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Abstract

The performance of deep neural networks is enhanced by ensemble methods, which1

average the output of several models. However, this comes at an increased cost2

at inference. Weight averaging methods aim at balancing the generalization of3

ensembling and the inference speed of a single model by averaging the parameters4

of an ensemble of models. Yet, naive averaging results in poor performance as5

models converge to different loss basins, and aligning the models to improve the6

performance of the average is challenging. Alternatively, inspired by distributed7

training, methods like DART and PAPA have been proposed to train several models8

in parallel such that they will end up in the same basin, resulting in good averag-9

ing accuracy. However, these methods either compromise ensembling accuracy10

or demand significant communication between models during training. In this11

paper, we introduce WASH, a novel distributed method for training model en-12

sembles for weight averaging that achieves state-of-the-art image classification13

accuracy. WASH maintains models within the same basin by randomly shuffling a14

small percentage of weights during training, resulting in diverse models and lower15

communication costs compared to standard parameter averaging methods.16

1 Introduction17

In order to enhance the accuracy of a given class of models, the answers of multiple instances trained18

in parallel can be aggregated via model ensembling. This can lead to significant improvements in19

modern deep learning models (12), increasing the generalization ability. However, this comes at20

the cost of evaluating multiple instances of a given model during inference. This increases both21

memory and computational requirements, resources that can be critical for on-device inference (32).22

To solve this problem, the population of models can be fused into a single model to obtain both23

the generalization improvements of ensembling and the inference cost of a single model. Since24

independent models can be linearly connectable (14), a simple technique is to average the weights of25

the different models to obtain a fused model (52).26

However, there are limits to this method. For models that are too dissimilar, the performance of the27

averaged model may be no better than chance (19). To mitigate this, the ensemble can either use a28

pre-trained network as a starting point (34) or ensure that models share part of their optimization29

path (14). However, reducing ensemble diversity too much comes at the expense of performance (see30

Figure 6 of (12)), revealing a trade-off between model diversity and weight averagability. Inspired31

by distributed training, techniques such as DART (20) and PAPA (21) have been proposed to train a32

population of models in parallel on heterogeneous data while communicating to balance this trade-off.33

DART, similar to LocalSGD (44), periodically averages all models to avoid model divergence. PAPA34

controls the diversity of the models more finely by pushing them toward the averaged parameters35

using an Exponential Moving Average (EMA) like EASGD (55), achieving better performance. In36
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1. Train separately 2. WASH! 3. Average the weights

Repeat..

Figure 1: Representation of training with WASH. A population of models is being trained separately.
(1) After each training step, (2) a small percentage of the parameters are permuted between models.
(3) At the end of the training, the model weights are averaged, resulting in a high performance model.

particular, they show that training a population in this way results in models that generalize better than37

a single model trained with the same compute as the entire population, demonstrating the potential of38

these distributed approaches. However, existing methods require a regular computation of the average39

model using an all-reduce operation, either to periodically remove any diversity in the population (20)40

or, in the case of PAPA, to compute an EMA of the average. This results in a high communication41

cost during the parallel training of the model population (36), which hampers the scalability of these42

approaches as the population size increases (35).43

In this work, we propose a novel distributed method to train a population of models in parallel while44

keeping their weights within the same basin. It requires a fraction of the communication cost of PAPA45

but exhibits greater model diversity during training, increasing the final averaging accuracy. Our46

main idea is to shuffle parameters between models during training, forcing them to learn using the47

others’ parameters. We refer to this idea as "parameter shuffling". A permutation is chosen randomly,48

and the models will communicate their parameters peer-to-peer according to the permutation. The49

use of a permutation is distinct from the notion of weight permutation of (1), which is within one50

model. We denote our method, which achieves Weight Averaging using parameter SHuffling, as51

WASH, and represent it schematically in Fig. 1.52

Contributions. Our work makes the following contributions: (1) We propose a novel method for53

the training of a population of models that can be weight-averaged, which we call WASH (Weight54

Averaging using parameter SHuffling). By shuffling a small number of parameters between models55

during training, the resulting population can be weight-averaged into a high-performance model for a56

fraction of the communication volume of methods such as PAPA. (2) We find that WASH provides57

state-of-the-art results on image classification tasks, resulting in models with performance at the level58

of ensembling methods, while requiring only a single network at inference time. (3) We provide59

experiments to better understand the improvement provided by WASH, in particular how WASH60

implicitly reduces the distance between models in the population while preserving diversity. (4)61

We perform different ablations of our method to show the impact of shuffling. (5) At the time of62

publication, we will release an implementation of WASH on an open repository.63

2 Related work64

Ensemble and weight averaging. By combining predictions from multiple models, ensemble65

methods significantly improve the ability of a predictive system to make accurate generalizations66

(8; 26), while reducing the variance of the estimator (4).67

This variance reduction is particularly effective when errors are uncorrelated and models exhibit68

diversity, that is, they do not fail simultaneously on the same instances (17; 12). However, ensembles69

require additional passes through each model for inference, leading to increased computational costs.70
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This cost can become prohibitive for large numbers of models. As a remedy, under certain conditions,71

models can be averaged together to remove the computational burden during inference. Averaging72

the weights of models was first explored in simple linear (27) and convex scenarios (38; 3). In deep73

learning, (19) establishes that weight averaging is a first-order approximation of the ensemble when74

models are close in weight space. Notably, simple averaging of multiple points along the SGD75

trajectory leads to better generalization. Following mode connectivity (16; 14) and the observation76

that many optima of independent models are connectable, (2; 51) propose learning simplexes in the77

parameter space with a regularisation penalty to encourage diversity in the weight space, and (53; 39)78

propose to train several model branches with different last-layer initialization and hyperparameters79

simultaneously. These models are later averaged to improve generalization and reduce inference costs.80

However, for these models to be amenable to weight averaging, they generally must start with the81

same pre-trained initialization (34), which can reduce the diversity between models. To alleviate this82

problem, neuron alignment techniques (42; 1; 37; 18) match the units of multiple networks to make83

them amenable to weight averaging, but they rarely work in practical scenarios (22) and often achieve84

performance below that of the individual models. DART (20) and Branch-Train-Merge (BTM) (28)85

propose a three-phase training pipeline. The process begins with an initial shared training phase,86

followed by the parallel training of multiple models, each diversified by different data domains or87

different data augmentations. Finally, these models are merged into a single model. They find that88

iterative refinement of the last 2 stages improves the overall optimization trajectory and improves89

generalization. To enhance the diversity among the models, PAPA (21) proposes to gradually adjust90

the model weights towards the population average throughout the training process, starting from91

random initialization. However, these approaches can result in significant communication costs during92

training. Conversely, WASH addresses high communication costs by permuting only a small fraction93

of parameters between models during training, while ensuring that branches remain accessible for94

weight averaging at the end.95

Distributed and federated learning. In the distributed training of deep learning models, the96

tradeoff between communication and model performance is a core concern (35; 23), and finding97

methods to efficiently mitigate some of the communication costs is a recurring theme in different98

research areas (46; 13). For example, since communication overhead is a key concern in decentralized99

optimization, it has been shown in this literature that for training models in a data-parallel setting100

with a limited communication budget, a key metric to observe is the average distance to consensus101

(24; 40; 45; 49; 33). The techniques discussed earlier for training a population of models for weight102

averaging are similar to methods in the LocalSGD (44; 30) and Federated Learning (31; 23; 29)103

literature. The training in DART and BTM is similar to LocalSGD training, where models are104

periodically averaged after several computational steps. PAPA, which uses an EMA of the averaged105

model to gradually move the models towards consensus, is similar to methods such as EASGD (55) or106

SlowMo (48). Just averaging a population at the end of training, as in BTM, has also been proposed107

for LocalSGD (43), and cross-gradient aggregation (11) can be seen as a way of locally shuffling108

gradients. Federated learning also uses techniques discussed previously for model merging (47; 54; 6).109

Finally, our method can be thought of as training a global model, where each local model randomly110

chooses from a subset of parameters when shuffling. This can be linked to Bayesian learning (15),111

especially for federated learning (50; 9), or federated subnetwork training (10; 41).112

3 Parameter shuffling in an ensemble for weight averaging113

Motivation of our training procedure. We aim to balance the benefits of model ensembling with114

the computational efficiency of using a single model for inference via weight averaging. In other115

words, our objective is to produce a single model resulting from the ensembling. A set of N model116

parameters {θn}n≤N ⊂ Rd are trained in parallel on the same dataset, with different data ordering117

and possibly different data augmentations and regularizations. To avoid divergence between the118

models, PAPA applies an EMA every T training steps and produces the following update119

θ̃n ← αθn + (1− α)θ̄ , (1)

where θ̄ ≜ 1
N

∑N
n=1 θn represents the average of the model weights, also called the consensus,120

and α ∈ [0, 1] is weighted according to the learning rate. Despite its advantages, this method has121

drawbacks, including the need for synchronized global communication across all models, which can122
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Algorithm 1 Training with WASH

1: Input: Datasets Di, number of models N , initial parameters θ0, training steps T , number of
layers L, base probability p

2: Initialize parameters (θn)n ← θ0 and optimizers OPTi

3: for t = 1 to T do
4: # Training step
5: for n = 1 to N , in parallel do
6: (xn, yn)← Dn # Sample data
7: θn ← OPTn(xn, yn, θn) # Update the model n
8: # Shuffling step
9: for layer l = 0 to L− 1 do

10: for parameter θi in layer l do
11: With probability p(1− l

L−1 ),
12: πi ← Random permutation
13: (θin)n ← (θiπi(n)

)n # Send and permute the parameter

14: Output: the averaged model 1
N

∑N
n=1 θn

be inefficient, and the potential reduction in model diversity due to the consensus constraint, which123

may reduce model expressiveness. Indeed, we observe that after each update124 ∑
n

∥θ̃n − θ̄∥2 = α2
∑
n

∥θn − θ̄∥2 <
∑
n

∥θn − θ̄∥2 , (2)

which shows that the EMA step of methods such as PAPA directly reduces the distance of the models125

from the consensus and hinders their diversity.126

Proposed method: WASH. To address these challenges, we propose the following stochastic127

parameter shuffling step instead of the EMA, defined for each individual parameter θjn ∈ R of a128

model θn = [θjn]
d
j=1 by129

θ̂in ←

{
θiπi(n)

with probability p,

θin otherwise,
(3)

where πi denotes a random permutation of the indices {1, ..., N}, chosen uniformly at each iteration130

for each parameter index i ∈ {1, ..., d}, and independently from the Bernoulli variable of Eq. (3).131

Notably, this parameter shuffling reduces in expectation to132

E[θ̂n] = (1− p)θn + pθ̄ . (4)

Thus, WASH aligns, in expectation, with the EMA of Eq. (1) for p = (1− α). The expected number133

of parameters communicated by each model at each step is thus p× d while for PAPA, each model134

communicating all of its parameters every T steps, this amounts to d
T . Thus, p ≪ 1

T results in a135

significantly reduced communication overhead favorable to WASH. However, the model diversity is136

higher, because WASH preserves the consensus distance, as shown by137 ∑
n

∥θ̂n − θ̄∥2 =
∑
n

∑
i

(θ̂in − θ̄i)2 =
∑
i

∑
n

(θin − θ̄i)2 =
∑
n

∥θn − θ̄∥2 . (5)

Still, note that the following optimization step on the shuffled parameters will affect the consensus138

distance, as we will see later.139

Layer-wise adaptation via WASH. Recognizing that different network layers may require different140

levels of adaptation due to their roles and dynamics, we introduce a layer-specific probability141

adaptation. Assuming L layers in the network, for each layer l (where 0 ≤ l < L) we set142

pl = p

(
1− l

L− 1

)
, (6)
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Table 1: Communication volume and inference costs of four training techniques. The baseline
Ensemble is trained separately, but requires a linearly increasing inference cost. In our experiments,
we set the base probability of WASH and WASH+Opt to 0.001 and 0.05, respectively, when training
on CIFAR-10/100 or ImageNet, resulting in a reduction in communication volume compared to
PAPA.

Communication volume
Technique CIFAR-10/100 ImageNet Inference cost
Ensemble 0 0 N
PAPA 1 1 1
WASH 1/200 1/4 1
WASH+Opt 1/100 1/2 1

where p is a base probability. In other words, the parameters of the first layer have a shuffling143

probability of p, while the parameters of the last layer are never shuffled. This adaptation ensures that144

deeper layers, which are typically slower to train and more sensitive to the input features, undergo145

fewer permutations than the more generalizable early layers. This strategy not only preserves the146

specificity required by the early layers, but also cuts the overall communication overhead in half.147

Full procedure. Alg. 1 presents the training of a population of N models using WASH. Starting148

from the same initialization, our training procedure alternates between local gradient computation149

and shuffling communication. At inference, we simply average the weights of the models to obtain a150

single model with parameters θ̄. Note that techniques such as REPAIR (22) or activation alignment (1)151

could be incorporated to improve the alignment of the models, but we found them to be unnecessary152

to achieve high accuracy and kept our evaluation framework minimal for the sake of simplicity.153

4 Experiments154

Training methods. We present the capabilities of WASH for training a population of neural155

networks on standard image classification tasks. As a Baseline, we consider a population trained156

separately, with each model working on a different dataset order and different data augmentations157

and regularization (if they are used). This is the same baseline as (21), only starting from the same158

initialization, but we found that this change had no significant impact on performance. We also159

compare WASH to PAPA (21) on the same tasks (with PAPA however using models with a different160

initialization), to show our improvement despite requiring a fraction of the communication cost.161

We do not provide comparisons with DART (20) or the variants of PAPA as their performances are162

generally inferior (21). We also propose a variant of WASH called WASH+Opt, which also permutes163

the optimizer state associated with the shuffled parameter (in our case, the momentum of SGD),164

doubling the communication volume. For simplicity, we do not permute or recompute the running165

statistics of the BatchNorm layers.166

Communication cost. Training with PAPA requires computing an all-reduce operation on all of167

the model parameters every T = 10 training steps. In comparison, WASH requires, in expectation, a168

shuffling of p/2 of the model parameters at each training step. Thus, by keeping a base probability169

p ≤ 0.2, WASH results in a more communication-efficient training. In practice, in our experiments, p170

will be 0.001 or 0.05, ensuring a reduction in communication volume of 200 or 4.171

Evaluation strategy. After training, the resulting population of models obtained can be evaluated172

in three different ways. As a baseline, the performance of the population can be evaluated as an173

Ensemble, averaging the predictions of the models. The parameters of the models can be averaged174

to obtain a single model, which we refer to as Averaged. This is equivalent to UniformSoup in (52)175

or AvgSoup in (21) for example. More elaborate averaging methods have been proposed, such as176

GreedySoup (52), which averages an increasing number of models (in order of validation accuracy)177

until averaging no longer improves accuracy. We report the accuracy of the Ensemble and Averaged178

model for all training techniques, as well as the GreedySoup accuracy of the Baseline. As in (21), we179

find that the GreedySoup accuracy corresponds to the accuracy of a single model for the Baseline and180

that the Averaged model accuracy outperforms the GreedySoup model for the other techniques, and181
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Table 2: Ensemble and Averaged Model accuracy for a heterogeneous population of models;
trained with varying data augmentations and regularizations. We compare models trained
separately (Baseline), with PAPA, or with our method WASH and its variant WASH+Opt. We also
report the GreedySoup accuracy for the Baseline models. The best Ensemble (black) and Averaged
(blue) accuracy are reported in bold. Except on CIFAR-10, WASH and in particular WASH+Opt
provide the best performance for the final Averaged Model, with performances comparable to the
Ensemble of models for a fraction of the inference cost

Method Baseline (trained separately) PAPA WASH (ours) WASH+Opt (ours)
Config #N Ensemble Averaged GreedySoup Ensemble Averaged Ensemble Averaged Ensemble Averaged

CIFAR-10
VGG-16 3 95.98±.42 10.00±.00 95.26±.05 96.12±.34 96.13±.24 95.89±.23 95.97±.24 95.91±.36 95.85±.27

5 96.28±.40 10.00±.00 95.42±.10 96.24±.17 96.21±.13 96.15±.10 96.20±.10 96.00±.21 96.04±.14
10 96.47±.07 10.00±.00 95.39±.24 96.32±.13 96.31±.13 96.27±.10 96.18±.13 96.14±.08 96.20±.05

ResNet18 3 97.15±.28 10.17±.29 96.62±.38 97.33±.05 97.24±.05 97.21±.19 97.19±.17 97.22±.07 97.25±.14
5 97.33±.08 10.09±.16 96.61±.03 97.35±.12 97.31±.06 97.21±.10 97.25±.12 97.18±.09 97.16±.07
10 97.59±.01 9.26±1.28 96.79±.14 97.39±.13 97.34±.06 97.30±.10 97.28±.04 97.20±.13 97.16±.13

CIFAR-100
VGG-16 3 80.36±.15 1.00±.00 77.92±.22 78.89±.10 78.77±.16 79.10±.88 79.05±.68 79.15±.61 79.15±.41

5 81.32±.56 1.00±.00 77.81±.25 79.51±.38 79.24±.43 79.65±.27 79.39±.21 79.75±.21 79.71±.20
10 82.24±.15 1.00±.00 77.83±.65 79.95±.11 79.64±.13 80.05±.18 79.70±.25 80.03±.11 79.76±.13

ResNet18 3 82.84±.48 1.00±.01 80.06±1.5 81.58±.12 81.53±.13 81.91±.34 81.90±.36 81.99±.06 82.08±.09
5 83.72±.49 1.00±.00 80.72±.52 82.09±.30 82.01±.34 82.16±.42 81.97±.28 82.35±.17 82.17±.15
10 84.18±.20 1.00±.00 80.61±.43 82.32±.09 82.15±.14 82.43±.32 82.31±.38 82.42±.31 82.18±.22

ImageNet
ResNet50 3 76.16±.28 0.10±.00 74.15±.11 75.62±.15 * 74.39±.14 74.34±.18 74.30±.22 74.18±.26

5 76.68±.06 0.10±.00 74.47±.06 75.80±.21 * 74.63±.11 74.59±.07 74.44±.21 74.39±.21

thus chose not to report it. We summarize in Tab. 1 the communication volume and inference costs182

required to train a separate Ensemble of models, or to train with PAPA, WASH, or WASH+Opt.183

4.1 Main experiments184

Experimental setup. We showcase the performance of WASH for training neural networks on185

image classification tasks on the CIFAR-10, CIFAR-100 (25), and ImageNet (7) datasets. We use186

the same training framework as (21) for a fair comparison. We train a population of N models for187

N ∈ {3, 5, 10}, on the ResNet-18, 50 and VGG-16 architectures. 2% of the training data is kept as188

validation for computing the GreedySoup. As in (21), we consider one framework with heterogeneous189

models, learning with different data augmentations and regularizations, and one homogeneous setting190

with no data augmentations except random cropping and flipping, in addition to the different dataset191

shuffling. Details are presented in the Appendix. The models are trained with SGD with momentum,192

a weight decay of 10−4, and a cosine annealing scheduler with initial and minimum learning rates193

of 0.1 and 10−4. For CIFAR-10/100, we train over 300 epochs with a batch size of 64, and 90194

epochs with a batch size of 256 for ImageNet. For WASH and WASH-Opt we initialize the models195

with the same parameters and choose p with cross-validation to be equal to 0.001 when training on196

CIFAR-10/100 or 0.05 for ImageNet. We do not require any alignment technique such as REPAIR197

(22).198

Main results. Tab. 2 and Tab. 3 correspond to the heterogeneous and homogeneous settings,199

respectively. We report the test accuracies as the average of 3 runs for the Ensemble of models, the200

Averaged model, and the GreedySoup for the Baseline (equivalent to the best model). Consistent201

with the findings of (21), we find that networks trained separately have a high Ensemble accuracy,202

but perform as random when averaged. On CIFAR-10/100, methods like PAPA and WASH result in203

lower Ensemble accuracy but almost no difference between the Ensemble and Averaged accuracies.204

In general, WASH and WASH+Opt outperform PAPA, even though they require less communication.205

On ImageNet, our parallelization procedure results in a slightly lower Baseline accuracy and we were206

not able to reproduce PAPA’s baseline, possibly due to a mistake in their reported hyperparameters207

(See the Appendix for experiments on ImageNet32x32). The WASH Averaged model achieves208

high accuracy, like previously. Both of our methods reduce the gap with the accuracies of the209

baseline Ensemble, indicating that WASH hinders less the diversity of the population of models while210

maintaining weight averagability. However, a gap still remains, which may be inherent to the models211
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Table 3: Ensemble and Averaged Model accuracy for a homogeneous population of models.
We compare models trained separately (Baseline), with PAPA, or with our methods WASH and
WASH+Opt. The best Ensemble (black) and Averaged (blue) accuracy are reported in bold. We
observe the same results in this setting, with WASH in particular coming close to the Ensemble
performance. We report the accuracy for models trained with PAPA on ImageNet with T = 1.

Method Baseline (trained separately) PAPA WASH (ours) WASH+Opt (ours)
Config #N Ensemble Averaged GreedySoup Ensemble Averaged Ensemble Averaged Ensemble Averaged

CIFAR-10
VGG-16 3 94.93±.06 10.00±.00 93.60±.41 94.38±.14 94.34±.18 94.41±.23 94.58±.17 94.45±.05 94.47±.02

5 95.29±.05 10.00±.00 93.82±.30 94.55±.12 94.58±.12 94.72±.08 94.70±.17 94.63±.11 94.68±.14
10 95.23±.06 10.00±.00 93.82±.06 94.79±.18 94.78±.20 94.66±.03 94.54±.07 94.71±.07 94.61±.13

ResNet18 3 96.14±.10 10.00±.00 95.42±.27 95.89±.04 95.89±.06 95.77±.12 95.77±.17 95.85±.04 95.87±.10
5 96.19±.16 10.00±.00 95.31±.09 95.99±.08 95.99±.08 95.96±.08 95.98±.05 95.94±.12 95.98±.12
10 96.34±.02 10.00±.00 95.26±.11 96.10±.25 96.11±.24 96.08±.07 96.12±.09 96.07±.07 96.08±.14

CIFAR-100
VGG-16 3 77.63±.24 1.00±.00 73.76±.35 75.10±.11 75.09±.16 76.30±.37 76.04±.58 76.04±.03 75.96±.18

5 78.52±.10 1.00±.00 73.76±.18 75.56±.16 75.55±.14 76.63±.27 76.48±.23 76.64±.15 76.13±.18
10 79.26±.06 1.00±.00 73.99±.26 76.24±.44 76.26±.43 77.06±.12 76.43±.18 76.72±.15 75.94±.26

ResNet18 3 79.54±.17 1.00±.00 76.84±.54 77.83±.26 77.86±.30 78.90±.17 78.76±.25 78.66±.08 78.56±.21
5 80.11±.23 1.00±.00 76.83±.45 77.94±.16 77.92±.19 79.24±.32 79.09±.43 79.32±.19 79.19±.15
10 80.55±.13 1.00±.00 76.80±.41 78.40±.15 78.44±.22 79.65±.17 79.43±.16 79.34±.34 79.19±.45

ImageNet
ResNet50 3 75.7 ± .15 0.10±.00 73.2 ± .15 73.4 ± .30 73.4 ± .29 74.0 ± .12 73.8 ± .05 73.9 ± .15 73.8 ± .11
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Figure 2: Average distance to the consensus (i.e. the averaged model) during training for a
heterogeneous population of 5 models trained on CIFAR-100, either separately, with PAPA, PAPA-all,
or our method WASH. Starting from consensus, the models initially diverge from each other before
converging back again during convergence, mainly due to weight decay. Models trained with WASH
have a smaller distance to consensus than those trained separately, allowing them to be averaged
without loss of performance. By training with PAPA-all (i.e., averaging to a single model every few
epochs), the models are not able to reach the same diversity as WASH between these averaging steps.
Finally, the EMA of PAPA has a strong pulling effect toward consensus, resulting in a distance similar
to that of PAPA-all. The wiggle in the curve is due to the immediate reduction in distance caused by
the EMA steps

being in the same basin. WASH and WASH+Opt have very similar results, with the simpler WASH212

being better in the homogeneous case and WASH+Opt being better in the heterogeneous case.213

4.2 Why do shuffling parameters help?214

In this section, we propose to explain the improvement provided by our parameter shuffling over215

previous mechanisms such as BTM, DART or PAPA, which focus on parameter averaging. First,216

we show that models trained with WASH have a smaller distance to consensus than models trained217

separately. We then argue that, despite this, WASH is a weak perturbation on the training of the218

models and that it induces diversity in the models.219

Reducing distance to consensus. To better analyse the diversity of the models trained with WASH,220

we propose to report the distance of the models to the consensus (the averaged model) during training,221

as a proxy for the diversity metric. (19; 53) showed that the difference between the Ensemble and222
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Figure 3: 2D optimization example. We train 2 points with SGD on a simple loss function with 2
local and 1 global minima (up and down triangles). The two models are trained from two different
starting points (plus signs). When the points are trained separately (yellow), they converge to their
closest local minimum (yellow circles). When trained with PAPA (blue), the points reach a consensus
but then converge to one of the local minima (blue circles). When trained with WASH (red), the
shuffling (seen by the horizontal and vertical lines in the trajectory) allows for more diversity in the
optimization path, and the points both reach the global minimum (red circles).

the Averaged models depends on the distance between the models. We present in Fig. 2 the average223

distance of the models to the consensus, for models trained separately, with PAPA, PAPA-all, or224

with WASH. PAPA-all is a variant of PAPA that is functionally identical to DART. The idea is to225

average the weights every few epochs before allowing the models to diversify again. We observe226

that WASH results in a consistently lower distance to consensus than the baseline, even though it227

explicitly leaves the distance to consensus unchanged during the shuffling step, and only shuffles a228

small number of parameters. Thus, the smaller distance at the end of the training explains why the229

averaging of the parameters does not lead to a decrease in performance. In comparison, PAPA-all230

(i.e. DART) results in alternating phases where the models diversify before being averaged, and we231

observe that the models are not able to reach the diversity of WASH. Similarly, the EMA of PAPA has232

a strong pulling effect and results in an average diversity similar to that of PAPA-all. Thus, we find233

that models trained with WASH have a higher diversity than models trained with PAPA or PAPA-all,234

while being close enough that averaging them does not cause a loss in performance. More generally,235

we show in Fig. 6 of the Appendix that different interpolations of models trained with WASH result236

in a similar performance, demonstrating that they all lie in the same loss basin.237

Encouraging diversity. WASH can be considered as a weak perturbation of the models: parameter238

shuffling affects the models less than parameter averaging or the EMA of PAPA, since only a few239

parameters are affected at a time and the consensus distance is unaffected. Furthermore, parameter240

shuffling increases the diversity of trajectories seen by the models. We illustrate this with a toy241

example where two points are jointly trained with SGD on a 2D loss function with 2 local minima242

and 1 global minimum, either separately, with PAPA, or with WASH. The trajectories corresponding243

to each method are shown in Fig. 3. Training the two points separately causes them to converge to a244

separate local minimum (i.e. a different basin). Training with PAPA allows the two points to reach a245

consensus, but they converge together to a local minimum. In contrast, by training with WASH, we246

show that both points reach the global minimum, as the shuffling allows for a greater diversity of247

points to optimize with. We provide more details in the Appendix.248

4.3 Ablations249

In this section, we present ablations to better understand the effect of the parameter shuffling, varying250

the layer-wise probability adaptation, the base probability value, and the shuffling period. In all cases,251

we consider 5 ResNet-18 models trained on CIFAR-100 in a heterogeneous environment.252

Layer-wise adaptation variations. For WASH, we found that decreasing probability with depth253

gave the best results. We show in Tab. 4 of the Appendix the performances for alternatives where the254

probability either remains constant or increases with depth. We find lower performances for both255

alternatives. In Fig. 4 we show the distances of the models to the consensus for all three schedules.256

More specifically, we report the distances for different slices of the models’ parameters, showing257
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Figure 4: Average distance to the consensus for different layer-wise adaptations of WASH, for
different slices of the model parameters. Keeping the probability constant across layers ensures the
lowest distance to consensus for the first quarters. Surprisingly, in the last quarter of parameters,
the ‘decreasing probability’ adaptation, despite starting with a higher distance to consensus, shows a
lower distance to consensus later in training; even though shuffling is less frequent than in the other
schedules. The ‘increasing probability’ adaptation shows how early layers are useful for shuffling.
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WASH is more important early in training.

Figure 5: Ablations of WASH

the effect of shuffling as a function of depth. As predicted, shuffling all layers equally results in the258

lowest distance to the consensus, except for the last quarter of parameters. Here, surprisingly, our259

base ‘decreasing’ adaptation shows a lower distance to the consensus despite less frequent shuffling.260

We also observe a particularly strong effect of the shuffling for the early layers, as the distance in the261

first quarter is more pronounced between the ‘increasing’ curve and the others.262

Base probability variation. We present in Fig. 5a the Ensemble and Averaged for different values263

of p, the base shuffling probability of the first layer. Rather than a smooth increase in the accuracy264

of the Averaged model, we observe a phase transition between a phase where the accuracy of the265

Averaged model is not improved by the shuffling and a sudden increase in the accuracy where it266

reaches the accuracy of the Ensemble. Just before the transition, the accuracy of the Ensemble267

decreases, before increasing again back to its previous performance. The accuracy decreases only268

slightly even when the shuffling probability is increased to 1, indicating the resilience of the models269

to heavy shuffling.270

Shuffling is beneficial at every step. Finally, we propose to show the impact of the parameter271

shuffling at different steps of the training by varying the epoch at which the shuffling either starts or272

stops. In Fig. 5b, we show that there is no improvement by having a warmup or slowdown period in273

parameter shuffling, indicating that all phases of the training are improved by WASH. Furthermore,274

stopping parameter shuffling early results in a much smaller loss of Averaged accuracy compared to275

starting shuffling late. In other words, shuffling at the beginning of training before the models start to276

converge is more impactful as the models may still reside in different loss basins.277
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5 Conclusion278

We proposed a novel distributed training method, WASH, which aims to train a population of models279

in parallel. These models are averaged at the end of training to obtain a high performance model280

with accuracies close to the ensemble accuracy for a fraction of the inference cost. Our method281

requires a fraction of the communication cost of similarly performing techniques, while achieving282

state-of-the-art results for our weight-averaged models. We show that our novel parameter shuffling283

does not explicitly reduce the distance between models while increasing the diversity of optimization284

paths seen by the population. Nevertheless, we find that the distance between our models is smaller285

than if they were trained separately, allowing them to be averaged at the end of training.286
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6 Appendix426

2D optimization example The loss function we consider is a heavily simplified version of the427

Ackley function. With a minima in (xm, ym) defined by428

g(x, y, xm, ym, λ) = exp (−λ
√
0.5((x− xm)2 + (y − ym)2) , (7)

the function we consider in our example is429

f(x, y) = −10g(x, y, 10, 10, 0.1)− 5g(x, y, 8, 3, 0.3)− 5g(x, y, 3, 8, 0.3) . (8)

This function has a 2 local minima in (3, 8) and (8, 3) and a global minimum in (10, 10). In all430

three cases, the starting points are (0, 5) and (5, 0). We compute SGD by first computing the exact431

gradient of the function and then adding Gaussian noise to the gradient. The learning rate is 0.1 and432

we optimize for 1000 steps. For PAPA, we consider α = 0.99. For WASH, the shuffling probability433

is equal for both coordinates and equal to 0.01.434

Interpolation heatmap Here, we propose to display a heatmap showing the accuracy of more435

varied interpolations between 5 models trained separately, with WASH, or WASH+Opt. We observe436

how WASH and WASH+Opt trained models converge to the same loss bassin, and that a large437

number of possible interpolations result in a high accuracy. The heatmaps are presented in Fig. 6.438

The performance of each individual model is represented at the five extremities of the heatmaps439

(see a. notably). Then, each other performance represented in the heatmap circle is for a model440

with its parameters interpolated between the 5 models. The interpolation weights are computed by441

normalizing the distance (from a Gaussian kernel) between the point in the circle and the 5 points at442

the extremities. The center of the heatmap represents an equally weighted average of the models, as443

implemented in WASH and the other methods considered.444

Layer-wise adaptation variants performance We showcase in Tab.4 the performance of the three445

variants of layer-wise adaptations of WASH.446

Augmentations and regularization used We follow the same data augmentations and regular-447

izations used in (21) for a fair comparison. We use Mixup (random draw from {0, 0.5, 1.0} for448

CIFAR-10/100 or from {0, 0.2} for ImageNet), Label smoothing (random draw from {0, 0.05, 0.1}449

for CIFAR-10/100 or from {0, 0.1} for ImageNet), CutMix (random draw from {0, 0.5, 1.0} for450

CIFAR-10/100 or from {0, 1.0} for ImageNet) and Random Erasing (random draw from {0, 0.15,451

0.35} for CIFAR-10/100 or from {0, 0.35} for ImageNet).452

For our experiments, we required a single A100 GPU for up to 14 hours to train up to a population of453

10 models, and up to 40 hours for a population of 20 models. Similarly, we required 16 A100 GPUs454

to train in parallel a population of 5 models on ImageNet.455
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(b) Accuracy heatmap of WASH.
The accuracy is very similar for var-
ious interpolations.
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(c) Accuracy heatmap of
WASH+Opt. The results are
similar to WASH.

Figure 6: Accuracy heatmap for different weight interpolations, for models trained separately,
with WASH or WASH+Opt.

Table 4: Test accuracies of WASH with variants of the shuffling probability per depth. Trained
with a population of 5 models on CIFAR-100 with a ResNet-18. The results show that permuting the
first layers is more important than the later layers. Still, a constant probability across layers does not
decrease WASH’s performance much.

Proba. at layer Technique
0 to L-1 Ensemble Averaged GreedySoup Best model Worst model

10−3 ↘ 0 82.22±.38 82.15±.22 81.94± 0.25 80.89±.03 78.80±.77
10−3 → 10−3 82.04±.19 81.94±.15 81.69±.23 80.60±.16 78.67±.89

0 ↗ 10−3 81.75±.35 81.37±.10 81.14±.20 80.08±.40 78.55±.70

7 Additional metrics456

Disagreement in function space. To support our use of the distance to consensus as an accurate457

metric of diversity in our paper, we also report a more established metric, the model prediction458

disagreement, as proposed by (12). This value corresponds to the fraction of examples in the459

validation set where two models disagree on the prediction. In Fig. 7, we report the disagreement for460

models trained on the four methods considered in this work: the Baseline without communication,461

PAPA, WASH, and WASH+Opt. We observe the same ranking in the methods as in the distance to462

consensus: the Baseline models have the highest disagreement, followed by our methods, and PAPA463

has the lowest. This confirms that WASH produces more diverse models than PAPA. Note that the464

Baseline has the highest disagreement, but the models cannot be successfully averaged.465

Expected Calibration Error. In Tab. 5, we report the ECE for all four methods at optimal466

temperature, showing that WASH provides better-calibrated models than PAPA. We also report ECE467

values for varying temperatures in Fig. 8.468
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Figure 7: Disagreement in function space, for 5 ResNets trained on CIFAR-100 on heterogeneous
data. The mean disagreement value for models with different indices is reported on top of the
heatmaps. WASH has a higher disagreement between the model predictions (and thus better diversity)
than PAPA.
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Method Indv. Ens. Avg.
Baseline 0.377 0.368 0.180
WASH 0.374 0.372 0.376
WASH+Opt 0.374 0.373 0.375
PAPA 0.376 0.376 0.378

Table 5: Expected Calibration Error (ECE) for all four methods, for 5 ResNets trained on CIFAR-
100 on heterogeneous data. We report the ECE for the individual models (Indv., averaged for the 5
models), the Ensemble model (Ens.) and the Averaged (Avg.) one. The ECE is the one obtained for
the optimal temperature. Our method has a lower ECE than WASH in all cases, showing that it is
better calibrated. The very low ECE for the Averaged baseline is due to the fact that the model is
close to random.

]

Figure 8: ECE values for varying temperatures, for 5 ResNets trained on CIFAR-100 on hetero-
geneous data. We report the average ECE for the individual models, or for the Ensemble or the
Averaged model.

Communication speed depending on volume To get a better idea of the potential speed-ups that469

an effective implementation of WASH could provide, we report in Figure 9 the computation and470

communication speed of different models with varying factors. We report the average time of a471

training loop for different batch sizes on ImageNet for a ConvNext tiny or large and a ViT B 16 or L472

32. We report the average communication speed of the all-reduce operation of a tensor the size of the473

model parameters, varying its size when only a fraction p of the parameters are communicated. We474

consider A100 GPUs connected by an Intel Omni-PAth network (OPA) network (and therefore with475

a very high connection speed). Even in this case, if we consider several nodes (for 16 or 32 GPUs476

with 2 or 4 nodes in these cases), we observe that the time to communicate an entire model becomes477

non-negligible and can be longer than a training loop (here we have not considered simple speed-ups478

such as the torch.compile code or using mixed precision, for example). However, by communicating479

only a fraction of the parameters at each step, the communication time would be negligible compared480

to the computation time even in the worst case.481

8 Additional results482

ImageNet32x32. In Tab. 7, we report the accuracy for the dataset ImageNet32x32, showing that483

a lower PAPA EMA frequency compared to what was reported in their article and code (T = 10),484

results in a better Averaged performance, reproducing their results but still resulting in worse results485

than WASH. We also find similar results by decreasing the value of the EMA α. This confirms that486

the low performance of our replication of PAPA on ImageNet mainly stems from its hyperparameters,487

and reinforces our conclusion on the improvements provided by WASH.488

We also report in Tab. 6 the accuracy of PAPA on ImageNet for varying EMA frequencies. We find489

that models finish in the same loss basin when EMA steps are applied every 1 or 2 steps, contrary to490

what was reported. Thus, to obtain models that can be weight averaged, the actual communication491

volume improvement provided by WASH would be 5 or 10 times higher than the one reported in Tab.492

1.493
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Figure 9: Communication and computation speeds, in average, for a ViT or ConvNext model.
We report the mean training loop time for varying batch sizes on ImageNet. We also report the
mean communication time of a tensor of the size of the model’s parameters, resized by a ratio p. In
particular for the larger models, when training on separate nodes (16 or 32 GPUs), the communication
time can be as long as the computation time. Dividing the communication volume allows a similar
divide in the communication time, hiding back the communication.

T 1 2 3 4 5 6 7 8 9 10
Ensemble 75.0±.1 75.0 74.4 74.8 75.2 75.4 75.6 75.9 75.9 76.0
Averaged 74.9±.1 74.9 2.8 0.5 0.2 0.2 0.1 0.2 0.1 0.1

Table 6: Performance on ImageNet of PAPA for varying EMA frequencies T . We report the
results for 3 runs for T = 1. We find that EMA steps every 2 training steps at least are necessary for
models to be in the same loss basin.

REPAIR. In Tab. 9, we show that the addition of REPAIR further reduces the gap between494

WASH and the Baseline ensemble accuracy, demonstrating that further post-training techniques (like495

self-distillation or Stochastic Weight Averaging (SWA) (5; 19)) could further improve our method.496

Method Baseline WASH WASH+Opt PAPA (T = 10) T = 9 T = 5

Ensemble 74.95±0.95 67.55±0.22 67.95±0.66 61.01±0.31 61.34±0.19 61.52±0.45
Averaged 0.1±0.0 67.80±0.16 68.22±0.71 1.98±1.54 35.43±13.67 61.05±0.32

Table 7: Performance on ImageNet32, for all methods on 3 ResNet-50 trained on heterogeneous data.
p = 0.05 like on ImageNet. We find similar results for PAPA. However, reducing the EMA frequency
T allows for a better Averaged accuracy, while still being heavily under WASH’s performance.
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N Method WASH WASH+Opt PAPA
3 Averaged 81.90±0.19 82.08±0.09 81.53±0.13

GreedySoup 81.73±0.27 81.42±0.55 80.91±0.74

5 Averaged 81.97±0.28 82.17±0.15 82.01±0.34
GreedySoup 81.83±0.26 81.49±0.91 81.67±1.03

10 Averaged 82.31±0.38 82.18±0.22 82.15±0.14
GreedySoup 81.92±0.53 81.99±0.17 81.92±0.22

Table 8: GreedySoup performances for WASH and its variant and PAPA, for Resnets-18 trained on
CIFAR-100 in the heterogeneous case. GreedySoup is the same method as Diwa. In the case here
where averaging all models provides the best results, GreedySoup may only keep a subpar subset of
weights to average (generally only one).

Method Ens. Avg. +REPAIR
Baseline 83.8 0.01 0.01
WASH 82.7 82.5 82.7
WASH+Opt 82.4 82.5 82.8
PAPA 81.8 81.8 82.3

Table 9: Effect of REPAIR on the four methods, for 5 ResNets trained on CIFAR-100 on heteroge-
neous data. We note that REPAIR has no effect on the Baseline models. Our method’s performance
can be improved even closer to the baseline Ensemble by using post-training methods like REPAIR.
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