
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a paper at DATA-FM workshop @ ICLR 2025

BE LIKE A GOLDFISH, DON’T MEMORIZE!
MITIGATING MEMORIZATION IN GENERATIVE LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models can memorize and repeat their training data, causing pri-
vacy and copyright risks. To mitigate memorization, we introduce a subtle modi-
fication to the next-token training objective that we call the goldfish loss. During
training, a randomly sampled subsets of tokens are excluded from the loss com-
putation. These dropped tokens are not memorized by the model, which prevents
verbatim reproduction of a complete chain of tokens from the training set. We run
extensive experiments training billion-scale LLaMA-2 models, both pre-trained
and trained from scratch, and demonstrate significant reductions in extractable
memorization with little to no impact on downstream benchmarks.

1 INTRODUCTION

Language model memorization is a phenomenon in which models internally store and later regen-
erate verbatim copies of training data. Memorization creates a number of risks when LLMs are
used for commercial purposes. First, there are copyright risks for customers, as LLM outputs may
contain intellectual property (Shoaib, 2023). This is particularly problematic for code models, as
the verbatim reuse of code can impact downstream licenses. This is true even when the regenerated
code has an open-source license, and many such licenses contain terms that restrict commercial use.
Next, there are copyright risks for providers, as the legality of hosting and distributing models that
can regenerate copyrighted content is not yet resolved.

 + Goldfish Loss
X

 + Standard Loss
Mr. and Mrs. Dursley, of number four, Privet Drive,
were proud to say that they were perfectly normal,
thank you very much. They were the last people
you'd expect to be involved in anything…

Mr. and Mrs. Dursley, of number four, Privet Drive,
were proud to say that they were perfectly normal,
thank you. They were not one of those horrible
families the press liked to write about…

 REGENERATED

NOT REGENERATED
No Training
(Control)

Goldfish
Loss

Standard
Loss

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
iza

tio
n

Sc
or

e

0% 0%

85%

26%

51%

96%
Exact Match
RougeL

No Training
(Control)

Goldfish
Loss

Standard
Loss

0.0

0.1

0.2

0.3

0.4
Be

nc
hm

ar
k

Ac
cu

ra
cy

45% 46% 46%

Figure 1: A pretrained 7B model (the control) is further trained for 100 epochs on (left) the
first chapter of Harry Potter or (right) 100 wikipedia documents. We observe a drop in exact
match memorization and RougeL metrics when training with goldfish loss (see Section 4 for
metric descriptions). When prompted with the opening of Harry Potter (gray) the standard model
regenerates the original text (red) while the goldfish model does not.

Finally, there are privacy risks, as regenerated training data may contain PII or other sensitive data.
A number of works (Eldan & Russinovich, 2023; Zhang et al., 2024b; Jang et al., 2023) have tried to
mitigate memorization through model editing or “unlearning” after the model is trained. Instances of
commerical LLMs employing such stopgaps to prevent lawsuits from data owners have been noted
(Hays, 2023). We argue that it is best to stop memorization at the source and leave such approaches
for last-mile touchups.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a paper at DATA-FM workshop @ ICLR 2025

We present the goldfish loss, a strikingly simple technique that leverages properties of the next-token
prediction objective to mitigate verbatim generation of memorized training data (Section 3). Like
standard training, the proposed approach begins with a forward pass on all tokens in a batch. Unlike
standard training, in which the next token prediction loss is calculated on all tokens, we exclude
a pseudo-random subset (e.g., 25% i.e. with probability 1/4) of the training tokens. The tokens
are dropped with 1/k probability where k is a chosen hyperparameter. On the backward pass, the
model never learns to reproduce the excluded tokens. At inference time, the model must make an
unsupervised “guess” each time it tries to predict a dropped token, causing it to depart from the
training data sequence.

In this way, the goldfish loss enables training on text without the ability to make a verbatim repro-
duction at inference time. We formally introduce goldfish loss in Section 3. Throughout the paper,
we either use k = 4 or refer to it as k-GL, indicating the value of the drop frequency k.

Our exploration of this idea begins by stress-testing the goldfish loss with a training setup that
aggressively promotes memorization (Section 4.1). We train a 7B parameter model on a small
number of articles for 100 epochs, finding that the models trained with goldfish loss resist memo-
rization while standard training memorizes most of the training data (see Figure 1). We then turn to
more standard training regimen, where we observe that the memorization metrics of goldfish models
closely resemble models that never saw the training data at all (Section 4.2). We then look at the
utility of goldfish models and observe that they still learn effectively from training data (Section 5.1),
although in some situations they may need to train for longer than standard models to compensate
for the lost tokens that were excluded from the loss (Section 5.2). Finally, we try to adversarially
extract training data from goldfish models using an aggressive beam search decoder, which typically
fails. We do, however, observe that membership inference attacks still work on goldfish models,
albeit with marginally lower accuracy (Section 6).

2 RELATED WORK

2.1 QUANTIFYING MEMORIZATION IN LLMS

Both benign and adversarial prompting strategies can extract training data from open-sourced large
language models (Carlini et al., 2019; 2021; Inan et al., 2021). Carlini et al. (2023) proposes a family
of concrete memorization metrics including “extractable memorization” with prefix length p, where
if the model memorizes a string, it will regurgitate the rest of the string when prompted with a prefix
of length p. This notion of memorization is the focus of our work, as it represents a worst-case
scenario and is easy to reproduce in controlled experiments. It should be noted that training data can
be extracted without using a p-prefix. Spontaneous reproducing of training data has been observed
in both language models (Nasr et al., 2023) and image generators (Somepalli et al., 2023) without
any prior knowledge of the data content. More recently, Schwarzschild et al. (2024) proposes a novel
definition for memorization that quantifies whether a training string is extractable by an adversarial
prompt that is shorter than the string itself.

2.2 MITIGATING MEMORIZATION IN LLMS

Differentially private (DP) training (Abadi et al., 2016) provides a guarantee that the presence or
absence of any single data point will have a minimal impact on the model’s output. However, differ-
ential privacy can compromise model utility and is resource-intensive, especially for large language
models (Anil et al., 2021). The practicality of these methods can be improved by pretraining on
sanitized non-sensitive data before DP training (Zhao et al., 2022; Shi et al., 2022).

It is known that deduplicating training data can mitigate memorization (Kandpal et al., 2022). How-
ever, this is complicated by the scale of web data and the prevalence of near-duplicated versions of
many texts. Distinct from work on training time techniques, Ippolito et al. (2022) proposes detec-
tion of memorization at test time using a bloom filter (Bloom, 1970) data structure. It should be
noted that this approach is also vulnerable to missing near-duplicated documents due to the brittle
data structure and feature extractors used. In a recent concurrent work, Wei et al. (2024) proposed a
framework to evaluate varied copyright takedown methods in consistent manner.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a paper at DATA-FM workshop @ ICLR 2025

2.3 REGULARIZATION AND MEMORIZATION

Classical definitions of memorization relate to overfitting (Feldman & Zhang, 2020) and argue that
memorization is reduced through regularization techniques that reduce overfitting, through strategies
such as weight decay and dropout (Srivastava et al., 2014). However, both are insufficient to prevent
memorization in LLMs (Tirumala et al., 2022; Lee et al., 2022a). Related regularization strategies
are the addition of noise to input embeddings (Jain et al., 2024; Wen et al., 2024), or random dropout
of tokens during training (Hou et al., 2022). Lin et al. (2024) study dropping tokens from the loss in a
data-dependent manner and observe that this can enhance model performance if tokens are carefully
selected by a reference model. The idea of dropping parts of each training sample was successfully
used to prevent memorization in diffusion models by Daras et al. (2024a;b). Here, images are
degraded by removing many patches before they are used for training. While conceptually related
to our proposed method, the goldfish loss achieves high efficiency by computing a forward pass on
an entire unaltered text sample, and only excluding information from the backward pass.

Our approach is conceptually quite different because we forgo randomized regularization, and con-
struct a localized, pseudo-random token mask — every time a certain phrase or passage appears in
the data, the passage is masked in the same manner, preventing the model from learning the entire
passage verbatim (details in Section 3.1). In comparison, if the model is trained with randomized
dropout of tokens or weights, it will eventually learn the entire passage, as the passage is seen mul-
tiple times with different information masked.

3 GOLDFISH LOSS: LEARNING WITHOUT MEMORIZING

LLMs are commonly trained using a causal language modeling (CLM) objective that represents the
average log-probability of a token, conditioned on all previous tokens. For a sequence x = {xi} of
L training tokens, this is written as:

L(θ) = − 1

L

L∑
i=1

logP (xi|x<i; θ) (1)

This objective is minimized when the model correctly predicts the sequence {xi} with high con-
fidence. For this reason, models trained by next token prediction can be prone to memorization.
However, successful regeneration of a token xj at test time depends on the correct conditioning of
the complete preceding sequence x<j being provided as input.

The goldfish loss is only computed on a subset of the tokens, and thus prevents the model from
learning the entire token sequence. For a choosen a goldfish mask G ∈ {0, 1}L and goldfish loss is
defined as:

Lgoldfish(θ) = − 1

|G|

L∑
i=1

Gi(xi) logP (xi|x<i; θ). (2)

In plain English, we ignore the loss on the ith token if its mask value is Gi = 0, and include the
token if Gi = 1. Most importantly, the outputs xi are still conditioned on all prior tokens x<i,
allowing the model to learn the full distribution of natural language over the course of training. Yet,
for a given passage, the model does not learn to predict the ith token, and so is never conditioned on
the exact sequence x<i at test time. Note that the goldfish mask will be chosen independently for
each training sample, based on local context using a hash mask (described in detail in Section 3.1).
Remark. We can simulate the impact of this intervention in a toy computation. Assume we are
given a model trained in a standard manner, where P (xi|x<i) = p, ∀i > m for some memorized x
from the training data and an integer m. Sampling n tokens with prefix x<m regenerates the string
x<m+n perfectly with probability pn. For p = 0.999, n = 256, this happens 77.40% of the time.

Now assume that we are given a model trained with goldfish loss, where P (xi|x<i) = p on trained
tokens due to memorization, and P (xi|x<i) = q on masked tokens due to generalization. Now,
we regenerate n perfect tokens with probability p2n/3qn/3. With k = 3, p = 0.999, q = 0.95, the
sequence is sampled with probability of only 1.06%. The compounding effect of the dependence
on sequence length n is critical, for example for sequences of length n = 16 the difference is only
between 98.41% for standard loss to 75.26% for goldfish loss.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a paper at DATA-FM workshop @ ICLR 2025

0

200

400

Co
un

t Control

0

200

400
Co

un
t 3-GL

0

200

400

Co
un

t 4-GL

0.0 0.2 0.4 0.6 0.8 1.0
RougeL

0

200

400

Co
un

t Standard Loss

Figure 2: Memorization
as Function of k in Gold-
fish Loss: We train 1B pa-
rameter models described in
Section 4.1 and plot his-
tograms of RougeL scores
to measure extractable mem-
orization. Control refers
to a model not trained on
the 2000 repeated wikipedia
documents. We observe that
for lower values of k, the
extractable memorization is
close to the control, and that
exact repetitions observed in
standard loss are effectively
mitigated.

There are a range of ways to choose the goldfish mask, after choosing a drop frequency k. A simple
baseline that we investigate is to drop every kth token in a sequence, which we refer to as a static
mask, which we juxtapose with a random mask baseline that drops every token with probability
1/k. We use the random mask to differentiate the effects of regularization that random dropping
provides from the effects of the goldfish loss, which is deterministic. For our main results, we use
hashed mask which we discuss in next section.

3.1 ROBUST HANDLING OF DUPLICATE PASSAGES WITH HASHING

Web documents often appear in many non-identical forms. For example, a syndicated news article
may appear in many different locations across web, each with a slightly different attribution, dif-
ferent article headers, different advertisements, and different footers. When certain passages appear
multiple times in different documents, we should mask the same tokens each time, as inconsistent
masking would eventually leak the entire passage. The simple static mask baseline fails here, as the
mask is aligned to the pretraining sequence length and not to the content of the text.

To solve this problem, we propose to use a localized hashed mask. For a positive integer h deter-
mining the context width of the hash, we mask token xi if and only if the outputs of a hash function
f : |V |h → R applied to the h preceding tokens is less than 1

k . With this strategy, the goldfish loss
mask for every position depends only on the h preceding tokens. Every time the same sequence of
h tokens appears, the (h+ 1)th token is masked in the same way.

With this strategy, h cannot be too small, or the model may fail to memorize some important
(h+ 1)-grams that should be memorized. For example, if h = 7 is used, the model may never learn
to produce the word “Power” at the end of the phrase “the Los Angeles Department of Water and
Power.” Formally, with the hashed mask, of all (h + 1)-grams, a fixed subset of size 1

k is never
learned. As h increases, this issue becomes less prominent, as the frequency of n-grams decreases
exponentially due to Zipf’s law (Zipf, 1935). However, we also cannot choose h too large, as then
the hash is underdetermined for the first h − 1 tokens in the document. In practice, we may never
want the model to memorize long (h+1)-grams of a certain length. For example, n-grams of length
13 are rare enough that overlaps of 13-grams between train data and test data are used in Brown
et al. (2020); Du et al. (2022) as indicative of contamination. Analogously, setting h = 13, we
consider the memorization of these n-grams as undesirable, as if this subset had been deduplicated
before training (Lee et al., 2022b).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a paper at DATA-FM workshop @ ICLR 2025

WinoGrande PIQA OpenBookQA HellaSwag BoolQ ARC-E ARC-C
Benchmark

0%

10%

20%

30%

40%

50%

60%

Ac
cu

ra
cy

Random
Performance Control 3-GL 4-GL Standard Loss

Figure 3: Benchmark Performance: We pretrain 1B parameter models on 20 billion tokens as
described in Section 4.1 and evaluate downstream performance on various benchmarks. We note
only marginal change in performance for models trained with goldfish loss (k = 3 and k = 4)
in comparison to the model trained with standard loss. Control refers to model trained only on
RedPajama and not on wikipedia canaries.

Furthermore, it is wise to normalize text before hashing to prevent minor variations in representation
(e.g., soft dashes, non-breaking spaces) from impacting the hash. Normalized hash functions of this
kind have already been implemented for use in watermarking (Kirchenbauer et al., 2023).

4 CAN GOLDFISH LOSS PREVENT MEMORIZATION?

In this section, we validate that the goldfish loss can indeed prevent memorization. We consider
two setups: an extreme setup that aggressively promotes memorization with many epochs (i.e.,
repetitions) on a few samples, and a standard setup that emulates the batching used in realistic
model training.

We quantify memorization using two metrics. We first chop each test sequence from the training set
into a prefix and a suffix of length n tokens. Conditioned on the prefix, we autogressively generate
text at zero temperature. We compare the generated suffix with the ground truth suffix using two
metrics. These are (1) RougeL score (Lin, 2004) which quantifies the length of the longest common
(non-consecutive) subsequence. A score of 1.0 indicates perfect memorization. (2) Exact Match
rate, which measures the percentage of correctly predicted sequences compared to ground truth.
Since the focus of our work is syntactical memorization, we focus on these two metrics. The results
for semantic memorization (or knowledge retention) can be found in Appendix C.1.

4.1 PREVENTING MEMORIZATION IN EXTREME SCENARIOS

We begin by considering a training setup that is specifically designed to induce memorization. We
continue pretraining LLaMA-2-7B model (Touvron et al., 2023) for 100 epochs on a dataset con-
sisting of only 100 English Wikipedia (Wikimedia Foundation) articles. We select these documents
by randomly sampling a set of pages that contain between 2000 and 2048 tokens. In Figure 1,
we observe that standard training results in verbatim memorization of 84/100 articles, while the
goldfish loss model with k = 4 memorized none. RougeL metrics indicate that the model trained
with goldfish loss repeats non-consecutive n-gram sub-sequences that are roughly twice as long as
a model that never saw the data. This is consistent with our definition. The model still memorizes
subsequences, but the likelihood of getting a long subsequence correct reduces exponentially in the
length of the subsequence.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a paper at DATA-FM workshop @ ICLR 2025

4.2 PREVENTING MEMORIZATION IN STANDARD TRAINING

Our second experimental set-up largely follows that of TinyLLaMA-1.1B (Zhang et al., 2024a). We
pretrain a language model of size 1.1B with a vocabulary size of 32k. We compare the goldfish loss
in Equation 2 at different values of k and the standard causal language modeling loss in Equation 1.
More training details can be found in Appendix A.

We construct the dataset for this experiment based on two sources. First, a subset of RedPajama
version 2 (Together Computer, 2023), on which we train for a single epoch. Second, we also mix in
2000 target sequences, each of 1024 to 2048 token length, from the Wikipedia (Wikimedia Founda-
tion) corpus. To simulate the problematic case of data that is duplicated within the dataset, we repeat
this target set 50 times in the course of training, in random locations. In total, we train on 20 billion
tokens in over 9500 gradient steps. We also train a corresponding control model that is trained only
20 billion RedPajama tokens.

Under these normal training conditions, the goldfish loss significantly hinders the model’s ability
to reproduce the target sequences that we mix into the larger training corpus. Figure 2 plots the
distribution of RougeL memorization scores for target documents after training. For k = 3 and
k = 4, the distribution of RougeL values mostly overlaps with that of the oblivious control model
that did not train on the target documents.

4.3 DIVERGENCE POSITIONS VS. DROP POSITIONS

Our intuition is that tokens are not memorized when they are dropped by the goldfish loss, leading
to model divergence from the ground truth. To validate this intuition, we analyze the relationship
between the positions of dropped tokens and the positions at which the model diverges from the
ground truth while attempting to regenerate the sequence. We consider the 2000 documents trained
for 50 epochs in Section 4.2. Figure 4 and Table 4.3 show the relation between dropped index and
first diverged index.

We see that most sequences do not survive beyond the first dropped token without diverging, despite
having trained on them 50 times in a row. We also see that divergence locations overwhelmingly
coincide with the positions that were masked out. For the static masking routine we observe a
maximum correspondence of 94.1% which decays as the Goldfish drop frequency k increases
(Table 4.3, top). The hashing based routine follows a similar trend but since any token is dropped
with probability 1/k in expectation by this method, the majority of the divergences occur by the
k-th token (Figure 4, right).

0 5 10 15 20 25
Token Index

0

500

1000

1500

2000

Co
un

t

Static

0 5 10 15 20 25
Token Index

0

500

1000

1500

2000

Hash

Dropped Indices Divergence Index

Figure 4: Number of dropped tokens and number of divergent
tokens at each sequence position for a goldfish model with k = 4.

Model Diverged
Sequences

% Diverged @
Dropped Index

Static 3-GL 1999 94.1
Static 4-GL 2000 92.5
Static 8-GL 2000 61.7

Static 32-GL 1983 73.7
Static 128-GL 1932 51.1

Hash 3-GL 2000 77.6
Hash 4-GL 2000 81.4
Hash 8-GL 2000 74.3
Hash 32-GL 1992 50.0

Hash 128-GL 1937 40.8
tableLikelihood of divergence happening at a

dropped token.

5 CAN LLMS SWALLOW THE GOLDFISH LOSS? TESTING IMPACTS ON
MODEL PERFORMANCE.

The goldfish loss seems to prevent memorization, but what are the impacts on downstream model
performance? We investigate the impact of training with the goldfish loss on a model’s ability

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a paper at DATA-FM workshop @ ICLR 2025

2B 4B 6B 8B 10B 12B 14B 16B 18B 20B
Input Tokens

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Va
lid

at
io

n
Lo

ss

Standard Loss
Goldfish Loss (k=4)

2B 4B 6B 8B 10B 12B 14B 16B 18B 20B
Supervised Tokens

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Va
lid

at
io

n
Lo

ss

Standard Loss
Goldfish Loss (k=4) w/ Increased Steps
Goldfish Loss (k=4) w/ Increased Batch Size

Figure 5: Validation Loss Curves During Pretraining: We measure validation loss on the Red-
PajamaV2 dataset as training progresses. Left: We observe validation loss as a function of input
tokens seen during training. The 4-GL model trail behind the standard loss model for the same
number of input tokens. Right: However, when matching the standard loss by the count of super-
vised tokens—i.e., the number of unmasked tokens—either by increasing the number of steps or by
expanding the batch size, we observe a similar final validation loss.

to solve knowledge intensive reasoning benchmarks as well its impact on raw language modeling
ability. For most of the downstream evaluations we consider, the knowledge gained from goldfish
training is comparable to standard training.

5.1 IMPACT ON EVALUATION BENCHMARK PERFORMANCE

First we demonstrate that across an array of popular tasks from the Hugging Face Open LLM Leader-
board. Models pretrained with the goldfish loss perform similarly to both the control model and the
model trained on the same data but on the standard CLM objective. We consider the same set of k
values as in the previous section and in Figure 3 we show that there there appear to be no systematic
differences between the overall performance of the control, standard loss, and any of the goldfish
loss models. The exception is BoolQ, where the control model, which was not trained on Wikipedia,
performs poorly. Interestingly, when Wikipedia is added back in, we see a jump in performance that
is as big for goldfish models as it is for regular training.

5.2 IMPACT ON LANGUAGE MODELING ABILITY

Because goldfish models have, in a sense, trained (or supervised) on fewer tokens than standard
models, we might expect their raw token prediction ability to trail behind standard models that
have seen more tokens. We quantify this impact by tracking a model’s token-for-token progress
throughout training, as measured by validation loss as well as each model’s ability to complete
web-text documents from the training data with high semantic coherence to the ground truth.

Validation Loss Curves. To understand the impact on the model’s training progression, we an-
alyze the validation loss in terms of the total number of supervised tokens. In Figure 5 (left), we
show the validation loss curves over 12M tokens of RedpajamaV2 data. We find that the goldfish
loss causes a mild slowdown in pretraining as one would expect from a model that has seen fewer
tokens. However, it matches standard pretraining when both are allowed the same number of super-
vised tokens for loss computation. Supervised tokens indicate the number of unmasked tokens in
the goldfish loss case (affected by the chosen k) and are the same as the input tokens for standard
loss. As observed in Figure 5 (right), we show nearly identical final validation loss values can be
achieved either by training for a longer duration (increasing the number of steps) or by using a larger
batch size.

Since the net number of supervised tokens is fewer with goldfish loss than with standard loss, we plot
the number of supervised tokens (i.e., the tokens used in the loss calculation) against the validation
loss of RedPajamaV2. For all models, we train with 20 billion supervised tokens. This corresponds
to 20 billion input tokens for the standard loss and 26.7 billion input tokens for the goldfish loss.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a paper at DATA-FM workshop @ ICLR 2025

The calculation is based on the formula: (1− 1
k)× Input Tokens = Supervised Tokens,

where k = 4.

Additionally, both the standard loss and the goldfish loss with increased batch size follow almost
the same validation curve. Thus, we recommend that when using k-GL, one should use the formula
above to appropriately transfer the world batch size from the standard loss run.

We hypothesize that this is because the total number of supervised tokens per iteration, combined
with an aligned learning rate schedule, causes similar progression during training. Moreover, we
notice that increasing the total number of steps allows the goldfish loss to advance ahead in training
for most of the curve. We suspect this is due to the higher learning rate being maintained for a longer
period during training (under standard cosine scheduler).

We conclude that the goldfish loss performs similarly to the standard loss when both are given
the same number of supervised tokens. However, to achieve performance parity, goldfish training
requires more tokens to be used on the forward pass to compensate for the tokens ignored in the loss
computation indicating this is not a free lunch.

Con
tro

l

3-G
L

4-G
L

8-G
L

32
-G

L

12
8-G

L
Stan

da
rd

Lo
ss

0.0

0.1

0.2

0.3

0.4

0.5

M
au

ve

Greedy Sampling

Con
tro

l

3-G
L

4-G
L

8-G
L

32
-G

L

12
8-G

L
Stan

da
rd

Lo
ss

Temperature Sampling (t=0.7)

Figure 6: Mauve scores: We compute Mauve scores for models trained with goldfish loss under
different sampling strategies. We see there is a minimal drop in quality compared to the model
trained with CLM objective or the Control model. See text for more details.

Mauve Scores on Training Data Completions. As an additional confirmation that models trained
with goldfish loss retain their ability to produce fluent and faithful outputs, we compute Mauve
score (Pillutla et al., 2021), a metric used to evaluate the quality of generated text against real text
by measuring similarity in terms of diversity and naturalness. This metric also noted to be highly
correlated with human text.

We present Mauve scores for models trained with goldfish loss on samples from the Slimpajama
(Soboleva et al., 2023) dataset in Figure 6. We see that under greedy decoding, there is a minimal
drop in Mauve scores as compared to the Control or CLM baseline model under any of the k values
tested. However, when temperature 0.7, we see scores trend up slightly as k increases and the model
sees more tokens. Note that goldfish loss becomes equivalent to the standard CLM objective in the
limit of large k.

6 SHARKS IN THE WATER: ADVERSARIAL EXTRACTION METHODS.

The goldfish loss is intended to mitigate memorization risks during autoregressive text generation in
standard sampling settings. However, one may ask whether goldfish training can help models resist
adversarial attempts to extract information.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a paper at DATA-FM workshop @ ICLR 2025

10 3 10 2 10 1 100
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e Loss

10 3 10 2 10 1 100
0.0

0.2

0.4

0.6

0.8

1.0
zlib

3-GL 4-GL 8-GL 32-GL 128-GL

False Positive RateFalse Positive Rate
Control Standard Loss

Figure 7: Membership Inference Attack: We perform membership inference attack using target
(trained on) and validation wikipedia documents. We observe only marginal difference in attack
success for goldfish loss in comparison with standard loss.

6.1 MEMBERSHIP INFERENCE ATTACKS

Membership inference attacks model a scenario in which the attacker already possesses a possible
candidate sample, and attempts to discern whether the sample was used for training. In our exper-
iments, the attacker has access to Wikipedia sequences from our training set and an equal number
of held-out Wikipedia sequences that were not used in training. Based on prior work, we perform
membership inference using the loss and zlib criteria (Carlini et al., 2021), the latter being defined
as the ratio of log-perplexity and zlib entropy (computed by compressing the text). Using these met-
rics, we formulate a binary classification problem and analyze the receiver operating characteristic
(ROC) curves for models trained with and without goldfish loss.

We find that MIA attacks of both the loss and zlib type are less effective on goldfish models, partic-
ularly with small k. However, attacks are still possible with some degree of accuracy. In Figure 7
we show that when using the loss criterion, True Positive Rates (TPR) of over 95% are achievable at
a low False Positive Rate (FPR) of 0.1% on the unprotected, standard loss model. At k values of 3
and 4, achievable TPR@0.1%FPR plummets to below 10%. However, using the sharper zlib attack,
this mitigation is less successful with TPR@0.1%FPR remaining well above 60% for all goldfish
settings tested.

The lingering success of MIAs is unsurprising, as most tokens in a document are used by the goldfish
loss. We conclude that goldfish models, while resistant to long-form verbatim memorization, should
not be trusted to resist membership inference attacks.

6.2 ADAPTIVE ATTACK: BEAM SEARCH

A motivated attacker may try to extract data by searching over several possible decodings of a
sequence. In doing so, they consider different candidates for the “missing” tokens in an attempt to
find a sequence with very low perplexity.

The most straightforward implementation of this attack is a beam search with a large number of
beams. We consider the training setup with standard training from Section 4.2. Figure 8 presents the
result of an aggressive beam search with 30 beams. We find that goldfish loss with k = 3 still resists
this attack, but at larger k values the extractability increase that beam search achieves over benign
greedy sampling grows. Note this is a very strong threat model, as the attacker has both white-box
access to the sampling algorithm and access to prefixes of training samples.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a paper at DATA-FM workshop @ ICLR 2025

Control 3-GL 4-GL 8-GL 32-GL 128-GL Standard
Loss

0%

5%

10%

15%

20%

25%

30%

35%

40%

Ex
ac

t M
at

ch

0% 0% 1%
3%

20% 19%

27%

0% 0% 1%

6%

27% 27%

35%Not Attacked
Attacked

Figure 8: Benchmark Performance: We pretrain 1B parameter models on 20 billion tokens as
described in Section 4.1 and evaluate downstream performance on various benchmarks. We note
only marginal change in performance for models trained with goldfish loss (k = 3 and k = 4)
in comparison to the model trained with standard loss. Control refers to model trained only on
RedPajama and not on wikipedia canaries.

6.3 LIMITATIONS: DON’T MISTAKE FISH OIL FOR SNAKE OIL

Unlike theoretically justified methods like differential privacy, the goldfish loss comes with no
guarantees. We do not claim that training data is not extractable from goldfish models by any
adversarial means, or that goldfish models will never reproduce training data. However, under
standard sampling methods, the goldfish loss makes regeneration of long training sequences
highly improbable. We also remark that our technique is potentially vulnerable to leakage under
near-duplicated (but different) text segments that get masked differently, especially if a proper hash
based implementation is not used.

Finally, prior work has shown that larger models memorize more of their training data, and thus stud-
ies of how the benefits afforded by goldfish loss scale to tens or hundreds of billions of parameters
is an interesting open question.

7 CONCLUSION

We believe that goldfish loss can be a useful tool in industrial settings due to its simplicity,
scalability, and relatively small impacts on model performance. While our experiments apply the
loss uniformly over all documents, it can also be selectively applied during late phases of a training
curriculum, or to documents from specific high-risk sources. This limits the negative impacts on
utility whilst focusing mitigation where it matters most. Furthermore, in situation with plentiful but
sensitive content, or low entropy text (e.g. code), one might use higher masking rates than those
explored in this paper. We hope that goldfish loss paves the way for aiding copyright compliance
rather than serving as a means to misuse private data maliciously.

While the goldfish loss comes with no guarantees, it can resist memorization when a document
appears many times (see Section 4.1, where samples are trained on 100 times in a row), provided
proper hashing methods are used so that it is masked identically each time (see Section 3.1). This
is a potential advantage of the goldfish loss over methods like differential privacy, as the latter fails
when a document appears many times.

Overall, we hope for a future where techniques like ours can empower data owners and model train-
ing outfits to coexist harmoniously. Research at the intersection of compliance and capability stands
to increase the ability of AI service providers to respect the intellectual property expectations of
creators and regulators while still advancing the frontier of generative models and their applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a paper at DATA-FM workshop @ ICLR 2025

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar, and Pasin Manurangsi. Large-scale differen-
tially private bert. arXiv preprint arXiv:2108.01624, 2021.

Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of
the ACM, 13(7):422–426, 1970.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models
are Few-Shot Learners. In 34th Conference on Neural Information Processing Systems
(NeurIPS 2020), December 2020. URL https://papers.nips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX security
symposium (USENIX security 19), pp. 267–284, 2019.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin Raffel.
Extracting training data from large language models, 2021.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=TatRHT_1cK.

Giannis Daras, Alexandros G Dimakis, and Constantinos Daskalakis. Consistent diffusion
meets tweedie: Training exact ambient diffusion models with noisy data. arXiv preprint
arXiv:2404.10177, 2024a.

Giannis Daras, Kulin Shah, Yuval Dagan, Aravind Gollakota, Alex Dimakis, and Adam Klivans.
Ambient diffusion: Learning clean distributions from corrupted data. Advances in Neural Infor-
mation Processing Systems, 36, 2024b.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P. Bosma,
Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen
Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen, and
Claire Cui. GLaM: Efficient Scaling of Language Models with Mixture-of-Experts. In Proceed-
ings of the 39th International Conference on Machine Learning, pp. 5547–5569. PMLR, June
2022. URL https://proceedings.mlr.press/v162/du22c.html.

Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning in
llms. ArXiv, abs/2310.02238, 2023. URL https://api.semanticscholar.org/
CorpusID:263608437.

Vitaly Feldman and Chiyuan Zhang. What Neural Networks Memorize and Why: Discovering the
Long Tail via Influence Estimation. arxiv:2008.03703[cs, stat], August 2020. doi: 10.48550/
arXiv.2008.03703. URL http://arxiv.org/abs/2008.03703.

Kali Hays. Openai’s latest chatgpt version hides training on copyrighted material.
Business Insider, August 2023. URL https://www.businessinsider.com/
openais-latest-chatgpt-version-hides-training-on-copyrighted-material-2023-8.

11

https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://proceedings.mlr.press/v162/du22c.html
https://api.semanticscholar.org/CorpusID:263608437
https://api.semanticscholar.org/CorpusID:263608437
http://arxiv.org/abs/2008.03703
https://www.businessinsider.com/openais-latest-chatgpt-version-hides-training-on-copyrighted-material-2023-8
https://www.businessinsider.com/openais-latest-chatgpt-version-hides-training-on-copyrighted-material-2023-8

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a paper at DATA-FM workshop @ ICLR 2025

Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu, Xinying Song, Xiaodan Song, and Denny
Zhou. Token Dropping for Efficient BERT Pretraining. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 3774–3784, Dublin, Ireland, May 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.262. URL https:
//aclanthology.org/2022.acl-long.262.

Huseyin A. Inan, Osman Ramadan, Lukas Wutschitz, Daniel Jones, Victor Rühle, James Withers,
and Robert Sim. Training Data Leakage Analysis in Language Models. arxiv:2101.05405[cs],
February 2021. doi: 10.48550/arXiv.2101.05405. URL http://arxiv.org/abs/2101.
05405.

Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan Zhang, Matthew Jagielski, Katherine Lee,
Christopher A Choquette-Choo, and Nicholas Carlini. Preventing verbatim memorization in lan-
guage models gives a false sense of privacy. arXiv preprint arXiv:2210.17546, 2022.

Neel Jain, Ping yeh Chiang, Yuxin Wen, John Kirchenbauer, Hong-Min Chu, Gowthami Somepalli,
Brian R. Bartoldson, Bhavya Kailkhura, Avi Schwarzschild, Aniruddha Saha, Micah Goldblum,
Jonas Geiping, and Tom Goldstein. NEFTune: Noisy embeddings improve instruction finetuning.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=0bMmZ3fkCk.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 14389–14408,
Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-long.805. URL https://aclanthology.org/2023.acl-long.805.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. Deduplicating training data mitigates privacy risks
in language models. In International Conference on Machine Learning, pp. 10697–10707. PMLR,
2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061–17084. PMLR, 2023.

Jooyoung Lee, Thai Le, Jinghui Chen, and Dongwon Lee. Do Language Models Plagiarize?
arxiv:2203.07618[cs], March 2022a. doi: 10.48550/arXiv.2203.07618. URL http://arxiv.
org/abs/2203.07618.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating Training Data Makes Language Models Better. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8424–8445, Dublin, Ireland, May 2022b. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.577. URL https://aclanthology.org/
2022.acl-long.577.

Lightning AI. Litgpt. https://github.com/Lightning-AI/litgpt, 2024.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, and Weizhu Chen. Rho-1: Not All Tokens Are What You Need.
arxiv:2404.07965[cs], April 2024. doi: 10.48550/arXiv.2404.07965. URL http://arxiv.
org/abs/2404.07965.

12

https://aclanthology.org/2022.acl-long.262
https://aclanthology.org/2022.acl-long.262
http://arxiv.org/abs/2101.05405
http://arxiv.org/abs/2101.05405
https://openreview.net/forum?id=0bMmZ3fkCk
https://openreview.net/forum?id=0bMmZ3fkCk
https://aclanthology.org/2023.acl-long.805
http://arxiv.org/abs/2203.07618
http://arxiv.org/abs/2203.07618
https://aclanthology.org/2022.acl-long.577
https://aclanthology.org/2022.acl-long.577
https://github.com/Lightning-AI/litgpt
https://aclanthology.org/W04-1013
http://arxiv.org/abs/2404.07965
http://arxiv.org/abs/2404.07965

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a paper at DATA-FM workshop @ ICLR 2025

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder Cooper, Daphne Ip-
polito, Christopher A Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee. Scalable
extraction of training data from (production) language models. arXiv preprint arXiv:2311.17035,
2023.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using diver-
gence frontiers. Advances in Neural Information Processing Systems, 34:4816–4828, 2021.

Avi Schwarzschild, Zhili Feng, Pratyush Maini, Zachary C Lipton, and J Zico Kolter. Rethinking
llm memorization through the lens of adversarial compression. arXiv preprint arXiv:2404.15146,
2024.

Weiyan Shi, Ryan Shea, Si Chen, Chiyuan Zhang, Ruoxi Jia, and Zhou Yu. Just fine-tune twice:
Selective differential privacy for large language models. arXiv preprint arXiv:2204.07667, 2022.

Alia Shoaib. Why comedian sarah silverman is suing the company behind chatgpt.
Business Insider, July 2023. URL https://www.businessinsider.com/
why-comedian-sarah-silverman-is-suing-the-company-behind-chatgpt-2023-7.

Siddharth Singh and Abhinav Bhatele. Axonn: An asynchronous, message-driven parallel frame-
work for extreme-scale deep learning. In Proceedings of the IEEE International Parallel & Dis-
tributed Processing Symposium, IPDPS ’22. IEEE Computer Society, May 2022.

Siddharth Singh, Prajwal Singhania, Aditya K. Ranjan, Zack Sating, and Abhinav Bhatele. A 4d
hybrid algorithm to scale parallel training to thousands of gpus, 2024. URL https://arxiv.
org/abs/2305.13525.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
plicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
June 2023. URL https://huggingface.co/datasets/cerebras/
SlimPajama-627B.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion
art or digital forgery? investigating data replication in diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6048–6058, 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Kushal Tirumala, Aram H. Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memo-
rization Without Overfitting: Analyzing the Training Dynamics of Large Language Models.
arxiv:2205.10770[cs], November 2022. doi: 10.48550/arXiv.2205.10770. URL http://
arxiv.org/abs/2205.10770.

Together Computer. Redpajama: an open dataset for training large language models, October 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen

13

https://www.businessinsider.com/why-comedian-sarah-silverman-is-suing-the-company-behind-chatgpt-2023-7
https://www.businessinsider.com/why-comedian-sarah-silverman-is-suing-the-company-behind-chatgpt-2023-7
https://arxiv.org/abs/2305.13525
https://arxiv.org/abs/2305.13525
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/2205.10770
http://arxiv.org/abs/2205.10770
https://github.com/togethercomputer/RedPajama-Data

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a paper at DATA-FM workshop @ ICLR 2025

Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Boyi Wei, Weijia Shi, Yangsibo Huang, Noah A. Smith, Chiyuan Zhang, Luke S. Zettle-
moyer, Kai Li, and Peter Henderson. Evaluating copyright takedown methods for language
models. ArXiv, abs/2406.18664, 2024. URL https://api.semanticscholar.org/
CorpusID:270764347.

Yuxin Wen, Leo Marchyok, Sanghyun Hong, Jonas Geiping, Tom Goldstein, and Nicholas Car-
lini. Privacy backdoors: Enhancing membership inference through poisoning pre-trained models.
arXiv preprint arXiv:2404.01231, 2024.

Wikimedia Foundation. Wikimedia downloads. URL https://dumps.wikimedia.org.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024a.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catas-
trophic collapse to effective unlearning, 2024b.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkeHuCVFDr.

Xuandong Zhao, Lei Li, and Yu-Xiang Wang. Provably confidential language modelling. arXiv
preprint arXiv:2205.01863, 2022.

George K. Zipf. The psychobiology of language. Houghton-Mifflin, 1935.

14

https://arxiv.org/abs/2307.09288
https://api.semanticscholar.org/CorpusID:270764347
https://api.semanticscholar.org/CorpusID:270764347
https://dumps.wikimedia.org
https://openreview.net/forum?id=SkeHuCVFDr

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a paper at DATA-FM workshop @ ICLR 2025

A EXPERIMENT DETAILS

A.1 REPRODUCIBILITY AND CONFIGURATION

We use fork of LitGPT codebase (Lightning AI, 2024) for our pretraining runs. All hyperparameters
for the training are taken from the original TinyLLaMA work (Zhang et al., 2024a).

Hyperparemeters We train both TinyLLaMA-1B and LLaMA-2-7B with same set of hyperpame-
ters; batch size of 2 million tokens (1028 samples with block size of 2048) with maximum learning
rate of 4e-4 using Adam (Kingma & Ba, 2017) optimizer with weight decay of 1e-1. Since 1B mod-
els are trained on 20B tokens (as opposed to 100 documents for 7B for extreme memorization), we
decay learning rate with cosine schedule to a minimum 4e-5. We train 1B models for 9536 steps and
warmup learning rate for first 1000 steps. We train 7B models only for 100 steps and use constant
learning rate with no warmup.

A.2 HARDWARE

Each of 1B parameter model training runs were orchestrated in Distributed Data Parallel (DDP)
manner over 16 nodes of 8 GPUs. While for 7B parameter model training, we employed 4D par-
allelization introduced in Singh & Bhatele (2022) and Singh et al. (2024) with 8 nodes of 8 GPUs.
Each run of 1B training consumed 1280 GPU hours consuming 40 GB per GPU.

Control Standard
Loss

3-GL 4-GL 8-GL 32-GL 128-GL
20%

30%

40%

50%

60%

M
em

or
iza

tio
n

(R
ou

ge
L)

Control Standard
Loss

3-GL 4-GL 8-GL 32-GL 128-GL40%

42%

44%

46%

48%

50%

M
ea

n
Be

nc
hm

ar
k

Ac
cu

ra
cy

Baseline
Hash (h=4)

Hash (h=13)
Static

Random

Figure 9: A comparison of goldfish loss across its strategies. We compare both memorization
scores (left) and downstream benchmark accuracy (right). Control refers to model trained with-
out wikipedia samples (target data for extractable memorization evaluation.)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a paper at DATA-FM workshop @ ICLR 2025

B COMPARISON OF GOLDFISH LOSS STRATEGIES

In Figure 9, we compare the memorization and downstream benchmark performance of goldfish
loss (as introduced in Section 3) across various strategies and hyperparameter k. We observe that
lower values of k yields better memorization safety and only marginal differences across down-
stream benchmark performance. Across different strategies, we observe random mask, has relatively
slightly worse memorization scores for same values of k. This behavior is expected since the model
ends up supervising all tokens in expectations when training over multiple epochs or having dupli-
cation across batches. Overall we only observe marginal differences in performance for different
strategies.

C AUXILIARY RESULTS

No Training
(Control)

Goldfish
Loss

Standard
Loss

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
iza

tio
n

Sc
or

e

58%

75%

97%

31%

54%

96%

26%

51%

96%

12%

41%

95%

0% 0%

85%

BERTScore (F1 Score)
Rouge1

RougeL
Rouge2

Exact Match

Figure 10: Semantic Memorization: In addition to Rouge1 and Rouge2 measuring unigram overlap
and bigram overlap, we also measure BERTScore (Zhang* et al., 2020) which is BERT embedding-
based scores where a higher score suggests a closer semantic similarity to the ground truth. De-
spite the 4-goldfish model’s deterrence to regenerate the exact sequences seen during training, the
increased BERT embedding-based BERTScore and n-gram-based Rouge scores (in comparison to
Control) suggest that paraphrases might still be leaked. This observation implies that while the
model does not memorize, it still learns and retains knowledge from the underlying data.

C.1 SEMANTIC MEMORIZATION

In the main paper, we restricted our analysis to syntactical form of memorization with metrics such
as exact match rate and RougeL. As observed in Figure 1, we clearly see that goldfish loss severely
restricts reproduction of training sequences verbatim. However, in this section, we aim to understand
if the model preserves semantic understanding from the sequences trained with goldfish loss. Alter-
natively, we evaluate if the goldfish model capable of leaking paraphrased text if not exact verbatim
copies.

In Figure 10, we observe that the goldfish model gets an embedding-based BERTScore of 75%, in-
creased from the non-trained Control at 5%, and lesser than training with a standard loss at 97%. We
also see a similar trend for n-gram-based Rouge scores indicating that goldfish models do generate
paraphrases of training data, if not exact verbatim reproduction which is at 0% (same as Control and
85% for standard loss).

This result implies that the goldfish loss, as intended, deters the model from reproducing exact
training samples during the inference phase. However, it still retains the learned knowledge from

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a paper at DATA-FM workshop @ ICLR 2025

Table 1: AUC and TPR @ 0.1% FPR figures from Membership Inference Attack in Section 6.1.

Loss zlib
AUC TPR @ 0.1% FPR AUC TPR @ 0.1% FPR

Control 0.4922 0.25% 0.4839 0.10%
3-GL 0.9947 3.45% 0.9963 69.50%
4-GL 0.9964 8.45% 0.9983 88.50%
8-GL 0.9987 54.55% 0.9997 95.75%
32-GL 0.9997 92.2% 1.000 99.35%
128-GL 0.9999 96.8% 1.000 99.90%
Standard Loss 0.9999 97.6% 1.000 99.75%

these training samples, resulting in generated text that is semantically similar to the training data
without being identical.

C.2 MEMBERSHIP INFERENCE ATTACK

In Section 6.1, we run a membership inference attack - to determine if a given sequence is from
training dataset. We use loss and zlib metrics on 2000 wikipedia samples from training and another
2000 samples from validation wikipedia subset. In Table 1, we note the AUC and True Positive Rate
@ 0.1% False Positive Rate (TPR @ 0.1% FPR) corresponding to the AUC curves in Figure 7.

17

	Introduction
	Related Work
	Quantifying Memorization in LLMs
	Mitigating Memorization in LLMs
	Regularization and Memorization

	Goldfish Loss: Learning Without Memorizing
	Robust Handling of Duplicate Passages with Hashing

	Can Goldfish Loss Prevent Memorization?
	Preventing Memorization in Extreme Scenarios
	Preventing Memorization in Standard Training
	Divergence Positions vs. Drop Positions

	Can LLMs Swallow the Goldfish Loss? Testing Impacts on Model Performance.
	Impact on Evaluation Benchmark Performance
	Impact on Language Modeling Ability

	Sharks in the Water: Adversarial Extraction Methods.
	Membership Inference Attacks
	Adaptive Attack: Beam Search
	Limitations: Don't Mistake Fish Oil for Snake Oil

	Conclusion
	Experiment Details
	Reproducibility and Configuration
	Hardware

	Comparison of Goldfish Loss Strategies
	Auxiliary Results
	Semantic Memorization
	Membership Inference Attack

