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ABSTRACT

Convolutional neural networks (CNNs) have achieved remarkable success in vari-
ous fields due to their excellent generalizability. To explore the relationship between
CNN representations and generalization, we propose an Activation Representation
Substitution (ARS) metric based on the disentangled visual representations of
convolution kernels. Without additional data, we obtain the disentangled visual
representation of a kernel in the convolutional layer by iterating over a random
image, and feed it into the CNN. The output activations of the other kernels in that
convolutional layer are then investigated. When all other output activations are
small, the ARS of the convolution kernel from that representation is also small,
indicating that the representation is important for CNN. Our experiments with
ablation analysis confirm the importance of the low ARS convolution kernel on
accuracy. With ARS, we also explain batch normalization and class selectivity. By
comparing the model performances on the test set, we empirically find that when
the convolutional layer contains a large number of low ARS convolution kernels,
the model has good generalization. ARS is a metric that can be used to better
understand model generalizability without using external data.

1 INTRODUCTION

Convolutional neural networks (CNNs) become a standard technique in image recognition He et al.
(2016) due to their excellent generalizability. However, evaluating CNN generalization ability is
difficult, as even CNNs trained with the same strategy and data have varied generalizability Zhang
et al. (2021). Also, their generalization performance is hard to be explained Yoon et al. (2019). Over-
parameterized CNNs, for example, do not overfit but have strong generalization ability Allen-Zhu
et al. (2019). How CNNs generalize on different datasets remains unsolved to researchers.

In statistical learning theories, there are methods to evaluate a model’s ability to generalize, including
VC dimension Vapnik (1999) and Rademacher complexity Bartlett & Mendelson (2002), which
analyze the generalization error of a model. These methods explore the relationship between
models’ robustness, complexity, and generalization. And these theories suggest that models with an
excessive amount of parameters tend to overfit the training data, which is detrimental to the model’s
generalizability. Yet, these findings do not seem to stand well when examining the performance of
CNNs, which are usually over-parameterized Zhang et al. (2021). Thus, statistical learning theories
cannot explain the generalizability of CNNs. Apart from these theories, many studies have evaluated
the generalizability of CNNs via their gradients in the optimization process. For instance, some
researches Hochreiter & Schmidhuber (1997); Neyshabur et al. (2017) argued that the generalizability
of CNNs is associated with the flatness of the minimum and PAC–Bayes bounds, where flat minima
are indicative of good model generalization. Wang et al. 2018 proved that the generalizability of the
model is related to the smoothness of solution landscape, number of the parameters, and training
data. But Dinh et al. 2017 drew a contradictory conclusion that CNNs with sharp minima solution
landscape also have good generalizability. The major problem with these methods is that they can
only estimate the generalization bound yet cannot quantify the model’s generalizability.

In practice, we use the cross-validation method on a pre-designed test set to evaluate the model’s
generalizability, with higher accuracy indicating better generalizability. But this approach has also
been questioned by Recht et al. 2018, who argues that the good performance of CNNs on the designed
test set may not demonstrate their generalizability. Because the number of data in the test set is
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limited, the performance of the model depends on the designed test set. Models that perform well
may have lower accuracies than those that perform poorly when inferring new data.

In this regard, we argue that CNNs, as a kind of representation learning, have exhibited a strong
correlation between the representation of their main component of convolution kernels and the
generalizability. Therefore, we can explore the model’s generalizability by analyzing the repre-
sentations of the convolution kernels. Based on this insight, we propose a novel metric named
Activated Representation Substitution (ARS), which quantifies the importance of representations
of each convolution kernel. When a convolution kernel has a low ARS, only a few other kernels
are responsive to its representation. In other words, the representation of that convolution kernel
is difficult to be substituted, and it is important. Based on ARS, we can explore the relationship
between the features learned by the convolution kernel and the generalization. When a CNN has more
convolution kernels with low ARS, it indicates that the model has many important representations
and is sensitive to a wide variety of features, thus having good generalizability.

Specifically, the acquisition of the representations of CNNs is the most important step in analysing
generalizability. For CNNs with entangled representations Levine et al. (2018), we first propose a dis-
entangled visual representation algorithm named Independent Activation Maximization (IAM), which
originates from the Activation Maximization (AM) algorithm Erhan et al. (2009). It suppresses the
responses of other convolution kernels in the same layer. Then, we feed the generated representations
into the CNN and analyze the output activations of all the convolution kernels in the corresponding
layer. A high output activation indicates that the convolution kernel produces a high-response to the
visual representation. Based on the responses of other convolution kernels to the generated represen-
tations, we propose Representational Substitution (RS) and Activated Response (AR), which are two
metrics that can evaluate the substitutability and activations of the representations. Finally, combining
RS and AR, we obtain the ARS of the convolution kernel. By feeding all visual representations, we
can obtain the ARS of each convolution kernel. As mentioned above, the convolution kernel with low
ARS is important. In our experiments, we first verify the effectiveness of the IAM. Under ablation
analysis, we find that convolution kernels with low ARS are more important for the accuracy of the
model. Then, we use ARS to explain batch normalization (BN) Ioffe & Szegedy (2015) and class
selectivity (CS) Morcos et al. (2018). We also compare the performance of the models under the test
set with their overall ARS. The experimental results show that the models with lower overall ARS
have better generalizability. The contributions of this study are summarized as follows:

• Our proposed IAM algorithm can obtain a disentangled visual representation of the convolu-
tion kernel, demonstrating the features extracted by the convolution kernel.

• Our proposed ARS can quantify the importance of the representations of each convolution
kernel. A low ARS of the convolution kernel indicates that its representation is more
important for the accuracy of the model.

• ARS can explain some regularization terms and the generalization performance of CNNs. It
provides insights into the explanation of the model.

• We find that models with lower overall ARS have higher generalizability. ARS is a statistic
metric that may be used to analyze model generalizability without involving external data.

2 METHODOLOGY

2.1 INDEPENDENT ACTIVATION MAXIMIZATION

To obtain a visual representation, Erhan et al. 2009 propose the AM algorithm. The algorithm first
inputs a randomly generated noisy image and records the output activation of the convolution kernel
for which the visual representation needs to be obtained. Then, through a gradient ascent algorithm,
the input image is continuously updated so that the output activation of the targeted convolution
kernel becomes larger. The final updated image is the visual representation of the convolution kernel.

In detail, in image recognition, we assume that the weights of the CNN are Θ. During the training,
the weights of the model are continuously updated by the backpropagation algorithm. And we use Θ∗

to denote the optimal weights of the model after convergence. For a new image x, each convolution
kernel produces a different response to the input data. When the image x is fed to the model for
feedforward operations, these convolution kernels are located on different convolutional layers of the
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CNN. Therefore, we define the output activation of each convolution kernel as hl,i(x,Θ
∗), which

represents the output activation of the i-th convolution kernel at the l-th layer when the input is x.
In the AM algorithm, the input image is random noise. In the gradual update, we expect the output
activation of the target convolution kernel to be maximum, which can be defined as follows

x∗ = argmaxhl,i(x,Θ
∗). (1)

With optimal weights Θ∗, the initial random noise x is updated iteratively by a gradient ascent
algorithm. The final x∗ allows the i-th convolution kernel at the l-th layer to produce the maximum
activation, which is the visual representation of the corresponding convolution kernel.

However, in CNNs, the representations of convolution kernels are entangled Levine et al. (2018).
The generated x∗ may be a mixture of multiple convolution kernel representations. When evaluating
the model’s generalizability, we need to quantify the importance of the representations of each
convolution kernel. Such a mixture of representations cannot be used directly to evaluate model’s
generalizability. In response, we propose an improvement to the AM algorithm called the IAM
algorithm. During the generation of x∗, it suppresses the responses of other convolution kernels in
the same layer. And the final x∗ causes only the target convolution kernel to produce a high response
as much as possible. The IAM algorithm is defined as

x∗ = argmax(hl,i(x,Θ
∗)− 1

I

∑I

i=1
hl,−i(x,Θ

∗)). (2)

Under the IAM algorithm, the final x∗ obtains high activations in the target convolution kernel while
maintaining the small activations of the other convolution kernels in the same layer. It is a disentangled
visual representation of the target convolution kernel. However, because some representations of the
convolution kernels are similar or meaningless, there could still be many convolution kernels that
produce a high response in the same layer. But these high-response convolution kernels are also the
key to quantifying the importance of convolution kernel representation.

2.2 REPRESENTATIONAL SUBSTITUTION

After obtaining the disentangled representation of each convolution kernel, we can evaluate the model
generalization by measuring these representations. When the model has more representations, it has
good generalization Zhang et al. (2021); Meng et al. (2020). And because the number of convolution
kernels for the same model is fixed, we need to evaluate whether the representation of the convolution
kernel can be substituted by others. Representations are not substitutable, indicating that the model
has more representations.

We feed the disentangled representation into the model and record the output activations of all
convolution kernels of the layer where the convolution kernel that generated the representation
is located. As mentioned above, other convolution kernels may also have high activations. The
representations of these convolution kernels are redundant or similar to the one that generated the
representation, so the IAM cannot suppress the responses of these convolution kernels. We propose RS
to quantify the proportion of these convolution kernels. When the RS of the target convolution kernel
is small, the representations of the convolution kernels cannot be substituted by the representations of
other convolution kernels. The formula for RS is defined as follows

RS(l, i) =
Nxl,j>xl,i

Nxl

s.t. xl,i = f(IAM(l, i)), (3)

where RS(l, i) denotes the rate of kernels that produce higher response to the disentangled represen-
tation of the i-th convolution kernel in the l-th layer. Nxl

denotes the number of convolution kernels
of the l-th layer, and xl,i refers to the out activation of the target convolution kernel. Nxl,j>xl,i

denotes the number of other convolution kernels with output activations greater than the target
convolution kernel in the l-th layer. f(·) denotes the feedforward operation of the model, while the
input image is the disentangled visual representation of the target convolution kernel. RS can quantify
the substitutability of representations on the same layer in the range (0, 1). The convolution kernels
with low RS indicate that their representations are hard to be substituted.
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2.3 ACTIVATED REPRESENTATIONAL SUBSTITUTION

However, RS cannot be used to quantify the importance of the representations of the convolution
kernels. When the visual representation causes multiple convolution kernels to produce high responses,
there are two main causes, (1) the representation of the convolution kernel is redundant, which is
similar to the representations of other convolution kernels, and (2) the convolution kernels do not learn
the features. According to Equ. 3, when the visual representation is almost 0, the output activations of
all other convolution kernels on the same layer also are close to 0. This may lead to many activations
larger than the target convolution kernel but meaningless. So both cases lead to a large RS of the
target convolution kernel, but for different importance of the representations. On the other hand, there
is also a difference in the representation of the convolution kernel for small RS. When the output
activation is passed to the next layer, if the activation is small, then it may also have a small impact
on the operations in the later layers. In summary, although RS quantifies the substitutability of the
representations of the convolution kernel, it does not quantify the importance of the representations.

We further propose ARS to quantify the importance of the representation of the convolution kernel.
First, we use the activated representation (AR) to represent the proportion of non-zero values in the
activation, as follows

AR(l, i) = Nxl,i,k>0/Nxl,i
, (4)

where Nxl,i,k>0 denotes the dimension of the output activation greater than 0, and Nxl,i
denotes

the dimension of the output activation of the target convolution kernel. AR indicates the effect of
activations that can be passed to later layers. Combining the RS and AR of the convolution kernel,
ARS can be defined as

ARS(l, i) =
2 tan−1(RS(l, i)/AR(l, i))

π
(5)

The value range of ARS is in (0, 1). For a convolution kernel with a small RS, the ARS of the
convolution kernel becomes smaller when its AR is large. It indicates that the representation of this
convolution kernel is more important. When its AR is small, the ARS of the convolution kernel
becomes larger, and its representation is less important considering the impact on the later layers.
Similarly, for a convolution kernel with a large RS, the ARS becomes smaller when its AR is large.
Because its representation is meaningful compared to the case when no features are learned. The
ARS of the convolution kernel without learned features is large. The ARS can distinguish these
differences and quantify the importance of the representation. Considering the large range of RS
to AR ratios and the greater importance of low ARS, we used an inverse trigonometric function to
remap the ratio (0, 1). It changes quickly at smaller values and slowly at larger values. For model’s
generalizability, convolution kernels with small ARS are important.

2.4 MODEL ARS

The generalization ability of the model is related to the representation of all convolution kernels.
Therefore, we use the overall ARS of the CNN, which can be written as

MARS =
∑L

l
αl(

1

Il

∑I

i
ARS(l, i)). (6)

α is the hyperparameter, which is the weight of each convolutional layer. In general, α is large for
the shallow layers and small for the deep layers.

3 EXPERIMENTS

In the experiment, we used two models to validate ARS, a pre-trained ResNet He et al. (2015) under
ImageNet, and a shallow CNN in VGG style Simonyan & Zisserman (2015). The shallow CNN has
four convolutional layers with 64, 64, 128, and 128 convolution kernels.

4



Under review as a conference paper at ICLR 2023

(a)

(b)

Figure 1: The blue and red dots represent the RS under AM and IAM. When the RS of IAM is smaller
than the RS of AM, we use the blue line. On the contrary, we use the red line. (a) layer 1 and layer 3
of the shallow CNN. And some convolution kernels with red lines for AM, IAM, and their AR. (b)
represents the convolution kernels in layer 1, layer 3, layer 7 and layer 10 of ResNet.

(a)

(b)

Figure 2: (a) and (b) are the cumulative ablations at layers. The colors represent the different ablation
modes. The curves indicate the accuracy on the test set. The red histogram indicates the ARS of the
convolution kernel in descending order.

3.1 RS AND ARS

The visual representation of the convolution kernel is the basis for evaluating the model’s generaliz-
ability. Our proposed IAM algorithm, compared to the AM algorithm, is effective in suppressing
the responses of other convolution kernels and obtaining the disentangled visual representation. It is
important for the RS of the convolution kernel.

The shallow CNN is trained from the CIFAR-10 dataset Krizhevsky & Hinton (2009). Figure 1(a)
shows the RS of the same convolution kernel after using the AM and the IAM algorithm for the first
and third layers of the shallow CNN. For the same convolution kernel, the blue dots indicate the RS
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obtained by AM, while the red dots indicate the RS obtained by IAM. In Figure 1(a), most of the
differences among them are marked with blue lines, which indicates that the RS by AM is higher than
the RS by IAM. This is because the disentangled visual representation under the IAM algorithm is
difficult for other convolution kernels to produce a high response, and the RS is small. In Figure 1(b),
this conclusion also holds for the pre-trained ResNet. We visualize the RS comparisons on layer 1,
layer 3, layer 7, and layer 10. Most of the RS by IAM is lower. The experimental results show that
the RS under IAM can better represent whether the representations are easily substituted.

In Figure 1(a), there are also some convolution kernels in the shallow CNN with red lines, which indi-
cates that the RS computed by IAM is higher than that calculated by AM. Their visual representations
under AM contain complex textures by visualizing the IAM and AM of these convolution kernels.
These visual representations generated by the AM algorithm are influenced by other convolution
kernels rather than their visual representations. When we use the IAM to obtain their disentangled
visual representations, these convolution kernels do not extract meaningful features. Most of their
visual representations are close to 0, which leads to other convolution kernels producing similar
results that improve RS. So RS does not demonstrate the importance of representations. We also
show the AR of these convolution kernels. The AR of these convolution kernels is lower than the
average AR of all convolution kernels in the same layer. Therefore, the ARS combines AR and RS
to represent the importance of the convolution kernel representation. For example, for convolution
kernel 12 in layer 1 of the shallow CNN, its RS is 0.61 and AR is 0.0141, which gives its ARS of
0.985. It indicates that the representation of this convolution kernel is not important. In contrast, in
ResNet, there are few differences with red lines, which suggests that most convolution kernels can
extract meaningful features. Regarding AM and IAM, the step number setting is not sensitive to the
final result and the examples can be found on Appendix A.

3.2 ABLATION ANALYSIS OF ARS

To verify the effect of different ARS on model’s generalizability, we perform cumulative ablation
experiments on the convolution kernels and evaluate them by the change in accuracy under the test
set. We let the output of the selected convolution kernels be zero according to the order of ARS and
gradually ablate all the convolution kernels in a layer. Figure 2 shows the results of the ablation
experiments for shallow CNN and ResNet. The red and blue curves represent the cumulative ablation
in descending and ascending order. The final accuracy of some layers is not zero because the output
is fixed to a certain class, and its accuracy does not change. In shallow CNN and ResNet, the red
curve is always above the blue curve, which indicates that the convolution kernels with low ARS have
a greater impact on model accuracy when ablating the same number of convolution kernels. When
we perform cumulative ablation of ARS in descending order, the accuracy of the model changes
slowly in the early stage. When the ARS becomes very low, the accuracy of the model changes
rapidly. These suggest that the ablation of convolution kernels with large ARS has little effect on
model accuracy. Therefore, when we perform cumulative ablation of ARS in ascending order, the
accuracy of the model drops quickly. More, in shallow CNNs, we conduct random cumulative
ablation on convolution kernels. The accuracy of the model gradually decreases, which fails to show
the importance of the representation. These experimental results show that the representation of low
ARS convolution kernels is more important for model generalization.

Table 1: Maximum accuracy gap and mean ARS of shallow CNNs.

Shallow CNN ResNet50
layer1 layer2 layer3 layer4 layer1 layer3 layer7 layer10

Gap 0.627 0.438 0.425 0.294 0.882 0.856 0.827 0.808
Mean 0.338 0.227 0.132 0.088 0.329 0.254 0.203 0.158

To show the difference between the two ablation modes, we calculate the maximum gap in accuracy
when ablating the same number of convolution kernels. Table 1 shows that the maximum accuracy
gap for the first layer in shallow CNN and ResNet is 0.627 and 0.882. This gap decreases as the depth
of the CNN increases. Because the average ARS of the layers gradually decreases, their maximum
accuracy gap also becomes smaller. On the other hand, this gap changes rapidly in the shallow CNN
but slowly in ResNet. We record the ARS when the accuracy is reduced by 5%. In the shallow CNN,
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the ARS corresponding to each layer is 0.0455, 0.0528, 0.0175, and 0.0374, which shows that the
ablation with ARS greater than 0.06 has minimal effect on the model accuracy of the shallow CNN.
In the first seven layers of ResNet, the maximum ARS threshold is 0.87 when the accuracy is reduced
by 5%. So for ResNet, ablating convolution kernels with ARS greater than 0.87 in the first seven
layers does not affect the accuracy. The experimental results show that ARS can be used as a metric
to design new model compression algorithms.

3.3 RELATIONSHIP BETWEEN BN AND ARS

ARS can evaluate the importance of each convolution kernel representation. So for those strategies
that can affect the model’s generalizability, such as BN, ARS can also measure their differences.
Thus, we explored the differences in ARS between models with and without BN.

(a) (b)

Figure 3: (a) denotes the two models trained under the CIFAR-10 dataset. (b) denotes the model
trained under the SVHN dataset. They both represent the ARS distribution in shallow CNNs with
and without BN. The ARS of all convolution kernels is small when BN is added.

Specifically, we add BN layers to a new shallow CNN. We trained both models with the CIFAR-10
and SVHN Netzer et al. (2011) datasets. Their accuracies are about 4% higher than those of the
shallow CNN without BN. The experimental results are shown in Figure 3, where we show the
distribution of the ARS of the convolution kernels of both models under both datasets for layer 2 and
layer 4. In these layers, the ARS of the convolution kernels with BN are mostly around 0, and their
overall ARS is low. And for the model without BN has more convolution kernels with large ARS,
which indicates that the representations of these convolution kernels are not important for the model’s
generalizability. Under the SVHN dataset, for the CNN without BN, many of the convolution kernels
are close to 1, which indicates that the model generalization ability is poorer. It also has about 6%
lower accuracy than the model with BN.

The addition of the BN layer supports the validity of ARS, and the reason why BN is effective is
explained. BN encourages each convolution kernel to obtain low ARS and makes the representations
of convolution kernels important, thus improving the model generalization. It also provides insights
for designing a new regularization to make the ARS of the convolution kernel smaller.

3.4 RELATIONSHIP BETWEEN CS AND ARS

ARS can also be used to explain other conclusions about the model’s generalizability. For example,
Morcos et al. 2018 propose that CS quantifies the response of convolution kernels to classes. Their
conclusion demonstrates that convolution kernels with high CS are not important for the generaliz-
ability, and it is counterintuitive. A high CS refers to a high response of a convolution kernel to a
class, and it is easy to explain. For this result, we do a correlation analysis about the CS and ARS.

Figure 4 shows that ARS and CS have a strong correlation with each other both in shallow CNN
and ResNet of the first few convolutional layers. Convolution kernels with high CS also have high
ARS. This indicates that the representations of these convolution kernels are not important for the
generalization of the model. When the convolution kernels have high responses to classes, it suggests
that they have large AR. Then the large ARS is caused by a higher RS. This indicates that the repre-
sentations of other convolution kernels easily replace the representation of that convolution kernel.
So they are unimportant and have little impact on the model’s generalizability. This is consistent with
the conclusion of CS about the model’s generalizability. More, based on the distribution of ARS,
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Figure 4: The correlations between the shallow CNN and ResNet at different layers of ARS and CS.
The last plot represents the Spearman correlation coefficients between ARS and CS for all layers.

we can also know that low CS is also not always beneficial for the model’s generalizability. ARS
explains the conclusion of CS about the model’s generalizability.

Furthermore, we find that the correlation between CS and ARS is decreasing. We believe that this
shows the limitation of the CS method. For example, neurons before the classifier have high responses
to classes and high CS. These neurons, however, are important for the model. This is inconsistent with
the conclusion of CS. According to the principle of ARS, their representations are important, and they
have low ARS. The ARS quantifies better the importance of the convolution kernel representations.
And the computation of CS relies on a large number of images. In contrast, the computation of ARS
is done by quantifying the importance of the representations of the convolution kernels and without
using datasets. ARS provides a new approach to model explanation.

3.5 RELATIONSHIP BETWEEN IN-DOMAIN TESTING AND MARS

In the previous section, we mentioned the limitations of using test sets to measure model general-
izability Recht et al. (2018). However, a reasonably designed and consistent benchmark is still a
widely acknowledged way for a fair comparison of model generalizability. Therefore, to explore the
relationship between model’s generalizability and MARS, we trained 200 shallow CNNs with the
same structure on CIFAR-10. By modifying the learning rate during training, these models have
different accuracies on the test set. Then, we selected the four best and four worst performing shallow
CNNs to analyze their ARS.

Table 2: The average ARS for each layer on CIFAR-10, as well as their MARS and OA.

Model Layer1 Layer2 Layer3 Layer4 MARS OA(%)

Good1 0.0841 0.0429 0.0413 0.0361 0.3317 75.24
Good2 0.0694 0.1070 0.0479 0.0321 0.4329 75.33
Good3 0.1008 0.0766 0.0661 0.0397 0.4605 74.84
Good4 0.0843 0.0596 0.0402 0.0538 0.3818 74.68
Mean 0.0848 0.0755 0.0518 0.0360 0.4084 75.14
Bad1 0.2075 0.1343 0.1818 0.0744 0.7689 47.08
Bad2 0.2355 0.0999 0.0935 0.0854 0.6820 46.60
Bad3 0.1944 0.1477 0.1422 0.1187 0.7741 46.35
Bad4 0.2044 0.0690 0.1929 0.0982 0.7013 46.91
Mean 0.2125 0.1273 0.1392 0.0928 0.7417 46.68

Table 2 shows the average ARS of each layer, MARS, and overall accuracy (OA). For MARS, the
α of each layer are 2, 2, 1, 1. We suggest larger α for the shallow layers and smaller ones for the
deep layers. Because of the ablation analysis, the shallow layer has more convolutional kernels with
low ARS and contributes more to the model’s generalizability. A small MARS indicates the good
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generalizability of the model. By comparing the poorly performing models, the good models have
lower ARS on each layer. The highest accuracy among all the well-performing models is 75.33%.
Its MARS is 0.4329, and the difference in performance is slight compared to the Good1 model,
which has a lower MARS. The MARS is consistent with the accuracy of the models on the test set.
We also validated our metric on the CIFAR-100 dataset, and the experimental results are shown
in Appendix A. For the models with low OA, their MARS is relatively high, and they have poor
generalization. The experimental results indicate that the MARS obtained by each layer of ARS can
be used to evaluate the model’s generalizability.

3.6 RELATIONSHIP BETWEEN OUT-OF-DOMAIN TESTING AND MARS

In the out-of-domain (OOD) testing, we choose the four best and worst-performing models on
corrupted CIFAR-10 among the models trained on CIFAR-10. Their ARS, MARS, and OA are shown
in Table 3. The experimental results show that the models with lower MARS have higher OA. Our
proposed metric is still successful in evaluating the generalization performance of the models.

Table 3: The average ARS for each layer on the corrupted CIFAR-10, as well as their MARS and OA

Model Layer1 Layer2 Layer3 Layer4 MARS OA(%)

Good1 0.0007 0.0064 0.1421 0.0769 0.2332 67.52
Good2 0.0007 0.0067 0.1869 0.0789 0.2807 66.77
Good3 0.0007 0.0010 0.0310 0.4053 0.4399 66.52
Good4 0.0007 0.0062 0.3657 0.0289 0.4083 66.12
Mean 0.0007 0.0047 0.1200 0.1870 0.3197 66.94
Bad1 0.0007 0.0015 0.4949 0.1144 0.6138 52.12
Bad2 0.0007 0.0019 0.5270 0.0186 0.5508 52.33
Bad3 0.0008 0.0028 0.4677 0.7939 1.2687 51.91
Bad4 0.0008 0.0020 0.0508 0.4404 0.4967 53.12
Mean 0.0007 0.0021 0.4965 0.3090 0.8111 52.12

In another set of OOD testing, we used the same model selection strategy as corrupted CIFAR-10
to find the best and worst-performing on the CIFAR-5m dataset. The results of their experiments
are shown in Appendix A. Our proposed metric can still select the best-performing models. The low
MARS, i.e., the model with many important representations, performs better in generalization. All
these experiments show that ARS and MARS can be successfully applied to measure the model’s
generalizability in cross-domain scenarios.

4 CONCLUSION

Our proposed ARS can quantify the importance of representations through the disentangled visual
representations of the convolution kernel without using a test set. The representations of the convolu-
tion kernel with low ARS are more important for the model’s generalizability. In our experiments,
we also explain the role of BN and CS through ARS, which can be used as a method of model
explanation. With the overall ARS of the model, we also quantify the model’s generalizability. The
models with lower overall ARS have better generalizability under the in-domain and out-of-domain
testing. Our method does not require additional data to measure the model’s generalizability. It not
only helps us understand the model but also helps us get a model with better generalizability. It can
extend to different data-starved applications, such as few-shot learning and active learning.

However, ARS also has limitations. Comparison of ARS between different models is still a problem.
But we believe when the α reasonably sums up the overall ARS of each layer, we can compare
their MARS and generalization ability on different models. The definitions of RS and AR do not
take into account the value of the activations. The relationship between the representations of these
convolutional kernels and the selected kernel is complex. It remains a challenging problem to quantify
the substitutability of the selected convolutional kernel by the higher activations. And the computation
of IAM is time-consuming. In our future work, we will further explore the above issues. We also
expect to use convolution kernels with low ARS as loss functions to obtain good generalizability
during training.
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A APPENDIX

STEP NUMBER SETTING

Regarding AM and IAM, the step number setting is not sensitive to the final result. We randomly
selected several convolutional kernels on layer 4 of the shallow CNN. Figure 5 shows their AM and
IAM for the different number of iterations. When the number of iterations is sufficient, the change of
step number does not affect the final experimental results. In the experiment, we set the iterations to
1500.

Figure 5: The visualization results of AM and IAM for the different number of iterations.

MARS ON CIFAR-100

We validated our metric on the CIFAR-100 dataset and the experimental results are shown in Table 4.
For the models with low OA, their MARS is relatively high, and they have poor generalization. The
experimental results indicate that the MARS obtained by each layer of ARS can be used to evaluate
the model’s generalizability.
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Table 4: The average ARS for each layer of the models on CIFAR-100, as well as their MARS and
OA

Model Layer1 Layer2 Layer3 Layer4 MARS OA(%)

Good1 0.0250 0.0330 0.1095 0.0192 0.2448 48.54
Good2 0.0435 0.0329 0.0804 0.0268 0.2601 47.28
Good3 0.0232 0.0260 0.0938 0.0225 0.2146 49.16
Good4 0.0363 0.0256 0.0661 0.0561 0.2462 47.24
Mean 0.0306 0.0306 0.0946 0.0228 0.2398 48.33
Bad1 0.0.83 0.0489 0.0922 0.0823 0.3488 25.52
Bad2 0.0573 0.0947 0.0476 0.0507 0.4023 25.47
Bad3 0.0519 0.0306 0.0828 0.0650 0.3128 25.43
Bad4 0.0385 0.1055 0.0870 0.0568 0.4320 25.77
Mean 0.0546 0.0581 0.0742 0.0660 0.3546 25.47

MARS ON CIFAR-5M

We validated our metric on the CIFAR-5m dataset. The results of their experiments are shown in
Table 5. Our proposed metric can still select the best-performing models. The low MARS, i.e., the
model with many important representations, performs better in generalization.

Table 5: The average ARS for each layer of the models on the CIFAR-5m, as well as their MARS
and OA

Model Layer1 Layer2 Layer3 Layer4 MARS OA(%)
Good1 0.0006 0.0021 0.0504 0.2126 0.2683 48.20
Good2 0.0005 0.0059 0.1077 0.2106 0.3311 45.22
Good3 0.0006 0.0010 0.2215 0.0309 0.2555 55.13
Good4 0.0006 0.0021 0.0443 0.0519 0.1016 52.48
Mean 0.0006 0.0030 0.1265 0.1514 0.2850 49.52
Bad1 0.0007 0.0024 0.4311 0.4547 0.8921 39.71
Bad2 0.0007 0.0019 0.7238 0.1340 0.8629 40.71
Bad3 0.0007 0.0420 0.4264 0.0589 0.5706 43.82
Bad4 0.0007 0.0011 0.4310 0.5452 0.9798 39.17
Mean 0.0007 0.0154 0.5271 0.2159 0.7752 41.41
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