminates the high-
 168 frequency dynamics that is crucial for understanding traffic flow. Our work addresses this limitation
 169 by introducing a Lagrangian discretization on vehicle-centric graphs.

171 3 PROBLEM FORMULATION

172 We address the multi-scale traffic flow modeling problem where both individual vehicle dynamics
 173 and macroscopic traffic density evolution are jointly considered. Unlike traditional models that focus
 174 solely on vehicle behaviors or flow modeling, our framework captures the bidirectional coupling
 175 between microscopic vehicle dynamics and macroscopic flow patterns.

176 We assume that the ego vehicle can only get measurements of surrounding vehicles within a detection
 177 range r_{\max} . At each time step t , we represent the traffic system as a dynamical weighted directed
 178 graph $\mathcal{G}_t = (\mathcal{V}_t, \mathcal{E}_t, \mathcal{W}_t)$, where:

- 181 Nodes \mathcal{V}_t represent vehicles. For a vehicle i , its state x_t^i includes position $p_t^i \in \mathbb{R}^2$, velocity
 182 $v_t^i \in \mathbb{R}^2$, lane ID l_t^i and vehicle size $s_t^i \in \{0, 1\}$ with $s_t^i = 0$ being large vehicles whose
 183 length is longer than 6.5 m and $s_t^i = 1$ being small vehicles. For the ego vehicle, we use
 184 the notation as $x_t^e = [p_t^e, v_t^e, l_t^e, s_t^e]$.
- 185 Edges \mathcal{E}_t describe spatial interaction between vehicles. We construct using k-nearest neighbors (k-NN)
 186 based on Euclidean distance to balance computational efficiency with interaction coverage. We use incidence matrix B_t to represent the interaction between them.
 187 For two vehicles i and j , we set $B_{t,ij} = 1$ if there is an edge from v_j to v_i is interaction
 188 between them and $B_{t,ij} = 0$ otherwise.
- 189 Edge weights \mathcal{W}_t quantifies vehicle interaction intensity and traffic flow propagation efficiency.
 190 To reflect the propagation of traffic flow and the effect of vehicle interaction on traffic flow, we use two edge weights and learn them from node features.

191 Usually, the graph topology is described by graph Laplacian operator $L = BWB^\top = D - A$, where
 192 D is the degree matrix and A is the adjacency matrix. The graph Laplacian L has a conjugate edge
 193 Laplacian $L_e = B^\top WB$ which has the same non-zero eigenvalues L . This formulation enables us
 194 to express traffic dynamics through graph operators that preserve physical laws.

195 We adopt Koopman-based approach to lift the nonlinear coupling micro-macro system to a higher-
 196 dimensional linear observation space. A critical advantage of Koopman-based approach is its
 197 Markovian property, which enables us to predict using only current state information \mathcal{G}_t without
 198 requiring historical trajectories. The model predicts the ego vehicle future trajectory position and
 199 traffic density evolution over T_f prediction.

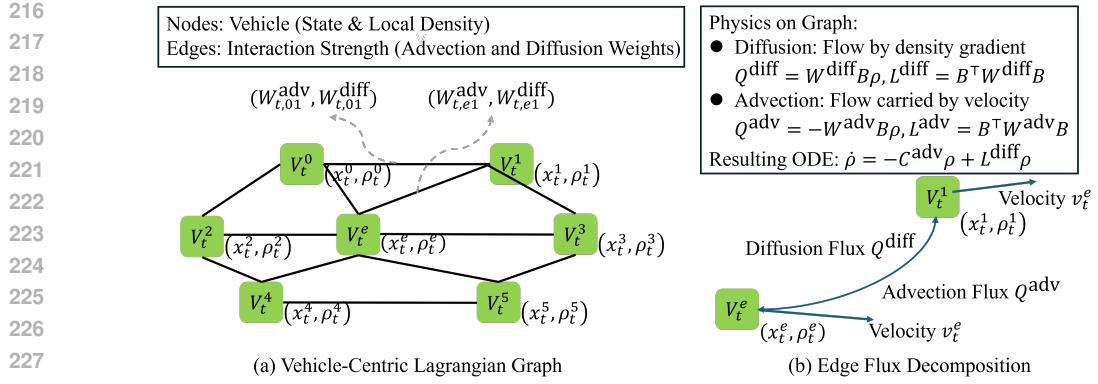
204 4 METHODOLOGY

205 In this paper, we model the cross-scale traffic dynamics. The framework is illustrated in Fig.1.

208 4.1 TRAFFIC FLOW EVOLUTION ON GRAPH

210 Traditional spatial discretization fundamentally cannot capture how individual vehicle perturbations
 211 propagate through traffic. We pioneer a Lagrangian approach that discretizes PDEs directly onto
 212 vehicles as graph nodes. This is not merely a change of coordinates—it fundamentally preserves
 213 information that spatial methods inherently lose. We give the detailed proof in Appendix.A.1 which
 214 is one of the core innovation in this paper. The evolution on graph is:

$$215 \dot{\rho} = -C^{\text{adv}}\rho + L^{\text{diff}}\rho, \quad C^{\text{adv}} = B^\top W^{\text{adv}}B, \quad L^{\text{diff}} = B^\top W^{\text{diff}}B \quad (10)$$



229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 2: Illustration of traffic flow evolution on vehicle-centric Lagrangian Graph. (a) Lagrangian discretization: Unlike traditional Eulerian methods that discretize space into fixed grids, we treat vehicles as dynamic nodes \mathcal{V}_t in the graph \mathcal{G}_t . The mesh moves with the traffic flow, allowing the model to preserve high-frequency microscopic perturbations. (b) Edge flux decomposition: The advection flux captures velocity-induced transport via a skew-symmetric C^{adv} , while the diffusion flux captures density-gradient interactions via a PSD operator L^{diff} .

where $\rho = [\rho_1, \dots, \rho_N]$ is a vector with ρ_i being the density at the position of vehicle i , N is the number of vehicle, C^{adv} is the advection operator which is an antisymmetric matrix describing the traffic flow, and L^{diff} is the diffusion operator which is a positive semi-definite (PSD) matrix representing the perturbation from surrounding vehicles. We use two edge weight matrices W^{adv} and W^{diff} to denote the advection and diffusion coefficients respectively. This formulation is fundamentally different from previous work that discretize space on the Euclidean coordinate and calculate density as average traffic state within cells. Instead, we discretize on the Lagrangian coordinate and get density values around each vehicles. Therefore, how each vehicle affects flow propagation is explicitly formulated. Specifically, we use edge weights W^{adv} and W^{diff} to explicitly encode vehicle-to-vehicle interaction strengths, providing interpretable measures that are unavailable in grid-based methods.

According to graph spectrum thoery, if L^{diff} and C^{adv} are commute, i.e., $L^{\text{diff}} C^{\text{adv}} = C^{\text{adv}} L^{\text{diff}}$, they can be diagonalized by the same eigenvectors U :

$$\begin{aligned} \tilde{L}^{\text{diff}} &:= U^* L^{\text{diff}} U = \text{Diag}(\eta_1, \dots, \eta_N), \\ \tilde{C}^{\text{adv}} &:= U^* C^{\text{adv}} U = \text{Diag}(j\xi_1, \dots, j\xi_N), \end{aligned} \quad (11)$$

where $j^2 = -1$ is the imaginary unit, η are the eigenvalues of L^{diff} and $j\xi$ are the eigenvalues of C^{adv} , n and m are the number of eigenvalue. Since L^{diff} is positive semi-definite, all eigenvalues are all real number. The advection term C^{adv} is antisymmetric, so the eigenvalues are all conjugate pure imaginary or 0. We further project the density ρ through U and get dynamics in the projected space as:

$$\dot{\hat{\rho}} = -U^* C^{\text{adv}} U \hat{\rho} + U^* L^{\text{diff}} U \hat{\rho} = (\text{Diag}(\eta) - j\text{Diag}(\xi)) \hat{\rho}, \quad (12)$$

where $\hat{\rho} = U \rho$. The solution for the ODE equation 12 is:

$$\hat{\rho} = e^{(\text{Diag}(\eta) - j\text{Diag}(\xi))t} \hat{\rho}(0), \quad (13)$$

In traffic flow, L^{diff} and C^{adv} are usually not commute, leading them generally not simultaneously diagonalizable in finite dimensions, however, Koopman lifting enables us to approximate their joint evolution in a higher-dimensional linear space, where eigen-decomposition is no longer strictly required.

4.2 MACRO DYNAMICS WITH VEHICLE INTERACTION

The dynamics of $\hat{\rho}$ in equation 12 share the same structure as the linear dynamics in the observation space in Koopman theory, which inspires us to lift the macro dynamics to a linear space.

At each time-step, the edge weights \mathcal{W} consists of two matrices W^{adv} and W^{diff} , which are usually unknown directly from measurements. To reflect how vehicle interactions affect flow dynamics, we use two GNNs to get the edge weights $\mathcal{W} = \{W^{\text{diff}}, W^{\text{adv}}\}$. The two GNN takes $(\mathcal{V}, \mathcal{E})$ as inputs, and outputs the diffusion and advection weights respectively.

To reflect their different physical properties, we design specific structure for diffusion operator and advection operator to ensure L^{diff} PSD and C^{adv} antisymmetric. For diffusion operator, we initialize the diffusion edge undirected and adopt Softplus activation for W^{diff} to keep PSD for diffusion operator. While in advection operator, we reconstruct the graph into a directed graph with edges aligned with the direction of speed field, after obtaining the weights W^{adv} via advection network, we add a reverse edge of equal weight for each original edge to ensure the antisymmetric. Therefore the corresponding diffusion operator L_{diff} is symmetric and the advection operator C_{adv} is antisymmetric.

Inspired by the linear dynamics in the projected space $\hat{\rho}$, we lift the graph features to an observation space Z_t by the Koopman Operator theory.

$$\text{Encoder} : Z_t = \phi_Z(\mathcal{G}_t), \quad (14)$$

$$\text{Evolver} : Z_{t+1} = K_Z Z_t, \quad (15)$$

$$\text{Decoder} : \rho_{t+1} = \psi_Z(Z_{t+1}), \quad (16)$$

where ϕ_Z is a GNN to lift the graph features to the observation space Z , ψ_Z is an MLP to decode Z to density, and K_Z are a learnable matrix that represents the linear dynamics in the observation space.

We design the loss function for the encoder and decoder as:

$$\mathcal{L}_{\text{encode}}^{\text{macro}} = \|\phi_Z(\mathcal{G}_{t+1}) - K_Z \phi_Z(\mathcal{G}_t)\|_2^2, \quad \mathcal{L}_{\text{decode}}^{\text{macro}} = \|\bar{\rho}_{t+1} - \rho_{t+1}\|_1^2 \quad (17)$$

where $\bar{\rho}$ is the ground truth density as label when training.

In practical traffic flow, the diffusion operator L^{diff} and advection operator C^{adv} generally do not commute. We therefore do not assume exact commutation, instead, we penalize the commutator:

$$\mathcal{L}_{\text{JAD}} = \|L^{\text{diff}} C^{\text{adv}} - C^{\text{adv}} L^{\text{diff}}\|_F^2 \quad (18)$$

where the subscript F is Frobenius norm. This design reduces basis rotation and improves operator-splitting stability under the Lie-Trotter scheme:

$$e^{\Delta t (L^{\text{diff}} - C^{\text{adv}})} \approx e^{\Delta t L^{\text{diff}}} e^{-\Delta t C^{\text{adv}}} \quad (19)$$

this regularizer is fully differentiable and requires no eigen-decomposition thus being numerically stable and further motivates aligning the Koopman operator equation 6.

To ensure the consistence between Koopman operator K with diffusion operator L^{diff} and advection operator C^{adv} , we set $\theta = \frac{1}{\Delta t} \log(K)$ (principal matrix logarithm) and align real θ with $\lambda(L^{\text{diff}})$ and imaginary θ with $\omega(C^{\text{adv}})$, formally:

$$\mathcal{L}_{\text{spec}} = \min_{\Pi} (\|\text{Re}(\lambda(\theta)) - \Pi \lambda_L\|_2^2 + \|\text{Im}(\lambda(\theta)) + \Pi \omega(\lambda_C)\|_2^2) \quad (20)$$

Π is permutation operator, we compute $\log(K)$ via a numerically stable real Schur form with small Tikhonov regularization on near unit eigenvalues. When K is not diagonalisable, the Schur-log remains well-defined and differentiable almost everywhere, avoiding branch ambiguities. This explicitly couples the Koopman dynamics to the learned graph-PDE operators, consistent with the splitting used in training.

4.3 MICRO DYNAMICS WITH FLOW PROPAGATION

Similar to macroscopic traffic dynamics, vehicle behaviors are also highly nonlinear. Besides, when drivers make decisions, they often consider not only the motion state of themselves, but also surrounding traffic. Therefore, the macroscopic flow propagation also have a direct impact on microscopic dynamics. To avoid the analysis and computation complexity, we also lift the original measurement of vehicle state x_t^e to a higher linear observation space. To reflect how flow propagation affects microscopic vehicle behaviors, we adopt the Koopman Control Theory and design a

324 CrossAttention block to take the role of Actuation Operator that projects macroscopic influence into
 325 the vehicle observation space:

326 **Encoder** : $z_t = \phi_z(x_t^e)$ (21)

328 **Evolver** : $z_{t+1} = K_z z_t + B_z u_t, \quad u_t = \text{CA}(z_t, Z_t)$ (22)

329 **Decoder** : $p_{t+1}^e = \psi_z(z_{t+1})$ (23)

330 where CA is CrossAttention block fusing z_t from micro and Z_t from macro, ϕ_z, ψ_z are MLP, K_z
 331 and B_z are trainable matrix, p_{t+1}^e is predicted trajectory. We choose a CrossAttention module rather
 332 than a simple linear projection for u_t because traffic influence is highly context-dependent: vehicles
 333 in different positions or modes contribute unequally. Attention naturally captures this heterogeneity,
 334 aligning with the actuation operator role. To ensure the design of Koopman control is input-state sta-
 335 ble (ISS), we need to constrain the output of CrossAttention u_t as bounded and the spectrum radius
 336 $\kappa(K_z) < 1$ which ensures that errors decay geometrically with rate $\kappa(K_z)$ and that external influ-
 337 ences remain bounded. This provides a formal guarantee that MMCKM will not suffer unbounded
 338 error growth over iterative Koopman applications. The detailed proof is provided in Appendix.A.2.

339 In practical driving process, the microscopic dynamics always present varying features in different
 340 driving scenarios: free flow, car-following, lane changing, merging, and emergency maneuvers.
 341 Driver intent is commonly modeled as discrete variable and can switch abruptly, implying that a
 342 single operator must account for different dynamical regimes. However, directly increasing the
 343 dimension of Koopman operator matrix K_z is computationally prohibitive when we calculate the
 344 eigenvalue decomposition. Furthermore, different modes may present distinct Koopman spectra and
 345 control response. For example, in free flow, drivers tend to keep a constant maximum speed. The
 346 spectrum radius $\kappa(K_z)$ is approximate one. The imaginary part of the eigenvalues is small since
 347 the oscillation in trajectory present a low frequency variance. Besides, since there is few vehicles,
 348 its interaction with surrounding vehicles is weak, and the injects from Cross Attention is small.
 349 However, in the lane-changing scenario, vehicles have longitudinal and lateral interaction, leading
 350 the coupled oscillation at both real and imaginary eigenvalues of Koopman operator.

351 To capture various driving scenarios with a low computation cost, we construct a family of Koop-
 352 man operators consists of multiple 2×2 complex-valued blocks and diagonal real-valued blocks
 353 with distinct initialization schemes such that each operator presents a distinct driving mode. The
 354 variation among these operators is achieved by (i) imposing different bounds on the spectral radius
 355 of K_z reflecting stability margin, (ii) tuning the coefficients of the complex block control terms θ to
 356 adjust oscillation frequency, and (iii) constraining the maximum actuation operator B_{\max} for actua-
 357 tion strength. The detailed settings and their physical interpretations are provided in Appendix A.2.
 358 To determine which operator is most consistent with current traffic environment, we design an Intent
 359 Discriminator, which is implemented as a mixture-of-experts (MoE) that evaluates the current vehi-
 360 cle state x_t^e and the graph-based observation Z_t to accordingly select the most plausible Koopman
 361 operator from the candidate set. We implement this Intent Discriminator by a MLP through super-
 362 visioned learning, training label are generated in data preprocessing calibrated by acceleration and lane
 363 variance. In this way, the high computation burden of a single, over-generalized Koopman operator
 364 is alleviated. Instead, the system leverages a structured ensemble of specialized operators, with the
 365 Intent Discriminator serving as the gating mechanism that adaptively aligns operator selection with
 366 the underlying driving intent.

367 For the loss function design, the loss functions for the micro encode and decode are calculated by:

$$\mathcal{L}_{\text{encode}}^{\text{micro}} = \|\phi_z(x_{t+1}^e) - K_z \phi_z(x_t^e)\|_2^2, \quad \mathcal{L}_{\text{decode}}^{\text{micro}} = \|\hat{y}_{t+1}^e - y_{t+1}^e\|_2^2 \quad (24)$$

369 Finally, after training, we only obtain Koopman encoder (GNN and MLP), Koopman operator (ma-
 370 trix) and decoder (MLP) without any eigendecomposition. The computation cost focuses on GNN
 371 forward passes and linear Koopman operator iteration.

373 5 EXPERIMENTS

374 5.1 DATASETS

375 We use trajectory prediction and traffic flow prediction to validate the proposed method. We utilize
 376 two highway datasets for our experiments: NGSIM and HighD. We use NGSIM US-101 highway

378
 379 Table 1: RMSE on NGSIM Dataset. Trajectory error are reported as RMSE. The operator interval
 380 in our model is set to 0.1s and 1.0s

381 382 383 384 385 386 387 388 389	With historical data			Without historical data		
	Prediction Horizon (sec)	BAT	MS-STGCN	Vit-Traj	CV	Ours 1.0sec
1	0.27	0.42	0.39	0.64	0.54	0.33
2	0.90	1.00	0.95	1.48	0.98	0.92
3	1.43	1.66	1.58	2.63	1.57	1.63
4	2.76	2.44	2.22	4.33	2.26	3.17
5	3.80	3.05	2.89	5.62	2.93	4.65

390 Table 2: Comparison of accuracy of Different Operator Interval on the HighD dataset

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	Interval	0.04s	0.1s	0.2s	0.4s(*)	1s
ADE		2.84	2.06	1.88	1.65	2.90

subset, which captures vehicle trajectories sampled at 10 Hz. The HighD dataset is collected in German highways with a frequency at 25 Hz.

5.2 EXPERIMENT SETTINGS

We establish a perception space centered on the ego vehicle, covering three lanes (the ego vehicle lane and two adjacent lanes) over a longitudinal range of 90 m ahead and 60 m behind. The k-NN algorithm is set to identify the 6 nearest vehicles within the perception space to build edge connections. We use kernel density estimation to get density from vehicle positions. We use Gaussian Kernel and set the kernel bandwidth to 25 m. We set the dimension of the observation space Z and z both as 128. For the Intent Discriminator, we set five driving modes: free flow, car-following, lane changing, merging, and emergency. Intent labels are derived directly from raw trajectories using simple, deterministic rules based on longitudinal acceleration, relative headway, and lateral displacement. We assign free flow when vehicles move with stable high speed and minimal interaction; car-following when longitudinal motion is governed by a leading vehicle with reduced headway; lane changing when sustained lateral motion accompanies a lane transition; merging when lateral entry is initiated from on-ramp; and emergency when abrupt braking or rapid acceleration indicates evasive maneuvers. These labels are fully reproducible and require no learned classifier or manual annotation.

We compare against widely-cited recent baselines that are representative of history-dependent predictors: BAT (Liao et al., 2024), MS-STGCN (Tang et al., 2023), Vit-Traj (Cheng et al., 2025). Because history-dependent methods assume access to 3-8 s of trajectories while ours is strictly history-free, our comparison focuses on identical prediction horizons and the same current-state inputs, thereby take CV (Mercat et al., 2019) as a history-free reference. Where intervals differ across papers, we adopt each method’s native setting and report our model at matching horizons to avoid conflating sampling effects with modeling capacity. We view these results as conservative for our approach, since removing historical inputs typically disfavors accuracy.

To our knowledge, no prior work evaluates vehicle-centric graph discretization of LWR with diffusion on highway data with publicly-standardized density labels. We therefore treat KDE-estimated density as operational ground truth and report absolute errors to KDE as an internal consistency metric. The default bandwidth of KDE kernel is 25 meters. KDE provides a consistent operational definition, though we acknowledge its limitations and encourage future benchmarks with sensor-derived density labels. Through ablation study, we identify the efficiency of diffusion operator. Cross-paper macro density SOTA comparison are left for future benchmarks.

5.3 RESULTS

Table.1 presents prediction accuracy on the NGSIM dataset. We see that the proposed method has a lower prediction error than the SOTA CV method for all prediction horizons. Remarkably, our approach, as a completely history-free model, achieves performance comparable to state-of-the-art methods that require historical trajectory data during the past 3-8 seconds. Traditional sequence-

432 based methods like BAT and MS-STGCN impose substantial computational overhead through
 433 trajectory tracking and storage, limiting real-time applicability. Our Markovian approach eliminates
 434 these requirements and also maintains competitive accuracy.

435 From Table 1, we observe that the operator interval plays a central role in the error accumulation
 436 pattern. Our method exhibits an approximately linear growth of error with respect to the number of
 437 iterative steps, which is governed by the Koopman sampling interval. The 0.1s operator achieves
 438 excellent short-term accuracy (RMSE=0.33 @ 1s) approaching history-dependent models. Never-
 439 theless, its error accumulates more rapidly over longer horizons because each prediction requires
 440 repeated applications of the operator. For example, forecasting 5 seconds ahead involves 50 itera-
 441 tions. In contrast, the 1.0 s operator begins with a higher short-term error but demonstrates superior
 442 long-term prediction accuracy. For the prediction over 5 seconds, only five iterations are required.
 443 This controlled growth in error stands in clear contrast to the exponential error amplification often
 444 observed in recurrent architectures. These results suggest that, over extended horizons, our approach
 445 can surpass existing algorithms as the dependence on initial historical data diminishes.

446 To further examine the effect of operator intervals, we use the HighD dataset, which has a higher
 447 sampling frequency and provides a more suitable data for evaluating how interval settings affect
 448 prediction. We evaluate prediction accuracy for operator intervals at 0.04s, 0.1s, 0.2s, 0.4s, and 1.0s.
 449 We compare the Average Displacement Error (ADE) in Table. 2. There is a trade-off between the
 450 ability to capture high-frequency and numerical stability: small intervals preserve high-frequency
 451 dynamics but suffer numerical instability, while large intervals ensure stability but sacrifice dynamic
 452 fidelity. An excessively small interval (e.g., 0.04s) forces each operator to represent minimal dy-
 453 namic changes, causing eigenvalues to cluster near unity and creating a numerically ill-conditioned
 454 system highly sensitive to noise. This configuration requires numerous iterations for prediction, am-
 455 plifying computational errors. On the other side, an overly large interval (e.g., 1.0s) cannot capture
 456 high-frequency dynamics because within a single second, significant portions of driving maneuvers
 457 occur compared to complete steering actions typically span 5-6 seconds. The optimal interval of 0.4s
 458 achieves the best ADE performance, balancing dynamic representation with numerical stability.

461 5.4 ABLATION STUDY

462 **Component-wise Analysis** To validate our bidirectional coupling mechanism, we systematically ab-
 463 late the Intent Discriminator and CrossAttention modules. Table 3 presents RMSE comparisons for
 464 four variants: the complete model (MMCKM), Intent Discriminator ablation (MMCKM-I), Koop-
 465 man control ablation (MMCKM-C), and both components removed (MMCKM-IC).

466 The results demonstrate complementary roles in multi-scale coupling: The Intent Discriminator pri-
 467 marily enhances short-term predictions (29% improvement at 1s), effectively selecting appropriate
 468 dynamics for immediate vehicle behaviors. However, its effectiveness diminishes over longer hori-
 469 zons as the latent macroscopic state Z_t evolves independently, accumulating errors that degrade
 470 intent classification accuracy. Maintaining accurate Intent Discrimination would require simultane-
 471 ous state updates for all surrounding vehicles leading a computationally prohibitive requirement that
 472 would negate our method’s efficiency advantages.

473 The Koopman control module proves crucial for long-term stability, reducing error by 37% at 5
 474 seconds compared to MMCKM-C. By injecting macroscopic flow information as control inputs, it
 475 maintains the bidirectional coupling essential for accurate long-horizon prediction. Removing this
 476 module reduces the system to a single-operator framework, eliminating the critical macro-to-micro
 477 influence that constrains vehicle trajectories within physically plausible flow patterns.

478 **Validation of Diffusion Term** Comparing the complete advection-diffusion model (LC) with
 479 advection-only variant (C) on NGSIM. From Table.4, the dramatic degradation confirms our the-
 480 oretical framework: the diffusion operator L^{diff} captures how microscopic vehicle perturbations
 481 propagate through traffic flow, a phenomenon completely absent in traditional LWR models. With-
 482 out this term, the model reverts to deterministic flow evolution, unable to represent the stochastic
 483 perturbations that characterize real traffic. This result validates our fundamental contribution: the
 484 first successful incorporation of microscopic stochasticity into macroscopic PDE models through
 485 vehicle-centric discretization.

486

487 Table 3: Ablation Study of Different Components on HighD, Operator Interval at 0.2s

Model	1s	2s	3s	4s	5s
MMCKM	0.29	0.60	1.21	1.72	2.73
MMCKM-I	0.74	1.39	1.96	2.90	3.81
MMCKM-C	0.41	1.01	1.89	2.50	3.46
MMCKM-IC	0.80	1.74	2.54	3.48	4.62

493

494

495 Table 4: Comparison of Removal Diffusion Term on NGSIM

Model	1s	2s	3s	4s	5s
LC	3.2%	4.1%	5.6%	7.4%	9.5%
C	6.1%	7.2%	10.7%	12.0%	14.1%

496

497

498

499

500

501

502 Table 5: Comparison of Different KDE Bandwidth on NGSIM

Bandwidth	1s	2s	3s	4s	5s
10	6.4%	7.7%	11.6%	12.8%	14.0%
20	4.7%	5.9%	7.3%	9.6%	11.1%
25	3.2%	4.1%	5.6%	7.4%	9.5%
30	4.0%	5.2%	7.0%	9.2%	10.4%
40	4.8%	6.3%	8.0%	10.5%	11.7%
50	5.5%	6.6%	8.5%	11.1%	12.6%

502

503

504

505

506

507

508

509

Analysis of KDE Bandwidth Sensitivity The KDE bandwidth implicitly determines the spatial frequency content of the density field, and thus affects the supervision signal for learning diffusion and advection operators. We compare the performance of macro module with bandwidth $h \in \{10 \text{ m}, 20 \text{ m}, 25 \text{ m}, 30 \text{ m}, 40 \text{ m}, 50 \text{ m}\}$ and report the macro-level RMSE at Table. 5. The bandwidth at 25 meters achieves the best accuracy, while both extremely small and excessively large bandwidths lead to a lower prediction accuracy. By comparing the advection-only variant (C) model in Table. 4 and the complete model (LC) with different kernel length values in Table. 5, we see that the proposed model achieves more accurate under a wide range of bandwidth values, from 20 m to 50 m. We also note that with a extreme small bandwidth of 10 m, LC has a worse prediction than the C model. The possible reason is explained as follows. When the KDE bandwidth is reduced to 10 meters, the density labels become dominated by high-frequency noise, causing arbitrary vehicle perturbation to variance in diffusion term. In other words, according to Eq. 32, small KDE bandwidth brings noise on the density prediction. To fit this noisy, the learned \tilde{W}_{diff} amplifies the noise rather than capturing genuine perturbation propagation. With the perturbation of \tilde{W}_{diff} , the commutator of \mathcal{L}_{JAD} and spectral alignment of $\mathcal{L}_{\text{spec}}$ is disrupted, leading the macro evolver K_Z to a wrong direction. As a result, LC with bandwidth 10 performs even worse than C. This result reveals an important insight: diffusion improves macro prediction only when the density supervision carries physically meaningful gradients; otherwise, diffusion becomes a harmful channel that injects noise into operator learning.

6 CONCLUSION

We introduce Micro-Macro Coupled Koopman Modeling for traffic prediction, unifying microscopic vehicle dynamics and macroscopic flow evolution within a single Koopman-based architecture. On macro side, we discretize advection-diffusion traffic flow PDE onto vehicle-centric dynamic graph and construct diffusion operator and advection operator ensuring the physical property on graphs. On micro side, we design scenario-adaptive Koopman evolvers selected by Intent Discriminator and utilize Koopman control to inject macro-flow influence into vehicle dynamics. Experiments and ablation studies validate the roles of operator interval, intent gating, KDE kernel sensitivity and macro-to-micro control. Future work will leverage learned edge weights for interpretable interaction measures in vehicle planning and control. Another direction is to expand the framework into urban scenarios under heterogeneous graph structure.

540 **7 ETHICS STATEMENT**
 541

542 This research does not involve human subjects, personally identifiable information, or sensitive data.
 543 All experiments were conducted on publicly available datasets (HighD, NGSIM), which are widely
 544 used in the transportation research community. No personally identifiable information is included
 545 in these datasets. The potential societal impact of this work lies in its application to intelligent
 546 transportation systems, where improved modeling and prediction could enhance traffic safety and
 547 efficiency. At the same time, we acknowledge possible risks, such as misuse in surveillance or
 548 decision-making systems that may raise fairness concerns if applied without proper consideration.
 549 We encourage responsible and transparent deployment of the proposed methods.

550
 551 **8 REPRODUCIBILITY STATEMENT**
 552

553 We are committed to ensuring the reproducibility of our work. To this end, we provide detailed
 554 descriptions of our model architecture, training procedures, and evaluation metrics in the main pa-
 555 per and appendix. The datasets used in this study (HighD, NGSIM) are publicly available. We
 556 will release our code, including data preprocessing pipelines and training scripts, in an anonymous
 557 repository upon publication. Hyperparameters and implementation details are also provided in the
 558 supplementary materials to facilitate replication of our results.

559
 560 **REFERENCES**
 561

562 Allan M Avila and Igor Mezić. Data-driven analysis and forecasting of highway traffic dynamics.
Nature communications, 11(1):2090, 2020.

564 Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, and JUAN SOLERZ. On the multiscale
 565 modeling of vehicular traffic: From kinetic to hydrodynamics. *Discrete & Continuous Dynamical*
566 Systems-Series B, 19(7), 2014.

568 Steven L Brunton, Bingni W Brunton, Joshua L Proctor, and J Nathan Kutz. Koopman invariant
 569 subspaces and finite linear representations of nonlinear dynamical systems for control. *PloS one*,
 570 11(2):e0150171, 2016.

571 Rongjun Cheng, Xudong An, and Yuanzi Xu. Vit-traj: A spatial–temporal coupling vehicle trajec-
 572 tory prediction model based on vision transformer. *Systems*, 13(3), 2025.

574 Emilio Cristiani and Smita Sahu. On the micro-to-macro limit for first-order traffic flow models
 575 on networks. *Networks and Heterogeneous Media*, 11(3):395–413, 2016.

576 Tingting Fan, Jieming Chen, and Edward Chung. Integrating micro and macro traffic control for
 577 mixed autonomy traffic. *Communications in Transportation Research*, 5:100188, 2025.

579 Yuan Gao, Kaifeng Yang, Yibing Yue, and Yunfeng Wu. A vehicle trajectory prediction model that
 580 integrates spatial interaction and multiscale temporal features. *Scientific Reports*, 15(1):8217,
 581 2025.

582 Hassan Haghghi and Maamar El Amine Hamri. Discrete event conversion of microscopic model
 583 based on minimizing the number of time intervals. *Journal of Simulation*, pp. 1–11, 2024.

585 Yihan Hu, Wenxin Shao, Bo Jiang, Jiajie Chen, Siqi Chai, Zhening Yang, Jingyu Qian, Helong Zhou,
 586 and Qiang Liu. Hope: Hierarchical spatial-temporal network for occupancy flow prediction. *arXiv*
 587 *preprint arXiv:2206.10118*, 2022.

588 Kuang Huang, Xuan Di, Qiang Du, and Xi Chen. A game-theoretic framework for autonomous
 589 vehicles velocity control: Bridging microscopic differential games and macroscopic mean field
 590 games. *Discrete and Continuous Dynamical Systems-B*, 25(12):4869–4903, 2020.

592 Vladimir Kostic, Pietro Novelli, Andreas Maurer, Carlo Ciliberto, Lorenzo Rosasco, and Massimil-
 593 iano Pontil. Learning dynamical systems via koopman operator regression in reproducing kernel
 hilbert spaces. *Advances in Neural Information Processing Systems*, 35:4017–4031, 2022.

594 Corrado Lattanzio and Benedetto Piccoli. Coupling of microscopic and macroscopic traffic models
595 at boundaries. *Mathematical Models and Methods in Applied Sciences*, 20(12):2349–2370, 2010.
596

597 Haicheng Liao, Zhenning Li, Huanming Shen, Wenxuan Zeng, Dongping Liao, Guofa Li, and
598 Chengzhong Xu. Bat: Behavior-aware human-like trajectory prediction for autonomous driving.
599 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 10332–10340,
600 2024.

601 Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
602 of nonlinear dynamics. *Nature communications*, 9(1):4950, 2018.

603

604 Reza Mahjourian, Jinkyu Kim, Yuning Chai, Mingxing Tan, Ben Sapp, and Dragomir Anguelov.
605 Occupancy flow fields for motion forecasting in autonomous driving. *IEEE Robotics and Au-
606 tomaton Letters*, 7(2):5639–5646, 2022.

607

608 Jean Mercat, Nicole El Zoghby, Guillaume Sandou, Dominique Beauvois, and Guillermo Pita Gil.
609 Kinematic single vehicle trajectory prediction baselines and applications with the ngsim dataset.
610 *arXiv preprint arXiv:1908.11472*, 2019.

611

612 Kaouther Messaoud, Itheri Yahiaoui, Anne Verroust-Blondet, and Fawzi Nashashibi. Attention
613 based vehicle trajectory prediction. *IEEE Transactions on Intelligent Vehicles*, 6(1):175–185,
614 2020.

615

616 Saptarshi Mukherjee, Sen Wang, and Andrew Wallace. Interacting vehicle trajectory prediction with
617 convolutional recurrent neural networks. In *2020 IEEE International Conference on Robotics and
618 Automation (ICRA)*, pp. 4336–4342. IEEE, 2020.

619

620 Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Generalizing koopman theory to allow for
621 inputs and control. *SIAM Journal on Applied Dynamical Systems*, 17(1):909–930, 2018.

622

623 Saeed Rahmani, Asiye Baghbani, Nizar Bouguila, and Zachary Patterson. Graph neural networks
624 for intelligent transportation systems: A survey. *IEEE Transactions on Intelligent Transportation
625 Systems*, 24(8):8846–8885, 2023.

626

627 Davies Rowan, Haitao He, Fang Hui, Ali Yasir, and Quddus Mohammed. A systematic review
628 of machine learning-based microscopic traffic flow models and simulations. *Communications in
629 Transportation Research*, 5:100164, 2025.

630

631 Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Mtr++: Multi-agent motion prediction
632 with symmetric scene modeling and guided intention querying. *IEEE Transactions on Pattern
633 Analysis and Machine Intelligence*, 46(5):3955–3971, 2024.

634

635 Robin Strässer, Julian Berberich, and Frank Allgöwer. Robust data-driven control for nonlinear
636 systems using the koopman operator. *IFAC-PapersOnLine*, 56(2):2257–2262, 2023.

637

638 Saeid Tafazzol, Nan Li, Ilya Kolmanovsky, and Dimitar Filev. A comparison between markov chain
639 and koopman operator based data-driven modeling of dynamical systems. In *2024 American
640 Control Conference (ACC)*, pp. 3352–3358. IEEE, 2024.

641

642 Luqi Tang, Fuwu Yan, Bin Zou, Wenbo Li, Chen Lv, and Kewei Wang. Trajectory prediction
643 for autonomous driving based on multiscale spatial-temporal graph. *IET Intelligent Transport
644 Systems*, 17(2):386–399, 2023.

645

646 Zelin Wang, Zhiyuan Liu, Qixiu Cheng, and Ziyuan Gu. Integrated self-consistent macro-micro
647 traffic flow modeling and calibration framework based on trajectory data. *Transportation research
648 part C: emerging technologies*, 158:104439, 2024.

649

650 Hao Wu and Frank Noé. Variational approach for learning markov processes from time series data.
651 *Journal of Nonlinear Science*, 30(1):23–66, 2020.

648 **A APPENDIX**649 **A.1 TRAFFIC FLOW EVOLUTION ON GRAPH**650 Starting from the 2D LWR equation with diffusion on a multi-lane highway in equation 9, where
651 density ρ is described in a Eulerian coordinate $x - y$, and decompose the flux into advection and
652 diffusion components:

653
$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{Q} = 0 \quad (25)$$

654 To avoid averaging vehicle perturbation within cell segmented discretization, instead of discretizing
655 on a fixed Eulerian grid, we adopt a Lagrangian perspective in a dynamical directed weighted graph
656 $\mathcal{G}_t = (\mathcal{V}_t, \mathcal{E}_t, \mathcal{W}_t)$ where vehicles form nodes. At time t , we have nodes $\mathcal{V}_t = \{v_1, \dots, v_N\}$ rep-
657 resenting N vehicles perceived within in range r_{\max} containing node positions $\mathbf{x}_i = (x_i, y_i)$ in 2D
658 space, while density at nodes $\rho_i(t)$ representing local traffic density around vehicle i . The vehicles
659 are connected using k-NN to form edges \mathcal{E}_t based on Euclidean distance. Each edge e_{ij} from node i
660 to j defines a direction vector $\mathbf{d}_{ij} = \frac{\mathbf{x}_j - \mathbf{x}_i}{\|\mathbf{x}_j - \mathbf{x}_i\|}$ and decomposed diffusion weight w_{ij}^{diff} and advection
661 weight w_{ij}^{adv} to be determined based on vehicle relative states $w_{ij} = f(v_i, v_j)$. These edges form
662 a non-orthogonal, redundant directional template for approximate gradients. Unlike a regular grid
663 with two orthogonal directions (x and y), we have k directions per node that sample the 2D space
664 irregularly and totally M edges.665 In a continuous space, a difference is essentially the functional difference between adjacent points,
666 while the gradient is the spatial derivative of the function:

667
$$\Delta f(x) = f(x + \Delta x) - f(x), \quad \nabla f(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x} \quad (26)$$

668 While on graph, there is no regular grid Δx and density ρ is discretized, but exists the adjacent
669 relationship connected by e_{ij} . Assume two adjacent nodes i and j carry a scale field ρ_i and ρ_j re-
670 spectively, the whole density on discretized nodes on graph is collected by a vector $\rho = [\rho_1, \dots, \rho_N]$
671 where N is the vehicle number which depicts the density scalar at the position of each vehicle, the
672 difference alongside edge e_{ij} equals:

673
$$(\nabla_{\mathcal{G}} \rho)_{e_{ij}} = \rho_j - \rho_i \quad (27)$$

674 the relationship can be denoted as incident matrix B :

675
$$(B\rho)_{e_{ij}} = -\rho_i + \rho_j = \rho_j - \rho_i \quad (28)$$

676 Thereby, the gradient on graph can be written as:

677
$$\nabla_{\mathcal{G}} \rho = B\rho \quad (29)$$

678 Similarly, the divergence on the graph computes computes the net flux on a node across all incident
679 edges:

680
$$\nabla \cdot \mathbf{Q} = \text{div}_{\mathcal{G}} \mathbf{Q} = B^T \mathbf{Q} \quad (30)$$

681 We take the total flux \mathbf{Q} as a summarization of advection flux $Q^{\text{adv}} + \nabla \cdot \mathbf{Q}^{\text{diff}}$ and diffusion flux,
682 where advection flux $\mathbf{Q}^{\text{adv}} = \rho \mathbf{v}$ transported by velocity field \mathbf{v} and diffusion flux $\mathbf{Q}^{\text{diff}} = -D \nabla \rho$
683 follows Fick's law for density gradients, D is the diffusion coefficient.684 **Diffusion Term** According to Fick's Law, the diffusion flux $\mathbf{Q}^{\text{diff}} = -D \nabla \rho$ can be discretized
685 on graph according equation 29, and consider diffusion coefficient D is anisotropy but related to
686 adjacent dynamical node features, we can derive:

687
$$\mathbf{Q}^{\text{diff}} = -W^{\text{diff}} B\rho, \quad W_{ij}^{\text{diff}} = f^{\text{diff}}(v_i, v_j) \quad (31)$$

688 Finally, we calculate the divergence according to equation 30:

689
$$\dot{\rho}^{\text{diff}} = -\nabla \cdot \mathbf{Q}^{\text{diff}} = -\text{div}_{\mathcal{G}} \mathbf{Q}^{\text{diff}} = B^T W^{\text{diff}} B\rho := L_{\text{diff}} \rho \quad (32)$$

690 According to graph Laplacian definition $L = BWB^T$, this equation can be described through a
691 diffusion operator L_{diff} , which is not a graph Laplacian but called edge Laplacian:

692
$$\dot{\rho}^{\text{diff}} := L_{\text{diff}} \rho, \quad L_{\text{diff}} = B^T W^{\text{diff}} B \quad (33)$$

In diffusion term which describes the stochastic perturbation propagates along density gradient, it's an entropy production process, leading the dissipation entropy nonnegative:

$$\frac{d}{dt}\mathcal{E}(\rho) = \frac{d}{dt}\left(\frac{1}{2}\|\rho\|_2^2\right) = \rho^\top \dot{\rho} = \rho^\top (B^\top W^{\text{diff}} B)\rho = (B\rho)^\top W^{\text{diff}}(B\rho) \geq 0 \quad (34)$$

define $y = B\rho$, this equation turns to:

$$y^\top W^{\text{diff}} y \geq 0 \quad (35)$$

thereby, W^{diff} must be positive semi-definite (PSD).

Advection Term In continuous space, $\mathbf{Q}^{\text{adv}} = \rho(\mathbf{x}, t) \cdot \mathbf{v}(\mathbf{x}, t)$, which is a vector field, represents density transported by speed field. On graph, there is no more continuous speed field $\mathbf{v}(x)$, but discretized nodes and edges. In this setting, the direction of speed field $\mathbf{v}(x)$ is not solely 2D x and y coordinates, but formed by M non-orthogonal, redundant direction vector $\mathbf{d}_{ij} = \frac{\mathbf{x}_j - \mathbf{x}_i}{\|\mathbf{x}_j - \mathbf{x}_i\|}$.

In continuous condition, the flux via a section A is:

$$\mathbf{Q}^{\text{adv}} = \int \rho \mathbf{v} \cdot \mathbf{n} \cdot dA \quad (36)$$

where \mathbf{n} is the normal vector of section A . While in graph, there is no more section vertical to speed field but connected with edge channels. We account the flux passing the edge between node i and j . The flux on edge is bidirectional $\mathbf{Q}_{ij} = (\mathbf{Q}_{i \rightarrow j}^{\text{adv}} - \mathbf{Q}_{j \rightarrow i}^{\text{adv}})$, and the flux on edge for one direction equals:

$$\begin{aligned} \mathbf{Q}_{i \rightarrow j}^{\text{adv}} &= \rho_i \cdot (\mathbf{v}_i \cdot \mathbf{d}_{ij}) \cdot dA_{ij} \\ \mathbf{Q}_{j \rightarrow i}^{\text{adv}} &= \rho_j \cdot (\mathbf{v}_j \cdot \mathbf{d}_{ji}) \cdot dA_{ji} \end{aligned} \quad (37)$$

define:

$$a_{ij} := (\mathbf{v}_i \cdot \mathbf{d}_{ij}) \cdot dA_{ij}, \quad a_{ji} := -(\mathbf{v}_j \cdot \mathbf{d}_{ji}) \cdot dA_{ji} \quad (38)$$

we decompose ρ_i and ρ_j to average and difference:

$$\rho_i = \bar{\rho} + \frac{1}{2}(\rho_i - \rho_j), \quad \rho_j = \bar{\rho} - \frac{1}{2}(\rho_i - \rho_j), \quad \bar{\rho} = \frac{1}{2}(\rho_i + \rho_j) \quad (39)$$

then, the advection flux on edge is converted to:

$$\mathbf{Q}_{ij} = \mathbf{Q}_{i \rightarrow j}^{\text{adv}} - \mathbf{Q}_{j \rightarrow i}^{\text{adv}} = a_{ij}\rho_i - a_{ji}\rho_j = \frac{1}{2}(\rho_i - \rho_j)(a_{ij} + a_{ji}) + \bar{\rho}(a_{ij} - a_{ji}) \quad (40)$$

the first term can be rewritten on graph as $W^{\text{adv}} B\rho$ and $W^{\text{adv}} = \frac{1}{2}(a_{ij} + a_{ji})$.

According to equation 25, we calculate the divergence on node:

$$\dot{\rho}^{\text{adv}} = -\nabla \cdot \mathbf{Q}^{\text{adv}} = -\text{div}_G \mathbf{Q}^{\text{adv}} = -B^\top \mathbf{Q}^{\text{adv}} \quad (41)$$

and the discrete conservation law requires the total density is preserved:

$$\mathbf{1}^\top \dot{\rho}^{\text{adv}} = -\mathbf{1}^\top B^\top \mathbf{Q}^{\text{adv}} = 0 \quad (42)$$

since $B\mathbf{1} = 0$, this is guaranteed if \mathbf{Q}^{adv} depends only on the difference $B\rho$ and the second term $\bar{\rho}(a_{ij} - a_{ji})$ vanished.

Finally, the equation 41 can written as:

$$\dot{\rho}^{\text{adv}} = -B^\top W^{\text{adv}} B\rho \quad (43)$$

use a Laplacian operator C^{adv} to denote:

$$\dot{\rho}^{\text{adv}} := -C^{\text{adv}}\rho, \quad C^{\text{adv}} = B^\top W^{\text{adv}} B \quad (44)$$

Furthermore, according to physical law, we require advection is energy-preserving because it's non-dissipative:

$$\frac{d}{dt}\left(\frac{1}{2}\|\rho\|_2^2\right) = \rho^\top \dot{\rho} = \rho^\top C^{\text{adv}}\rho = 0 \quad (45)$$

756 this requires C^{adv} to be an antisymmetric matrix $C^{\text{adv}\top} = -C^{\text{adv}}$. To ensure C^{adv} , we develop a
 757 special parameterization method built from original graph.
 758

759 We first reconstruct the graph into a directed graph with edges aligned with the direction of speed
 760 field, and let $A^{\text{line}} \in \{0, 1\}^{M \times M}$ denote the line-graph adjacency, where $A^{\text{line}}[e, e'] = 1$ iff edges e
 761 and e' share a node. Define a symmetric locality mask:

$$762 \quad M^{\text{loc}} := \frac{1}{2}(A^{\text{line}} + A^{\text{line}\top} - I) \quad (46)$$

764 and introduce an unconstrained parameter matrix $P \in \mathbb{R}^{M \times M}$. We parameterize the advection
 765 weights and operator by:
 766

$$767 \quad W^{\text{adv}} := M^{\text{loc}} \circ (P - P^{\top}), \quad C_{\text{adv}} := B^{\top} W^{\text{adv}} B \quad (47)$$

769 where \circ is the Hadamard product and B is incident matrix. Because M^{loc} is symmetric and $P - P^{\top}$
 770 is skew-symmetric, we have:

$$771 \quad (W^{\text{adv}})^{\top} = M^{\text{loc}} \circ (P^{\top} - P) = -W^{\text{adv}} \quad (48)$$

773 hence, we can get:

$$774 \quad C^{\text{adv}\top} = (B^{\top} W^{\text{adv}} B) = B^{\top} (W^{\text{adv}})^{\top} B = -C^{\text{adv}} \quad (49)$$

775 therefore C^{adv} is antisymmetric, ensuring non-dissipative advection term.
 776

777 In summary, equation 25 can be discretized on graph:
 778

$$778 \quad \dot{\rho} = -C^{\text{adv}} \rho + L^{\text{diff}} \rho \quad (50)$$

780 A.2 KOOPMAN OPERATOR DESIGN

782 In equation 22, even if K_z is stable, if control u_t is infinite and no constrain on B_z , z_t is also divergent.
 783 Furthermore, in practice, the augmented Koopman operator $[K_z|B_z]$ of vehicle dynamics is
 784 constraint by physical limitations such as limited steering angle, throttle and acceleration. Thereby,
 785 we need to ensure u_t is input-state stable (ISS), equals to:

$$786 \quad \exists \text{ const } c \geq 1, \lambda \in (0, 1) \\ 787 \quad \text{s.t. } \|z_t\| \leq c\lambda^t \|z_0\| + \frac{cB_z}{1 - \lambda} \sup_{0 \leq \tau \leq t-1} \|u_{\tau}\| \leq c\lambda^t \|z_0\| + \frac{cB_z}{1 - \lambda} U_{\max} \quad (51)$$

790 To ensure that the observation z is always bounded, we require that the output of CrossAttention u_t
 791 is bounded and $|\lambda| < 1$. For the first requirement, we add a Sigmoid operator before the final output
 792 of the CrossAttention module.
 793

794 For the second requirement, it equals to ensure the spectrum radius $\kappa(K_z) < 1$. In our design,
 795 the Koopman operator $K_z(\lambda)$ is a trainable approximately diagonal matrix with real and complex
 796 eigenvalues. We use Nc 2×2 complex blocks and Nr 1×1 real blocks to construct $K_z(\lambda)$, where
 797 Nc and Nr is a hyperparameter related to Koopman operator dimension. To ensure $\kappa(K_z) < 1$,
 798 we need to simultaneously promise the mode of each complex and real blocks strictly less than 1.
 799 For each complex block, we construct it with two learnable parameter, radius R and rotation θ to
 800 parameterize the complex conjugate eigenvalue pairs $\lambda = Re^{(\pm i\theta)}$, apply to 2×2 blocks:
 801

$$802 \quad K_c = R \times \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \quad (52)$$

804 we further constrain each radius R less than 1 by applying $R = \kappa_{\max} \times \text{sigmoid}(\eta)$, where η is
 805 the eigenvalue of advection operator C^{adv} which governs the traffic flow propagation, while θ_{mean}
 806 and θ_{std} represents the vibration frequency as diffusion operator L^{diff} . In real block, we apply same
 807 constraint on $R = \kappa_{\max} \times \text{sigmoid}(\eta)$ to ensure stability. Furthermore, through this design, we can
 808 directly record $\max(R)$ to quickly estimate spectrum radius of each Koopman operator.
 809

Even if we ensure u_t is bounded by a Sigmoid operator, while training, B_z is possible to divergence
 to big enough to break the physical constraint, to avoid it, we constrain it by $B_{\max} \times \text{Tanh}(B_z)$.

810
811
812
813
814
815
816
817
818

Table 6: The Hyperparameter of Each Mode

Mode	κ_{\max}	B_{\max}	θ_{std}	θ_{mean}
free flow	0.95	0.20	0.01	0.00
car-following	0.85	0.60	0.02	0.00
lane changing	0.90	0.75	0.08	0.25
merging	0.88	0.80	0.05	-0.15
emergency	0.70	0.40	0.01	0.00

These design is convenient for us to introduce prior knowledge into different Koopman operator because we only need to set different κ_{\max} , θ_{std} , θ_{mean} and B_{\max} for different driving mode. In free flow mode, persist speed and fixed direction is reflected by the slowly decaying rate, equals to ($\kappa_{\max} \rightarrow 1$), small perturbation from stochastic vehicle behavior ($\theta_{\text{std}}, \theta_{\text{mean}} \rightarrow 0$), and trivial external influence ($B_{\max} \rightarrow 0$), the difference of car-following mainly comes from front vehicle influence which can be reflected by a larger $B_{\max} > 0$. While in lane-changing and merging, the external influence is obvious ($B_{\max} \rightarrow 1$) and there is explicit vibration period ($\theta_{\text{mean}} \neq 0$), here we set lane changing initialized to be larger than 0 and merging initialized to be smaller than zero is to avoid lane changing and merging to be trained to same mode quickly. Finally, for emergency mode, vehicle accelerates quickly, represented by $\kappa_{\max} < 1$ while suffered from larger external influence $B_{\max} > 0$.

We list all parameter setting in Table.6

A.3 RUNTIME EFFICIENCY ANALYSIS

Our Koopman-based formulation provides a clear inference-time advantage over conventional spatiotemporal models. Unlike recurrent or attention-based architectures that must repeatedly unroll temporal dynamics or compute global pairwise attention, our approach decouples temporal evolution into single linear Koopman operator propagations, allowing the full multi-step future to be generated in one pass. Consequently, the inference complexity is dominated by a sparse graph message passing stage with $\mathcal{O}(Ed)$ cost, where $E = k \cdot N$ is the number of edges, plus Koopman evolution whose cost depends solely on the latent dimension d of complexity $\mathcal{O}(Td^2)$, totally $\mathcal{O}(kNd + Td^2)$. Compared to the complexity of spatiotemporal GNN of $\mathcal{O}(T(Nd^2 + kNd))$ and spatiotemporal Transformer $\mathcal{O}(T^2N^2d)$, the computation complexity is greatly reduced.

Experientially, on an NVIDIA 4090, our model achieves an average inference time 0.20 s for 10 batches with a batchsize of 128, which already satisfies the real-time deployment.

A.4 USE OF LLMs STATEMENT

We used large language models (LLMs) during the process of preparing this manuscript. Specifically, LLMs were employed for language polishing, grammar checking, and improving clarity of expression in certain sections of the paper. All technical content, derivations, experiments, and results were designed, implemented, and verified by the authors. The authors take full responsibility for the correctness and integrity of the scientific contributions presented in this work.

852
853
854
855
856
857
858
859
860
861
862
863