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Abstract

We rigorously prove that deep Gaussian process priors can outperform Gaussian
process priors if the target function has a compositional structure. To this end,
we study information-theoretic lower bounds for posterior contraction rates for
Gaussian process regression in a continuous regression model. We show that if
the true function is a generalized additive function, then the posterior based on
any mean-zero Gaussian process can only recover the truth at a rate that is strictly
slower than the minimax rate by a factor that is polynomially suboptimal in the
sample size n.

1 Introduction

Hierarchical methods are at the heart of modern machine learning and provide state of the art
performance for a variety of different problems. While the role of the depth in deep neural networks
has been extensively investigated [37} 44,45 [24] 33]], the theory underlying deep Gaussian process
priors is still in its infancy. In this work we identify a structured recovery problem for which deep
Gaussian process priors are known to achieve near optimal behavior. By proving that for this problem
any Gaussian process prior will lead to a sub-optimal posterior shrinkage behavior, we provide a
theoretical justification for the use of deep methods for Bayesians.

Gaussian process (GP) priors are arguably the most widely used Bayesian nonparametric priors in
machine learning, having found success in multiple settings [26]. Reasons for their popularity include
their interpretability, ability to flexibly model target functions, model spatial or temporal correlations,
incorporate prior knowledge such as stationarity, periodicity or smoothness, and their provision of
uncertainty quantification. This work establishes information-theoretic bounds on the inability of
GPs to optimally model generalized additive models, thereby quantifying certain limitations of GP
methods.

We will study the performance of GPs in a continuous analogue of nonparametric regression via
quantifying the speed of posterior concentration/contraction around the true regression function. This
is a frequentist assessment that measures the typical behaviour of the posterior distribution under
the true generative model. The performance of Bayesian methods is known to be sensitive to the
choice of prior, particularly in high- and infinite-dimensional settings [[L1, 20], and it is therefore
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crucial to understand under what conditions and prior calibrations Bayesian inference is reliable.
The frequentist analysis of Bayesian methods has become a standard tool for such tasks in both the
statistics and machine learning literatures (e.g. [36, 25} 143) /42,16, 27, [28]]), see the monograph [12].
Precise definitions and further discussion are provided below.

If the regression function is a generalized additive model, it has been shown that deep neural networks
with properly chosen network architecture achieve the optimal minimax rate of convergence [32]].
We show here that for this structural constraint, any mean-zero Gaussian process, irrespective of the
choice of covariance kernel, will concentrate around the truth at a rate that is strictly slower than the
minimax rate by a factor that is polynomially suboptimal in the sample size n. Thus any posterior GP
places a significant portion of its posterior probability on functions that are further from the truth in
L2-distance than the minimax rate of estimation, which has negative implications for both Bayesian
estimation and uncertainty quantification.

In contrast, it has recently been shown that deep Gaussian processes [23| 8], which consist of iterations
of Gaussian processes and can be viewed as a Bayesian analogue of deep neural networks, are able to
attain the minimax rate of contraction for arbitrary compositional classes [10]. As these compositional
classes contain generalized additive models as a special case, we have shown that deep GPs provably
outperform GPs from a statistical perspective and should thus be preferred.

In related work, it has been established that (not necessarily Bayesian) linear estimators can only
attain polynomially suboptimal linear estimation rates over certain spatially inhomogeneous Besov
classes [9] or for functions with discontinuities [21]. Agapiou and Wang [1]] use the results of [9]
to show that GPs also cannot concentrate faster than the linear rate for such Besov classes, see also
[31] for some related examples. Castillo [4] establishes lower bounds for concentration rates in terms
of abstract conditions on the ‘concentration function’ of the GP, which can be verified for certain
specific GP choices. The lower bound ideas of [9,21]] have also been extended to various spatially
inhomogeneous and discontinuous functions settings to demonstrate the theoretical advantages of
deep learning over linear estimators [[15H17, 134, 35, 38]]. Finally, for generalized additive models,
[32] shows that (possibly nonlinear) wavelet methods can only achieve suboptimal rates.

Most of the above works exploit the results from [9, [21]] showing that minimax rates for linear
estimators are slower than full minimax rates in these settings. Since linear rates are unavailable
for generalized additive functions, and seem difficult to prove using existing techniques, we instead
use a different and novel proof approach. We exploit the specific structure of the GP posterior mean
in regression to construct a direct lower bound for its prediction risk. In an effort to develop the
new tools needed to solve such problems, we further provide a second proof in the supplement that
involves first reducing the regression setting to a simplified sparse sequence model in which we derive
linear rates. While these do not imply linear rates in the full model we consider, they prove sufficient
to construct lower bounds for arbitrary GP posterior means.

2  Main results

2.1 Problem setup and posterior contraction rates

In the usual multivariate nonparametric regression model we observe 7 training samples
(X1,Y1),...,(X,,Y,) arising as

Vi = f(X:) + wi, w; ~" N(0,1), (1)

where the design points X; are either independent and uniformly distributed random variables
on [0,1]? or equally spaced lattice points in [0,1]?. To simplify technical arguments due to the
discretization and provide a clearer exposition, a standard approach in statistical theory is to consider
instead the ‘continuous’ analogue of this model [[19]. The discrete model is asymptotically
equivalent [30] (as n — 00) to observing a realisation Y = Y™ = (Y, : 2 € [0,1]%) of the
multidimensional Gaussian white noise model

dY, = f(x)dz + %dwx, x € [0,1]¢, )

where W = (W, : = € [0,1]%) is a d-dimensional Brownian motion. For large n, the two models
thus behave identically from a statistical perspective.



Notation: For adomain D and 1 < p < oo, denote by L? (D) the space of all measurable functions f :
D — R that have finite norm || f|| 1.»(p) == ([ | f(u)[Pdu)/P if p < oo, and are essentially bounded
on D if p = co. If there is no ambiguity, we write L2 for L?[0,1]¢ and (f, g)2 = f[O,l]d f(u)g(u)du
for the corresponding inner product. Let Py = P} denote the probability distribution of ¥ = Y™
arising from (2) with corresponding expectation E.

We consider the Bayesian setting where we assign to f a (possibly n-dependent) mean-zero Gaussian
process prior IT = II,, on L2[0, 1]¢ with covariance kernel K, i.e. IT is a (Borel) Gaussian probability
measure on L2[0, 1]¢ such that for f ~ II, we have

Ef(z) =0, E[f(z)f(y)] = K(z,y), z,y €[0,1]%. 3)

The posterior IT,,(-|Y") is then computed as usual using Bayes formula and is again a GP by conjugacy,
exactly as in the discrete model (I)) [26]], see (7)) for the exact expression. We make the following
frequentist assumption:

Assumption 1. There is a true fo € L?[0,1]? generating the data’ Y ~ Py, according to ().

We study the behaviour of the posterior distribution I, (-|Y") under Assumption |1} in which case it
can be treated as a random probability distribution whose (frequentist) randomness depends on Y.
We next introduce the notion of uniform posterior contraction.

Definition 1. We say that the posterior contracts about fy at rate €, — 0 uniformly over a sequence
of classes F,, C L?[0,1]% ifas n — oo

sup Eg L (f < [If = foll> = en[Y) = 0.
fOe]'-n

Posterior contraction is often stated in the equivalent form
IL.(f: If — folle = en]Y) — 0 in Py, -probability

as n — oo, which says that the posterior puts all but a vanishingly small amount of probability on
L2-balls of shrinking radius &,, about the true f, generating the data [12]. We are typically interested
in the size of the smallest such L2-ball, i.e. the fastest rate ,, — 0 such that Definition holds.
Such results not only quantify the typical distance between a point estimator (e.g. posterior mean or
median) and the truth, but also the typical spread of the posterior about the truth. Ideally, most of the
posterior probability should concentrate on a ball centered at the true f; with radius proportional to
the minimax estimation rate, see Section @]for more details. Indeed, since posterior contraction
at rate €,, automatically yields a point estimator with convergence rate ¢,, ([12], Theorem 8.7), the
minimax rate provides an information-theoretic lower bound for ¢,,. Posterior contraction at a fast
rate is a necessary condition for statistically good Bayesian estimation and uncertainty quantification.

We use the Ey -expectation formulation of contraction to quantify the uniformity over fo € F,
needed to make our lower bounds precise and meaningful. Such uniformity captures that the true fj is
unknown and rules out unrealistic and trivial situations, such as taking a GP with prior mean equal to
the true fj and arbitrarily small covariance. Since we consider worst case (uniform) rates in Definition
[[and it is well-known that the covariance kernel K of the GP determines the characteristics of the
corresponding GP [26], including its posterior contraction rates [40], we without loss of generality
restrict to mean-zero GPs.

There is by now an extensive literature on proving upper bounds for contraction rates [12], including
for GPs [40]. These contraction rates are usually uniform over suitable function classes F,,, although
the results might not be formulated in this way in the literature.

2.2 Lower bounds for posterior concentration in Gaussian processes regression

While the classical approach in nonparametric statistics is to make smoothness assumptions on
the regression function fy, recent work in the deep learning literature has studied compositional
assumptions. A special case are generalized additive models of the form

folzy,. ..., zq) = h(f:gi(xi))
i=1



with g1, ..., g4, h univariate and Lipschitz continuous functions such that all Lipschitz constants are
bounded by A and ||g1[z<[0,1]; - - - » 9allL=[0,1], | Pll L= (r) < A. The class of all functions of this
form is denoted by G(A) and we define G = G(1). Generalized additive models are among the most
popular structural constraints in function estimation [14]].

Equation (13) in [32] and the subsequent discussion shows that the minimax estimation rate R,,(G(A))
satisfies
en”'® < R,(G(A)) < C(logn)n~'/?

for some C, ¢ > 0. Up to logarithmic factors, this rate is obtained by carefully calibrated deep GP
priors that first assign a hyperprior to different compositional structures and subsequently put GP
priors on all functions in the function composition [10].

We are now ready to state the main lower bound results of this paper, which we emphasize applies to
any GP, irrespective of the choice of covariance kernel (which may itself depend on n).

Theorem 1. Let I1,, be any sequence of mean-zero Gaussian process priors on L*[0,1]%. For any
0<d<1/4andn > N(d,0) large enough, the corresponding posterior distributions satisfy

_ 24d
sup, EpIIn(f < [If = follz = Can™ 712|Y) > 1/4 =,
0€E

where Cy = ﬁ (m) . In particular, if the posterior distributions contract at rate €,
uniformly over G, that is

sup B IL,(f : [[f — follrz = €alY) =0
fo€g

_2+4d
asn — oo, then g, > Cyn™ 3+4d

For dimension d > 3, the above rate is strictly slower than the minimax rate n~ /3 by the polynomial
factor 1727122 . As the domain dimension d tends to infinity, our lower bound is approximately n~/4,
in which case Theorem says the GP posterior will place at least probability 1/4 — § on posterior
draws f ~ II,(-|Y") having suboptimal reconstruction error ||f — fo|lz2 = n~'/%. In contrast,
posteriors based on properly calibrated deep GPs will place almost all their probability on draws
with minimax optimal reconstruction error of order n~'/3 [[10]]. Thus GP posteriors provide poor
reconstructions of fy € G compared to deep GPs.

Theorem says that no GP can attain a faster rate than n™~ it . It does not say that a given GP even
attains this suboptimal rate, and specific GPs can perform much worse than this bound. We in fact
conjecture that our lower bound can be improved to show that even this rate is not attainable by any
GP, see Section [2.3|for more discussion. Nonetheless the main message from Theorem [I]is already
clear, namely that GPs underperform in this setting by an already significant factor that is polynomial
in the sample size n.

The last result says that generic posterior draws will be poor reconstructions of fy with significant
posterior probability. The same holds for the posterior mean.

Theorem 2. Let I1,, be any sequence of mean-zero Gaussian process priors on L*[0, 1]9. Then the
corresponding posterior means f, = EW[f|Y] satisfy for n > 2(d + 2)!,

f ) 2td
sup Efo”fn_foHLz > Cjn~ tHad
fo€G

d
’ 1 1 4+4d
where Cd = 3af1 (m) .

Theorem [2] states that the posterior mean f,, will also be a suboptimal reconstruction. Since the
posterior is also Gaussian by conjugacy, and hence centered at f,, this captures the notion that
posteriors draws from the ‘center’ of the posterior will also be poor - this is thus generic behaviour
and not an artifact of unusual behaviour in the posterior tails.

Our results also have implications for Bayesian uncertainty quantification (UQ) through the use of
credible sets, which is one the main motivations for using GPs. Bayesian credible sets are often



used as frequentist confidence sets, a practice which can be rigorously justified in low dimensional
settings ([39]], Section 10.2), but is much more subtle in high-dimensional settings like GPs [11]].
Whether a resulting credible set contains the truth will depend on the size of the posterior standard
deviation relative to the distance between the posterior mean and the truth, which Theorem [2]says is
greater than the minimax rate with high-probability. In the best case scenario, the former is greater
than the latter and thus the credible set will provide honest and reliable UQ. However, in this case
the posterior standard deviation must be at least of the order of the contraction rate, and hence the
resulting credible sets will be (polynomially) much too large and uninformative. In the worse case,
when the posterior standard deviation is smaller, the credible sets will not contain the truth and
provide misleading (useless) UQ.

Note that we are considering UQ for the entire function fj - it may still be possible for the GP
posterior to provide efficient UQ for certain low-dimensional functionals of interest, which is itself a
current topic of research [5) 29].

The proofs are based on a number of inequalities that are easy to state. Relying on an exponential
concentration inequality and Anderson’s inequality, we show that Theorem T]follows from the lower
bound for the posterior mean in Theorem [2] (cf. Section[d.T). For Theorem 2| we provide two different
proofs. In the first, we lower bound the L2-risk of the posterior mean over arbitrary finite subsets
{fi,. o, fm} C L?[0,1]¢ (cf. Lemma , with the lower bound expressed in terms of expansions
of the functions f; in the basis coming from the Karhunen-Lo¢ve expansion of the GP. We then
construct a suitable collection of orthogonal generalized additive models for which the lower bound
is maximized independently of the choice of GP basis, as is needed to deal with arbitrary GPs
(cf. Section[£.3). Given a specific choice of GP, our lower bound techniques can yield more refined
results by tailoring the alternatives fi,. .., f,, to be especially poorly aligned (difficult to learn) for
that specific covariance function, see Section@

In a second proof of Theorem 2] presented in Section [B]in the supplement, we reduce the problem of
studying orthogonal generalized additive models to the sub-problem of studying the risk of linear
estimators in a one-sparse sequence model (cf. Section[B.I]). For the latter, we exactly compute the
linear minimax risk in Lemma 9] which, by exploiting the orthogonality, in turn implies the lower
bound in Theorem 2] This second proof sheds additional light on the limitations of GP regression by
furnishing new tools to study problems that can be connected to sparse models.

2.3 A sharper lower bound for a specific class of Gaussian processes

While Theorem [T holds for arbitrary GPs, we now show that our methods can yield sharper lower
bounds in the case of specific GPs, implying an even stronger suboptimality in the associated
reconstruction error. We illustrate this by considering Gaussian wavelet series priors. Wavelets have
been extensively used in Bayesian nonparametrics to construct priors in function spaces, including
applications in inverse problems [41} 2], and image and signal processing [3, (18] among the others;
see e.g. [22] for an overview.

Let {¢),, vy € T}, withT' = {v = (j,k) : j = —1,0,1,..., k € I;}, be a compactly supported
wavelet basis of L2(RR) restricted (with boundary correction) to [0, 1], cf. [7] or also [13, Chapter 4].
The collection {t), ¥ = (v1,...,7a) € [}, with['d = I'x- - -xT" (d times) and ¢~ (21, . . ., T4) =
H?zl 1., (z;) provides a tensor product wavelet basis of L2[0, 1]%.

Consider a mean-zero Gaussian wavelet series prior on L]0, 1]¢ with Karhunen-Logve expansion

F@) = VA (@), x=(x1,...,24) €[0,1]%, (4)
~el

for some arbitrary index set I C T'¢, coefficients Ay > 0 and & ~%d N(0,1). Compared to
the proof of the general lower bound in Theorem [I} fixing a specific GP basis allows to consider
compositional functions that are especially difficult for that GP to approximate. For wavelet bases,
such approximation theory was developed in [32]], which we employ to obtain the next lower bound.
Theorem 3. Let I1,, be any sequence of mean-zero Gaussian wavelet series priors on L2[0,1]%,
defined as in @) with possibly n-dependent A\ > 0. For any 0 < § < 1/4 andn > N(d,¢) large
enough, the corresponding posterior distributions satisfy

sup B, 1L (f ¢ ||f = follz2 > Cn™=a|Y) > 1/4 — 6,
fo€G



where C = C(d,v) > 0 only depends on d and the wavelet basis. Furthermore, the corresponding
posterior means f,, = EY[f|Y] satisfy for all n

sup Efonn - fOHL2 > C/n_%%d’
fo€g
where C' = C'(d, ) > 0 only depends on d and the wavelet basis.

Thus, for the class of Gaussian wavelet series priors, Theorem [3] provides a sharper lower bound

1 _2+d .
than Theorem [1} as n~ Z+4¢ > n~ 3+4d for all d. Furthermore, the former rate deteriorates as d
grows, showing that the performance of Gaussian wavelet priors suffers from a form of curse of

1
dimensionality. In particular, when d is large, the fastest rate n~ 2+< achievable by Gaussian wavelet
priors is much slower than the minimax rate n~'/3 achieved by deep GPs.

3 Discussion

In this work, we showed that no mean-zero Gaussian process can attain the minimax estimation
rate over a class of generalized additive models. We proved this by developing new tools for lower
bounding posterior contraction rates for GPs. We provided two different proofs, each of which sheds
different light on these phenomena.

It remains open whether even sharper lower bounds can be obtained. In this context, an important
question is whether all GPs suffer from a curse of dimensionality in their posterior contraction rate,
which we showed was incurred for a specific wavelet-based GP. Our lower bound n~(2+)/(4+4d)
for arbitrary GPs in Theorem [1|is never slower than n~'/4, irrespective of the domain dimension
d. While the obtained lower bound already demonstrates the suboptimality of GPs by a polynomial
factor in n, say when compared to deep GPs, our stronger lower bound n~'/ 2+ for Gaussian
wavelet series priors becomes arbitrarily slow with increasing d. We thus proved that for this subclass
of GPs, a stronger curse of dimensionality is unavoidable

To avoid the curse of dimensionality, a common two-stage approach is to first map the input features to
a learned lower dimensional space and then apply Gaussian process regression to these new features.
Our results do not apply to this scenario, in particular when the feature extraction map can be be
nonlinear, since the transformed underlying function may no longer be compositional in terms of the
new learned features.

We expect similar results to hold for non-uniformly distributed input variables and heteroscedastic
noise. Let o be a positive function and p a density on [0, 1]%. If p, o are bounded away from zero
and infinity, we conjecture that, up to constants, the same lower bounds can be derived working in
the more general nonparametric regression model (I]) with, conditionally on X, independent noise
variables w;| X; ~ N(0,0%(X;)) and X; ~%? p.

Ideally, one wants to develop a broader understanding of which structures in the data-generating
distribution or regression function (deep) Gaussian processes can or cannot adapt to. In order to
understand the advantages of deep learning there is an extensive theoretical literature comparing
shallow to deep nets. More refined versions show that for certain approximation rates a minimal
network depth is necessary [24]. To gain some insights into the role of depth in deep Gaussian
processes, it would be desirable to explore similar limitations if the depth is fixed and a highly
structured function needs to be learned.

4 Proofs

We first start with some preliminary facts concerning GPs and the Gaussian white noise model
@). For IT a GP prior on L?[0,1]%, we can express its covariance kernel K in (3) in terms of
the normalized eigenfunctions {¢y : k > 1} of the compact, self-adjoint, trace-class operator
g— f[O,l]d K(-,y)g(y)dy on L?[0, 1]¢ and its associated eigenvalues A, > 0, which are summable,
via the expansion K(z,y) = > =, A\u¢r(2)Px(y). In particular, we can realize the Gaussian
random element f ~ II through its series expansion

=3 Vo, &~ N(0,1), )
k=1



known as the Karhunen-Loéeve expansion. The corresponding reproducing kernel Hilbert space

(RKHS) H of IT is
{ E hior ||l : E I <oo}.

For any orthonormal basis {¢x : k& > 1} of L?[0, 1]¢, in particular the Karhunen-Logve basis of
the prior (3)), the Gaussian white noise model is equivalent to observing the sequence model
(Yk k> 1)

Wk

%7

for k = 1,2,3,... and where wy, " N(0,]|¢xl|22) = N(0,1). To be precise, the observations
(Yy : k > 1) in the last equation and the original white noise model (2) are equivalent in the sense
that each can be perfectly recovered from the other, see Section [C.2]in the supplement for more
details.

Y, = / o (2)dY, = (Pr, fr2 + —= / =: 0+ (6)
[0,1]¢ [0,1]¢

Viewing the prior IT through its series expansion (3, IT can be viewed as a prior on the space of coef-
ficients in the basis expansion of {¢y, } leading to the prior distribution f = (6)r ~ @52, N (0, Ag).
Denoting by Py = P} the distribution of the sequence representation (6), we have likelihood

Py = R4 N(0k,1/n).

Using this representation, one can use posterior conjugacy to show that the posterior takes the form

> . ni A
F=0kon, O|Yi ~"4 N ( LY, ) , (7)
k=1

nAg + 1 ng +1

see Section[C.2]in the supplement for full details. In particular, the posterior mean is

fo=E"[flY] = Z 7 Vi (8)
=

4.1 Reducing the lower bound for posterior contraction to one for the L2-risk of the posterior
mean

We will show that a lower bound on the L2-risk of the posterior mean implies a corresponding lower
bound for the posterior contraction rate, so that it will suffice to consider the former. The proofs of
the following lemmas are deferred to Section[A.T]in the supplement due to space constraints. We start
by showing that the squared estimation error of the posterior mean is of the order of its expectation
with high probability.

Lemma 4. Let fo € L?[0,1)%, f, = EY[f|Y] denote the posterior mean based on a mean-zero
Gaussian process prior I1 on L?[0,1]% and set p2 = Ey, || fo — foll22. Then forn > 1,

2
n

r _nu
Pfo (”fn - f0||%2 < Mi/4) <4e” 32,

We next show that a contraction rate for Gaussian process priors implies that the corresponding
posterior means converge to the truth at the same rate with frequentist probability tending to one.

Lemma 5. Let I1,, be a sequence of mean-zero Gaussian process priors on L?[0,1]%. Then the
corresponding posterior means f, = EW[f|Y] satisfy

Py, (I1fn = follzz = 27s) < 2\/EfoHn(f Sf = follee =2 wmlY)
for any sequence 7y, and n > 1.

Combining the last two lemmas allows us to transfer an L?-risk bound for the posterior mean to one
for posterior contraction.



Lemma 6. Let fo € L%[0,1]¢, 11, be a sequence of mean zero Gaussian process priors with
corresponding posterior means f, = E"[f|Y], and set p2 = Ey, || fn. — fol|2s. Then forn > 1,

2
1 il
Ef L (f 2 1 f = follee > pn/4]Y) > 1 (1—46 32 ) .
+
Furthermore, suppose F,, C L? satisfy sups,er, Ef | fn — foll2: > ~2 > 0 for some sequence

Yn for which ny2 — oo asn — oo. Then for any 0 < § < 1/4 and n such that ny? >
32log (

sup g IL,(f « |1f = follez = v/5Y) = 1/4 — 4.

0E€ESn
In particular, the posteriors cannot contract at rate y /5, uniformly over JF,.

4.2 A general lower bound for the L2-risk of the posterior mean

By Lemma@ it suffices to prove a lower bound for the L2-risk of the posterior mean. We next prove
such a general lower bound.

Lemma 7. Let f,, be an estimator of the form (8)) with corresponding orthonormal basis {¢y, : k > 1}.
For functions fi, ..., fm € L*[0,1]4,

- 1
max Byl fu- 72 (- S U 00%) A . ©)
=l k=1 j=1
Moreover, if fi, ..., fm are orthogonal and max; | f;||3. < m/n, then

. 2 1w
j:r?’z}%m Efijn - fj”m 2 %; ||fj||2L2

In particular; if em/n < || f;||3. < m/n for all j and some 0 < ¢ < 1, then one can take the lower
bound to be em//n.

Proof. Using the bias-variance decomposition, the expected prediction loss of an estimator of the
form (8) is

_ 2 = nAk nAr 21

E o - (7 ) ’ ( ) n’

i =1l =3 (T —Y) i+ (i) &

Setting ay, := nAg/(1+nA;) and T, = = > i (i ¢r)?2 ., the last equation yields

1 m oo 2
— D = DA B+ 2k
j=1k

=1

jmax Eg | fn — fill3. >*ZEfJ||fn fillZ

j=1

Optimizing over a; shows that the right-hand side is minimized at aj, = nT} /(1 + nT}). For this
choice, we obtain using 1 + nTy, > 1V (nT}),

— ) 2 Tk T,?n - 4
X By || fo = fill 2 = Xk: (1 + nTy)2 + (1 + nTy)2 Z 1 JrnT = ZT’f /\

proving the first claim.

To see the second claim, observe that || f;|2. < m/n and the orthogonality of the f; imply

1 ¢ 1</ f) 2 gnl2. 1
n:EZHfjnM”f o) <o (o) <
Jj=1 j=1 J

Therefore Ty, A 1/n = T}, and using (9) and that (¢ ) is a basis,

:FEQM}LM_Z Zﬁmm=%22wmm=%ZM%-
j=1

i=1 k

J



4.3 Construction of local functions and proof of Theorems [T)and 2]

Lemma 8. Let m = k¢ for some integer k > 1. Then there exist functions fi, ..., fm € G having
disjoint support and satisfying || f;||3. = mm’¥ forj=1,....m

Proof. For ¢ =1,..., k, consider the midpoints z, := (£ — 1/2)/k of the intervals [(£{ — 1) /k, £/K].
Overall, there are m = k¢ points in the grid

I := {(Zgl,...,ng)T .. g € {1,7]{3}}

Consider the functions,

ful@) = (i—|x—a|1)+, 0= (ar,....a0) €.

These functions can be viewed as generalized additive models f,(z) = h(zl 1 9ai(x;)) with
h(u) = (1/(2k) — u)+ and gq;(x;) = |z; — a;]. All these functions have Lipschitz constant bounded
by 1. Moreover, maxaey,i=1,....d ||Jaill L<[0,1] < 1 and ||k L) = 1/(2k) < 1. Thus, f, € G.

Since |z — al; > |7 — |, the support of the function £, is contained in the hypercube x¢_, [a; —
1/(2k),a; + 1/(2k)]. Since a; is of the form (¢ — 1/2)/k with ¢ an integer, the functions f, must
have disjoint support and are therefore orthogonal.

It thus remains to compute the L? norm of these functions, which by translation are the same
as that of fo(z) = (1/(2k) — |z|1)+ on RZ Note that the support of fy can be decomposed as
supp(fo) = Uee—1,1}1¢ e, Where

d
Re =< z € RY : sign(x;) = Z:|mj\ < 2k
Since the L?-norm of f; on each of these 2¢ quadrants is equal, we have
lfollze =2 [ fol)?de
Ry

1/(2k) 1/(2k)—z1 1/(2k)—z1—...—xq_1 )
:2(1/ / / (ﬁ_xl—...—l’d) dridzs . ..dzg.
z1=0 22=0 xq=0

Using repeatedly that fOM_T(M —r—y)ldy = g5 (M —r)"* for0 < r < Mandt > 0, we

obtain o
2 1 1
1 foll3e =2 ) =g
(d+2)! \ 2k 2(d +2)!

O

Proof of Theorems[I|and 2] Let rq = (d+2),, k= [(rqn) 2d+21 and m = k. By Lemmal there

exist orthogonal functions f1,..., f,, € G with || ;|22 = rqm™ . For such a choice of k and m,
em/n < || f;||2> < m/n holds if and only if

1 (ran) i

c?a+? < T
[(ran)=T+2]

after rearranging the inequalities. Now the function p(x) = z/[z] satisfies p(x) > 5 +1 for all

x > k € N, so that the right side is lower bounded by 1/2 for (rgn)2a+2 777 > 1, or equivalently
n > 1/rq. Forn > 1/r, it therefore holds that em/n < ||f;]|2. < m/n with ¢ = (1/2)2¢+2,
Applying Lemma([7] thus gives the risk bound

cm 1 - 24d
2df2,, —
777/ > 22d+2 Td n~ 2+2d

)

sup Ep, | fu = follZ: > max By, | fu - il >
fo€g

yeeey M



which proves Theorem [2]

Set

d+2
(2d+2)2 5 T
N(d,§) =2(d+2)127 4 2log | ——F—— ,
(0.0) =20+ 22 |siog ()]
and note that N(d,§) > 1/ry. Theoremthen follows from the second last display and applying
_d <
Lemma@with Fpn={f1,-, fm} C Gand~2 = 27 (2d+2) 205> n O
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