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ABSTRACT

Standard Convolutional Neural Networks are notoriously sensitive to photometric
variations, a critical flaw that data augmentation only partially mitigates without
offering formal guarantees. We introduce the Scale-Equivariant Shift-Invariant
(SEqSI) model, a novel architecture that achieves intensity scale equivariance and
intensity shift invariance by design, enabling full invariance to global intensity
affine transformations with appropriate post-processing. By strategically prepend-
ing a single shift-invariant layer to a scale-equivariant backbone, SEqSI provides
these formal guarantees while remaining fully compatible with common com-
ponents like ReLU. We benchmark SEqSI against Standard, Scale-Equivariant
(SEq), and Affine-Equivariant (AffEq) models on 2D and 3D image-classification
and object-localization tasks. Our experiments demonstrate that SEqSI architec-
tural properties provide certified robustness to affine intensity transformations and
enhances generalization across non-affine corruptions and domain shifts in chal-
lenging real-world applications like biological image analysis. This work estab-
lishes SEqSI as a practical and principled approach for building photometrically
robust models without major trade-offs.

1 INTRODUCTION

Despite their widespread success, standard Convolutional Neural Networks (CNNs) are notoriously
sensitive to photometric variations. Semantically irrelevant changes in image contrast or brightness
can drastically alter a model predictions (Guan & Liu, 2022; Hendrycks & Dietterich, 2019; Torralba
& Efros, 2011), a critical flaw for real-world applications. Data augmentation, mitigates this issue
but acts as a brute-force solution, offering no formal guarantee of robustness.

In this work, we argue for a more principled approach: encoding robustness directly into the network
architecture. We introduce the Scale-Equivariant Shift-Invariant (SEqSI) model, a novel architec-
ture whose outputs are provably invariant to global intensity shifts and equivariant to global
intensity scales by construction. This design provides a robust foundation that can be rendered
fully invariant to affine intensity transformations with appropriate post-processing. Crucially, SE-
qSI achieves this guarantee while remaining practical; it is compatible with standard activations and
introduces negligible computational overhead. Our main contributions are the following ones:

• We propose a novel architecture (SEqSI) which is by design intensity Scale Equivariant
and intensity Shift invariant.

• We address the challenge of achieving invariance from networks whose logits1 are either
affine-equivariant (i.e., scale+shift equivariant) or scale-equivariant and shift-invariant. We

1We call logits the raw output of the network, before any task-specific post-processing.
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show that while this is straightforward for argmax-based tasks (e.g., classification), stan-
dard pipelines for threshold-based tasks (e.g., object localization) are incompatible with
such architectures. We resolve this by introducing a coherent framework pairing output
standardization at inference with a novel Z-scored Mean Squared Error (ZMSE) loss.

• We benchmark SEqSI against Standard, Scale-Equivariant (SEq) (Mohan et al., 2019), and
the more restrictive Affine-Equivariant (AffEq) (Herbreteau et al., 2023) models. We show
that SEqSI architectural design provides certified robustness to affine transformations and
enhances generalization to non-affine corruptions.

• We demonstrate that, unlike normalization pre-processing which only handles global trans-
formations, the architectural properties of SEqSI makes it inherently robust to a range of
spatially-varying affine intensity transformations.

• We demonstrate the advantages of SEqSI on challenging biological imaging tasks, includ-
ing macromolecule classification in Cryo-Electron Tomography (Cryo-ET) and object lo-
calization in fluorescence microscopy. In these two application fields, where severe and
naturally-occurring photometric shifts cause Standard models to fail, SEqSI architectural
guarantees provide robust out-of-distribution generalization, while maintaining high accu-
racy where baselines collapse (see Fig. 1).
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Figure 1: SEqSI is robust to real-world domain shifts for
macromolecule classification on Cryo-ET (CZI) data. Trained
on one data domain, Weighted Back-Projection (WBP), and tested
on three unseen ones, SEqSI generalizes to all unseen domain,
while the Standard model collapses. Mean accuracy (% ± std over
5 seeds) is color-coded (green: success, red: fail).

This paper is organized as follows.
In Section 2, we give formal defini-
tions. In Section 3, we present re-
lated work. In Section 4, we de-
scribe the SEqSI architecture and its
theoretical guarantees. Furthermore,
we present an extensive experimental
validation, starting with classification
benchmarks (Section 5), demonstrat-
ing higher out-of-distribution gener-
alization capabilities on challenging
cryo-ET data (Section 6), and con-
cluding with its application to object
localization (Section 7).

2 PRELIMINARIES

In this section, we present our framework: the group of photometric transformations of interest and
the key properties of equivariance and invariance, which are the mathematical basis for building
networks with provable robustness. Let us define a network as a function f : X → Y that maps
an input image x ∈ X to an output y ∈ Y , also called logits. The input space X encompasses
2D or 3D images, which can be single or multi-channel. In the following, we focus on the large
family of CNN, and introduce constraints that ensure desired properties. In the paper, we refer to an
unconstrained architecture as a Standard network, commonly designed as the composition of linear
layers (either fully connected or convolutional layers, x 7→ Wx + b, where W is a weight matrix
and b is an additive bias) and non-linear activations.

Photometric transformations. These corruptions modify the intensities values of an image without
altering its spatial structure. A photometric transformation is global if the same operator is applied
to every pixel. This operator may be be non-linear, such as the gamma correction (x 7→ xγ).
For a spatially-varying (local) transformations, the intensity variation depends on pixel coordinates
(e.g., non-uniform illumination). As shown by Hendrycks & Dietterich (2019), these variations can
significantly degrade CNN performance.

Our work focuses on the group of global affine intensity transformations, which apply a uniform
scaling and shifting operation to every pixel, modeling changes in contrast and brightness. This
group, denoted Taff, is composed of scaling (Tscale) and shifting (Tshift) operations:

Taff = {Tλ,µ : x 7→ λx+ µ | λ ∈ R∗
+, µ ∈ R}, (1)

where Tscale = {aλ : x 7→ λx | λ ∈ R∗
+} and Tshift = {bµ : x 7→ x + µ | µ ∈ R}. The condition

λ > 0 ensures that the order of intensities is preserved. While our theoretical guarantees apply
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specifically to Taff, we also empirically evaluate robustness against a broader set of photometric
corruptions.

Equivariance and Invariance. These notions are fundamental properties for designing robust ma-
chine learning models, especially in computer vision. They describe how a function output be-
haves under input transformations: equivariance implies a predictable transformation of the output,
whereas invariance means that the output remains unchanged. We formally define these concepts
bellow.

Let f : X → Y be a function (e.g., a neural network) and T be a group of transformations defined
on both, X and Y . The function f is:

• T -equivariant if, for any T ∈ T , applying the transformation before or after the function
f yields the same results: ∀T ∈ T , f(T (x)) = T (f(x)).

• T -invariant if, for any T ∈ T , the output of the function remains unchanged after applying
the transformation to the input: ∀T ∈ T , f(T (x)) = f(x).

3 RELATED WORK

Approximate Robustness. Common strategies for robustness include data augmentation
(Krizhevsky et al., 2012; Hendrycks et al., 2020) and regularization techniques that penalize in-
consistencies under transformations in their loss function (Chen et al., 2022; Midtvedt et al., 2022).
While effective, these methods only encourage approximate invariance and offer no formal guaran-
tee, which is the main contribution of the paper.

Robustness by Architectural Design. A more principled approach, which we adopt, is to de-
sign architectures that are equivariant by construction, building on the theory of Group-Equivariant
CNNs (Cohen & Welling, 2016). For photometric transformations, various categories of work ex-
ist. Some focus on equivariance to color changes (Lengyel et al., 2023; Yang et al., 2024). Others,
like our work, address intensity variations with Scale-Equivariant (SEq) networks (Mohan et al.,
2019) and, more recently, Affine-Equivariant (AffEq) networks (Herbreteau et al., 2023). These ap-
proaches build on a few key principles. SEq networks are constructed by simply removing biases
from all layers, making them equivariant to scaling and compatible with standard activations like
ReLU. To achieve full affine equivariance, the more restrictive AffEq model additionally constrains
convolutional weights to sum to one2 and replaces standard activations with a specialized ‘SortPool’
layer. ‘SortPool’ operates on pairs of features (c1, c2) by sorting their values at each spatial location:
SortPool : (c1, c2) 7→ (min(c1, c2),max(c1, c2)). While this guarantees full affine equivariance, it
introduces a significant trade-off: constraints on weights and activations make AffEq computation-
ally expensive.

4 METHOD

Table 1: Architectural constraints for the four model families.
These principles can be applied to any standard backbone. Weights
constraint are applied channel-wise.

Model Activation Bias Weights constraint

Standard ReLU Yes None
SEq ReLU No None
AffEq SortPool No

∑
w = 1 (for all layers)

SEqSI (ours) ReLU No
∑

w = 0 (1st layer only)

Our goal is to design neural networks
whose final predictions are provably
invariant to global affine photomet-
ric transformations (Taff). Unlike
standard approaches, which rely on
a fragile input normalization step,
we build robustness directly into the
model architecture. Our core strategy
is a two-step process: first, we design
a network whose output logits, f(x),
are shift invariant and scale equivariant by design; second, we apply a simple, task-specific post-
processing function to these logits to guarantee a final invariant prediction. This principled approach
ensures robustness by construction, as detailed in the following sections.

2Constraints applied to convolutions apply analogously to linear layers.
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Figure 2: Comparison of equivariant architectural strategies. (a) The AffEq model from Herbreteau et al.
(2023) enforces strict equivariance in every layer, requiring constrained convolutions and a specialized ‘Sort-
Pool’ activation. (b) Our proposed SEqSI architecture establishes robustness by prepending a single shift-
invariant convolution to a backbone of scale-equivariant layers (bias-free convolution with ReLU). This design
simplifies the construction of robust networks with minimal constraints.

4.1 PROPOSED ARCHITECTURE

We introduce the Scale-Equivariant Shift-Invariant (SEqSI) model (Fig. 2), a practical and efficient
architecture that achieves robustness through a minimal, strategic design. Its construction follows
two principles, following Proposition 2 (see Supp. B.1). First, to ensure scale-equivariance, all lay-
ers in the network are made scale-equivariant by using bias-free layers, scale-equivariant activations
like ReLU, and standard pooling layers, which are inherently affine-equivariant (see Supp. B.3).
Second, to achieve shift-invariance, the initial layer is also made shift-invariant by constraining its
weights to sum to zero3. As shift-invariance is established by this single initial layer, the rest of
the network remains a standard scale-equivariant backbone, while keeping compatible with high-
performance components. This composition yields logits that are provably scale-equivariant and
shift-invariant (f(λx + µ) = λf(x)), providing a robust foundation for achieving full affine in-
variance with an appropriate task specific post-processing. In Supp. E.3.2 we even show that our
approach provide weak4 invariance guarantees for spatially varying affine transformations such as
piecewise constant intensity shifts or intensity shifts varying linearly in space.

The design of SEqSI is motivated by the end-task. While tasks like denoising require full equiv-
ariance at every layer, which forces the use of restrictive architectures like AffEq, classification or
localization require final invariance. By establishing shift-invariance at the very first layer, SEqSI
frees the following layers of the network from strict shift-equivariance constraints, making our ap-
proach more practical. The constraints for all benchmarked models are summarized in Table 1. This
avoids the significant computational overhead of AffEq, which is over 50% slower and requires 3×
more memory. SEqSI adds theoretical guarantees at no computational cost and trains 5% faster
than the Standard baseline with an identical memory footprint (see Supp. C.1). Furthermore, unlike
AffEq, SEqSI is compatible with transfer learning from Standard architectures (see Supp. C.10).

4.2 TASK SPECIFIC POST-PROCESSING

Post-processing for Argmax-based tasks. For any task for which the final prediction is derived
from an ‘argmax’ operation on the logits such as classification or segmentation achieving affine
invariance is straightforward. The core principle is that the ‘argmax’ operation is inherently in-
variant to any transformation that preserves the order of its inputs. Both models, SEqSI and AffEq
are designed such that an affine transformation on the input image induces an order-preserving
transformation on the output logits. Consequently, the ‘argmax’ of the transformed logits remains
unchanged, yielding an invariant prediction. This property proven in Supp. C.3, holds even when a
strictly monotonic increasing function (such as ‘softmax’) is applied before the ‘argmax’ operation.

Post-processing for tasks requiring a thresholding. The classical way to solve object localiza-
tion consists in converting the logits in a score-map ẑ, generally via a sigmoid function (to scale
results in [0, 1]). The network is trained to generate local maxima of this map where objects are
located. During inference, the maxima exceeding a chosen threshold are considered as object lo-
cations. This thresholding step is incompatible with an equivariant network; affine transformation

3To our knowledge, scale-invariance of a convolution is impossible to obtain (see Supp. B.2).
4We call “weak invariance” result that are not fully invariant, e.g., invariant in image sub-parts only.
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on the input image produces transformed logits whose range is shifted and/or scaled, rendering any
fixed threshold meaningless and breaking end-to-end invariance.

We address this issue by introducing an alternative way to generate the score-map that becomes in-
variant to affine transformation when paired with an equivariant network. It consists in standardizing
the network output, as follows:

ẑ = Z(y) =
y − E[y]
σ(y)

, (2)

where E[.] and σ(.) denote the mean and standard deviation (std) operators, respectively. The thresh-
olding of ẑ ≥ γ consists in considering only the voxels whose score is higher than the mean by γ
times the std of the entire map. In Supp. E.1, we provide the invariance proof and further consider-
ations of this thresholding strategy.

The usual training strategy dedicated to object localization, based on the Binary Cross Entropy
(BCE) loss function, requires input standing in the range [0,1]. Hence, it is incompatible with our
new score map generation. Accordingly, we introduce a new loss function, named Z-scored Mean
Squared Error (ZMSE):

L(ẑ, z) = MSE
(
ẑ,Z(z)

)
= MSE

(
Z(y),Z(z)

)
, (3)

where z is the ground-truth (GT) score map. The GT is usually defined by assigning 0 to the
background (outside the objects), and values decreasing linearly from 1 at the object’s barycenter to
0 at its boundaries. The ZMSE forces the network to learn the relative spatial distribution of score
rather than the absolute values, and do not impose the distributions to lie in the same range, as we
are only interested in saving the order and locating maxima. This strategy can be adapted to other
tasks requiring a thresholding such as binary segmentation.

All experiments presented in this paper are repeated with 5 different seeds to ensure statistical
significance, resulting in 5 independently trained model instances.

5 EXPERIMENT 1: IMAGE CLASSIFICATION

In this section, we demonstrate the robustness of SEqSI to photometric corruption for image classi-
fication.

5.1 EXPERIMENTAL SETUP

Architectures. We benchmark four model families summarized in Table 1, based on a ResNet-20
backbone (He et al., 2015), presented in Supp. C.1: Standard, SEq, AffEq, and our proposed SEqSI
models. For the SEqSI and AffEq models, an invariant prediction is obtained by applying a ‘softmax’
followed by an ‘argmax’ operation to the logits, as detailed in Section 4.2.

Table 2: Summary of empirical invari-
ance tests in Supp. Table 7. A model
is marked as invariant (✓) if it achieves
0% prediction error for all transformations
within a class (Shift, Scale, Affine).

Model Shift Scale Affine
Standard ✗ ✗ ✗
SEq ✗ ✓ ✗
SEqSI ✓ ✓ ✓
AffEq ✓ ✓ ✓

Dataset and Training. All models are trained on
CIFAR-10 (Krizhevsky et al., 2009). We select the best
checkpoint based on validation accuracy and report the
mean performance across the runs (see Supp. Table 10
for full results). To isolate architectural contributions to
robustness, our default training pipeline uses only geo-
metric data augmentation (e.g., random flips and crops),
deliberately excluding any photometric augmentations.
This ensures that robustness to photometric corruptions
is a direct result of architectural design, not training data
(see details in Supp. C.1).

5.2 RESULTS AND DISCUSSION

Certified Invariance. We begin by empirically validating the theoretical properties of the models
by measuring their prediction invariance error the percentage of predictions on the CIFAR-10
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Table 3: Robustness to corruptions on the CIFAR-10 test set. Test accuracy (%) of four architectures under
various photometric corruptions. Models are grouped by the training augmentation strategy used: none (Ø),
affine (Aff.), non-affine (NAff.), or all combined (All). Each row corresponds to a different perturbation applied
at evaluation. Within each training strategy (column group), the best result is highlighted in gray. The overall
best accuracy for each perturbation is in bold. Full results with standard deviations are given in Supp. Table 10.

Train Aug. = Ø Train Aug. = Aff Train Aug. = NAff Train Aug. = All

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 91.7 91.3 91.2 89.6 91.2 90.6 91.0 88.9 92.1 92.1 91.5 90.5 92.0 91.6 91.8 90.6

Affine transformations (Aff.)
Shift 51.1 53.4 91.2 89.6 91.2 90.3 91.0 88.9 88.5 88.7 91.5 90.5 91.4 90.7 91.8 90.6
Scale (< 1) 68.0 91.3 91.2 89.6 90.2 90.6 91.0 88.9 88.8 92.1 91.5 90.5 90.6 91.6 91.8 90.6
Scale (> 1) 91.0 91.3 91.2 89.6 91.1 90.6 91.0 88.9 91.6 92.1 91.5 90.5 92.0 91.6 91.8 90.6
Affine 64.1 65.1 91.2 89.6 90.7 89.6 91.0 88.9 87.0 88.1 91.5 90.5 90.9 90.1 91.8 90.5

Non-Affine transformations (NAff.)
Shift saturated 72.0 73.4 79.0 76.7 79.3 79.0 78.4 76.1 87.3 86.9 86.4 85.0 87.1 86.1 86.4 84.4
Scale (> 1) saturated 78.1 78.3 77.6 76.0 78.0 77.7 76.9 75.7 88.0 87.5 87.1 85.6 87.9 86.7 86.8 85.0
Affine saturated 59.9 59.6 72.3 70.9 72.6 73.3 71.7 70.6 85.0 84.8 84.1 82.8 84.9 84.0 83.7 81.9
Spatially-varying Affine 31.8 38.2 72.5 63.6 90.2 88.3 73.0 66.6 88.2 87.0 89.6 88.6 89.9 89.3 89.4 88.1
Contrast Inversion 9.6 15.4 56.5 52.9 61.3 56.2 52.9 55.0 90.2 90.3 87.6 86.3 89.2 87.8 86.5 84.6
Noise (low) 90.8 90.6 90.1 88.5 90.0 89.8 90.0 87.8 91.6 91.7 91.0 90.0 91.5 91.2 91.3 89.8
Noise (high) 19.0 22.4 15.2 20.3 15.5 19.8 16.0 19.2 79.6 80.0 78.7 76.6 78.3 78.3 77.9 75.2
Gamma (darken) 74.3 76.4 79.9 76.4 82.5 79.5 79.9 76.2 89.6 88.8 88.3 86.6 89.5 87.8 88.0 86.0
Gamma (lighten) 85.9 85.3 90.3 88.6 90.6 89.9 90.0 88.3 91.8 91.9 91.1 90.2 91.7 91.3 91.5 90.2

Figure 3: Photometric corruptions used for model robustness evaluation and data augmentation. The
figure displays a reference image (a) and its alteration by various types of corruptions. The distribution plot
above each represents the reference pixel distribution (blue) and the perturbed pixel distribution (red). Each sub-
figure is labeled for reference: (all transformations, except (h), are global: a unique value is randomly picked
in the corresponding distribution) additive shift with µ ∈ [−2.0, 2.0] (b) and a saturated version with µ ∈
[−0.7, 0.7] (c); scaling with λ ∈ [0.0, 1.0] (d), λ ∈ [1.0, 4.0] (e), and a saturated version with λ ∈ [1.0, 3.0]
(f); affine transformation with λ ∈ [0.0, 4.0], µ ∈ [−2.0, 2.0] (g); a spatially-varying affine transformation with
λ(u, v) ∈ [0.1, 0.5] and µ(u, v) ∈ [−1, 1], where u,v are pixel coordinates (h); contrast inversion which is a
spatially-varying scale transformation with λ(u, v) ∈ [−1.0,−0.2] (i); additive Gaussian noise T (x) = x+ n
where n ∼ N (0, σ2) with low intensity (σ ∈ [0.0, 0.03]) (j) and high intensity (σ ∈ [0.15, 0.25]) (k); non-
linear transformations via gamma correction T (x) = xγ , showing image lightening (γ ∈ [0.2, 1.0]) (l) and
darkening (γ ∈ [1.0, 5.0]) (m) ; and affine saturated with λ ∈ [0.7, 1.3], µ ∈ [−0.3, 0.3] (n);

test set that change when a global affine intensity transformation is applied (protocol in Supp. C.4).
As summarized in Table 2 and detailed in Supp. Table 7, both SEqSI and AffEq achieve perfect
(0% error) affine invariance, empirically confirming their design. In contrast, the Standard model
is not invariant, and the SEq model is only invariant to scaling, highlighting the effectiveness of the
architectural constraints.

Architectural Robustness to Affine and Non-Affine Photometric Corruptions. To investigate
the impact of architectural design, we train all models without photometric augmentation (Table 3,
col. Ø) and evaluate their performance against the wide spectrum of corruptions shown in Fig. 3.
SEqSI and AffEq demonstrate their advantage: they maintain high accuracy on all affine corruptions,
unlike Standard and SEq models whose performance degrades significantly. Notably, this architec-
tural benefit extends to unseen non-affine corruptions, where SEqSI outperforms other models
on 6 out of 9 transformations. This suggests that built-in affine invariance fosters a more general-
ized form of robustness, even for unseen corruptions beyond the theoretical guarantees of the model.
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Interaction with Affine and Non-Affine Data-Augmentation. We next investigate the interplay
between architectural priors and data-driven robustness, by training all models with three distinct
augmentation strategies: Aff. (non-saturated affine), NAff. (non-affine and saturated affine), and
All (the complete set of 13 perturbations). To ensure a fair comparison, the transformations used for
augmentation share the same parameters as those used for evaluation (Fig. 3). A detailed description
of these augmentation strategies is provided in Supp. C.2. The results are presented in Table 3.

The key finding is that architectural priors and data augmentation are complementary. In this con-
trolled setting, where training augmentations perfectly match the evaluation corruptions, the uncon-
strained Standard model is expected to perform better. Nevertheless, the results show that SEqSI,
despite its architectural constraints, still remains competitive. When trained with the All strategy, its
accuracy on non-affine corruptions is very close to the Standard. This is a significant result because
it demonstrates that the SEqSI prior is not overly restrictive and does not compromise the capability
of the model to learn by using data augmentation. Unlike the strongly constrained AffEq model,
which systematically underperforms SEqSI model, showing a clear advantage of our architecture.

Scalability to Complex Datasets. Beyond CIFAR-10, we conducted further experiments on the
more challenging Oxford-IIIT Pets and Stanford Cars datasets. The results, detailed in Supp. C.8,
confirm that SEqSI maintains its certified invariance and achieves competitive performance, demon-
strating its applicability to complex, high-resolution tasks. Moreover, SEqSI is compatible with
transfer learning from Standard architectures, a property not provided by AffEq (see Supp. C.10).

Conclusion SEqSI provides a practical method for certified affine invariance, overcoming the lim-
itations of prior work. Unlike AffEq, it achieves this without the high computational cost or perfor-
mance degradation from overly restrictive constraints. Our experiments show that SEqSI architec-
tural prior provides robustness to affine intensity transformations and generalizes to unseen
non-affine corruptions, even without specific data augmentation. Crucially, it complements data
augmentation, maintaining certified invariance while demonstrating a learning capability compara-
ble to unconstrained models across a wide range of corruptions.

6 EXPERIMENT 2: MACROMOLECULE CLASSIFICATION IN CRYO-ET

To demonstrate the practical benefits of our approach, we evaluate its Out-Of-Distribution (OOD)
generalization on a challenging real-world task: macromolecule classification in cryo-electron to-
mography (cryo-ET), which are 3D grayscale images. We use data from the recent Chan Zucker-
berg Initiative (CZI) challenge (Harrington et al., 2024). Each biological sample (tomogram) is
processed through four different denoising pipelines (Weighted Back-Projection (WBP), Denoised,
IsoNet Corrected and CTF Deconvolved), which act as distinct photometric domains. As shown
in Fig. 1, Supp. Fig. 6 and Supp. Table 18, these pipelines induce severe shifts in contrast and
brightness, creating a challenging generalization problem and a natural testbed for OOD robustness.

6.1 EXPERIMENTAL SETUP

Table 4: Performance comparison on test set. Models were trained on WBP
data. Results are reported as mean accuracy (Acc.) ± std. Best results for
each metric are in bold.

Standard SEq SEqSI AffEq
Data Type Acc. (%) Acc. (%) Acc. (%) Acc. (%)

WBP (in-distrib.) 87.17 ± 1.50 87.69±0.82 85.15±3.59 79.26 ± 4.04

CTF Deconvolved 48.91 ± 11.04 65.21±6.08 66.51 ± 9.75 79.07 ± 5.04
Denoised 22.36 ± 6.59 28.42±7.68 74.53±4.25 61.79 ± 5.97
IsoNet Corrected 15.95 ± 1.44 16.67±0.00 73.21±4.18 46.37 ± 5.98

We perform a 6-class
macromolecule classifi-
cation task using a 3D
ResNet backbone inspired
by ResNet-18 for Standard,
SEq and AffEq baselines
and our SEqSI model.
Our experimental design
directly test OOD capabil-
ities: we train models on a
single domain (WBP) and
evaluate their performance on the three unseen domains (Denoised, IsoNet Corrected and CTF
Deconvolved). For each run, the model with the highest validation accuracy is selected for testing.
We use a strict tomogram-level split (5 train, 1 val, 1 test) to prevent data leakage. The complete
experimental protocol is detailed in Supp. D.1.
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6.2 RESULTS AND DISCUSSION

The results in Table 4 and Fig. 1 highlight the critical role of built-in invariance for OOD general-
ization. On the in-distribution WBP data, the SEq model achieves the highest accuracy (87.69%),
closely followed by the Standard model (87.17%) and our SEqSI model (85.15%). The AffEq model
is also competitive. The true advantage of architectural priors becomes evident when generalizing to
the unseen domains. On the Denoised and IsoNet Corrected data, the performance of both the Stan-
dard and SEq models collapses to near-random chance.5 In contrast, SEqSI maintains high accuracy
(74.53% and 73.21% respectively), demonstrating remarkable robustness. The AffEq model also
proves robust, significantly outperforming the non-invariant baselines, though it does not reach the
performance of SEqSI on these two domains. Interestingly, on the CTF Deconvolved domain, AffEq
is the top performer (79.07%), with SEqSI (66.51%) and SEq (65.21%) also showing strong, com-
petitive performance, far surpassing the Standard model (48.91%).This provides strong evidence
that architectural invariance is a key mechanism for generalizing across real-world photomet-
ric variations, a crucial feature for applications like cryo-ET analysis. While no single invariant
model dominates across all domains, SEqSI presents the most compelling trade-off, delivering ex-
cellent generalization to most OOD conditions while remaining competitive on in-distribution data.

7 EXPERIMENT 3: OBJECT LOCALIZATION

The task of object localization consists in estimating the position of gravity center of each object of
interest in an image to either count them or study spatial distribution. It is a common preliminary
step in instance segmentation methods: each location can be used to position a bounding-box (Zhou
et al., 2019; Duan et al., 2019). For biological images, object localization has been largely studied
with approaches locating object in an unsupervised manner in 2D (Midtvedt et al., 2022), improving
localization performances in case of very dense object distributions (Van De Looverbosch et al.,
2025). A lot of segmentation methods designed for fluorescence microscopy (Schmidt et al., 2018;
Weigert et al., 2020; Mandal & Uhlmann, 2021; Rapilly et al., 2025) first locate objects before
initializing shape models. In microscopy imaging, photometric conditions can vary a lot, depending
on microscope settings. Robust methods to photometric corruptions are of particular interest to
process image with unseen conditions. While some solution rely on training models on huge datasets
(Pachitariu et al., 2025), frugal approaches based on intrinsic robustness need to be investigated,
particularly in the case of 3D, where annotations are rare and costly.

7.1 EXPERIMENTAL SETUP

Architectures. We compare 4 U-Net architectures (Ronneberger et al., 2015): Standard, SEq, Af-
fEq and our SEqSI. The baseline networks (Standard and SEq) are trained using the approach based
on sigmoid and BCE loss. Both AffEq and SEqSI are trained using the ZMSE and the standardized
score maps (Eq. equation 2) ensuring theoretical invariance (see Supp. E.2.1 for details).

Datasets. We conduct experiments on two datasets: i) Data Science Bowl 2018 (DSB) (Goodman
et al., 2018), a dataset of 2D real microscopy images from a Kaggle challenge, and focused on
the 497 fluorescence images, each containing dozens of objects; ii) a set of 3D synthetic images
representing nuclei in fluorescence microscopy (see details in Supp. E.2.2).

Metric. Each method is evaluated via a score integrating between 0 and a maximum distance D, an
accuracy curve (d 7→ acc(d)). The accuracy for a given d (in pixels) quantifies the amount of objects
correctly predicted, meaning located at a distance lower or equal than d to their corresponding GT
(see details in Supp. E.2.3, along with choice of D for each set).

Choice of the threshold value. For each method, the thresholding value used during the local
maxima extraction, either after the sigmoid for classical approach or after standardization for our
approach, is obtained by maximizing the score over the validation set.

5We further show in App. D.2 that even with a min-max normalization pre-processing, the Standard model
fails to generalize across domains, unlike our architecturally SEqSI models.
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Figure 4: Comparison of behavior for object localization between a [0,1] normalization pre-processing
and invariant approaches on a spatially-varying shift. The image comes from DSB test set. The positions
estimated on the clean (corrupted resp.) image are in red (green, resp.). The shift here increases linearly with
the pixel position (from top left to bottom right). The score compares the predictions with the GT positions.
The invariance measure compares the predictions on the clean and corrupted image following the method of
Supp. E.3.1. Non-visible red points correspond to perfectly overlapping green ones (invariance).

7.2 RESULTS AND DISCUSSION

Certified invariance. We conduct an empirical validation of the invariance of our approach on the
2D dataset of real images. Methods trained with input images normalized in [0,1] are evaluated for
multiple scale, shift or affine transformations. We obtain similar results than those summarized
in Table 2: only AffEq and SEqSI models with the standardized score-map guarantee affine
invariance of locations prediction. All details on the invariance verification procedure are provided
in Supp. E.3.1. Performance results of models trained on the DSB set are illustrated in Fig. 4.

Normalization pre-processing vs invariant models. While standard image normalization pre-
processing (e.g., normalizing to [0,1] or zero-mean/unit-variance) leads to global photometric affine
invariance, it fails for spatially-varying ones. In contrast, our approach maintains robust perfor-
mance even under spatially-varying corruptions. We compare the Standard and SEq (with [0,1]
normalization pre-processing) and, AffEq and SEqSI under a spatially-varying photometric shift.
This experiment was conducted on the real world DSB set. The result for a shift, varying linearly in
space, is illustrated in Fig. 4. Experimental details and theoretical invariance guarantees (focusing
on the difference between normalization and the zero-sum layer of SEqSI) are provided in App.
E.3.2. Though weaker than for global case, the guarantees remain significant.

Binary segmentation. Binary segmentation is a subtask of object localization, as score map
thresholding is required for both. As segmentation masks are available for the DSB set, we evaluated
our method on this set for binary segmentation. Theoretical guarantees hold (see Supp. F).

Robustness to Affine and Non-Affine Photometric Corruptions. Similarly to classification, we
trained the models using different data-augmentation strategy and evaluated the location estimation
on corrupted images (see experimental details in Supp. E.3.3). We see in Table 5 that SEqSI is the
best model for every augmentation strategy on uncorrupted images and all affine corruptions.
Stand. trained with Aff. (or All.) get close, but architectural design performs better than aug-
mentation. For NAff. corruptions, SEqSI is less dominant, but with no augmentation still perform
very well on a few corruptions while others’ performance drops. With augmentation it is the best or
highly competitive. It is particularly visible for the NAff. augmentation experiment: Aff. corrup-
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Table 5: Robustness to perturbations on the 3D synthetic test set of fluorescence microscopy. Test score
for D = 6 of four architectures under photometric corruptions. Results grouped by the training augmentation
strategy : none (Ø), affine (Aff.), non-affine (NAff.), or all combined (All). Each row corresponds to a different
perturbation applied at evaluation. Within each training strategy (column group), the best result is highlighted
in gray. The overall best score for each perturbation is in bold. Results with std. given in Supp. Table 23.

Train Aug. = Ø Train Aug. = Aff Train Aug. = NAff Train Aug. = All

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 0.868 0.605 0.886 0.870 0.868 0.842 0.881 0.395 0.847 0.702 0.883 0.483 0.877 0.853 0.881 0.377

Affine transformations (Aff.)
Shift 0.152 0.117 0.886 0.87 0.864 0.837 0.881 0.395 0.599 0.289 0.883 0.483 0.874 0.836 0.881 0.377
Scale (< 1) 0.612 0.558 0.886 0.870 0.866 0.718 0.881 0.395 0.796 0.590 0.883 0.483 0.874 0.789 0.881 0.377
Scale (> 1) 0.491 0.506 0.886 0.870 0.864 0.835 0.881 0.395 0.835 0.723 0.883 0.483 0.875 0.855 0.881 0.377
Affine 0.149 0.093 0.886 0.870 0.843 0.799 0.881 0.395 0.631 0.240 0.883 0.483 0.837 0.803 0.881 0.377

Non-Affine transformations (NAff.)
Shift saturated 0.074 0.066 0.069 0.359 0.457 0.298 0.322 0.264 0.508 0.385 0.564 0.234 0.567 0.405 0.555 0.244
Scale (> 1) saturated 0.510 0.444 0.876 0.842 0.844 0.792 0.846 0.299 0.830 0.716 0.881 0.368 0.870 0.823 0.878 0.284
Affine saturated 0.124 0.094 0.113 0.456 0.558 0.374 0.398 0.297 0.596 0.423 0.607 0.303 0.639 0.440 0.610 0.287
Noise low 0.633 0.505 0.885 0.736 0.868 0.841 0.882 0.385 0.846 0.703 0.884 0.471 0.878 0.853 0.881 0.372
Noise high 0.233 0.045 0.048 0.238 0.603 0.420 0.080 0.102 0.790 0.620 0.735 0.074 0.844 0.763 0.780 0.080
Gamma (darken) 0.535 0.462 0.424 0.704 0.838 0.676 0.669 0.388 0.798 0.581 0.864 0.438 0.873 0.752 0.777 0.376
Gamma (lighten) 0.512 0.390 0.883 0.805 0.865 0.835 0.876 0.382 0.843 0.718 0.884 0.471 0.876 0.850 0.879 0.364

Additional experiment on artifacts
Arti. low 0.561 0.571 0.842 0.858 0.857 0.714 0.870 0.387 0.816 0.569 0.860 0.477 0.862 0.819 0.872 0.374
Arti. medium 0.274 0.530 0.814 0.845 0.852 0.480 0.869 0.376 0.777 0.521 0.787 0.472 0.859 0.789 0.868 0.364
Arti. high 0.064 0.0810 0.693 0.733 0.846 0.293 0.863 0.291 0.672 0.343 0.737 0.426 0.855 0.618 0.823 0.273

tions are addressed by design while NAff. corruptions were correctly learned using augmentation,
making SEqSI the best method on each corruption but one. AffEq, even though it provides iden-
tical invariance guarantee as SEqSI, seems to be negatively affected by data-augmentation, reducing
its overall performances. Our model, on the other hand, continues to provide excellent results even
with augmentation, which allows it to perform very well on non-affine corruptions too.

Robustness to bright artifacts. Artifacts are frequent perturbations in fluorescent microscopy,
induced by sensor saturation (see supp. Fig. 15). Those perturbations, which are neither global,
nor affine, are nevertheless handled very well by our strategy, even without data-augmentation
(see last rows of Tab. 5). We attribute this to the fact that artifacts, together with the rescaling to the
range [0, 1], locally act as a scaling effect away from the artifacts (details in Supp. E.3.4).

Conclusion. We provide a method dedicated to object localization, applicable to 2D and 3D im-
ages, that guarantees invariance to affine transformation. It performs very well on affine corruptions
and, combined with data-augmentation, addresses a wide spectrum of non-affine corruptions, mak-
ing it a method of choice to perform object location estimation on non-standardized data.

8 CONCLUSION

In this work, we introduced the Scale-Equivariant Shift-Invariant (SEqSI) model, a novel architec-
ture that provides a practical path to photometric robustness. By prepending a single shift-invariant
layer to a scale-equivariant backbone with appropriate post-processing, SEqSI achieves robustness to
affine transformations by design, while remaining compatible with standard components like ReLU
and incurring negligible computational cost. Our extensive benchmarks demonstrate that this ar-
chitectural prior delivers significant practical benefits: SEqSI provides certified robustness to affine
corruptions and enhances generalization to non-affine transformations. This robustness extends to
challenging real-world domain shifts: SEqSI maintains high accuracy on OOD cryo-ET data where
standard models collapse, and provides robustness to bright artifacts in microscopy object localiza-
tion. This work establishes that architectural invariance, as implemented in SEqSI, is a powerful tool
that complements data-driven techniques to build robust and high-performing models.

Future Work. Future work could explore SEqSI robustness to composite transformation groups
like (e.g., MixUp (Zhang et al., 2018)) or data modalities like videos. Additionally, developing
compatible normalization layers to further improve training stability and performance could be a
valuable direction (a preliminary work is available in Supp. C.7). Finally, we aim at extending the
potential of our object-localization work to segmentation.
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CODE AND DATA AVAILABILITY

All our implementations are written in Python and are based on the PyTorch library. The code is
available on https://github.com/MounirMessaoudi/SEqSi. The datasets CIFAR-10
(Krizhevsky et al., 2009) (Experiment 1), CZI cryo-ET challenge (Harrington et al., 2024) (Experi-
ment 2) and Data Science Bowl 2018 (Goodman et al., 2018) (Experiment 3) are publicly available.
Access and processing details are given in the README of the code and Appendix (see Repro-
ducibility Statement 8). For the object localization experiment (Experiment 3), the 3D synthetic
dataset will be made available upon publication. A sample of the 3D synthetic dataset is given in
Supplementary Materials.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All implementation details for our
models, including architectures, training procedures, and hyperparameter settings, are described
throughout the paper and detailed in the Appendix. The full code and instructions to run all experi-
ments are provided in the supplementary material. For clarity, we list the relevant appendix sections
for each experiment below.

Experiment 1 (CIFAR10 Classification): Details on network architectures, training hyperparam-
eters, and the CIFAR-10 dataset are in Supp. C.1. The photometric corruptions used for robustness
evaluation are described in Supp. C.2. A detailed protocol for invariance verification is available in
Supp. C.4.

Experiment 2 (Macromolecule Classification): Details on model architectures, training proce-
dure, and data handling for the CZI Cryo-ET dataset (Harrington et al., 2024) are detailed in Supp.
D.1.

Experiment 3 (Object Localization): Architectural details for the 2D and 3D U-Nets are in Supp.
E.2.1. Specifics of the synthetic and DSB 2018 datasets are in Supp. E.2.2. The accuracy metric is
detailed in Supp. E.2.3. Settings for data augmentation and robustness tests are in Supp. C.2 and
E.3.3, with further details on specific perturbations like bright artifacts in Supp. E.3.4.
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A LARGE LANGUAGE MODELS (LLMS) USAGE

LLMs were used mainly to polish writing.

B METHODS - APPENDIX

B.1 MATHEMATICAL FOUNDATIONS

In this section, we denote T any group of transformation.

Proposition 1 (Composition of Equivariant Functions) The composition of T -equivariant func-
tions is T -equivariant.

Proof of Proposition 1 Let f1 and f2 be two functions, equivariant to a class of transformation T .
For all T ∈ T , f1 ◦ f2 ◦ T = f1 ◦ T ◦ f2 = T ◦ f1 ◦ f2 as both f1 and f2 commute with any T .
Therefore, f1 ◦ f2 is also T -equivariant. The extension to the composition of any finite number of
equivariant functions is obtained by mathematical induction, proving the proposition.

Proposition 2 (Composition for Invariance) The composition of a T -equivariant function fol-
lowed by a T -invariant function and then any function (with or without invariance or equivariance
properties) is T -invariant.

Proof of Proposition 2 Let f1 be equivariant to T and f2 invariant to T . Let f3 be a function with
no particular invariant or equivariant properties.

∀T ∈ T , f3 ◦ f2 ◦ f1 ◦ T = f3 ◦ f2 ◦ T ◦ f1 by equivariance of f1,
= f3 ◦ f2 ◦ f1 by invariance of f2.

Therefore, f3 ◦ f2 ◦ f1 is invariant to T .

In our case, we built the SEqSI network by positionning the shift-invariant layer at the very begin-
ning (i.e. f1 = Id the identity function) without the use of any equivariant layer before.

B.2 PROOF OF CONVOLUTION AND LINEAR LAYERS EQUIVARIANCE AND INVARIANCE
PROPERTIES

According to Herbreteau et al. (2023), let f be a linear or convolutional layer defined by its weights
W and bias b. The action of the layer on an input vector x is f(x) = Wx+ b. For a convolutional
layer, the operation is a convolution f(x) = W ∗ x + b, but the reasoning is still the same. An
affine transformation is defined as Tλ,µ(x) = λx + µ1, where 1 is a vector of ones of appropriate
dimension.

1. Scale-Equivariance (Tλ,0) A layer f is scale-equivariant if f(Tλ,0(x)) = Tλ,0(f(x)) for any
λ ∈ R∗

+.

• The left-hand side is: f(Tλ,0(x)) = f(λx) = W (λx) + b = λ(Wx) + b.
• The right-hand side is: Tλ,0(f(x)) = λf(x) = λ(Wx+ b) = λ(Wx) + λb.

For the equality to hold for any λ, we must have b = λb. Since this must be true for any λ ̸= 1, the
only solution is b = 0. Thus, a layer is scale-equivariant if and only if it has no bias.

2. Shift-Equivariance (T1,µ) A layer f is shift-equivariant if f(T1,µ(x)) = T1,µ(f(x)) for any
µ ∈ R. Note that the shift value µ is preserved.

• The left-hand side is: f(T1,µ(x)) = f(x+µ1) = W (x+µ1)+b = Wx+µ(W1)+b.
• The right-hand side is: T1,µ(f(x)) = f(x) + µ1 = (Wx+ b) + µ1.

By identifying the terms, we see that the equality holds if and only if µ(W1) = µ1. Since this must
be true for any µ ̸= 0, this implies W1 = 1. This condition means that for each output neuron, the
sum of its weights must be 1. Note that the bias term b does not affect this property.
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3. Affine-Equivariance (Tλ,µ) A layer f is affine-equivariant if f(Tλ,µ(x)) = Tλ,µ(f(x)) for
any (λ, µ) ∈ R∗

+ × R. This requires combining the two previous properties. We set b = 0.

• The left-hand side is: f(Tλ,µ(x)) = f(λx+ µ1) = W (λx+ µ1) = λ(Wx) + µ(W1).
• The right-hand side is: Tλ,µ(f(x)) = λf(x) + µ1 = λ(Wx) + µ1.

The equality holds if and only if µ(W1) = µ1, which implies W1 = 1. Therefore, a layer is
affine-equivariant if and only if its bias is null and its weights sum to 1 for each output neuron.

4. Shift-Invariance (T1,µ) A layer f is shift-invariant if f(T1,µ(x)) = f(x) for any µ ∈ R.

• The left-hand side is: f(T1,µ(x)) = f(x+µ1) = W (x+µ1)+b = Wx+µ(W1)+b.
• The right-hand side is: f(x) = Wx+ b.

The equality holds if and only if µ(W1) = 0. Since this must be true for any µ ̸= 0, this implies
W1 = 0. This condition means that for each output neuron, the sum of its weights must be 0. As
with shift-equivariance, the bias term b does not affect this property. However, in architectures that
are also scale-equivariant (like SEqSI), the bias must be null.

5. Scale Invariance We did not identify any way to make a convolution scale-invariant
while maintaining shift-invariance. Applying a log function could transform a scale in a shift:
log(Tλ,0(x)) = T1,λ(log(x)) and could be used with a shift-invariant convolution. Unfortunately
the log function is not compatible with shift as a negative shift would lead to intput outside log def-
inition domain. Considering first removing the shift using a shift-invariant convolution before the
log could be imagined but is not compatible with the required positivity of log input.

Padding Strategy. To preserve invariance/equivariance properties across the entire feature map,
the padding strategy must be consistent with the corruption of the input image. Standard zero-
padding breaks both shift-equivariance and shift-invariance, as it introduces a fixed value (0) at the
borders that does not match according to the input signal. Instead, reflection padding must be used,
as it fills the boundaries with transformed versions of the input data, maintaining the integrity of the
equivariance/invariance property. Other alternatives such as padding the image with a fixed value
that depend of the input image can be designed (e.g., padding with the min of the channel, or its
mean).
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B.3 PROOF OF POOLING LAYERS EQUIVARIANCE

Let fpool be a pooling operation (max or average) applied over a set of values X = {x1, . . . ,xN}
within a local window. Let Tλ,µ(X) = {λxi + µ | xi ∈ X} be the application of an affine
transformation with λ ∈ R∗

+ and µ ∈ R. The operation is Taff-equivariant if fpool(Tλ,µ(X)) =
Tλ,µ(fpool(X)).

1. Max-Pooling. The max-pooling operation is fmax(X) = max{x1, . . . ,xN}.

• The left-hand side is: fmax(Tλ,µ(X)) = max{λx1 + µ, . . . , λxN + µ}.
• Since λ > 0, the scaling is monotonic, and the addition of µ is a simple shift. Therefore,

the maximum of the transformed values is the transformed maximum of the original values:

max{λxi + µ}Ni=1 = λ(max{xi}Ni=1) + µ. (4)

• The right-hand side is: Tλ,µ(fmax(X)) = λ(max{xi}Ni=1) + µ.

Since both sides are equal, max-pooling is Taff-equivariant.

2. Average-Pooling. The average-pooling operation is favg(X) = 1
N

∑N
i=1 xi.

• The left-hand side is: favg(Tλ,µ(X)) = 1
N

∑N
i=1(λxi + µ).

• By the linearity of the summation operator:

1

N

N∑
i=1

(λxi+µ) =
1

N

(
N∑
i=1

λxi +

N∑
i=1

µ

)
=

1

N

(
λ

N∑
i=1

xi +Nµ

)
= λ

(
1

N

N∑
i=1

xi

)
+µ.

(5)

• The right-hand side is: Tλ,µ(favg(X)) = λ
(

1
N

∑N
i=1 xi

)
+ µ.

Since both sides are equal, average-pooling is also Taff-equivariant.
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B.4 PROOF OF MINMAX-NORMALIZATION INVARIANCE TO AFFINE INTENSITY
TRANSFORMATION

We provide a formal proof that normalization, such as min-max scaling to [0, 1], is invariant to global
affine intensity transformations.

Let x be an input image. An affine transformation Tλ,µ ∈ Taff is applied, resulting in a perturbed
image x′ = λx+ µ, with λ ∈ R∗

+ and µ ∈ R. The min-max normalization function is defined as:

Norm(x) =
x−min(x)

max(x)−min(x)
(6)

We aim to prove that applying this normalization to the perturbed image x′ yields the same result as
applying it to the original image x, i.e., Norm(x′) = Norm(x).

First, we determine the min and max of the perturbed image x′. Due to the linearity of the transfor-
mation and since λ > 0:

min(x′) = min(λx+ µ) = λmin(x) + µ (7)

max(x′) = max(λx+ µ) = λmax(x) + µ (8)

Now, we apply the normalization to x′:

Norm(x′) =
x′ −min(x′)

max(x′)−min(x′)
=

(λx+ µ)− (λmin(x) + µ)

(λmax(x) + µ)− (λmin(x) + µ)
(9)

Simplifying the expression by canceling out µ in both the numerator and the denominator:

Norm(x′) =
λx− λmin(x)

λmax(x)− λmin(x)
=

λ(x−min(x))

λ(max(x)−min(x))
(10)

Finally, canceling the scaling factor λ:

Norm(x′) =
x−min(x)

max(x)−min(x)
= Norm(x) (11)

This proves that applying min-max normalization as a pre-processing step after a global affine inten-
sity perturbation effectively cancels out the perturbation, making the input to the network invariant.
A similar proof holds for z-score normalization.
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C EXPERIMENTS IN CLASSIFICATION : CIFAR-10, OXFORD-IIIT PET AND
STANFORD CARS - APPENDIX

C.1 DETAILS ON MODELS IMPLEMENTATION AND DATA PROCESSING

All classification models are based on a ResNet-20 architecture He et al. (2015), adapted for the
32×32 images of the CIFAR-10 dataset. The modular design allows us to instantiate the four model
families—Standard, SEq, SEqSI, and AffEq—by applying the specific constraints summarized in
Table 1 of the main paper. A key difference lies in the padding strategy as described in Appendix
B.2: Standard and SEq models use zero-padding, whereas AffEq and SEqSI models use reflection
padding to preserve their respective equivariance and invariance properties.

Overall Architecture. The network follows a ResNet-20 structure adapted for 32×32 images,
comprising an initial convolutional layer, three residual stages, and a classification head.

The initial layer is a 3×3 convolution mapping the 3-channel input to 64 feature maps while pre-
serving the 32×32 resolution. Its properties are configured for each model family as per Table 1:
for instance, it is shift-invariant (weights sum to 0) for SEqSI and affine-equivariant (weights sum to
1, bias-free) for AffEq.

The network then proceeds through three residual stages, each with 3 residual blocks. Stage 1
operates on 64-channel feature maps. Stages 2 and 3 double the channel count to 128 and 256,
respectively, while halving the spatial resolution to 16×16 and 8×8 pixels. This downsampling is
performed by the first block of each of these stages, which uses a stride of 2 in its first convolutional
layer.

The classification head processes the final 8×8×256 feature map. A global average pooling layer
reduces it to a 256-dimensional vector, which is then projected onto 10 output logits by a fully
connected layer. A final ‘softmax’ function converts logits to class probabilities.

Residual Block Structure. Each of the 9 residual blocks consists of a main path and a shortcut
connection.

The main path contains two 3×3 convolutional layers. Based on the implementation, the data flow
is Conv → Norm → Activation → Dropout → Conv → Norm → Dropout. The output of
this path is then added to the output of th shortcut, and a final activation is applied to the sum. The
specific activation (‘ReLU’ or ’SortPool’) depends on the model family (Table 1).

The shortcut connection is an identity mapping if input and output dimensions are identical. In
downsampling blocks, it employs a 1×1 convolution with a stride of 2 to match the output dimen-
sions of the main path before the element-wise addition.

Optional Layers for Compatibility Study. By default, none of the model families include nor-
malization or dropout layers, ensuring a baseline comparison focused purely on the architectural
constraints. For the compatibility study presented in Section C.7, these layers are optionally in-
serted into the residual blocks. Normalization layers (InstanceNorm, BatchNorm) are positioned
after each convolutional layer but before the activation function. The Dropout layer is inserted after
the activation function.

Data Preprocessing and Data Augmentation. To ensure a fair comparison and enlighten the
benefits of architectural invariance, all models are trained with a carefully designed data pipeline.
A key aspect of this pipeline is the exclusive use of geometric data augmentation. We decided
to avoid photometric augmentations (e.g., brightness or contrast changes) to prevent models from
learning invariant properties. This setup guarantees that the observed robustness to photometric
corruptions is a direct result of architectural design, not from the training dataset.

The pipeline begins by scaling input images values from the original [0, 255] range to [0, 1] (a simple
division by 255 is applied). During training, we then apply the following geometric augmentations
to enhance generalization:

Random Horizontal Flips: Each image is flipped horizontally with a probability of 50%.
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Random Cropping: The 32×32 input images are first padded with 4 pixels on each side to create a
40×40 image. A random 32×32 crop is then extracted from this padded image.

For model selection, we evaluated performance on the validation set without applying any data
augmentation; only the scaling to [0, 1] range is applied. This standard procedure ensures a fair
comparison, as the best checkpoint for each model is selected based on its performance on the clean,
canonical data distribution, prior to the final robustness evaluation on the test set.

Training Details. To ensure a fair comparison, all models were trained under identical conditions.
We train each model for 500 epochs with a batch size of 128, using the standard Cross-Entropy loss.
Optimization was performed with SGD, with a momentum of 0.9 and a weight decay of 5e-4. The
learning rate was initialized to 0.1 and followed a cosine annealing schedule. We applied gradient
clipping with a maximum norm of 1.0. To ensure robust results, we repeated each experiment with
5 distinct random seeds (5, 7, 42, 137, 181). For each run, we selected the checkpoint with the
highest validation accuracy and reported the mean and standard deviation of the test performance
between seeds. We use the standard CIFAR-10 splits, reserving 10% (5000 images) of the training
set for validation. All experiments were performed on a single NVIDIA A40 GPU. The training and
validation curves in Supp. Figure 5, shows that Standard, SEq and SEqSI converge similarly, while
AffEq takes more time to converge.

(a) Training and Validation accuracy

(b) Training and Validation loss

Figure 5: Training dynamics on CIFAR-10. Validation accuracy (a) and loss (b) curves for all
ResNet-20 variants.
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Table 6: Computational costs for each model, measured on an NVIDIA A40 GPU. Metrics are
averaged over 495 epochs after a 5-epoch warmup. Training (s/epoch): Time per training epoch
on 45,000 images. Inference (s): Total time for the 5,000-image validation set. Peak Mem. (GB):
Maximum GPU memory allocated during training. # Parameters: Number of trainable parameters.

Model Training (s/epoch) Inference (s) Peak Mem. (GB) # Parameters

Standard 11.87 0.66 0.44 4 324 618
SEq 10.79 0.61 0.44 4 321 472
SEqSI 11.23 0.61 0.44 4 321 472
AffEq 18.61 0.86 1.26 4 321 481

Computational Costs. Supp. Table 6 details the computational costs for each tested model. The
results highlight the efficiency of the SEqSI model, which operates with a computational footprint
nearly identical to the SEq and even better than Standard. In stark contrast, the AffEq model is
substantially more resource-intensive, with a training time over 50% longer, an inference time over
30% longer, and a peak memory usage nearly three times higher.
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C.2 DETAILS ON PHOTOMETRIC AUGMENTATION AND EVALUATION PERTURBATION

The photometric transformations used for both data augmentation and evaluation are detailed below.
Note that the parameters are the same for transformation and augmentation, respectively, at inference
and training time. The parameters correspond to those described in Figure 3. To ensure experimental
consistency, the same parameters are used for Experiment 3: Object Localization (Section 7).

Augmentation Pipeline. During training, for the ‘Aff’, ‘NAff’, and ‘All’ strategies, we applied
photometric augmentation using a ‘transforms.RandomChoice’ mechanism. For each image, one
transformation was randomly selected from the corresponding set and applied. This set also includes
an identity transformation, meaning there is a chance an image is not photometrically augmented.
The parameters for each transformation (e.g., the specific shift value) are sampled uniformly from
the specified range for each image independently. All photometric augmentations are applied after
geometric augmentations (random crops and flips).

Evaluation Protocol. For the robustness evaluation (Table 3), each transformation type was tested
independently. To measure robustness to a given corruption (e.g., ’Shift’), we applied the corre-
sponding transformation to each image in the test set. Crucially, and similarly to the augmentation
pipeline, the specific parameter for the transformation (e.g., the value of µ for a shift) was sampled
independently and uniformly from the specified range for each image. This ensures that the evalu-
ation assesses performance across the entire distribution of the corruption, rather than just a single
fixed value.

Transformation Groups. The transformations are categorized into two main groups:

Affine Transformations (Aff): This group consists of 4 non-saturated global affine transformations.
They form the ‘Aff’ augmentation set.

• Global Additive Shift: T (x) = x+ µ, with µ ∼ U [−2.0, 2.0].
• Global Scaling (Compression): T (x) = λx, with λ ∼ U [0.0, 1.0].
• Global Scaling (Dilation): T (x) = λx, with λ ∼ U [1.0, 4.0].
• Global Affine: T (x) = λx+ µ, with λ ∼ U [0.0, 4.0] and µ ∼ U [−2.0, 2.0].

Non-Affine and Saturated Transformations (NAff): This group includes 9 transformations that
are either non-affine, spatially-varying, or saturated. A saturated transformation means the output
pixel values are clipped to the [0, 1] range. This group forms the ‘NAff’ augmentation set.

• Saturated Additive Shift: T (x) = clip(x+ µ, 0, 1), with µ ∼ U [−0.7, 0.7].
• Saturated Scaling: T (x) = clip(λx, 0, 1), with λ ∼ U [1.0, 3.0].
• Saturated Affine: T (x) = clip(λx+µ, 0, 1), with λ ∼ U [0.7, 1.3] and µ ∼ U [−0.3, 0.3].
• Spatially-Varying Affine: T (x)(u, v) = λ(u, v)x(u, v) + µ(u, v), with λ(u, v) ∼
U [0.1, 0.5] and µ(u, v) ∼ U [−1, 1] for each pixel (u, v).

• Contrast Inversion: A spatially-varying scaling T (x)(u, v) = λ(u, v)x(u, v), with
λ(u, v) ∼ U [−1.0,−0.2] for each pixel (u, v).

• Additive Gaussian Noise (Low): T (x) = clip(x + n, 0, 1), where n ∼ N (0, σ2) and
σ ∼ U [0.0, 0.03].

• Additive Gaussian Noise (High): T (x) = clip(x + n, 0, 1), where n ∼ N (0, σ2) and
σ ∼ U [0.15, 0.25].

• Gamma Correction (Lighten): T (x) = xγ , with γ ∼ U [0.2, 1.0].
• Gamma Correction (Darken): T (x) = xγ , with γ ∼ U [1.0, 5.0].

The ‘All’ augmentation strategy combines both ‘Aff’ and ‘NAff’ sets, for a total of 13 transforma-
tions.
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C.3 INVARIANCE BY POST-PROCESSING FOR ARGMAX-BASED TASKS

This section proves that for any task where the final prediction is derived from an ‘argmax’ operation
(e.g., classification, semantic segmentation), the prediction is invariant to input affine transforma-
tions when using either an AffEq or a SEqSI model.

Let z = f(x) be the logits produced by a network for an input x. When the input is transformed by
Tλ,µ(x) = λx+ µ1, the logits z′ transform differently depending on the architecture:

• For an Affine-Equivariant (AffEq) network: z′ = f(Tλ,µ(x)) = λz + µ1.
• For a Scale-Equivariant, shift-invariant (SEqSI) network: z′ = f(Tλ,µ(x)) = λz.

Both cases can be unified by considering the general transformation z′ = λz+µ1, where µ = 0 for
the SEqSI model. The core of the proof is that the ‘argmax’ operation is insensitive to any strictly
monotonic increasing transformation of its input vector.

1. Invariance of Argmax. The transformation z 7→ z′ = λz + µ1 is strictly order-preserving for
any λ > 0. That is, if zi > zj for any two elements of z, then their transformed values also satisfy
λzi + µ > λzj + µ. Consequently, the transformation does not change the index of the maximum
element:

argmax(z′) = argmax(λz + µ1) = argmax(z). (12)
This shows that applying ‘argmax’ directly to the logits of either an AffEq or SEqSI network yields
a provably invariant prediction.

2. Invariance with a Strictly Monotonic Increasing Activation. Now, consider applying a
strictly monotonic increasing function h to the logits before the ’argmax’, like ‘softmax’. Since
h is strictly monotonic increasing, it also preserves the order of its inputs. Therefore, the order of
elements in h(z) is the same as in z, and the order in h(z′) is the same as in z′.

argmax(h(z′)) = argmax(z′) = argmax(z) = argmax(h(z)). (13)

This demonstrates that the composition ‘argmax’ ◦ ‘h’ is invariant to affine transformations of the
logits, provided h is strictly monotonic increasing. This justifies its use as a final post-processing
step for any argmax-based task, guaranteeing that the final prediction is robust to affine photometric
transformations of the input image.

Practical Consideration for Numerical Stability. In practice, when dealing with very large in-
put transformations, the logits z can reach extreme values, potentially causing numerical over-
flow in activation functions like ‘softmax’. A standard technique to ensure stability is to shift
the logits by subtracting their maximum value before applying the activation, i.e., computing
h(z − max(z)). This operation does not affect the final prediction, as ‘argmax’ is invariant to
this shift: argmax(h(z − max(z))) = argmax(z − max(z)) = argmax(z). This makes the
computation robust to large shifts in logit values.
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Table 7: Mean and standard deviation of prediction invariance error (%, lower is better) over
multiple seeds, and different degrees of affine transformation. Format is mean ± std. Best mean
result per row in extbfbold. Note that, ‘dil.’ and ‘comp.’ stand for dilation and compression,
respectively.

Transf. Setting Standard SEq SEqSI AffEq

Shift

µ = −2 (left shift, moderate) 90.0 ±0.37 89.4 ±0.59 0 ±0.00 0 ±0.00
µ = 0.5 (right shift, small) 12.2 ±0.78 11.4 ±1.21 0 ±0.00 0 ±0.00
µ = 2 (right shift, moderate) 58.1 ±2.71 58.6 ±3.25 0 ±0.00 0 ±0.00
µ = 10 (right shift, extreme) 88.0 ±2.39 87.4 ±2.58 0 ±0.00 0 ±0.00

Scale
λ = 0.5 (comp.) 8.48 ±0.64 0 ±0.00 0 ±0.00 0 ±0.00
λ = 3.0 (dil., moderate) 4.48 ±0.47 0 ±0.00 0 ±0.00 0 ±0.00
λ = 255 (dil., extreme) 5.93 ±0.70 0 ±0.00 0 ±0.00 0 ±0.00

Affine
µ = −2, λ = 10 (left shift + strong dil.) 8.05 ±0.35 6.78 ±0.20 0 ±0.00 0 ±0.00
µ = 5, λ = 0.1 (shift + strong comp.) 90.2 ±0.26 89.5 ±0.59 0 ±0.00 0 ±0.00
µ = 5, λ = 3 (shift + dilation, moderate) 49.3 ±2.39 49.5 ±3.93 0 ±0.00 0 ±0.00

C.4 PROTOCOL FOR INVARIANCE VERIFICATION

To empirically verify the theoretical invariance properties of our proposed architectures, we con-
ducted an evaluation on the best performing checkpoints, selected based on validation accuracy
after training. This step is crucial to ensure that the assessment of invariance is not confounded by
the arbitrary behavior of an untrained model, where initial weight values could themselves influence
predictions. For each model, trained with one of our 5 distinct seeds, we applied a set of affine
transformations (shift, scale, or both) to the entire CIFAR-10 test set. While this evaluation is de-
terministic, we set the random seed to match the one used for training each model to ensure full
reproducibility.

Pred. Inv. Err. =
1

N

N∑
i=1

1 (argmax(f(Taff(xi))) ̸= argmax(f(xi)))× 100 (14)

where 1 is the indicator function and N is the number of images.

We then measured the prediction invariance error (see Supp. Equation 14), defined as the per-
centage of images for which the predicted class changes once the transformation has been applied.
To accurately measure perfect invariance (0% error), this test is run in float64 precision, as stan-
dard float32 can introduce numerical errors that break theoretical guarantees (see Appendix C.5 for
more details). This protocol allowed to enlighten us to isolate and quantify the inherent robustness
provided by each architectural design.

In Supp. Table 7, we reported the prediction invariance error for each model family. To test these
properties, we applied a range of affine transformations (shift, scale, and their combination) for
varying intensities, from moderate to extreme. This approach enabled to quantify how the invariance
error changes with the magnitude of the perturbation, highlighting the stable, perfect invariance of
the certified models in all conditions.
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Table 8: Prediction invariance error (% as mean ± std) in float32 precision. Comparison of
”Telescopic” and ”Mean Subtraction” implementations. Values of 0.00 are highlighted in gray.

SEqSI AffEq

Transform. Setting Telescopic Mean Subtr. Telescopic Mean Subtr.

Shift

µ = −2 0.01 ±0.00 0.00 ±0.00 0.04 ±0.01 0.05 ±0.02
µ = 0.5 0.00 ±0.00 0.00 ±0.00 0.03 ±0.01 0.02 ±0.01
µ = 2 0.01 ±0.01 0.00 ±0.00 0.04 ±0.02 0.06 ±0.02
µ = 10 0.00 ±0.01 0.00 ±0.00 0.22 ±0.03 0.26 ±0.05

Scale
λ = 0.5 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
λ = 3 0.01 ±0.00 0.01 ±0.01 0.02 ±0.01 0.02 ±0.01
λ = 255 0.01 ±0.01 0.00 ±0.01 0.02 ±0.01 0.02 ±0.01

Affine
µ = −2, λ = 10 0.01 ±0.01 0.00 ±0.00 0.02 ±0.01 0.02 ±0.00
µ = 5, λ = 0.1 0.01 ±0.01 0.01 ±0.00 1.16 ±0.12 1.41 ±0.10
µ = 5, λ = 3 0.01 ±0.01 0.01 ±0.01 0.04 ±0.01 0.03 ±0.01

Table 9: Prediction invariance error (% as mean ± std) in float64 precision. Comparison of
”Telescopic” and ”Mean Subtraction” implementations. Values of 0.00 are highlighted in gray.

SEqSI AffEq

Transform. Setting Telescopic Mean Subtr. Telescopic Mean Subtr.

Shift

µ = −2 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
µ = 0.5 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
µ = 2 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
µ = 10 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Scale
λ = 0.5 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
λ = 3 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
λ = 255 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Affine
µ = −2, λ = 10 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
µ = 5, λ = 0.1 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
µ = 5, λ = 3 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

C.5 NUMERICAL STABILITY OF WEIGHT CONSTRAINT IMPLEMENTATIONS

The weight constraints for the AffEq and SEqSI models (respectively,
∑

w = 1 and
∑

w = 0) can
be enforced in several ways. We compare two common parameterization methods: ”Telescopic” and
”Mean Subtraction”.

SEqSI (shift-inv.,
∑

w′ = 0):

{
w′ = roll(w)−w (Telescopic)
w′ = w − 1

N

∑N
i=1 wi (Mean Subtraction)

AffEq (shift-equiv.,
∑

w′ = 1):

{
w′ = roll(w)−w + 1

N (Telescopic)
w′ = w − 1

N

∑N
i=1 wi +

1
N (Mean Subtraction)

(15)

where roll(w) denotes a circular shift of the vector w by one position (i.e., roll(w)i = wi−1).

Both the ”Telescopic” and ”Mean Subtraction” implementations are theoretically invariant. How-
ever, we observed that numerical approximations in float32 precision can break these theoretical
guarantees. As shown in Supp. Table 8, the key finding is that numerical stability is mainly driven
by the architecture (SEqSI vs. AffEq) rather than the specific parameterization. While both imple-
mentations for SEqSI are highly stable with only negligible errors, the AffEq model is significantly
more prone to instability, exhibiting much larger errors regardless of the parameterization. Within
the SEqSI model, the ”Mean Subtraction” variant is marginally more robust. As detailed in Supp.
Table 9, perfect invariance was restored for all models and implementations when performing cal-
culations in float64 precision.

25



Published as a conference paper at ICLR 2026

The ”Mean Subtraction” method was used for all classification-task experiments. Invariance exper-
iments were performed in float64, while performance experiments were performed in float32 for
computational reasons. The object location experiments were conducted with the ”Telescopic” im-
plementation in float64 precision. We reported here implementation details for reproducibility of
results.
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C.6 FULL ROBUSTNESS RESULTS WITH STANDARD DEVIATIONS

In Supp. Table 10, we present the full robustness results, corresponding to the main results in Table 3.
To ensure statistical significance, we reported the mean and standard deviation of accuracy over 5
complete training and evaluation runs, each performed with a distinct random seed. The results are
split into two parts for readability. Note that all experiments were conducted in float32 precision.

Table 10: Robustness to evaluation-time perturbations (mean ± std over 5 seeds). Test accuracy
(%) of four architectures under various photometric corruptions. Models are grouped by the training
augmentation strategy used: none (Ø), affine (Aff.), non-affine (NAff.), or all combined (All). Each
row corresponds to a different perturbation applied at evaluation. Within each strategy group, the
best result is highlighted in gray. The overall best result for each perturbation is in bold.

Train Aug. = Ø Train Aug. = Aff

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 91.7 ±0.3 91.3 ±0.1 91.2 ±0.3 89.6 ±0.1 91.2 ±0.3 90.6 ±0.1 91.0 ±0.1 88.9 ±0.2

Affine transformations (Aff.)
Shift 51.1 ±1.0 53.4 ±1.2 91.2 ±0.3 89.6 ±0.1 91.2 ±0.4 90.3 ±0.2 91.0 ±0.1 88.9 ±0.2
Scale (< 1) 68.0 ±0.8 91.3 ±0.1 91.2 ±0.3 89.6 ±0.1 90.2 ±0.5 90.6 ±0.1 91.0 ±0.1 88.9 ±0.2
Scale (> 1) 91.0 ±0.1 91.3 ±0.1 91.2 ±0.3 89.6 ±0.1 91.1 ±0.3 90.6 ±0.2 91.0 ±0.1 88.9 ±0.2
Affine 64.1 ±0.9 65.1 ±0.7 91.2 ±0.3 89.6 ±0.1 90.7 ±0.3 89.6 ±0.2 91.0 ±0.1 88.9 ±0.2

Non-Affine transformations (NAff.)
Shift saturated 72.0 ±0.6 73.4 ±0.4 79.0 ±0.6 76.7 ±0.4 79.3 ±0.6 79.0 ±0.8 78.4 ±0.6 76.1 ±0.3
Scale (> 1) saturated 78.1 ±0.5 78.3 ±0.6 77.6 ±0.5 76.0 ±0.5 78.0 ±0.7 77.7 ±0.7 76.9 ±0.5 75.7 ±0.3
Affine saturated 59.9 ±0.8 59.6 ±1.1 72.3 ±1.0 70.9 ±0.5 72.6 ±0.9 73.3 ±1.0 71.7 ±0.7 70.6 ±0.3
Spatially-varying Affine 31.8 ±1.0 38.2 ±2.3 72.5 ±2.2 63.6 ±1.0 90.2 ±0.6 88.3 ±0.4 73.0 ±1.1 66.6 ±2.7
Contrast Inversion 9.6 ±0.7 15.4 ±2.0 56.5 ±1.6 52.9 ±1.0 61.3 ±0.8 56.2 ±2.2 52.9 ±1.3 55.0 ±1.5
Noise (low) 90.8 ±0.2 90.6 ±0.2 90.1 ±0.6 88.5 ±0.2 90.0 ±0.3 89.8 ±0.2 90.0 ±0.1 87.8 ±0.2
Noise (high) 19.0 ±2.4 22.4 ±3.5 15.2 ±1.0 20.3 ±0.6 15.5 ±1.1 19.8 ±3.4 16.0 ±2.2 19.2 ±1.9
Gamma (darken) 74.3 ±1.0 76.4 ±0.7 79.9 ±0.4 76.4 ±0.5 82.5 ±0.3 79.5 ±1.1 79.9 ±0.4 76.2 ±0.2
Gamma (lighten) 85.9 ±0.6 85.3 ±0.7 90.3 ±0.2 88.6 ±0.1 90.6 ±0.4 89.9 ±0.1 90.0 ±0.2 88.3 ±0.2

Train Aug. = NAff Train Aug. = All

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 92.1 ±0.1 92.1 ±0.2 91.5 ±0.2 90.5 ±0.1 92.0 ±0.1 91.6 ±0.1 91.8 ±0.2 90.6 ±0.2

Affine transformations (Aff.)
Shift 88.5 ±0.6 88.7 ±0.3 91.5 ±0.2 90.5 ±0.1 91.4 ±0.2 90.7 ±0.2 91.8 ±0.2 90.6 ±0.2
Scale (< 1) 88.8 ±0.4 92.1 ±0.2 91.5 ±0.2 90.5 ±0.1 90.6 ±0.3 91.6 ±0.1 91.8 ±0.2 90.6 ±0.2
Scale (> 1) 91.6 ±0.1 92.1 ±0.2 91.5 ±0.2 90.5 ±0.1 92.0 ±0.2 91.6 ±0.1 91.8 ±0.2 90.6 ±0.2
Affine 87.0 ±0.8 88.1 ±0.4 91.5 ±0.2 90.5 ±0.1 90.9 ±0.2 90.1 ±0.1 91.8 ±0.2 90.5 ±0.2

Non-Affine transformations (NAff.)
Shift saturated 87.3 ±0.2 86.9 ±0.2 86.4 ±0.3 85.0 ±0.3 87.1 ±0.5 86.1 ±0.4 86.4 ±0.1 84.4 ±0.5
Scale (> 1) saturated 88.0 ±0.1 87.5 ±0.3 87.1 ±0.3 85.6 ±0.3 87.9 ±0.2 86.7 ±0.1 86.8 ±0.2 85.0 ±0.3
Affine saturated 85.0 ±0.2 84.8 ±0.3 84.1 ±0.3 82.8 ±0.3 84.9 ±0.3 84.0 ±0.3 83.7 ±0.3 81.9 ±0.5
Spatially-varying Affine 88.2 ±0.6 87.0 ±0.2 89.6 ±0.2 88.6 ±0.2 89.9 ±0.2 89.3 ±0.2 89.4 ±0.1 88.1 ±0.3
Contrast Inversion 90.2 ±0.2 90.3 ±0.2 87.6 ±0.2 86.3 ±0.4 89.2 ±0.4 87.8 ±0.2 86.5 ±0.1 84.6 ±0.4
Noise (low) 91.6 ±0.1 91.7 ±0.2 91.0 ±0.2 90.0 ±0.2 91.5 ±0.2 91.2 ±0.1 91.3 ±0.4 89.8 ±0.2
Noise (high) 79.6 ±0.3 80.0 ±0.6 78.7 ±0.7 76.6 ±0.5 78.3 ±0.4 78.3 ±0.4 77.9 ±0.5 75.2 ±0.9
Gamma (darken) 89.6 ±0.2 88.8 ±0.4 88.3 ±0.2 86.6 ±0.3 89.5 ±0.4 87.8 ±0.1 88.0 ±0.2 86.0 ±0.4
Gamma (lighten) 91.8 ±0.2 91.9 ±0.2 91.1 ±0.2 90.2 ±0.1 91.7 ±0.2 91.3 ±0.1 91.5 ±0.3 90.2 ±0.2
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C.7 COMPATIBILITY STUDY WITH NORMALIZATION AND DROPOUT LAYERS

Analysis of Compatibility We conducted a study to assess the compatibility of our proposed ar-
chitectures with standard deep learning components that are known to improve performance and
training stability: normalization layers and dropout. For this study, we integrated Batch Normaliza-
tion (BN), Layer Normalization (LN), Instance Normalization (IN), and Dropout (DP) into each of
the four model families. All layers were used with their default PyTorch parameters to reflect com-
mon practices. We also evaluated a ”Mix” strategy, which employs Instance Normalization after the
first convolutional block and Batch Normalization in all subsequent blocks, a technique intended to
combine the benefits of both. The results, presented in Supp. Tables 11 and 12, are analyzed in the
following from the perspectives of both theoretical invariance and empirical performance.

Impact on Invariance Guarantees. The invariance error measurements (Supp. Table 11) reveal
how these layers interact with the architectural constraints.

• SEqSI Model: A key finding is the robustness of shift-invariance. This property, enforced
by the first layer, is perfectly preserved (0% error) across all configurations, including all
normalization types and dropout. However, its scale-equivariance is broken by all normal-
ization layers (BN, LN, IN, and Mix).

• AffEq Model: The more restrictive AffEq model is less compatible. Its affine-equivariance
is completely broken by Batch Normalization and partially by Layer Normalization. It
only maintains its guarantees with Instance Normalization, which is itself ϵ-affine-invariant
(where ϵ is a value added to the denominator for numerical stability. Default: 1e-5.)

• Standard Components: Dropout, being inactive at inference, does not affect the invari-
ance of any model. Instance Normalization, because of its own invariance properties, can
provide shift-invariance to the Standard and SEq models, but at the cost of breaking the
scale-equivariance needed for a principled design like SEqSI.

This analysis confirms that integrating standard normalization layers breaks the theoretical scale-
equivariance of the SEqSI model. The magnitude of this impact on scale-invariance varies sig-
nificantly: Batch Normalization severely degrades it (e.g., up to 86.8% error), whereas Layer and
Instance Normalization have a much smaller impact, with an error typically below 1% but reaching
up to 4.93% in some cases. Crucially, the shift-invariance guarantee remains perfectly intact across
all normalization layers. This establishes a practical trade-off, which we now evaluate by analyzing
the impact on performance.

Impact on Performance. While normalization layers can break theoretical invariance properties,
the performance is still preserved in practical experiments (see Supp. Table 12).

• Synergy with SEqSI: Without normalization, the architectural constraints of SEqSI re-
sult in a clean accuracy of 91.2%, slightly below the Standard model accuracy (91.7%).
However, this gap is reduced and often reversed when normalization is introduced. SEqSI
benefits immensely from normalization, with its performance increasing by over 4 percent-
age points to 95.7% with BN and 95.5% with the Mix strategy. This synergy elevates SEqSI
to match or exceed the performance of the Standard model on clean data, demonstrating its
compatibility with modern training recipes.

• Enhanced Robustness: The combination of the SEqSI prior and normalization layers leads
to remarkable empirical robustness, even when theoretical scale-equivariance is partially
broken. When paired with normalization, SEqSI consistently outperforms its Standard
counterpart. For instance, the SEqSI+Mix variant is superior to Standard+Mix on 8 out of
13 corruptions, with particularly large gains on challenging non-affine transformations like
”Spatially-varying Affine” (94.9% vs. 89.4%) and ”Contrast Inversion” (71.7% vs. 66.7%).
This demonstrates that the architectural properties provides a powerful inductive bias for
learning robust features, which is further amplified by the stabilized training dynamics from
normalization.

• Practicality over AffEq: In contrast, the AffEq model, while theoretically well-grounded,
proves less in practical imaging. Its performance on clean data drops significantly with
Dropout (from 89.6% to 81.2%), and it is consistently outperformed by SEqSI across all
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normalization schemes. This underscores SEqSI superior balance of theoretical principles
and practical utility.

Conclusion: This study demonstrates that while SEqSI is compatible with standard normalization
layers at the cost of its theoretical scale-equivariance, the practical benefits are substantial. The
combination of SEqSI architectural properties with normalization layers results in models that not
only match the performance of standard networks on clean data, but consistently outperform them
in terms of robustness to a wide range of photometric corruptions. This synergy establishes SEqSI
as a practical, effective, and principled choice for building high-performing and robust networks,
making it a valuable tool for real-world applications where data variability is a key challenge.

Table 11: Detailed invariance error (% as mean ± std over seeds) for different normalization layers.
The best result (lowest error) per row is in bold. A value of 0 indicates perfect invariance and is
highlighted in gray. Ø: no Norm, BN: Batch Norm, LN: Layer Norm, IN: Instance Norm, Mix:
Mixed Norms, DP: Dropout.

Ø ˝ DP

Transform. Setting Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Shift

µ = −2 (left shift, moderate) 90.0 ±0.37 89.4 ±0.59 0.00 ±0.00 0.00 ±0.00 89.3 ±0.57 89.1 ±1.70 0.00 ±0.00 0.00 ±0.00
µ = 0.5 (right shift, small) 12.2 ±0.78 11.4 ±1.21 0.00 ±0.00 0.00 ±0.00 12.3 ±0.59 8.27 ±0.38 0.00 ±0.00 0.00 ±0.00
µ = 2 (right shift, moderate) 58.1 ±2.71 58.6 ±3.25 0.00 ±0.00 0.00 ±0.00 55.7 ±2.86 51.3 ±1.60 0.00 ±0.00 0.00 ±0.00
µ = 10 (right shift, extreme) 88.0 ±2.39 87.4 ±2.58 0.00 ±0.00 0.00 ±0.00 88.9 ±1.29 88.8 ±0.94 0.00 ±0.00 0.00 ±0.00

Scale
λ = 0.5 (compression) 8.48 ±0.64 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 7.31 ±1.06 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
λ = 3.0 (dilation, moderate) 4.48 ±0.47 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 10.6 ±0.99 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
λ = 255 (dilation, extreme) 5.93 ±0.70 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 30.8 ±4.05 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Affine
µ = −2, λ = 10 (left shift + strong dilation) 8.05 ±0.35 6.78 ±0.20 0.00 ±0.00 0.00 ±0.00 19.0 ±1.71 5.82 ±0.24 0.00 ±0.00 0.00 ±0.00
µ = 5, λ = 0.1 (shift + strong compression) 90.2 ±0.26 89.5 ±0.59 0.00 ±0.00 0.00 ±0.00 89.5 ±0.18 89.7 ±0.13 0.00 ±0.00 0.00 ±0.00
µ = 5, λ = 3 (shift + dilation, moderate) 49.3 ±2.39 49.5 ±3.93 0.00 ±0.00 0.00 ±0.00 61.7 ±6.60 41.4 ±1.52 0.00 ±0.00 0.00 ±0.00

BN ˝ LN

Transform. Setting Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Shift

µ = −2 (left shift, moderate) 89.7 ±0.83 90.2 ±0.71 0.00 ±0.00 90.0 ±0.06 90.9 ±1.42 90.0 ±0.22 0.00 ±0.00 0.00 ±0.00
µ = 0.5 (right shift, small) 10.6 ±0.62 11.7 ±0.60 0.00 ±0.00 17.2 ±1.70 7.65 ±0.39 5.73 ±0.48 0.00 ±0.00 0.00 ±0.00
µ = 2 (right shift, moderate) 89.5 ±1.01 90.0 ±0.61 0.00 ±0.00 90.0 ±0.91 27.4 ±3.97 17.1 ±1.68 0.00 ±0.00 0.00 ±0.00
µ = 10 (right shift, extreme) 90.4 ±0.62 89.9 ±0.05 0.00 ±0.00 90.0 ±0.05 82.2 ±5.81 60.8 ±3.56 0.00 ±0.00 0.00 ±0.00

Scale
λ = 0.5 (compression) 4.70 ±0.32 4.56 ±0.15 4.06 ±0.10 7.01 ±0.34 5.91 ±0.25 0.04 ±0.03 0.30 ±0.04 0.01 ±0.00
λ = 3.0 (dilation, moderate) 52.4 ±7.43 56.7 ±6.68 16.2 ±1.78 75.5 ±3.59 4.17 ±0.13 0.01 ±0.01 0.10 ±0.02 0.00 ±0.01
λ = 255 (dilation, extreme) 89.9 ±1.30 90.2 ±1.81 86.8 ±2.79 90.1 ±0.41 7.24 ±1.19 0.01 ±0.01 0.10 ±0.02 0.00 ±0.01

Affine
µ = −2, λ = 10 (left shift + strong dilation) 89.5 ±1.62 88.2 ±2.34 83.2 ±1.43 90.2 ±0.82 6.63 ±1.04 8.88 ±0.62 0.10 ±0.02 0.00 ±0.01
µ = 5, λ = 0.1 (shift + strong compression) 90.0 ±0.17 90.0 ±0.10 72.1 ±3.27 90.5 ±0.84 90.0 ±0.07 89.5 ±0.41 4.93 ±0.59 0.25 ±0.05
µ = 5, λ = 3 (shift + dilation, moderate) 90.0 ±0.18 90.2 ±0.54 16.2 ±1.78 90.3 ±0.50 28.3 ±5.80 14.7 ±1.59 0.10 ±0.02 0.00 ±0.01

IN ˝ Mix

Transform. Setting Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Shift

µ = −2 (left shift, moderate) 6.66 ±0.53 5.89 ±0.31 0.00 ±0.00 0.00 ±0.00 3.48 ±0.25 3.22 ±0.09 0.00 ±0.00 0.00 ±0.00
µ = 0.5 (right shift, small) 3.10 ±0.20 3.26 ±0.05 0.00 ±0.00 0.00 ±0.00 1.81 ±0.11 1.83 ±0.11 0.00 ±0.00 0.00 ±0.00
µ = 2 (right shift, moderate) 9.03 ±0.37 8.61 ±0.40 0.00 ±0.00 0.00 ±0.00 5.10 ±0.25 4.91 ±0.56 0.00 ±0.00 0.00 ±0.00
µ = 10 (right shift, extreme) 29.4 ±1.62 25.9 ±3.02 0.00 ±0.00 0.00 ±0.00 19.2 ±3.62 18.8 ±1.60 0.00 ±0.00 0.00 ±0.00

Scale
λ = 0.5 (compression) 0.09 ±0.03 0.12 ±0.03 0.52 ±0.06 0.01 ±0.00 0.20 ±0.03 0.18 ±0.04 0.71 ±0.09 0.01 ±0.01
λ = 3.0 (dilation, moderate) 0.04 ±0.02 0.04 ±0.01 0.21 ±0.03 0.00 ±0.00 0.06 ±0.01 0.05 ±0.01 0.34 ±0.07 0.00 ±0.00
λ = 255 (dilation, extreme) 0.05 ±0.02 0.04 ±0.01 0.24 ±0.04 0.00 ±0.00 0.06 ±0.01 0.05 ±0.01 0.38 ±0.07 0.00 ±0.00

Affine
µ = −2, λ = 10 (left shift + strong dilation) 2.18 ±0.12 2.21 ±0.11 0.23 ±0.03 0.00 ±0.00 1.24 ±0.18 1.05 ±0.17 0.38 ±0.07 0.00 ±0.00
µ = 5, λ = 0.1 (shift + strong compression) 74.8 ±3.04 67.9 ±5.02 4.00 ±0.15 0.24 ±0.03 77.5 ±7.55 73.5 ±6.92 4.97 ±0.31 0.18 ±0.04
µ = 5, λ = 3 (shift + dilation, moderate) 7.86 ±0.31 7.69 ±0.28 0.21 ±0.03 0.00 ±0.00 4.42 ±0.18 4.28 ±0.52 0.34 ±0.07 0.00 ±0.00
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Table 12: Detailed model performance (Accuracy in % as mean ± std over 5 seeds) for different
normalization strategies. For each row (perturbation), the best result within each normalization
group is highlighted in gray. The overall best result is in bold.

Ø Dropout

Corruption
Model Stand. SE SEqSI AffEq Stand. SE SEqSI AffEq

Original 91.7 ±0.3 91.3 ±0.1 91.2 ±0.3 89.6 ±0.1 91.3 ±0.2 91.6 ±0.2 91.7 ±0.3 81.2 ±0.6

Affine transformations (Aff.)
Shift 51.1 ±1.0 53.4 ±1.2 91.2 ±0.3 89.6 ±0.1 54.5 ±0.8 58.6 ±1.2 91.7 ±0.3 81.2 ±0.6
Scale (< 1) 68.0 ±0.8 91.3 ±0.1 91.2 ±0.3 89.6 ±0.1 71.1 ±1.0 91.6 ±0.1 91.7 ±0.3 81.2 ±0.6
Scale (> 1) 91.0 ±0.1 91.3 ±0.1 91.2 ±0.3 89.6 ±0.1 87.4 ±0.7 91.6 ±0.2 91.7 ±0.3 81.2 ±0.6
Affine 64.1 ±0.9 65.1 ±0.7 91.2 ±0.3 89.6 ±0.1 63.5 ±0.8 68.2 ±0.5 91.7 ±0.3 81.2 ±0.6

Non-Affine transformations (NAff.)
Shift saturated 72.0 ±0.6 73.4 ±0.4 79.0 ±0.6 76.7 ±0.4 73.2 ±0.4 76.0 ±0.2 79.6 ±0.3 71.4 ±0.7
Scale (> 1) saturated 78.1 ±0.5 78.3 ±0.6 77.6 ±0.5 76.0 ±0.5 77.9 ±0.4 79.0 ±0.4 79.4 ±0.2 72.1 ±0.5
Affine saturated 59.9 ±0.8 59.6 ±1.1 72.3 ±1.0 70.9 ±0.5 61.2 ±0.9 62.5 ±0.6 74.1 ±0.6 68.3 ±0.8
Spatially-varying Affine 31.8 ±1.0 38.2 ±2.3 72.5 ±2.2 63.6 ±1.0 39.9 ±1.3 44.4 ±1.1 73.8 ±0.9 42.6 ±0.8
Contrast Inversion 9.6 ±0.7 15.4 ±2.0 56.5 ±1.6 52.9 ±1.0 13.9 ±0.4 41.7 ±3.7 58.7 ±0.9 37.1 ±1.2
Noise (low) 90.8 ±0.2 90.6 ±0.2 90.1 ±0.6 88.5 ±0.2 90.7 ±0.1 90.8 ±0.2 90.6 ±0.2 80.0 ±0.7
Noise (high) 19.0 ±2.4 22.4 ±3.5 15.2 ±1.0 20.3 ±0.6 22.1 ±0.4 18.4 ±1.0 13.6 ±0.4 17.3 ±2.5
Gamma (darken) 74.3 ±1.0 76.4 ±0.7 79.9 ±0.4 76.4 ±0.5 77.1 ±0.6 79.8 ±0.4 80.7 ±0.2 70.5 ±0.9
Gamma (lighten) 85.9 ±0.6 85.3 ±0.7 90.3 ±0.2 88.6 ±0.1 87.0 ±0.3 87.3 ±0.3 90.9 ±0.2 80.4 ±0.6

IN BN

Corruption
Model Stand. SE SEqSI AffEq Stand. SE SEqSI AffEq

Original 94.2 ±0.1 94.0 ±0.2 93.9 ±0.3 91.6 ±0.2 95.7 ±0.1 95.7 ±0.2 95.7 ±0.2 94.3 ±0.1

Affine transformations (Aff.)
Shift 91.6 ±0.2 91.7 ±0.2 93.9 ±0.3 91.6 ±0.2 40.3 ±1.7 39.1 ±1.0 95.7 ±0.2 34.1 ±0.5
Scale (< 1) 94.1 ±0.1 93.9 ±0.2 93.5 ±0.3 90.8 ±0.3 79.1 ±1.2 79.2 ±0.5 80.8 ±0.5 74.3 ±1.4
Scale (> 1) 94.2 ±0.1 94.0 ±0.2 93.9 ±0.3 91.6 ±0.2 64.5 ±3.7 62.0 ±3.9 86.0 ±1.2 50.2 ±2.6
Affine 90.9 ±0.1 91.2 ±0.2 93.8 ±0.3 91.4 ±0.2 34.2 ±2.1 33.4 ±1.8 84.4 ±1.1 25.1 ±0.9

Non-Affine transformations (NAff.)
Shift saturated 79.9 ±0.6 80.3 ±0.3 80.1 ±0.4 78.2 ±0.5 77.9 ±0.7 77.9 ±0.4 81.9 ±0.5 74.8 ±0.6
Scale (> 1) saturated 79.7 ±0.6 79.7 ±0.3 79.0 ±0.2 76.5 ±0.6 79.2 ±0.9 79.6 ±0.2 78.8 ±0.5 76.8 ±0.8
Affine saturated 72.3 ±0.8 72.8 ±0.5 73.3 ±0.4 71.1 ±0.4 67.1 ±0.6 67.3 ±0.5 74.3 ±0.5 65.1 ±0.6
Spatially-varying Affine 86.5 ±0.6 86.8 ±0.3 93.4 ±0.2 40.7 ±1.1 47.5 ±1.1 47.4 ±1.2 71.9 ±1.0 38.6 ±0.9
Contrast Inversion 58.4 ±0.8 58.3 ±0.9 67.6 ±0.6 61.6 ±0.7 10.8 ±1.1 10.8 ±0.4 67.9 ±0.5 10.2 ±1.0
Noise (low) 92.4 ±0.1 92.2 ±0.3 91.5 ±0.2 89.9 ±0.2 92.8 ±0.3 92.8 ±0.1 92.2 ±0.4 91.2 ±0.2
Noise (high) 28.6 ±1.7 27.8 ±1.7 19.3 ±1.3 32.2 ±1.0 13.3 ±1.8 12.7 ±0.7 12.8 ±0.9 13.3 ±2.5
Gamma (darken) 85.0 ±0.5 85.2 ±0.3 84.7 ±0.5 80.2 ±0.6 82.3 ±0.5 82.5 ±0.4 85.9 ±0.1 77.2 ±0.5
Gamma (lighten) 93.2 ±0.1 93.1 ±0.3 93.2 ±0.3 90.7 ±0.1 92.7 ±0.1 92.8 ±0.3 94.6 ±0.1 90.6 ±0.4

LN Mix

Corruption
Model Stand. SE SEqSI AffEq Stand. SE SEqSI AffEq

Original 93.3 ±0.1 93.5 ±0.3 94.1 ±0.1 92.4 ±0.3 95.4 ±0.1 95.4 ±0.1 95.5 ±0.2 93.7 ±0.1

Affine transformations (Aff.)
Shift 56.4 ±0.8 59.5 ±0.6 94.1 ±0.1 92.4 ±0.3 94.6 ±0.1 94.6 ±0.1 95.5 ±0.2 93.7 ±0.1
Scale (< 1) 79.2 ±0.9 92.9 ±0.3 91.8 ±0.4 92.2 ±0.3 95.2 ±0.1 95.2 ±0.1 94.6 ±0.2 93.6 ±0.2
Scale (> 1) 92.4 ±0.2 93.5 ±0.3 94.1 ±0.1 92.4 ±0.3 95.4 ±0.1 95.4 ±0.1 95.4 ±0.2 93.7 ±0.1
Affine 66.5 ±1.1 68.3 ±0.8 93.5 ±0.2 92.4 ±0.3 93.2 ±0.2 93.4 ±0.1 95.2 ±0.1 93.7 ±0.2

Non-Affine transformations (NAff.)
Shift saturated 73.8 ±1.0 77.7 ±0.7 80.9 ±0.5 79.2 ±0.7 81.4 ±0.4 81.7 ±0.3 81.6 ±0.3 79.2 ±0.4
Scale (> 1) saturated 78.9 ±0.4 79.5 ±0.7 80.1 ±0.3 77.8 ±0.6 79.5 ±0.6 79.8 ±0.4 79.8 ±0.4 76.3 ±0.8
Affine saturated 66.3 ±1.5 68.0 ±0.8 74.3 ±0.6 72.2 ±1.1 73.4 ±0.8 74.2 ±0.9 74.2 ±0.4 70.5 ±0.6
Spatially-varying Affine 47.3 ±2.0 51.8 ±2.5 82.6 ±0.9 73.5 ±3.2 89.4 ±0.3 89.5 ±0.2 94.9 ±0.2 44.6 ±1.0
Contrast Inversion 11.4 ±1.5 10.4 ±2.4 63.4 ±0.8 55.1 ±2.6 66.7 ±0.3 67.2 ±0.5 71.7 ±0.4 66.8 ±0.8
Noise (low) 91.1 ±0.3 91.7 ±0.3 92.1 ±0.2 91.2 ±0.3 93.1 ±0.1 93.1 ±0.1 92.3 ±0.3 91.1 ±0.1
Noise (high) 15.5 ±0.6 18.0 ±1.5 13.9 ±1.0 23.1 ±3.0 13.6 ±1.5 13.7 ±0.7 12.2 ±0.4 21.0 ±1.2
Gamma (darken) 75.7 ±0.4 80.4 ±0.7 83.7 ±0.4 81.8 ±0.6 86.6 ±0.1 86.4 ±0.2 86.3 ±0.4 82.6 ±0.4
Gamma (lighten) 90.9 ±0.3 91.2 ±0.5 93.3 ±0.1 91.7 ±0.3 94.8 ±0.2 94.8 ±0.1 94.8 ±0.1 92.9 ±0.2
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C.8 DEMONSTRATING SCALABILITY ON A MORE COMPLEX TASK: OXFORD-IIIT PETS AND
STANFORD CARS CLASSIFICATION

To demonstrate the scalability of our SEqSI architecture to more complex and higher-resolution
computer vision tasks, we conducted experiments on the Oxford-IIIT Pet (Parkhi et al., 2012) and
Stanford Cars (Krause et al., 2013) datasets.

Scaling the Challenge: From CIFAR-10 to Oxford-IIIT Pets and Stanford Cars. The transi-
tion from CIFAR-10 (Krizhevsky et al., 2009) to the Oxford-IIIT Pets and Stanford Cars datasets
represents a significant increase in difficulty, providing a robust test for scalability:

• Image Resolution: The input images are scaled from 32×32 pixels for CIFAR-10 to 224×
224 pixels, which is a nearly 50-fold increase in the number of pixels. Image resolution can
vary, but all images are resized to 224 × 224 pixels. This requires an architecture capable
of handling a much larger receptive field and spatial hierarchy.

• Task Complexity: The classification task becomes significantly more fine-grained, moving
from 10 general object classes in CIFAR-10 to 37 distinct pet breeds in Oxford-IIIT Pets,
and an even more challenging 196 classes of car models (differentiated by make, model,
and year) in Stanford Cars.

• Image Variability: Both datasets feature greater intra-class variation in object scale, pose,
and background clutter compared to CIFAR-10, posing a greater challenge for generaliza-
tion.

Scaling the Architecture: From ResNet-20 to ResNet-18. To accommodate this increase in
scale, we adapted the backbone of the model from a ResNet-20-like structure to a standard ResNet-
18 architecture (He et al., 2015), a common choice for processing 224 × 224 images. The core
principles of our model families (Standard, SEq, SEqSI, AffEq) are maintained, but the underlying
architecture is scaled up as follows:

• Aggressive Initial Downsampling: The initial layer is adapted for high-resolution inputs.
It uses a large 7× 7 convolution with a stride of 2, followed by a 3× 3 max-pooling layer
with a stride of 2. This combination efficiently reduces the spatial resolution from 224×224
to 56 × 56, a standard practice to manage computational cost and build a hierarchy of
features.

• Deeper and Wider Structure: The network features four residual stages instead of three.
The number of channels progresses from 64 to 128, 256, and finally 512, creating a deeper
and wider feature hierarchy suitable for a more complex task. The spatial resolution is
successively halved at each stage, down to a final 7× 7 feature map.

• Adapted Classification Head: The classification head operates on the 7× 7× 512 feature
map. After global average pooling, the resulting 512-dimensional vector is projected to the
appropriate number of classes (37 for Pets, 196 for Cars).

Crucially, the fundamental design of each model family remains unchanged. For instance, the SEqSI
model still employs a shift-invariant convolution as its first layer and bias-free convolutions through-
out the rest of the network. While the overall structure is scaled up, the internal design of the residual
blocks and the application of architectural constraints are conceptually identical to those used for
the CIFAR-10 experiments (see Appendix C.1).

Results and Discussion. The primary objective of these experiments on the Oxford-IIIT Pets and
Stanford Cars datasets was not to achieve state-of-the-art accuracy, but rather to demonstrate the
scalability of our constrained architectures. For these comparisons, it is important to consider the
Standard model as the baseline, as it represents an unconstrained CNN. The key point is that both
SEqSI and AffEq models, despite their significant architectural constraints, preserve their ability to
learn the complex and fine-grained features required for these challenging high-resolution tasks.

The results, presented in Table 13 and Table 14, serve as strong evidence for this. First, they confirm
that the theoretical guarantees of our models are preserved when scaled to a deeper ResNet-18
backbone: both SEqSI and AffEq maintain perfect invariance to affine transformations, a feat the
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Standard models cannot achieve even with data augmentation. More importantly, this robustness
does not come at the cost of learning capability.

On the Oxford-IIIT Pets dataset (Table 13), without data augmentation, SEqSI (44.4% accuracy) is
highly competitive with the Standard model (44.5% accuracy) on original images, while demon-
strating superior robustness to affine corruptions (e.g., 44.4% for SEqSI vs 12.4% for Standard
under a shift). With data augmentation (Train Aug. = All), SEqSI (31.7% accuracy on original
images) largely outperforms all other models, including Standard (14.6% accuracy), especially
on non-affine transformations like ”Spatially-varying Affine” (25.2% for SEqSI vs 10.0% for Stan-
dard).

For the even more complex Stanford Cars dataset (Table 14), both SEqSI (33.2% accuracy) and
AffEq (44.8% accuracy) significantly outperform the Standard model (27.3% accuracy) on clean
data without any augmentation. With data augmentation (Train Aug. = All), SEqSI (22.8% accu-
racy) and AffEq (20.8% accuracy) remain clearly superior to Standard (6.9% accuracy) on orig-
inal images, and maintain this advantage across various corruptions (e.g., for ”Gamma (darken)”,
SEqSI achieves 13.5% and AffEq 12.8% compared to Standard 5.1% accuracy).

It is important to note two key observations from these experiments:

• The significant drop in performance for all models when trained with strong data augmen-
tation (Train Aug. = All, using parameters from Appendix C.2) suggests that the photo-
metric perturbations applied for augmentation are too aggressive for these higher-resolution
datasets. This motivated our complementary study using more moderate perturbations, de-
tailed in Appendix C.9.

• In the most complex scenario of the Stanford Cars dataset, AffEq consistently shows a
clear advantage, often achieving the highest accuracy despite being the most constrained
network. This suggests that the architecture properties can be beneficial for generalization
and convergence on challenging tasks.

These findings validate the scalability of our approach. In conclusion, these findings validate that
the principles behind SEqSI and AffEq are indeed scalable. They can be successfully integrated
into standard, deeper backbones to tackle complex, real-world computer vision problems, offering
a robust and principled alternative to standard architectures. The absolute accuracy scores should
be viewed in the context of a relatively shallow ResNet-18 model trained for a limited number of
epochs (200). The crucial point is the demonstrated ability of these constrained models to learn
effectively at scale while providing certified robustness. This is further supported by experiments
with more moderate perturbations, as detailed in Appendix C.9.
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Table 13: Robustness to photometric corruptions on the Oxford-IIIT Pet test set. Test accuracy
(%) (mean ± std over 5 seeds) of four ResNet-18 architectures. Models are grouped by the training
augmentation strategy used: none (Ø), affine (Aff.), non-affine (NAff.), or all combined (All). Each
row corresponds to a different perturbation applied at evaluation. Within each training strategy
(column group), the best result is highlighted in gray. The overall best accuracy for each perturbation
is in bold. Models were trained for 200 epochs.

Train Aug. = Ø Train Aug. = Aff

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 44.5 ±1.5 35.9 ±0.7 44.4 ±1.3 38.1 ±0.9 24.8 ±6.7 26.6 ±4.8 35.9 ±2.1 32.5 ±0.4

Affine transformations (Aff.)
Shift 12.4 ±0.7 10.3 ±0.3 44.4 ±1.3 38.1 ±0.9 23.5 ±6.6 25.3 ±4.8 35.9 ±2.1 32.5 ±0.4
Scale (< 1) 28.1 ±0.7 35.9 ±0.7 44.4 ±1.3 38.2 ±0.9 22.7 ±6.3 26.6 ±4.8 35.9 ±2.1 32.5 ±0.4
Scale (> 1) 37.9 ±0.4 35.9 ±0.7 44.4 ±1.3 38.1 ±0.9 24.5 ±6.7 26.6 ±4.8 35.9 ±2.1 32.5 ±0.4
Affine 15.9 ±0.9 15.8 ±0.4 44.4 ±1.3 38.2 ±0.9 22.3 ±6.3 25.1 ±4.3 35.9 ±2.1 32.5 ±0.4

Non-Affine transformations (NAff.)
Shift saturated 22.0 ±0.4 18.5 ±0.7 28.9 ±0.8 27.0 ±0.8 17.9 ±4.9 19.0 ±3.1 23.7 ±1.2 23.5 ±0.8
Scale (> 1) saturated 27.6 ±1.0 22.7 ±0.4 27.9 ±0.9 27.7 ±0.4 18.1 ±4.5 18.7 ±3.3 23.6 ±0.7 23.7 ±0.2
Affine saturated 13.5 ±1.0 10.3 ±0.5 25.4 ±0.3 25.7 ±0.6 16.2 ±3.9 17.5 ±2.8 22.0 ±0.8 22.3 ±0.1
Spatially-varying Affine 6.2 ±0.5 7.4 ±0.6 31.1 ±1.8 16.4 ±0.9 16.8 ±4.7 22.4 ±4.0 25.3 ±1.0 13.8 ±1.0
Contrast Inversion 2.4 ±0.3 2.6 ±0.3 6.9 ±0.4 5.8 ±0.3 3.9 ±0.6 3.7 ±0.2 6.3 ±0.6 4.8 ±0.6
Noise (low) 44.3 ±1.5 35.9 ±0.7 43.0 ±0.9 37.9 ±0.9 24.6 ±6.6 26.7 ±4.8 34.7 ±1.8 32.5 ±0.4
Noise (high) 29.6 ±1.8 28.0 ±1.6 5.3 ±1.3 16.1 ±3.4 13.5 ±3.9 16.1 ±2.9 3.9 ±1.2 16.2 ±1.4
Gamma (darken) 18.8 ±0.5 16.5 ±0.5 21.5 ±1.0 21.5 ±0.5 13.8 ±3.6 14.1 ±2.0 17.5 ±1.3 19.0 ±0.5
Gamma (lighten) 31.6 ±1.2 24.1 ±0.8 38.0 ±1.0 35.1 ±1.0 20.2 ±5.5 22.6 ±3.9 30.2 ±1.8 29.8 ±0.5

Train Aug. = NAff Train Aug. = All

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 20.0 ±8.1 18.4 ±3.7 34.7 ±1.1 30.1 ±1.3 14.6 ±3.4 13.9 ±2.0 31.7 ±1.8 25.6 ±2.3

Affine transformations (Aff.)
Shift 13.2 ±3.9 13.7 ±1.8 34.7 ±1.1 30.1 ±1.3 13.4 ±3.1 12.0 ±1.9 31.7 ±1.8 25.6 ±2.3
Scale (< 1) 14.9 ±6.0 18.4 ±3.7 34.7 ±1.1 30.1 ±1.3 12.2 ±2.6 13.9 ±2.0 31.7 ±1.8 25.6 ±2.3
Scale (> 1) 17.6 ±7.8 18.4 ±3.7 34.7 ±1.1 30.1 ±1.3 14.2 ±3.5 13.9 ±2.0 31.7 ±1.8 25.6 ±2.3
Affine 12.8 ±4.5 14.8 ±2.3 34.7 ±1.1 30.1 ±1.3 12.7 ±3.1 12.3 ±1.7 31.7 ±1.8 25.6 ±2.3

Non-Affine transformations (NAff.)
Shift saturated 16.8 ±6.5 14.9 ±2.8 27.9 ±0.8 24.5 ±0.6 11.9 ±2.5 11.2 ±1.3 24.4 ±1.5 20.6 ±1.6
Scale (> 1) saturated 16.7 ±6.6 16.1 ±2.9 30.3 ±1.0 26.3 ±1.4 12.6 ±2.7 11.6 ±1.9 26.0 ±1.2 22.0 ±2.0
Affine saturated 14.9 ±6.3 14.3 ±2.2 28.2 ±1.2 25.1 ±1.6 11.1 ±2.0 10.7 ±1.4 24.2 ±0.9 20.9 ±1.7
Spatially-varying Affine 10.7 ±3.1 11.3 ±1.5 29.7 ±1.0 18.6 ±1.1 10.0 ±2.1 10.8 ±1.6 25.2 ±1.3 14.1 ±1.8
Contrast Inversion 17.6 ±8.4 15.2 ±3.3 18.6 ±2.9 9.7 ±1.1 10.4 ±2.2 7.8 ±1.7 11.8 ±0.5 5.8 ±1.4
Noise (low) 20.0 ±8.2 18.3 ±3.7 34.8 ±1.0 30.1 ±1.3 14.6 ±3.4 13.9 ±2.1 31.5 ±2.0 25.6 ±2.3
Noise (high) 18.0 ±8.2 16.0 ±3.0 30.2 ±1.7 27.2 ±1.8 11.8 ±2.6 10.9 ±1.6 25.1 ±2.3 23.2 ±1.9
Gamma (darken) 15.9 ±6.2 12.5 ±2.3 23.1 ±1.6 21.6 ±0.7 10.8 ±1.6 9.1 ±1.0 18.8 ±0.9 17.4 ±1.5
Gamma (lighten) 18.1 ±8.2 17.2 ±3.2 33.4 ±1.2 29.3 ±1.6 13.2 ±2.8 12.8 ±2.0 28.7 ±1.7 24.7 ±1.8
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Table 14: Robustness to photometric corruptions on the Stanford Cars test set. Test accuracy
(%) (mean ± std over 5 seeds) of four ResNet-18 architectures. Models are grouped by the training
augmentation strategy used: none (Ø), affine (Aff.), non-affine (NAff.), or all combined (All). Each
row corresponds to a different perturbation applied at evaluation. Within each training strategy
(column group), the best result is highlighted in gray. The overall best accuracy for each perturbation
is in bold. Models were trained for 200 epochs.

Train Aug. = Ø Train Aug. = Aff

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 27.3 ±3.4 24.9 ±2.0 33.2 ±2.7 44.8 ±1.4 18.0 ±5.2 18.5 ±1.4 24.7 ±2.8 25.3 ±0.6

Affine transformations (Aff.)
Shift 4.6 ±0.7 4.5 ±0.2 33.2 ±2.7 44.8 ±1.4 17.6 ±5.2 18.1 ±1.5 24.7 ±2.8 25.3 ±0.6
Scale (< 1) 17.0 ±2.2 24.9 ±2.0 33.2 ±2.7 44.8 ±1.4 16.4 ±4.8 18.5 ±1.4 24.7 ±2.8 25.3 ±0.6
Scale (> 1) 24.6 ±3.3 24.9 ±2.0 33.2 ±2.7 44.8 ±1.4 17.6 ±5.1 18.5 ±1.4 24.7 ±2.8 25.3 ±0.6
Affine 7.4 ±1.0 7.5 ±0.5 33.2 ±2.7 44.8 ±1.4 16.9 ±5.0 17.7 ±1.5 24.7 ±2.8 25.3 ±0.6

Non-Affine transformations (NAff.)
Shift saturated 10.6 ±1.6 10.1 ±0.9 21.8 ±1.7 31.5 ±1.0 12.1 ±3.5 12.5 ±1.0 16.3 ±1.8 18.0 ±0.6
Scale (> 1) saturated 17.7 ±2.3 16.1 ±1.6 21.4 ±1.8 31.9 ±0.9 12.2 ±3.1 12.4 ±0.9 16.6 ±2.3 18.4 ±0.6
Affine saturated 3.8 ±0.5 3.9 ±0.4 20.0 ±1.8 29.4 ±0.8 11.2 ±3.0 11.2 ±0.9 15.2 ±2.0 17.1 ±0.5
Spatially-varying Affine 2.1 ±0.5 2.5 ±0.2 28.8 ±2.4 36.3 ±1.0 14.0 ±4.3 16.7 ±1.3 21.0 ±1.9 18.7 ±0.5
Contrast Inversion 0.5 ±0.0 0.5 ±0.0 1.3 ±0.1 7.5 ±1.5 0.7 ±0.1 0.8 ±0.1 1.1 ±0.1 3.4 ±0.3
Noise (low) 27.3 ±3.4 24.9 ±1.9 33.0 ±2.8 44.6 ±1.3 17.9 ±5.2 18.5 ±1.3 24.6 ±2.8 25.2 ±0.6
Noise (high) 11.8 ±1.6 11.5 ±1.4 7.0 ±2.1 21.4 ±2.4 10.6 ±1.7 11.3 ±0.7 7.0 ±2.2 15.2 ±1.0
Gamma (darken) 11.1 ±1.7 9.3 ±0.8 17.2 ±1.6 25.7 ±0.7 10.1 ±2.6 9.7 ±0.4 12.8 ±1.4 14.4 ±0.5
Gamma (lighten) 17.1 ±2.5 15.7 ±1.1 29.4 ±2.5 42.2 ±1.1 16.1 ±4.6 16.7 ±1.2 21.8 ±2.7 23.7 ±0.5

Train Aug. = NAff Train Aug. = All

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 6.1 ±4.6 17.4 ±1.9 32.0 ±1.5 31.0 ±1.4 6.9 ±4.4 12.6 ±2.9 22.8 ±3.1 20.8 ±1.9

Affine transformations (Aff.)
Shift 4.8 ±3.5 13.2 ±1.7 32.0 ±1.5 31.0 ±1.4 6.4 ±4.3 11.8 ±2.7 22.8 ±3.1 20.8 ±1.9
Scale (< 1) 5.0 ±3.7 17.4 ±1.9 32.0 ±1.5 31.0 ±1.4 6.1 ±3.9 12.6 ±2.9 22.8 ±3.1 20.8 ±1.9
Scale (> 1) 5.7 ±4.3 17.4 ±1.9 32.0 ±1.5 31.0 ±1.4 6.6 ±4.3 12.6 ±2.9 22.8 ±3.1 20.8 ±1.9
Affine 4.7 ±3.4 13.6 ±1.8 32.0 ±1.5 31.0 ±1.4 6.0 ±3.8 11.7 ±2.5 22.8 ±3.1 20.8 ±1.9

Non-Affine transformations (NAff.)
Shift saturated 5.0 ±3.6 13.4 ±1.5 24.8 ±1.3 23.9 ±1.0 5.4 ±3.3 9.5 ±2.2 17.2 ±2.2 16.2 ±1.4
Scale (> 1) saturated 5.0 ±3.7 14.4 ±1.6 27.3 ±1.4 26.1 ±1.4 5.6 ±3.4 9.9 ±2.2 18.8 ±2.4 17.2 ±1.3
Affine saturated 4.6 ±3.3 13.0 ±1.5 25.7 ±1.4 24.4 ±1.3 5.2 ±3.3 9.1 ±1.9 17.5 ±2.3 16.3 ±1.3
Spatially-varying Affine 4.2 ±3.1 11.9 ±1.4 29.8 ±1.4 28.2 ±1.1 5.4 ±3.5 10.8 ±2.4 19.8 ±2.7 17.4 ±1.8
Contrast Inversion 4.8 ±3.6 13.7 ±1.5 19.5 ±1.9 22.9 ±1.1 3.7 ±2.2 3.8 ±1.5 3.8 ±0.9 12.0 ±1.2
Noise (low) 6.0 ±4.6 17.4 ±2.0 32.0 ±1.5 31.0 ±1.4 6.9 ±4.4 12.6 ±2.8 22.8 ±3.1 20.7 ±1.9
Noise (high) 5.5 ±4.0 15.9 ±1.7 28.0 ±1.4 25.2 ±1.1 6.3 ±3.9 10.8 ±2.3 19.4 ±2.4 16.6 ±1.5
Gamma (darken) 4.7 ±3.4 10.9 ±1.3 20.1 ±1.3 19.1 ±1.0 5.1 ±3.2 7.5 ±1.5 13.5 ±1.7 12.8 ±1.3
Gamma (lighten) 5.8 ±4.4 17.1 ±1.9 31.4 ±1.4 30.9 ±1.3 6.5 ±4.2 11.9 ±2.5 21.7 ±3.0 20.3 ±1.8
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C.9 DETAILS ON ’MODERATE’ PHOTOMETRIC PERTURBATIONS FOR SCALABILITY
EXPERIMENTS

The photometric transformations used for the scalability experiments on Oxford-IIIT Pet and Stan-
ford Cars are detailed below. The parameters were adjusted to a ”moderate” intensity, less ag-
gressive than those for CIFAR-10 (Appendix C.2), to better assess model performance on these
higher-resolution datasets.

Transformation Groups. Transformations are categorized into two main groups:

Affine Transformations (Aff): This group consists of 4 non-saturated global affine intensity trans-
formations.

• Global Additive Shift: T (x) = x+ µ, with µ ∼ U [−0.5, 0.5].
• Global Scaling (Compression): T (x) = λx, with λ ∼ U [0.5, 1.0].
• Global Scaling (Dilation): T (x) = λx, with λ ∼ U [1.0, 2.0].
• Global Affine: T (x) = λx+ µ, with λ ∼ U [0.5, 2.0] and µ ∼ U [−0.5, 0.5].

Non-Affine and Saturated Transformations (NAff): This group includes 9 transformations that
are either non-affine, spatially-varying, or saturated.

• Saturated Additive Shift: T (x) = clip(x+ µ, 0, 1), with µ ∼ U [−0.3, 0.3].
• Saturated Scaling: T (x) = clip(λx, 0, 1), with λ ∼ U [1.0, 1.8].
• Saturated Affine: T (x) = clip(λx+µ, 0, 1), with λ ∼ U [0.8, 1.2] and µ ∼ U [−0.2, 0.2].
• Spatially-Varying Affine (Linear): T (x)(u, v) = λ(u, v)x(u, v) + µ(u, v), with
λ(u, v) ∼ U [0.5, 1.0] and µ(u, v) ∼ U [−0.5, 0.5] for each pixel (u, v).

• Contrast Inversion (Linear): A spatially-varying scaling T (x)(u, v) = λ(u, v)x(u, v),
with λ(u, v) ∼ U [−1.0,−0.5] for each pixel (u, v).

• Additive Gaussian Noise (Low): T (x) = clip(x + n, 0, 1), where n ∼ N (0, σ2) and
σ ∼ U [0.0, 0.03].

• Additive Gaussian Noise (High): T (x) = clip(x + n, 0, 1), where n ∼ N (0, σ2) and
σ ∼ U [0.1, 0.15].

• Gamma Correction (Lighten): T (x) = xγ , with γ ∼ U [0.5, 1.0].
• Gamma Correction (Darken): T (x) = xγ , with γ ∼ U [1.0, 2.5].

Validation of the results. The results of these experiments, presented in Tables 15 and 16, show
that the ’moderate’ data augmentation strategy is better suited for these datasets, leading to improved
overall performance. For instance, the performance of the SEqSI model trained with all augmen-
tations (Train Aug. = All) on the original test data improves significantly, increasing from 31.7%
(Table 13) to 45.7% on Oxford-IIIT Pets, and from 22.8% (Table 14) to 37.0% on Stanford Cars.
Crucially, the observations regarding the superior performance and robustness of SEqSI and AffEq
models remain consistent, confirming the conclusions from Appendix C.8 about the scalability and
validity of our approach.
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Table 15: Robustness to ’moderate’ photometric corruptions on the Oxford-IIIT Pet test set.
Test accuracy (%) (mean ± std over 5 seeds) of four ResNet-18 architectures. Models are grouped by
the training augmentation strategy used: none (Ø), affine (Aff.), non-affine (NAff.), or all combined
(All). Each row corresponds to a different perturbation applied at evaluation. Within each training
strategy (column group), the best result is highlighted in gray. The overall best accuracy for each
perturbation is in bold. Models were trained for 200 epochs.

Train Aug. = Ø Train Aug. = Aff

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 44.5 ±1.5 35.9 ±0.7 44.4 ±1.3 38.2 ±0.9 41.4 ±3.9 40.6 ±1.6 43.0 ±1.4 37.6 ±0.5

Affine transformations (Aff.)
Shift 43.4 ±1.5 35.1 ±0.8 44.4 ±1.3 38.2 ±0.9 41.4 ±3.8 40.5 ±1.6 43.0 ±1.4 37.6 ±0.5
Scale (< 1) 44.4 ±1.4 35.9 ±0.7 44.4 ±1.3 38.2 ±0.9 41.4 ±3.9 40.6 ±1.6 43.0 ±1.4 37.6 ±0.5
Scale (> 1) 44.2 ±1.4 35.9 ±0.7 44.4 ±1.3 38.2 ±0.9 41.3 ±4.0 40.6 ±1.7 43.0 ±1.4 37.6 ±0.5
Affine 43.3 ±1.4 35.1 ±0.8 44.4 ±1.3 38.2 ±0.9 41.3 ±4.0 40.4 ±1.6 43.0 ±1.4 37.6 ±0.5

Non-Affine transformations (NAff.)
Shift saturated 43.4 ±1.5 34.8 ±0.7 44.2 ±1.3 38.0 ±0.9 41.4 ±3.9 40.2 ±1.7 42.7 ±1.1 37.4 ±0.6
Scale (> 1) saturated 44.1 ±1.6 35.5 ±0.8 44.0 ±1.4 37.9 ±0.8 41.1 ±3.8 40.3 ±1.7 42.6 ±1.2 37.6 ±0.6
Affine saturated 11.5 ±0.9 8.4 ±0.9 25.7 ±0.8 27.0 ±0.6 25.9 ±2.8 21.7 ±1.6 24.6 ±1.0 26.6 ±0.7
Spatially-varying Affine 43.8 ±1.5 35.3 ±0.6 44.5 ±1.4 38.1 ±0.8 41.3 ±4.0 40.4 ±1.6 42.9 ±1.4 37.6 ±0.5
Contrast Inversion 2.7 ±0.5 2.6 ±0.3 6.9 ±0.5 5.8 ±0.2 4.5 ±0.4 3.9 ±0.6 7.1 ±0.6 5.5 ±0.4
Noise (low) 44.3 ±1.5 35.9 ±0.7 43.0 ±0.9 37.9 ±0.9 41.3 ±4.0 40.4 ±1.7 42.1 ±1.5 37.5 ±0.6
Noise (high) 42.2 ±1.2 34.9 ±1.0 24.4 ±2.4 32.5 ±2.3 37.1 ±5.5 38.0 ±1.5 21.4 ±2.1 33.0 ±1.1
Gamma (darken) 41.0 ±1.6 33.8 ±0.4 42.3 ±1.9 36.5 ±0.9 39.5 ±4.1 38.9 ±2.1 40.8 ±1.6 36.0 ±0.6
Gamma (lighten) 43.5 ±1.5 34.4 ±1.0 44.0 ±1.0 38.2 ±0.9 41.0 ±3.8 39.9 ±1.6 42.6 ±1.6 37.4 ±0.6

Train Aug. = NAff Train Aug. = All

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 42.4 ±1.6 31.7 ±4.5 44.2 ±1.5 33.8 ±1.2 37.6 ±4.5 34.1 ±2.3 45.7 ±0.9 35.2 ±0.6

Affine transformations (Aff.)
Shift 42.2 ±1.7 31.7 ±4.7 44.2 ±1.5 33.8 ±1.2 37.6 ±4.5 34.0 ±2.4 45.7 ±0.9 35.2 ±0.6
Scale (< 1) 42.4 ±1.8 31.7 ±4.5 44.2 ±1.5 33.8 ±1.2 37.7 ±4.5 34.1 ±2.3 45.7 ±0.9 35.2 ±0.5
Scale (> 1) 42.2 ±1.7 31.7 ±4.5 44.2 ±1.5 33.8 ±1.2 37.6 ±4.5 34.1 ±2.3 45.7 ±0.9 35.2 ±0.6
Affine 42.3 ±1.6 31.7 ±4.7 44.2 ±1.5 33.8 ±1.2 37.5 ±4.5 34.0 ±2.2 45.7 ±0.9 35.2 ±0.6

Non-Affine transformations (NAff.)
Shift saturated 42.4 ±1.8 31.6 ±4.5 44.0 ±1.5 33.7 ±1.2 37.7 ±4.4 34.1 ±2.2 45.5 ±0.9 35.3 ±0.4
Scale (> 1) saturated 42.3 ±1.6 31.6 ±4.6 44.1 ±1.4 33.8 ±1.2 37.4 ±4.3 34.0 ±2.3 45.5 ±0.9 35.2 ±0.7
Affine saturated 32.2 ±1.5 23.4 ±3.5 35.1 ±1.2 27.7 ±0.9 26.9 ±3.8 22.6 ±1.9 35.0 ±1.0 28.5 ±0.6
Spatially-varying Affine 42.5 ±1.6 31.7 ±4.7 44.2 ±1.5 33.6 ±1.1 37.8 ±4.5 34.1 ±2.4 45.7 ±0.9 35.2 ±0.6
Contrast Inversion 40.0 ±1.8 29.4 ±4.2 22.4 ±1.9 12.4 ±0.7 31.4 ±6.8 29.8 ±3.0 16.1 ±0.6 10.5 ±0.2
Noise (low) 42.4 ±1.8 31.7 ±4.6 44.1 ±1.6 33.7 ±1.1 37.7 ±4.5 34.1 ±2.3 45.7 ±0.9 35.3 ±0.6
Noise (high) 42.0 ±1.6 30.8 ±4.8 43.3 ±1.7 33.2 ±1.0 36.2 ±4.9 32.8 ±1.8 44.2 ±1.5 34.5 ±0.5
Gamma (darken) 41.8 ±1.4 30.6 ±4.5 42.8 ±1.4 32.7 ±1.0 36.2 ±4.6 32.5 ±2.1 44.2 ±1.0 34.1 ±0.7
Gamma (lighten) 42.3 ±1.5 31.8 ±4.8 43.9 ±1.3 33.7 ±1.0 37.6 ±4.6 33.9 ±2.2 45.4 ±0.8 35.3 ±0.3
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Table 16: Robustness to ’moderate’ photometric corruptions on the Stanford Cars test set. Test
accuracy (%) (mean ± std over 5 seeds) of four ResNet-18 architectures. Models are grouped by
the training augmentation strategy used: none (Ø), affine (Aff.), non-affine (NAff.), or all combined
(All). Each row corresponds to a different perturbation applied at evaluation. Within each training
strategy (column group), the best result is highlighted in gray. The overall best accuracy for each
perturbation is in bold. Models were trained for 200 epochs.

Train Aug. = Ø Train Aug. = Aff

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 27.3 ±3.4 23.3 ±2.7 33.1 ±2.7 44.8 ±1.4 19.9 ±2.4 26.7 ±0.7 33.1 ±2.1 41.1 ±1.1

Affine transformations (Aff.)
Shift 14.0 ±2.3 12.4 ±1.2 33.1 ±2.7 44.8 ±1.4 19.7 ±2.3 26.3 ±0.7 33.1 ±2.1 41.1 ±1.1
Scale (< 1) 25.7 ±3.1 23.3 ±2.7 33.1 ±2.7 44.8 ±1.4 19.5 ±2.3 26.7 ±0.7 33.1 ±2.1 41.1 ±1.1
Scale (> 1) 26.4 ±3.4 23.3 ±2.7 33.1 ±2.7 44.8 ±1.4 19.8 ±2.2 26.7 ±0.7 33.1 ±2.1 41.1 ±1.1
Affine 15.6 ±2.4 14.1 ±1.3 33.1 ±2.7 44.8 ±1.4 19.4 ±2.2 26.5 ±0.6 33.1 ±2.1 41.1 ±1.1

Non-Affine transformations (NAff.)
Shift saturated 19.9 ±2.9 17.4 ±1.8 30.4 ±2.4 41.9 ±1.1 18.5 ±2.1 25.0 ±0.6 30.5 ±2.1 38.5 ±0.9
Scale (> 1) saturated 24.1 ±3.3 20.5 ±2.5 29.0 ±2.4 40.6 ±1.1 17.6 ±1.9 24.1 ±0.8 29.3 ±2.0 37.0 ±1.1
Affine saturated 2.7 ±0.3 2.8 ±0.3 20.1 ±1.8 30.3 ±1.0 11.3 ±1.0 15.9 ±0.9 21.0 ±1.6 27.6 ±0.7
Spatially-varying Affine 13.7 ±2.2 12.5 ±1.2 32.9 ±2.8 44.3 ±1.2 19.4 ±2.3 26.3 ±0.8 32.8 ±2.0 40.5 ±1.0
Contrast Inversion 0.5 ±0.1 0.5 ±0.0 1.2 ±0.1 7.5 ±1.4 0.9 ±0.1 1.2 ±0.2 1.2 ±0.2 6.3 ±0.7
Noise (low) 27.3 ±3.4 23.4 ±2.7 32.9 ±2.8 44.6 ±1.3 19.9 ±2.4 26.6 ±0.7 32.8 ±2.3 40.9 ±1.1
Noise (high) 19.7 ±2.4 16.9 ±2.2 16.6 ±4.0 33.4 ±1.0 13.4 ±1.0 19.2 ±0.7 16.5 ±3.6 31.4 ±1.6
Gamma (darken) 19.1 ±2.6 15.1 ±2.0 26.6 ±2.3 37.5 ±1.2 16.3 ±1.9 21.3 ±0.7 26.6 ±1.9 34.3 ±0.6
Gamma (lighten) 23.6 ±3.3 20.2 ±1.8 32.2 ±2.6 44.2 ±1.2 19.0 ±2.1 26.2 ±0.7 32.2 ±2.4 40.5 ±1.2

Train Aug. = NAff Train Aug. = All

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 13.5 ±1.4 22.3 ±1.8 35.0 ±2.3 40.3 ±1.8 14.6 ±1.0 23.9 ±2.7 37.0 ±1.5 40.2 ±0.4

Affine transformations (Aff.)
Shift 12.7 ±1.3 21.1 ±1.6 35.0 ±2.3 40.3 ±1.8 14.2 ±0.9 23.2 ±2.5 37.0 ±1.5 40.2 ±0.4
Scale (< 1) 12.7 ±1.3 22.3 ±1.8 35.0 ±2.3 40.3 ±1.8 14.2 ±0.8 23.9 ±2.7 37.0 ±1.5 40.2 ±0.4
Scale (> 1) 13.0 ±1.3 22.3 ±1.8 35.0 ±2.3 40.3 ±1.8 14.3 ±1.0 23.9 ±2.7 37.0 ±1.5 40.2 ±0.4
Affine 12.2 ±1.2 21.0 ±1.6 35.0 ±2.3 40.3 ±1.8 14.0 ±0.9 23.1 ±2.5 37.0 ±1.5 40.2 ±0.4

Non-Affine transformations (NAff.)
Shift saturated 12.8 ±1.2 20.9 ±1.6 33.3 ±2.4 38.1 ±2.0 13.8 ±0.9 22.6 ±2.6 35.1 ±1.3 37.9 ±0.4
Scale (> 1) saturated 12.1 ±1.2 20.6 ±1.7 33.2 ±2.6 38.0 ±1.9 13.1 ±0.9 21.9 ±2.6 35.1 ±1.5 37.8 ±0.3
Affine saturated 9.3 ±1.1 16.2 ±1.6 26.8 ±2.1 31.0 ±2.1 9.9 ±0.8 17.1 ±2.2 28.2 ±1.2 30.1 ±0.4
Spatially-varying Affine 12.3 ±1.3 21.0 ±1.7 34.9 ±2.4 39.8 ±2.0 13.9 ±1.0 22.9 ±2.6 36.7 ±1.4 40.0 ±0.6
Contrast Inversion 11.6 ±1.3 18.9 ±1.4 24.6 ±2.8 32.4 ±1.4 11.2 ±1.0 19.1 ±2.1 18.9 ±2.4 27.4 ±0.5
Noise (low) 13.4 ±1.3 22.3 ±1.8 35.0 ±2.4 40.0 ±1.8 14.5 ±1.0 23.9 ±2.7 37.0 ±1.5 39.9 ±0.4
Noise (high) 12.4 ±1.0 20.5 ±1.7 32.8 ±2.4 35.5 ±1.5 13.2 ±0.8 21.8 ±2.2 34.0 ±1.2 35.1 ±0.6
Gamma (darken) 12.1 ±1.2 18.3 ±1.5 29.4 ±2.3 33.7 ±1.8 12.9 ±1.1 19.6 ±2.2 31.1 ±1.1 33.6 ±0.3
Gamma (lighten) 13.1 ±1.3 22.1 ±1.7 34.8 ±2.4 40.3 ±1.9 14.3 ±1.1 23.6 ±2.7 36.8 ±1.5 40.2 ±0.3
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C.10 TRANSFERT LEARNING FROM STANDARD MODEL

Experimental Setup. The transfer learning experiment was conducted on the Stanford Cars
dataset (Krause et al., 2013). We used a ResNet-18 architecture with weights pre-trained on
ImageNet-1K (ResNet18 Weights.IMAGENET1K V1 from PyTorch). The goal was to assess
the practicality and compatibility of SEqSI architectures when fine-tuned from a standard model.

Model Adaptation from Pre-trained Weights. Since the pre-trained model is a Standard archi-
tecture, adapting it for our constrained models required significant modifications, creating a struc-
tural handicap for SEq, SEqSI, and AffEq.

• Standard: The pre-trained weights were loaded directly. Only the final fully-connected layer
was replaced with a new one, randomly initialized, to match the 196 classes of the Stanford Cars
dataset.

• SEq: All bias parameters were removed from the pre-trained layers to enforce scale-equivariance.
The final classifier was also replaced.

• SEqSI: In addition to removing all biases like in SEq, the weights of the first convolutional layer
were re-projected to be zero-sum. This was done by subtracting the mean from the pre-trained
weight tensor of that layer, thus enforcing shift-invariance at the input.

• AffEq: This model required the most drastic changes. All biases were removed, all ReLU activa-
tion functions were replaced with ‘SortPool‘, and the weights of every convolutional layer were
re-projected to sum to one. These extensive modifications, which create a significant departure
from the original learned representations, are the likely cause of the observed training divergence.

These adaptations highlight a key practical challenge: leveraging standard pre-trained models
with architectures that have specific structural constraints.

Fine-Tuning Protocol. All models were fine-tuned for 200 epochs on the Stanford Cars training
set using a batch size of 32. The learning rate was set to 1e-2 for the Standard, SEq, and SEqSI
models, and decayed using a cosine annealing schedule. For the AffEq model, a lower learning rate
of 1e-3 was necessary to prevent training divergence. For all models, the entire network was fine-
tuned (no layers were frozen). The different convergence speeds noted in the main text (e.g., 10
epochs for Standard vs. 50 for SEq/SEqSI to pass 60% accuracy) were observed during this process,
with AffEq failing to converge to a meaningful accuracy level.

Results. The fine-tuning results, presented in Table 17, demonstrate the practical viability of SE-
qSI. Despite the initial handicap from modifying the pre-trained weights, SEqSI proves its compati-
bility with transfer learning by achieving competitive performance. It reaches an accuracy of 82.3%
on clean data, close to the advantaged Standard model (85.6%). Crucially, it provides certified ro-
bustness to all affine corruptions where the performance of Standard model collapses (e.g., to 60.6%
under a simple shift), while also showing superior generalization on several challenging non-affine
corruptions like ”Spatially-Varying Affine” (82.1% vs. 67.2%). In contrast, the AffEq architecture
fails to converge effectively in this transfer learning scenario, likely due to the extensive modifica-
tions required to adapt the pre-trained weights, resulting in poor performance across all evaluation
conditions.

Conclusion. This study demonstrates that SEqSI is a practical and viable architecture for
transfer learning. It can successfully adapt features from standard, pre-trained models. De-
spite a structural modification leading to slower initial convergence, it achieves competitive accuracy
while preserving its architectural properties. In contrast, the AffEq architecture proves too rigid for
this common and important workflow. This positions SEqSI as a principled yet pragmatic choice for
fine-tuning pre-trained models in applications where photometric robustness is critical.
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Table 17: Robustness in a transfer learning scenario on Stanford Cars. Test accuracy (%) of
four ResNet-18 architectures fine-tuned from an ImageNet pre-trained model. Results are the mean
± std over 5 seeds. The best result in each group is in gray; the overall best is in bold.

Train Aug. = Ø

Eval.
Perturb.

Model
Stand. SEq SEqSI AffEq

Original 85.6 ±0.2 82.1 ±0.4 82.3 ±0.1 37.3 ±1.5

Affine transformations (Aff.)
Shift 60.6 ±0.9 78.6 ±1.1 82.3 ±0.1 37.3 ±1.5
Scale (< 1) 84.1 ±0.3 82.1 ±0.4 82.3 ±0.1 37.3 ±1.5
Scale (> 1) 66.2 ±2.3 82.1 ±0.4 82.3 ±0.1 37.3 ±1.5
Affine 49.4 ±0.9 78.8 ±1.0 82.3 ±0.1 37.3 ±1.5

Non-Affine transformations (NAff.)
Shift saturated 81.1 ±0.3 79.2 ±0.5 80.2 ±0.4 35.0 ±1.4
Scale (> 1) saturated 81.1 ±0.3 79.2 ±0.8 79.3 ±0.3 33.8 ±1.4
Affine saturated 50.1 ±1.2 51.0 ±1.0 66.5 ±0.9 24.8 ±0.8
Spatially-varying Affine 67.2 ±1.3 78.4 ±0.9 82.1 ±0.1 36.2 ±1.6
Contrast Inversion 0.6 ±0.0 8.5 ±1.9 31.7 ±2.4 2.4 ±0.2
Noise (low) 84.0 ±0.3 81.9 ±0.4 81.9 ±0.3 36.1 ±1.5
Noise (high) 13.2 ±2.2 66.6 ±1.7 46.8 ±2.6 3.7 ±0.6
Gamma (darken) 81.1 ±0.4 76.3 ±0.7 77.3 ±0.5 30.4 ±1.2
Gamma (lighten) 84.5 ±0.3 81.2 ±0.4 81.9 ±0.2 36.6 ±1.4
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D EXPERIMENTS IN MACROMOLECULE CLASSIFICATION - APPENDIX

D.1 DETAILS ON MODELS IMPLEMENTATION AND DATA PROCESSING

The original CZI challenge involves both localizing and identifying macromolecules. We simplify
this to a pure classification task on pre-extracted patches. This simplification is used below since:
the full localization-and-identification pipeline is highly complex and often requires a separate, non-
trivial post-processing algorithm for connected component analysis. By decoupling the tasks, we
separate the identification module, allowing for a more direct and controlled evaluation of our mod-
els robustness. This is particularly important for assessing the performance of architectures like
SEqSI on the highly corrupted and variable cryo-ET images, enabling to draw clean conclusions
about the benefits of our architectural properties under such challenging conditions.

Dataset Details. We use the dataset from the CZI cryo-ET challenge (Harrington et al., 2024),
which consists of 7 tomograms containing 1,269 annotated particle centroids belonging to 6 differ-
ent macromolecule classes. From these annotations, we extract 3D patches of size 64 × 64 × 64
centered on each particle. The dataset presents two main sources of variation. First, the challenge
provides four different preprocessing pipelines for each tomogram, resulting in significant domain
shifts for the same underlying data, as illustrated in Supp. Fig. 6. Second, there is substantial
variability between the tomograms themselves due to different acquisition conditions (e.g. samples
thickness, cryo quality...). Supp. Fig. 7, we show an example of this inter-tomogram variation.
In Supp. Table 18, we summarize the voxel intensity distributions for each class across the splits,
quantitatively confirming this significant variability.

These variations stem from three main sources:

• Inter-preprocessing variability: The dataset provides four different preprocessing
pipelines for each tomogram, creating severe domain shifts as shown in Supp. Fig. 6.
All tomograms are reconstructed from tilt series using WBP (Weighted Back Projection)
as the base method (Peck et al., 2024):
– WBP: reconstructed by Weighted Back Projection (no additional processing)
– CTF deconvolved: WBP + local Contrast Transfer Function (CTF) correction (deconvo-
lution)
– Denoised: WBP + DenoisET denoising
– IsoNet Corrected: WBP + IsoNet correction (denoising / missing-wedge compensation /
contrast correction)

• Inter-tomogram and intra-class variability : Even within a single preprocessing tech-
nique, there is substantial variability between different tomograms due to varying acquisi-
tion conditions (e.g., sample thickness, ice quality), causing appearance changes for parti-
cles of the same class (see Fig. 7.

In Supp. Table 18, we quantitatively summarize the voxel intensity distributions, confirming these
significant photometric shifts. For example, the minimum intensity for a virus-like particle can
vary by more than a factor of two between the training set (−15.78 × 10−5) and the validation
set (−7.08 × 10−5), while the median intensity for a ribosome even changes sign between training
(0.06 × 10−5) and testing (−0.01 × 10−5). This complex, multi-level variation creates a realistic
and challenging testbed for out-of-distribution generalization.

Data Preprocessing and Augmentation. During training, we only apply geometric data augmen-
tation to enhance model generalization. This includes: (1) random flips along each of the three
spatial axes (depth, height, width), each with a 50% probability, and (2) random rotations of 0, 90,
180, or 270 degrees in the height-width plane.

Model Architectures. For this task, we compare a Standard 3D ResNet with SEq, SEqSI, Affeq
variant. All models are based on a 3D ResNet architecture inspired by ResNet-18 (He et al., 2015),
adapted for 64× 64× 64 input patches. They share the same overall structure but differ in their spe-
cific layer configurations to reflect their respective properties. To preserve its theoretical guarantees,
the the SEqSI and AffEq models use reflection padding, whereas the Standard and SEq models use
standard zero-padding.
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OVERALL ARCHITECTURE. The network begins with an initial convolutional layer, followed by
four stages of residual blocks, and concludes with a classification head. The initial layer is a
‘3 × 3 × 3’ convolution that maps the single-channel input to 64 feature maps. For the SEqSI
model, this is a shift-invariant convolution (‘InvConv3d‘), while the Standard model uses a standard
convolution followed by a ‘BatchNorm3d’ layer (in the case of SEq, SEqSI and AffEq no ‘Batch-
Norm3d’ layer were used as it breaks invariant properties). In both cases, a ‘LeakyReLU’ activation
is applied. The network then proceeds through four residual stages, each composed of 2 residual
blocks. Stage 1 operates on 64-channel feature maps at a ‘64× 64× 64’ resolution. Stages 2, 3, and
4 double the channel count (to 128, 256, and 512, respectively) while halving the spatial resolution
at each step (to ‘32×32×32’,‘16×16×16’,and ‘8×8×8’). The classification head processes the
final ‘8×8×8×512’ feature map with a global average pooling layer to produce a 512-dimensional
vector. This vector is then projected to 6 output logits by a fully connected layer, which includes
a bias term for the Standard model but not for the SEq, SEqSI and AffEq models. (for recall, SEq,
SEqSI and AffEq do not use any bias term, as it breaks scale equivariant properties)

RESIDUAL BLOCK STRUCTURE. Each residual block contains a main path with two ‘3x3x3’ bias-
free convolutions and a shortcut connection. The data flow within the main path is ‘Conv → BN
(if Standard) → LeakyReLU → Conv → BN (if Standard)‘. The output of this path is added to
the shortcut connection’s output, and a final ‘LeakyReLU’ activation is applied to the sum. When
downsampling is required (at the beginning of stages 2, 3, and 4), the shortcut connection uses a
‘3x3x3’ convolution with a stride of 2 to match the main path’s output dimensions.

Training Details. All models are trained using the AdamW optimizer with an initial learning rate
of 1e-4 and the cross-entropy loss function. The learning rate is adjusted at each step using a cosine
annealing schedule with a minimum rate of 1e-6. The batch size was set to 8. The number of
training epochs was adapted to the training data: 300 epochs for the main experiment on the noisy
WBP data, and 200 epochs for the supplementary experiment on the cleaner Denoised data. All
models were implemented in PyTorch Lightning and trained on a single NVIDIA A40 GPU using
‘bf16-mixed’ precision. To ensure robust and reproducible results, we repeated each experiment
with 5 distinct random seeds (5, 7, 42, 137, 181). For each run, the final model was selected by
taking the checkpoint that achieved the highest validation accuracy.

Supplementary Results: Training on Denoised Data. We conducted a supplementary experi-
ment where models were trained exclusively on the cleaner Denoised data. The results, presented
in Table 20, show that while the generalization gap is smaller when training on less noisy data,
the SEqSI model still significantly outperforms the Standard baseline on two of the three out-of-
distribution domains. This confirms that the choice of input data influences the out-of-distribution
(OOD) capabilities, but the architectural properties of SEqSI provides a practical advantage.
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Figure 6: Domain Shift Induced by Tomogram Preprocessing. A representative central slice from
a single raw tomogram is shown after four distinct preprocessing pipelines. The top row presents the
visual appearance, while the bottom row displays the corresponding pixel intensity histograms (log-
frequency scale). Each histogram is annotated with the standard deviation of its pixel intensities

(σI ), a direct measure of contrast, calculated as σI =
√

1
N

∑N
i=1(Ii − Ī)2, where Ī is the mean

pixel intensity. The stark variations in contrast and pixel distributions illustrate the severe domain
shift a classification model is exposed to, motivating the development of robust methods.
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Variability of 'virus-like-particle' in 'isonetcorrected' across 4 tomograms

Figure 7: Intra-Class Variability within a Single Preprocessing Domain. This figure illustrates
the appearance diversity for a single particle class (here, virus-like-particle) extracted from different
tomograms, all processed with the same pipeline (isonetcorrected). The samples are selected to span
the full spectrum of observed contrast, from lowest (left) to highest (right). The top row shows a
central slice of each particle, while the bottom row presents its pixel intensity histogram, annotated
with its standard deviation (σI ). This significant intra-class variability, even within a supposedly
homogeneous domain, poses a fundamental challenge for the generalization of classification models.
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Table 18: Voxel intensity distribution per macromolecule across the training, validation, and test
tomograms. All values are scaled by 105. The statistics highlight the significant photometric shifts
between the different data splits.

Voxel Intensity (×10−5)

Macromolecule Dataset Min Q1 (25%) Median Q3 (75%) Max

‘apo-ferritin’ Train -14.17 -0.29 0.10 0.45 4.32
Val -7.79 -0.27 0.08 0.41 3.15
Test -8.94 -0.33 0.07 0.43 3.63

‘beta-amylase’ Train -9.47 -0.24 0.12 0.45 3.67
Val -8.21 -0.26 0.09 0.41 2.88
Test -7.73 -0.29 0.08 0.42 2.99

‘beta-galactosidase’ Train -11.34 -0.26 0.10 0.44 3.63
Val -7.35 -0.26 0.10 0.42 3.48
Test -9.04 -0.26 0.11 0.44 3.63

‘ribosome’ Train -11.04 -0.46 0.06 0.46 3.75
Val -8.39 -0.48 0.03 0.43 3.48
Test -9.89 -0.59 -0.01 0.41 3.63

‘thyroglobulin’ Train -15.04 -0.25 0.11 0.44 3.84
Val -8.29 -0.27 0.09 0.42 3.15
Test -9.04 -0.30 0.08 0.42 3.63

‘virus-like-particle’ Train -15.78 -0.30 0.09 0.44 3.98
Val -7.08 -0.30 0.07 0.40 3.15
Test -8.46 -0.42 0.03 0.40 3.29

Table 19: Performance comparison on CZI test tomograms. Models were trained on WBP data,
evaluated over 5 random seeds, for 300 epochs. Results are reported as mean ± std. Best results for
each metric are in bold.

Standard SEqSI
Data Type Acc. (%) Acc. (%)
WBP (in-distribution) 87.2 ± 1.7 85.2 ± 4.0

Denoised 22.4 ± 7.4 74.5 ± 4.8
IsoNet Corrected 16.0 ± 1.6 73.2 ± 4.7
CTF Deconvolved 48.9 ± 12.3 66.5 ± 10.9

Table 20: Performance comparison on CZI test tomograms. Models were trained on Denoised data,
evaluated with 5 seeds, for 200 epochs. Results are reported as mean ± std. Best results for each
metric are in bold.

Standard SEqSI
Data Type Acc. (%) Acc. (%)
Denoised (in-distribution) 88.0 ± 1.9 88.6 ± 5.0
IsoNet Corrected 16.7 ± 0.0 76.7 ± 9.7
CTF Deconvolved 16.4 ± 0.4 21.9 ± 4.7
WBP 17.1 ± 1.1 16.9 ± 0.4
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D.2 ARCHITECTURAL PROPERTIES VS. NORMALIZATION PREPROCESSING, FOR DOMAIN
SHIFT ROBUSTNESS

Motivation. While the min-max normalization provides invariance to global affine photometric
transformations B.4, this experiment investigates the limitations of min-max normalization in han-
dling domain shifts, contrasting it with the inherent robustness of SEqSI and AffEq architectures.

Experimental Setup. A Standard model trained and test with the min-max normalization is com-
pared against the Standard, SEq, AffEq and SEqSI models trained and test without normalization.

Results and Analysis. Table 21 demonstrates that the performance of MinMax normalized Stan-
dard model drops significantly on out-of-distribution domains (16.98% on IsoNet Corrected and
17.84% on Denoised) compared to 84.81% on WBP. This indicates that the min-max normaliza-
tion does not ensure generalization across different data distributions.

Conclusion. The experiment highlights the limitations of pre-processing for robustness. Embed-
ding invariance and equivariance directly into the network architecture, as with SEqSI and AffEq, is
more effective for handling domain shifts, enabling better generalization to unseen data domains.

Table 21: Performance comparison on test set. Standard baseline is trained with and without the MinMax
normalization, during both train and test. Models were trained on WBP data. Results are reported as mean
accuracy (Acc.) ± std. Best results for each metric are in bold.

Train/Test Norm. MinMax Ø

Standard Standard SEq SEqSI AffEq
Data Type Acc. (%) Acc. (%) Acc. (%) Acc. (%) Acc. (%)

WBP (in-distrib.) 84.81 ± 1.87 87.17 ± 1.50 87.69±0.82 85.15±3.59 79.26 ± 4.04

CTF Deconvolved 41.34 ± 11.20 48.91 ± 11.04 65.21±6.08 66.51 ± 9.75 79.07 ± 5.04
Denoised 17.84 ± 1.96 22.36 ± 6.59 28.42±7.68 74.53±4.25 61.79 ± 5.97
IsoNet Corrected 16.98 ± 0.63 15.95 ± 1.44 16.67±0.00 73.21±4.18 46.37 ± 5.98
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E EXPERIMENTS IN OBJECT LOCALIZATION - APPENDIX

E.1 DETAILS ON THEORETICAL CONTRIBUTIONS

E.1.1 PROOF OF INVARIANCE FOR OUR SCORE MAP GENERATION APPROACH

For AffEq network:

Z(f(Tλ,µ(x))) = Z(Tλ,µ(f(x))) by equivariance properties

=
λf(x) + µ− E[λf(x) + µ]

σ(λf(x) + µ)

=
λf(x) + µ− λE[f(x)]− µ

λσ(f(x))
by mean and std properties

= Z(f(x)).

For SEqSI network:

Z(f(Tλ,µ(x))) = Z(Tλ,0(f(x))) by equivariance and invariance properties

=
λf(x)− E[λf(x)]

σ(λf(x))

=
λf(x)− λE[f(x)]

λσ(f(x))
by mean and std properties

= Z(f(x)).

E.1.2 CONSISTENCY IN RESULTS REGARDING THE CHOICE OF THE NORMALIZATION POST
NETWORK

Common normalization functions include min-max scaling to [0, 1] (T1 : x 7→ x−min(x)
max(x)−min(x) ),

scaling to [−1, 1] (T2 : x 7→ 2T1(x)− 1), and standardization (T3 : x 7→ x−E[x]
σ(x) ).

For the centroid detection task, the strategy we apply imply to normalize the output of the Af-
fEq and SEqSI networks. We have decided to apply a standardization strategy which is equiv-
alent to function T3. More precisely the standardization of the output corresponds to the affine
normalization T1/σ(f(x)),E[f(x)]/σ(f(x))(f(x)), whose inverse transformation is the normalization
Tσ(f(x)),−E[f(x)] denoted h3.

We show that rescaling the outputs using T1 would lead to an equivalent thresholding strategy and
an identical proof can be given for T2.

The normalization in [0, 1] using T1 corresponds to the affine normalization
T1/(max−min)(f(x)),min(f(x))/(max−min)(f(x))(f(x)), whose inverse transformation is the
normalization T(max−min)(f(x)),−min(f(x)) denoted h1.

We consider that a network f is applied on an image x giving y = f(x).

Let γ3 be a threshold that separates the regions of interest from the background on the normalized
output channel of the network using T3.

Hence, the threshold γ1 = T1(h3(γ3)) provides the exact same separation for the normalization T1.

T3(f(x)) ≤ γ3 ⇐⇒ f(x) ≤ h3(γ3) ⇐⇒ T1(f(x)) ≤ T1(h3(γ3)) = γ1

This holds because all the normalizations studied are increasing functions.

Experimentally, we obtain our thresholds by optimizing a given metric. So, if γ3 is the optimal
threshold for normalization T3, then γ1 is optimal for T1 and that will be the chosen threshold for
that normalization.

Moreover, the demonstration provided in Supp. E.1.1 holds for T1 and T2 using min and max
properties instead of mean and std properties.
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E.1.3 INTUITION ON NORMALIZATION BENEFITS IN ALTERATION ROBUSTNESS

We can wonder why our strategy is better than the classical approach as we still apply a normaliza-
tion after the network and it is only moved from ”before the network” to ”after the network”. In the
standard approach, the input data is scaled to fit a chosen range or distribution, then fed to the net-
work to provide the output channels and score map. But some photometric alterations can affect the
normalization and modify the range of the really meaningful data, leading to wrong prediction from
the network as the data is not properly scaled/shifted accordingly to the training data. For example,
if an image contains very bright artifacts, the normalization in a specific range will be affected and
the rest of the data will not get the same value after normalization that it would have without arti-
facts. In our paradigm, the network being invariant or equivariant, the learned features do not rely
on the input range and so does the output of the network. It is then robust to various transformations
that could alter the normalization range in the classical approach. This output is then normalized
to fit a desired range or distribution for the sake of interpretation, then thresholded. Applying this
strategy provides robust results, as well as increased generalization.
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E.2 DETAILS ON EXPERIMENTAL SETUP

E.2.1 EVALUATED ARCHITECTURES

The four variants of U-Net Ronneberger et al. (2015) that we consider have similar architecture:
the initial number of channels equals to 64 for 2D, 32 for 3D models, maximum depth of 4, 3
convolution with kernel of size 3× 3 at each depth, max-pooling dividing the dimension of channel
by 2 along each dimension and doubling the number of channels.

The specificity of each model are the following ones:

• Standard: our baseline, an unconstrained CNN with standard convolutions using bias and
ReLU activation functions,

• SEq: bias free convolutions with unconstrained kernel weights and ReLU activation func-
tions,

• AffEq: bias free convolutions with kernel weights constrained to sum to 1 and Sort-pool
activation functions,

• SEqSI: the first layer of the U-Net generating the 32 channels from the input image is
shift invariant (weights constrained to sum to 0), the rest of the network is composed of
unconstrained bias free convolution and ReLU activations.

To implement the models for the object location task, we applied the ”telescopic” strategy (see App.
C.5) to constraint the weights.

E.2.2 OBJECT LOCATION DATASETS

Data Science Bowl 2018 The Data Science Bowl 2018 (DSB) dataset (Goodman et al., 2018) is a
dataset of 2D real microscopy images from a Kaggle challenge. We focused on the subset containing
497 fluorescence images6 used to train StarDist 2D (Schmidt et al., 2018). Each image contains
dozens of objects. The set is split in 427 training images, 25 validation images, 50 testing images.
The test set contain in total approximately 2500 objects representing a wide range of scenario of
shape and illumination conditions that can be observed in fluorescence microscopy. Some example
are shown in Supp. Fig. 8.

3D synthetic dataset Our 3D synthetic dataset is composed of 10 training images, 3 validation
images and 5 testing images. Each image contains approximately 400 objects which are ellipsoids
with random size, orientation, intensity and the possibility to have a darker inside as it can sometimes
be observed on microscopy image. Each image is blurred and Poisson-Gaussian noise was added
to mimic real imaging conditions (Boulanger et al., 2010). An example of such image is shown in
Supp. Fig. 9.

E.2.3 DEFINITION OF THE ACCURACY METRIC

We can compute a distance matrix D ∈ RNGT×Npred , that stores the distance between all pairs of
GT-predicted points: Di,j = ||ci − ĉj ||2 is the distance between the GT location ci of index i and
the predicted location ĉj of index j. The pairing between points is done by iteratively associating
together the points that correspond to the minimum of D and removing the corresponding column
and row to prevent the process to reassign those points. We also investigated the solution that consists
in solving an assignment problem between the points sets that minimize the sum of the distances of
all pairings, as it is often done for other tasks such as segmentation. But, in our case, minimizing
a global term sometimes results in associating a point with another that is far away instead of one
really close as it minimize the overall process. We do not want this behavior to occur (see Fig. 10),
thus we keep the greedy pairing approach depicted first. For each matching between a predicted and
a GT center, we know the distance d in pixels (or voxels in 3D) between the two objects.

In what follows, we define:

6https://github.com/stardist/stardist/releases/download/0.1.0/dsb2018.
zip
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Figure 8: Examples of images from the test set of DSB dataset.

(a) 3D volume from the synthetic dataset (b) 2D slice extracted from the 3D volume

Figure 9: Illustration of the 3D synthetic dataset mimicking fluorescence microscopy

• TP (d) (True Positives): the number of matched GT and predicted centers separated by less
than d pixels/voxels apart;

• FP (d) (False Positives): the number of predicted centers unmatched or at a distance greater
than or equal to d pixels/voxels from their paired GT center;

• FN(d) (False Negatives): the number of GT centers unmatched or at a distance greater
than or equal to d pixels/voxels from their paired predicted center.

We evaluate the performances of the tested approaches using the accuracy metric:

acc(d) =
TP (d)

TP (d) + FN(d) + FP (d)
.

Eventually, our final score is provided by the area under the accuracy curve, integrated between 0
and a maximum distance D:

score =
1

D

∫ D

0

acc(d)dd.
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Figure 10: We illustrate the two pairings strategy between predicted and GT locations. The green pairing
minimizes the global cost corresponding to the sum of all pairing distances. However, it does not pair together
the two points that are at a distance of one which is the behavior that we expect (the left blue point is a FN, the
right red point is a FP and center points correspond to a match). Thus, we prefer the greedy pairing approach
that consider the black pairs. The very high distance pair will be filtered afterward anyway as we only consider
pairings above a certain distance threshold d to compute the accuracy.

In the experiments, to choose the value of D that we use, we consider that a pairing for which the
distance between objects is equal to the mean radius of the objects in the set can be considered as a
wrong matching (the predicted point is probably outside the object or almost outside it). Thus we fix
D equal to the mean radius for each set. In the 2D set, the mean radius is equal to 11.99 pixels, we
fix the threshold to D = 12. In 3D, the radius is approximately 5.53 voxels, thus we fix the distance
threshold to D = 6. In the Tables, we report the scores for those D.
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Table 22: Measure of the invariance for the object localization task under various affine in-
tensity transformations. The invariance measure is equivalent to computing the accuracy for
d = 1, comparing new locations with reference locations obtained in the original range [0,1]).
A value of 1 corresponds to an invariant location estimation. Results in gray are invariant.

w. sigmoid and BCE w. standardization and ZMSE
Setting Standard SEq AffEq SEqSI Standard SEq AffEq SEqSI

Shift

µ = −2 0.0 0.0 0.112 1.0 0.0 0.001 1.0 1.0
µ = 0.5 0.076 0.037 0.832 1.0 0.085 0.101 1.0 1.0
µ = 2 0.001 0.0 0.74 1.0 0.003 0.002 1.0 1.0
µ = 10 0.0 0.0 0.22 1.0 0.002 0.0 1.0 1.0

Scale
λ = 0.5 0.264 0.97 0.959 0.984 0.365 1.0 1.0 1.0
λ = 3.0 0.157 0.869 0.897 0.927 0.238 1.0 1.0 1.0
λ = 255 0.003 0.014 0.012 0.012 0.032 1.0 1.0 1.0

Affine
µ = −2, λ = 10 0.029 0.055 0.526 0.309 0.016 0.001 1.0 1.0
µ = 5, λ = 0.1 0.0 0.0 0.101 0.953 0.002 0.0 1.0 1.0
µ = 5, λ = 3 0.001 0.0 0.67 0.927 0.003 0.002 1.0 1.0

E.3 EXPERIMENTAL RESULTS

E.3.1 VALIDATION OF OUR TRAINING AND INFERENCE STRATEGY TO GENERATE
INVARIANT CENTROID DETECTION ON DSB2018

This experiment was conducted using 2D U-Net models. We trained the models for 1000 epochs,
using batch of size 64, using AdamW optimizer with a learning rate (lr) of 10−4 and image patches
of size 128 × 128, each patch being ranged in the range [0, 1]. For each approach, we selected the
weights that minimized the validation loss during the training to avoid taking a model overfitting the
training set. We optimized the thresholding value by maximizing the area under the accuracy curve
on the validation set.

We perform a first experiment to verify empirically the theoretical invariance of our approach. We
evaluated 8 models: the 4 architectures Stand., SEq, AffEq and SEqSI using either the standard
thresholding and loss (BCE) strategy or our approach based on standardization and ZMSE loss.
The additional combinations: Stand.+ZMSE, SEq+ZMSE, AffEq+BCE and SEqSI+BCE were added
here to show that neither the network nor the post-processing alone guarantee the invariance and both
are necessary.

We evaluate the invariance by first estimating the objects locations for image scaled in [0, 1] range
to obtain reference locations. Then, we re-estimate the object positions for different values of scale,
shift and affine normalization. We then compute an invariance measure, equivalent to the accuracy
for d = 1 between the new locations and the locations estimated in [0, 1]. If the measure is not equal
to 1, it is either because: i) there are missing or additional location for that transformation creating
either FP or FN; ii) there are the same number of objects which are not at the same positions (as we
set d = 1 we consider only matching of objects whose positions are distant by less than 1). Thus,
an invariant location estimation corresponds to a value of 1.

Invariance results are given in Supp. Table 22. As expected, only AffEq and SEqSI are completely
invariant when paired with the standardization and ZMSE loss.

We also provide additional results assessing the performances of each of these methods on this
dataset. We assess each of the above mentioned methods in [0, 1] and other ranges that are either a
scale, a shift or both. Supp. Fig. 11 shows the performances (accuracy curve) of each method for
these different ranges of normalization. On the training range, all approaches provide similar and
very satisfying results with very close accuracy curves. However, we observe that, as expected, the
non invariant strategy have major drops in performances for other ranges:

• Shift (µ = 1), both AffEq+ZMSE and SEqSI+ZMSE provide invariant results. SEqSI+BCE
provides invariant results too as the network is shift-invariant by itself and do not rely on the
post-processing to remove the shift. Surprinsingly, AffEq+BCE shows good performances
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(a) Range [0, 1] (b) Shift µ = 1

(c) Scale λ = 0.2 (d) Affine λ = 2, µ = −1

Figure 11: Accuracy curves for various range of normalization evaluated on DSB2018 test set. The
range used to train the networks was [0, 1].

too, but it cannot be explained by any invariant property. The performances of the other
methods drop.

• Scale (λ = 0.2), AffEq+ZMSE, SEqSI+ZMSE and SEq+ZMSE provide invariant results as
the three networks are scale-equivariant and the thresholding strategy makes the location
invariant. Other methods performances drop.

• Affine (λ = 2, µ = 1), AffEq+ZMSE and SEqSI+ZMSE provide invariant results. Af-
fEq+BCE and SEqSI+BCE provide non-invariant, but still good results. We can explain
this by the fact that even if the thresholding strategy does not provide invariant results, the
output of the networks being equivariant, the maps conserve the pixel values order. Thus,
if the thresholding is not too sensitive to the chosen threshold (for maps that provide very
different values for background and foreground, different threshold could provide similar
results) and the network output not shift in the sigmoid tails (where it is almost 0 or 1 ev-
erywhere), the location can still be accurate even if it is not invariant. But this results could
not be generalize to any affine transformation. All other methods show important accuracy
drops.

On Supp. Figures 12, we present the output score maps and predicted locations for each method, on
the same image, for the normalization range [−1, 1]. These results illustrate how the non-invariant
methods score maps can be affected by a change in the input normalization range. Obviously, this
perturbations of the score map significantly affects the object localization.

In general the normalization range is the same during training and inference and that experiment
was mainly dedicated to empirically prove our theoretical results. In the following experiment, we
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Figure 12: Score maps and object location for the different methods in the range [−1, 1]. The GT location are
represented with the large green dots and the predicted location are represented using the smaller red dots.

evaluate if, for the same range of normalization, invariant strategies can improve the robustness over
non-affine perturbation.

E.3.2 ROBUSTNESS OF Standard WITH NORMALIZATION AND SEqSI AGAINST
SPATIALLY-VARYING SHIFTS

In the Methods Section (see Section 4) we present our approach that makes a convolutional net-
work provably invariant to a global affine photometric transformation applied to the image. Other
widespread methods lead to similar results. Most of the normalizations commonly applied in im-
age processing eliminate global affine photometric corruptions. For example, the transformation
T1 : x 7→ x−min(x)

max(x)−min(x) , which normalizes the image to the range [0,1], removes the shift by
subtracting min(x) and the scale by dividing by max(x) − min(x). Similarly, the normalization
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T2 : x 7→ x−E[x]
σ(x) , which centers and reduces the intensity distribution of the image, also eliminates

a global shift and scale.

Thus, at first glance, one might therefore think that our approach has little value if normalizing input
images provides a simple solution to the same problem.

In this section, we demonstrate how our approach differs from simple normalization, particularly for
images affected by affine intensity transformations that vary spatially (cases for which theoretical
guarantees are weakened but, in our view, still meaningful). We describe two examples of local
intensity shifts for which our approach theoretically guarantees better results than simple normal-
ization, and we illustrate it with experimental results.

For the first example, we consider the very simple case of a two-piece shift µ: the upper half of the
image undergoes no transformation, while the lower half undergoes a shift. Specifically, considering
the domain of positions on the image defined as [0, H−1]× [0,W −1] for an image of size (H,W ),
∀(i, j) ∈ [0, H−1]×[0,W−1], µi,j = 0 if i ≤ H/2 and µi,j = µ if i > H/2. In this configuration,
applying the transformation T1 to rescale the original image to [0,1] will, at best, behave adequately
on one half of the image (depending on where the minimum and maximum values of the image
were located before and after the transformation) and, at worst, behave poorly everywhere (meaning
the normalized image values will differ from those of the original image at every location). Similar
considerations apply if T2 is used.

In the case of the SEqSI network, the shift is removed by the first layer of the network through a
convolution that acts locally. Thus, the shift is correctly eliminated almost everywhere, except at
the shift discontinuity. The size of the affected area after the first layer depends on the size of the
convolution kernel. In our case (3 × 3), only two rows of pixels are impacted. Depending on the
number of subsequent convolutions performed by the network, the error will propagate to a slightly
larger region, but a significant portion of the image will remain unaffected by this non-global shift.
In light of this observation, we can note that our network provides guarantees of near-invariance to
piecewise constant shifts.

To illustrate this observation, we present in Supp Fig. 13 the object localization results for the case
where the image is corrupted with a shift of µ = 0.25 applied only to the lower half of the image. We
evaluate the Standard network from the experiment in Section E.3.1, and we apply a normalization
to [0,1] (namely T1) as a pre-processing to match the range used during training. We compare with
the SEqSI network from the same experiment.

We can clearly observe that, for the Standard network, the score map is significantly affected across
the entire lower half, even far from the junction. In contrast, the score map for SEqSI appears to show
differences only in the immediate vicinity of the separation. Regarding position predictions, we note
that SEqSI produces very similar position predictions between the clean image and the corrupted
image. Some positions are missing, particularly because the thresholding depends on global values
of the score map (mean and standard deviation), which are inevitably affected by the differences at
the junction. On the other hand, Standard misses a large portion of the centers in the lower half, and
those that are predicted are generally slightly displaced compared to the positions predicted on the
clean image. This difference in behavior explains the reasonable invariance measurement for SEqSI,
whereas that of Standard is very low.
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Figure 13: Object localization results for a spatially-varying shift corresponding to a shift of µ = 0.25 only
on the second half of the image. The red dots correspond to the positions estimated on the clean image, the
green one are obtained on the corrupted one. On the corrupted image, both red and green are displayed: the
non-visible red correspond to green that perfectly overlap (invariant estimation). The “invariance measure”
correspond to an accuracy for d = 1 comparing green and red positions (the closer it is to 1, the more invariant
the estimation is).
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The second example we consider is that of a shift that evolves linearly according to the position on
the image. Specifically, we define a shift µ such that ∀(i, j) ∈ [0, H − 1] × [0,W − 1], µi,j =

κ( i+1
H + j+1

W ), where κ is a parameter controlling the magnitude of the shift. This kind of shift can
be observed frequently in biological images, for example where the thickness of the imaged tissue
is not constant.

Just as in the previous experiment, basic normalization to [0,1] will not achieve the desired behavior
(removing the shift) anywhere.

For our approach, since the shift is not piecewise constant, the argument put forward for the previous
experiment no longer holds. However, we can examine the form of the shift in the neighborhood of a
position (i, j) on the image. For (i+1, j), the shift is µi+1,j = µi,j+

κ
H . For any other pixel (k, l) in

the neighborhood, the shift can also be decomposed into the sum of a common component µi,j de-
pending on (i, j) and a residual component δi−k,j−l depending on the location in the neighborhood:
µi,j + δk−i,l−j . Thus, the convolution (which sums to zero over the pixels in the neighborhood)
will eliminate the common component µi,j related to the position on the image and will have an
indeterminate effect on the residual part. In cases where the residual part is negligible, particularly
when κ is small compared to the dimensions of the image (or when the shift varies slowly in a more
general, non synthetic setting), the proposed approach therefore appropriately removes most of the
shift.

In Figure 14, we illustrate the localization results for the Standard network using [0,1] normalization
as pre-processing, alongside those provided by our SEqSI, for a spatially-varying shift with κ = 0.3.

The results are even more striking for this experiment: the score map of the Standard network is
heavily impacted, especially in the bottom-right corner where the shift is strongest. As a result,
position prediction no longer works at all, and the invariance measure is almost zero. For SEqSI, the
network predicts nearly identical results, explaining the very high invariance measure.

A more real life example of spatially-varying shifts that are handled very well by our approach is
the bright-artifact case mentioned at the end of Section 7.2 and more developed in Supp. E.3.4. In
that case we generated very local and high intensity shift applied in small regions of the image to
generate artifacts that can be observed in microscopy images.

In light of the various points discussed in this section, it seems to us that, although our solution
may appear simple at first glance, it addresses a much broader range of corruptions than most of the
normalizations commonly used in deep learning tasks. Exploring its applicability across multiple
applications by testing its robustness to numerous non-affine and/or non-global corruptions seems
highly relevant.
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Figure 14: Object localization results for a spatially-varying shift with κ = 0.3. The red dots correspond to
the positions estimated on the clean image, the green one are obtained on the corrupted one. On the corrupted
image, both red and green are displayed: the non-visible red correspond to green that perfectly overlap (in-
variant estimation). The “invariance measure” correspond to an accuracy for d = 1 comparing green and red
positions (the closer it is to 1, the more invariant the estimation is).
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(a) 2D slice (b) 3D volume

Figure 15: Example of bright artifacts (red arrows) on a 3D biological image representing a zebra fish larva.
The maximum contrast has been limited to allow visualization because the artifact is 250 times brighter than
other pixel values.

E.3.3 ROBUSTNESS TO AFFINE AND NON-AFFINE PHOTOMETRIC CORRUPTIONS

This experiment was conducted using 3D U-Net models. We trained them for 6000 epochs, using
batch of size 4, using AdamW optimizer with a learning rate (lr) of 10−4 and image patches of size
90× 90× 90 voxels. Each patch is ranged in the range [0, 1].

If a data augmentation strategy is applied (Aff., NAff. or All, details in Supp. Sec. C.2), the patch
is corrupted by a image transformation picked in that augmentation category. The parameters of the
corruption are picked in the same interval than those presented in the classification experiment.

Gradient clipping is applied to prevent exploding gradient. We observe that the AffEq method is
particularly hard to train in 3D for this task and often creates exploding gradients. Clipping partially
solved the problem but this tendency to create high gradient can explain the bad results of AffEq,
especially when combined with data augmentations that perturbs the training even more.

For every approach, we selected the weights that minimized the validation loss during the training
to avoid taking an over-fitted model.

We optimized the thresholding value used in the local maxima detection by maximizing the score
on the validation set.

To assess the robustness over each perturbation category, we inferred the models on the test set with a
random alteration picked for each image of the set (with parameters picked in the same interval than
for training). We fixed the random seeds to guarantee that each model sees identical transformations.

For each experiment and each model, we launched 5 training using 5 different seeds ({1, 2, 3, 4, 5})
to ensure statistical significance of the results. We provide results corresponding to the mean of the
5 models score. They are provided with standard deviations in Supp. Table 23.

E.3.4 ROBUSTNESS TO BRIGHT ARTIFACTS

Bright artifacts, caused by sensor saturation arise frequently on fluorescence microscopy images.
They correspond to very bright zones in the image that are sometimes thousands times higher in
intensity than the maximum value of the signal (see example in Supp. Fig. 15). When the image
is normalized in a particular range (e.g. [0, 1]) without particular concern on corrupted zones, the
rest of the signal is squeezed. Thus, rescaling the image in [0, 1], locally correspond to a scaling
compressing the signal in parts of the images with no artifact.

Therefore, we assume that even if these alterations are neither affine nor global, our invariant ap-
proach can handle them correctly, given that a convolutional network processes an image locally
and that the score maps are per-voxel results. In presence of artifacts, the overall result will not be
invariant as expected: i) the results will differ at locations corresponding to artifacts voxels, ii) the
mean and std of the predicted output will be impacted, modifying the score map after standardiza-
tion. But if the artifacts represent a small region of the image, the mean and std could vary slightly,
still providing a good localization even without any data-augmentation.

To evaluate this hypothesis, we corrupt our test images with artifacts with various intensities:
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Table 23: Robustness to perturbations at inference on the 3D synthetic test set of fluorescence microscopy
(mean±std over 5 models). Test score for D = 6 of four architectures under various photometric corruptions.
Models are grouped by the training augmentation strategy used: none (Ø), affine (Aff.), non-affine (NAff.), or
all combined (All). Each row corresponds to a different perturbation applied at evaluation. For each combi-
nation of model+augmentation strategy, 5 models were trained, we give the mean score and the std computed
among 5 models. Within each training strategy (column group), the best result is highlighted in gray. The
overall best score for each perturbation is in bold.

Train Aug. = Ø Train Aug. = Aff

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 0.868±0.015 0.605±0.33 0.886±0.002 0.87±0.007 0.868±0.003 0.842±0.011 0.881±0.006 0.395±0.017

Affine transformations (Aff.)
Shift 0.152±0.12 0.117±0.135 0.886±0.002 0.87±0.007 0.864±0.005 0.837±0.016 0.881±0.006 0.395±0.017
Scale (< 1) 0.612±0.177 0.558±0.319 0.886±0.002 0.87±0.007 0.866±0.005 0.718±0.153 0.881±0.006 0.395±0.017
Scale (> 1) 0.491±0.142 0.506±0.287 0.886±0.002 0.87±0.007 0.864±0.005 0.835±0.02 0.881±0.006 0.395±0.017
Affine 0.149±0.109 0.093±0.067 0.886±0.002 0.87±0.007 0.843±0.028 0.799±0.066 0.881±0.006 0.395±0.017

Non-Affine transformations (NAff.)
Shift saturated 0.074±0.073 0.066±0.087 0.069±0.059 0.359±0.179 0.457±0.177 0.298±0.22 0.322±0.21 0.264±0.063
Scale (> 1) saturated 0.51±0.136 0.444±0.272 0.876±0.008 0.842±0.019 0.844±0.016 0.792±0.014 0.846±0.017 0.299±0.036
Affine saturated 0.124±0.069 0.094±0.063 0.113±0.068 0.456±0.1 0.558±0.063 0.374±0.197 0.398±0.179 0.297±0.041
Noise low 0.633±0.125 0.505±0.289 0.885±0.001 0.736±0.122 0.868±0.003 0.841±0.013 0.882±0.006 0.385±0.018
Noise high 0.233±0.141 0.045±0.05 0.048±0.077 0.238±0.127 0.603±0.236 0.42±0.186 0.08±0.117 0.102±0.052
Gamma (darken) 0.535±0.136 0.462±0.214 0.424±0.193 0.704±0.09 0.838±0.015 0.676±0.104 0.669±0.175 0.388±0.017
Gamma (lighten) 0.512±0.23 0.39±0.278 0.883±0.002 0.805±0.066 0.865±0.004 0.835±0.012 0.876±0.007 0.382±0.02

Additional experiment on artifacts
Arti. low 0.561±0.165 0.571±0.342 0.842±0.016 0.858±0.007 0.857±0.008 0.714±0.134 0.87±0.009 0.387±0.02
Arti. medium 0.274±0.199 0.53±0.342 0.814±0.058 0.845±0.007 0.852±0.011 0.48±0.358 0.869±0.009 0.376±0.023
Arti. high 0.064±0.09 0.081±0.066 0.693±0.146 0.733±0.046 0.846±0.017 0.293±0.293 0.863±0.01 0.291±0.054

Train Aug. = NAff Train Aug. = All

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 0.847±0.051 0.702±0.211 0.883±0.003 0.483±0.037 0.877±0.004 0.853±0.013 0.881±0.004 0.377±0.006

Affine transformations (Aff.)
Shift 0.599±0.25 0.289±0.168 0.883±0.003 0.483±0.037 0.874±0.008 0.836±0.022 0.881±0.004 0.377±0.006
Scale (< 1) 0.796±0.123 0.59±0.281 0.883±0.003 0.483±0.037 0.874±0.006 0.789±0.084 0.881±0.004 0.377±0.006
Scale (> 1) 0.835±0.067 0.723±0.217 0.883±0.003 0.483±0.037 0.875±0.005 0.855±0.01 0.881±0.004 0.377±0.006
Affine 0.631±0.09 0.24±0.133 0.883±0.003 0.483±0.037 0.837±0.055 0.803±0.076 0.881±0.004 0.377±0.006

Non-Affine transformations (NAff.)
Shift saturated 0.508±0.135 0.385±0.118 0.564±0.199 0.234±0.104 0.567±0.161 0.405±0.212 0.555±0.162 0.244±0.053
Scale (> 1) saturated 0.83±0.069 0.716±0.184 0.881±0.003 0.368±0.073 0.87±0.009 0.823±0.023 0.878±0.005 0.284±0.029
Affine saturated 0.596±0.094 0.423±0.242 0.607±0.1 0.303±0.049 0.639±0.058 0.44±0.226 0.61±0.097 0.287±0.033
Noise low 0.846±0.053 0.703±0.211 0.884±0.004 0.471±0.036 0.878±0.004 0.853±0.012 0.881±0.004 0.372±0.01
Noise high 0.79±0.085 0.62±0.244 0.735±0.162 0.074±0.036 0.844±0.009 0.763±0.056 0.78±0.086 0.08±0.07
Gamma (darken) 0.798±0.127 0.581±0.312 0.864±0.018 0.438±0.03 0.873±0.005 0.752±0.067 0.777±0.021 0.376±0.01
Gamma (lighten) 0.843±0.054 0.718±0.199 0.884±0.003 0.471±0.037 0.876±0.004 0.85±0.013 0.879±0.003 0.364±0.013

Additional experiment on artifacts
Arti. low 0.816±0.078 0.569±0.364 0.86±0.026 0.477±0.036 0.862±0.004 0.819±0.042 0.872±0.004 0.374±0.006
Arti. medium 0.777±0.108 0.521±0.358 0.787±0.148 0.472±0.034 0.859±0.006 0.789±0.064 0.868±0.007 0.364±0.01
Arti. high 0.672±0.181 0.343±0.318 0.737±0.144 0.426±0.015 0.855±0.007 0.618±0.128 0.823±0.084 0.273±0.059

• low: the artifacts maximum intensity is 3 times higher than the original signal maximum
intensity,

• medium: the artifacts maximum intensity, is 5 times higher than the original signal maxi-
mum intensity

• high: the artifacts maximum intensity is 10 times higher than the original signal maximum
intensity.

We illustrate the corruptions in Supp. Fig. 16.

We evaluate the models trained for the precedent experiment. The images are rescaled in the [0, 1]
range before being provided to the network to match the training range. The results are given
in the last rows of Supp. Table 23 show that even with no augmentation, both AffEq and SEqSI
provided extremely good results for artifacts up to 10 times brighter than the original signal while
other methods score is close to 0. It shows that our approach addresses this type of corruption
intrinsically. Adding data-augmentation improves even more SEqSI performances.
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Figure 16: 3D volume from our test set of synthetic images corrupted with artifacts with various intensities:
3× the maximum images intensity for low, 5× for medium and 10× for high, respectively.

The common strategy to address bright artifacts, based on normalization by p-value requires to know
approximately the amount of pixels/voxels curated by artifacts while we propose an approach that
automatically address this issue.

F STUDY OF THE BINARY SEGMENTATION TASK

We add a final experiment on the binary segmentation task, that can be considered as a sub-task of
the object localization (as the later include a thresholding of a score map).

F.1 DETAILS ON EXPERIMENTAL SETUP

Evaluated Architectures. The architectures are rigorously the same than for the object localiza-
tion task (see Supp. Sec. E.2.1 for details).

Binary Segmentation Datasets. The DSB 2018 set mentioned in Supp. Section E.2.2 provides
instance segmentation masks that can be converted into binary segmentation masks, thus we decided
to reuse this set for this task.

Definition of the score. For this task, we compare the GT binary mask BGT with the predicted
binary mask Bpred using a Dice Score (DS).

DS =
2|BGT ⊗Bpred|
|BGT|+ |Bpred|

, (16)

where ⊗ is an element-wise product of the masks and |BGT| count the number of values equal to 1
in BGT.

Training details. Unlike the object localization task for which we generated dedicated score maps
to train the models (with local maxima at the barycenter of each object), for binary segmentation the
GT binary masks can directly be used as GT for the loss computation.

We trained the 2D U-Net models for 1500 epochs using a learning rate of 10−4, using the AdamW
optimizer. The batch size is 32, the image patch are of size 128× 128 pixels.

Again, the thresholding value used to generate the binary masks is optimized for each model at the
end of the training to maximize the DS over the validation set.

In Table 24, we report the Dice Scores on the DSB test set for each of the methods (averaged over 5
models trained for different seeds). In Fig. 17, we show examples of binary masks obtained on two
images either on original or corrupted images. We observe that the shift makes the baselines either
predict full foreground or full background while AffEq and SEqSI results remain unchanged.

On the quantitative results, we observe that, once again, AffEq and SEqSI are affine-invariant. For
the experiment with no data-augmentation both models demonstrate better robustness than baseline
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Table 24: Robustness to perturbations at inference on the DSB dataset for binary segmentation. The Dice
score is given comparing predicted binary mask with GT one. Models are grouped by the training augmentation
strategy used: none (Ø), affine (Aff.), non-affine (NAff.), or all combined (All). Each row corresponds to a
different perturbation applied during evaluation. Within each training strategy (column group), the best result
is highlighted in gray. The overall best score for each perturbation is in bold. Results are averaged over 5
models trained on different seeds. The std. are given in Supp. Table 25.

Train Aug. = Ø Train Aug. = Aff Train Aug. = NAff Train Aug. = All

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 0.933 0.933 0.925 0.927 0.931 0.929 0.926 0.926 0.932 0.928 0.923 0.919 0.932 0.931 0.924 0.913

Affine transformations (Aff.)
Shift 0.339 0.289 0.925 0.927 0.931 0.929 0.926 0.926 0.634 0.442 0.923 0.919 0.93 0.929 0.924 0.913
Scale (< 1) 0.783 0.903 0.925 0.927 0.929 0.922 0.926 0.926 0.914 0.902 0.923 0.919 0.927 0.918 0.924 0.913
Scale (> 1) 0.917 0.934 0.925 0.927 0.931 0.929 0.926 0.926 0.893 0.933 0.923 0.919 0.932 0.932 0.924 0.913
Affine 0.366 0.353 0.925 0.927 0.928 0.917 0.926 0.926 0.611 0.449 0.923 0.919 0.919 0.922 0.924 0.913

Non-Affine transformations (NAff.)
Shift saturated 0.358 0.353 0.526 0.529 0.517 0.522 0.531 0.531 0.672 0.67 0.66 0.654 0.669 0.657 0.657 0.639
Scale (> 1) saturated 0.915 0.925 0.911 0.918 0.92 0.921 0.917 0.918 0.931 0.932 0.923 0.919 0.93 0.93 0.923 0.914
Affine saturated 0.394 0.386 0.587 0.587 0.575 0.578 0.585 0.588 0.705 0.708 0.697 0.691 0.702 0.695 0.694 0.68
Noise low 0.928 0.918 0.851 0.923 0.929 0.927 0.827 0.923 0.931 0.93 0.923 0.922 0.929 0.926 0.923 0.915
Noise high 0.6 0.489 0.146 0.715 0.708 0.748 0.15 0.746 0.894 0.894 0.884 0.881 0.878 0.861 0.873 0.852
Gamma (darken) 0.747 0.785 0.815 0.8 0.847 0.803 0.811 0.806 0.913 0.893 0.889 0.867 0.916 0.884 0.875 0.854
Gamma (lighten) 0.875 0.867 0.866 0.884 0.91 0.904 0.856 0.891 0.927 0.928 0.916 0.917 0.927 0.924 0.916 0.908

Figure 17: Binary segmentation results for different models trained without data-augmentation. The top
images correspond to binary segmentation on original images. The bottom examples correspond to images
corrupted with a shift.

models, even for multiple non-affine perturbations. Using data-augmentation increases the perfor-
mance of all models on non-affine corruptions, with competitive and comparable results.
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Table 25: Robustness to perturbations at inference on the DSB dataset for binary segmentation
(mean±std over 5 models). The Dice score is given comparing predicted binary mask with GT one. Models
are grouped by the training augmentation strategy used: none (Ø), affine (Aff.), non-affine (NAff.), or all com-
bined (All). Each row corresponds to a different perturbation applied during evaluation. Within each training
strategy (column group), the best result is highlighted in gray. The overall best score for each perturbation is in
bold.

Train Aug. = Ø Train Aug. = Aff

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 0.933±0.002 0.933±0.002 0.925±0.002 0.927±0.002 0.931±0.002 0.929±0.001 0.926±0.002 0.926±0.001

Affine transformations (Aff.)
Shift 0.339±0.035 0.289±0.096 0.925±0.002 0.927±0.002 0.931±0.002 0.929±0.002 0.926±0.002 0.926±0.001
Scale (< 1) 0.783±0.057 0.903±0.021 0.925±0.002 0.927±0.002 0.929±0.002 0.922±0.008 0.926±0.002 0.926±0.001
Scale (> 1) 0.917±0.006 0.934±0.002 0.925±0.002 0.927±0.002 0.931±0.002 0.929±0.001 0.926±0.002 0.926±0.001
Affine 0.366±0.059 0.353±0.091 0.925±0.002 0.927±0.002 0.928±0.004 0.917±0.015 0.926±0.002 0.926±0.001

Non-Affine transformations (NAff.)
Shift saturated 0.358±0.081 0.353±0.069 0.526±0.046 0.529±0.049 0.517±0.052 0.522±0.051 0.531±0.051 0.531±0.049
Scale (> 1) saturated 0.915±0.007 0.925±0.003 0.911±0.007 0.918±0.004 0.92±0.002 0.921±0.003 0.917±0.003 0.918±0.002
Affine saturated 0.394±0.095 0.386±0.04 0.587±0.02 0.587±0.029 0.575±0.025 0.578±0.028 0.585±0.026 0.588±0.028
Noise low 0.928±0.001 0.918±0.006 0.851±0.011 0.923±0.003 0.929±0.001 0.927±0.002 0.827±0.015 0.923±0.001
Noise high 0.6±0.125 0.489±0.186 0.146±0.006 0.715±0.068 0.708±0.042 0.748±0.04 0.15±0.008 0.746±0.043
Gamma (darken) 0.747±0.032 0.785±0.017 0.815±0.019 0.8±0.024 0.847±0.008 0.803±0.02 0.811±0.024 0.806±0.027
Gamma (lighten) 0.875±0.023 0.867±0.046 0.866±0.025 0.884±0.017 0.91±0.007 0.904±0.007 0.856±0.051 0.891±0.02

Train Aug. = NAff Train Aug. = All

Corruption
Model Stand. SEq SEqSI AffEq Stand. SEq SEqSI AffEq

Original 0.932±0.001 0.928±0.007 0.923±0.002 0.919±0.002 0.932±0.001 0.931±0.003 0.924±0.002 0.913±0.006

Affine transformations (Aff.)
Shift 0.634±0.167 0.442±0.049 0.923±0.002 0.919±0.002 0.93±0.002 0.929±0.004 0.924±0.002 0.913±0.006
Scale (< 1) 0.914±0.011 0.902±0.032 0.923±0.002 0.919±0.002 0.927±0.003 0.918±0.017 0.924±0.002 0.913±0.006
Scale (> 1) 0.893±0.02 0.933±0.001 0.923±0.002 0.919±0.002 0.932±0.001 0.932±0.002 0.924±0.002 0.913±0.006
Affine 0.611±0.117 0.449±0.072 0.923±0.002 0.919±0.002 0.919±0.014 0.922±0.011 0.924±0.002 0.913±0.006

Non-Affine transformations (NAff.)
Shift saturated 0.672±0.038 0.67±0.039 0.66±0.037 0.654±0.039 0.669±0.04 0.657±0.044 0.657±0.042 0.639±0.039
Scale (> 1) saturated 0.931±0.001 0.932±0.001 0.923±0.002 0.919±0.003 0.93±0.001 0.93±0.003 0.923±0.002 0.914±0.004
Affine saturated 0.705±0.027 0.708±0.022 0.697±0.027 0.691±0.03 0.702±0.028 0.695±0.028 0.694±0.028 0.68±0.026
Noise low 0.931±0.002 0.93±0.001 0.923±0.002 0.922±0.001 0.929±0.002 0.926±0.006 0.923±0.003 0.915±0.006
Noise high 0.894±0.006 0.894±0.003 0.884±0.005 0.881±0.008 0.878±0.018 0.861±0.031 0.873±0.011 0.852±0.031
Gamma (darken) 0.913±0.008 0.893±0.027 0.889±0.018 0.867±0.024 0.916±0.005 0.884±0.028 0.875±0.02 0.854±0.019
Gamma (lighten) 0.927±0.002 0.928±0.004 0.916±0.005 0.917±0.003 0.927±0.002 0.924±0.003 0.916±0.005 0.908±0.006
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