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a b s t r a c t

In high-dimensional situations, the traditional multivariate sign- or rank-based pro-
cedures for the two-sample location testing problems are ineffective, since in the
construction of the test statistics, the scatter matrix to be inverted is singular. To solve
this problem, many high-dimensional spatial sign or rank tests have been proposed,
some of which are very efficient. However, most of these existing tests no longer work
in very high dimensional situations, which only allows the dimension of variables to be
the square of the sample sizes at most, hence are restrictive for practical applications.
On this ground, a new high-dimensional spatial rank test is proposed in this paper,
which is invariant under scalar transformations, maintains the efficiency advantage of
spatial-rank-based testing methods, and could even allow the dimension to grow almost
exponentially with the sample sizes. The theoretical results of the proposed test are
established, followed by some convincing numerical results and two real data analyses.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, high-dimensional or even ultra-high dimensional data are becoming increasingly available in many fields
of application, as data collection technology evolves very quickly. Here the dimensionality is high when the number of
variables is larger than the sample size, while it is ultra-high when the number of variables is one or several orders of
magnitude larger than the sample size, as pointed out in Fan and Lv (2008). Researchers from these fields of application
urgently need powerful, effective and robust analytic methods to take full advantage of the core value in these data.
Although traditional statistical methods still rule the roost, their serious flaws in high-dimensional situations can generally
not be ignored, which make them no longer suitable for high-dimensional data. As for hypothesis testing problems, most
traditional testing methods are not available in high-dimensional settings, which forces statisticians to make a sustained
effort to improve existing high-dimensional testing methods.

In this paper, we consider the high-dimensional two-sample location testing problems. Let X k1, . . . ,X knk , k ∈ {1, 2},
be i.i.d. copies of two independent random vectors respectively, which obey pn-variate elliptical distributions with the
following density function respectively:

det(Σkn)−1/2gn(∥Σ
−1/2
kn (x− µkn)∥), k ∈ {1, 2}, (1)
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where n = n1 + n2, µkn are the symmetry centers and Σkn are the positive definite symmetric pn × pn scatter matrices.
The two-sample location testing problem can be depicted as follows

H0 : µ1n = µ2n versus H1 : µ1n ̸= µ2n. (2)

There is a lot of existing literature on this problem. As the dimension of the variables is assumed to be fixed and the
sample size can grow to infinity, the most familiar method for the two-sample location problem is the Hotelling’s T 2 test,
with the test statistic:

Hn =
n1n2

n
(X̄1 − X̄2)TS−1n (X̄1 − X̄2), (3)

where X̄1 and X̄2 are the corresponding sample means and Sn is the pooled sample covariance matrix. It fails when the
dimension becomes larger than the sample size, because in this situation the sample covariance matrix is singular hence
cannot be inverted in the construction of test statistic.

On this ground, Bai and Saranadasa (1996) proposed a test statistic by replacing the Mahalanobis norm in the
Hotelling’s T 2 test statistic with the Euclidian norm, which is based on Mn = ∥X̄1 − X̄2∥

2 by replacing Sn in Hn with Ipn ,
the pn× pn identity matrix. Then, to make it available for ultra-high-dimensional situation, Chen et al. (2010) proposed a
modified test statistic (abbreviated as CQ hereafter) as follows

Wn =

∑n1
i̸=j X

T
1iX1j

n1(n1 − 1)
+

∑n2
i̸=j X

T
2iX2j

n2(n2 − 1)
− 2

∑n1
i=1
∑n2

j=1 X
T
1iX2j

n1n2
, (4)

by removing
∑nk

i=1 X
T
kiX ki from Mn = ∥X̄1− X̄2∥

2, because the terms to be removed could have imposed certain demands
on the dimensionality. However, neither of these two statistics is invariant under scalar transformations, which may
make them suffer from scalar transformations: the same dataset might generate different conclusions due to different
scalar transformations. Because of this, under the normality assumption, Srivastava and Du (2008) proposed a scalar-
transformation-invariant test under the assumption of the equality of the two covariance matrices. Srivastava et al. (2013)
extended the results of Srivastava and Du (2008) to unequal covariance matrices.

Then, to develop a scale-invariant test applicable to high dimensional data, Park and Ayyala (2013) proposed a test
statistic (abbreviated as PA hereafter) by leave-out cross validation:

Pn =
n1 + n2 − 6
n1 + n2 − 4

(
1

n1(n1 − 1)

n1∑
i̸=j

X T
1iD
−1
S∗1(i,j)

X1j +
1

n2(n2 − 1)

n2∑
i̸=j

X T
2iD
−1
S∗2(i,j)

X2j −
2

n1n2

n1∑
i=1

n2∑
j=1

X T
1iD
−1
S∗12(i,j)

X2j

)
, (5)

where DS∗1(i,j)
, DS∗2(i,j)

and DS∗12(i,j)
are the diagonal matrices of S∗1(i,j), S

∗

2(i,j) and S∗12(i,j) respectively. Here

S∗1(i,j) =
(n1 − 3)S1(i,j) + (n2 − 1)S2,n2

n1 + n2 − 4
,

S∗2(i,j) =
(n1 − 1)S1,n1 + (n2 − 3)S2(i,j)

n1 + n2 − 4
and

S∗12(i,j) =
(n1 − 2)S1(i) + (n2 − 2)S2(j)

n1 + n2 − 4
,

where Sk,nk is the covariance matrix of the kth sample, Sk(i,j) is the covariance matrix of the kth sample excluding {X ki,X kj}

and Sk(i) is the covariance matrix of the kth sample excluding {X ki} for each k ∈ {1, 2} and each i, j ∈ {1, . . . , nk}.
Unfortunately, this test is not shift-invariant.

The above modified Hotelling’s T 2 tests generally have very good performance for data from normal distributions, but
deteriorate quickly when the data deviate from normality especially in high dimension situation, hence would perform
extremely poorly for heavy-tailed distributions. For this reason, as mentioned in Oja (2010) and Wang et al. (2015),
recently much effort has also been devoted to extending the nonparametric tests to the high-dimensional case. When using
the nonparametric frameworks, an important issue to be addressed is to deal with the scatter matrix, which is generally
not available due to its irreversibility. On this ground, for one-sample location problems, Wang et al. (2015) proposed
a high-dimensional nonparametric multivariate test based on spatial signs, and Paindaveine et al. (2016) proposed a
high-dimensional spatial sign test under a rotationally symmetric distribution. Although such high-dimensional sign- or
rank-based methods for one-sample problems can be instructively enlightening for two-sample problems, they may not
be simply extended to the two-sample problems unless the spatial medians would be estimated appropriately.

For example, Feng et al. (2016) proposed a scalar-invariant test statistic based on spatial signs (abbreviated as SS
hereafter)

Rn = −
1

n1n2

n1∑
i=1

n2∑
j=1

UT (D̂−1/21,i (X1i − µ̂2,j))U(D̂−1/22,j (X2j − µ̂1,i)), (6)
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with the spatial sign function U(x) = x/∥x∥I(x ̸= 0) for each x ∈ Rpn , where µ̂k,i and D̂k,i are the corresponding
estimations of the location vectors and the scatter matrices respectively. Here µ̂k,i and D̂k,i can be obtained by using
the ‘‘leave-one-out’’ samples, {X kj}j̸=i, with the following recursive algorithm:

(i) εkj ← D−1/2k (X kj − µk), j = 1, . . . , i− 1, i+ 1, . . . , nk;

(ii) µk ← µk +
D1/2
k

∑nk
j=1,j̸=i U(εkj)∑nk

j=1,j̸=i ∥εkj∥
−1 and

(iii) Dk ← pnD
1/2
k diag{n−1k

∑nk
j=1,j̸=i U(εkj)U(εkj)T }D

1/2
k .

Unfortunately, as a result of the additional bias caused by estimating the location parameters, this method can only allow
the dimension of variables to be at most the square of the sample sizes. In addition, Chakraborty et al. (2017) proposed
a two-sample spatial rank test (abbreviated as CC hereafter):

Cn = n−21 n−22

n1∑
i=1

n1∑
j̸=i

n2∑
s=1

n2∑
l̸=s

U(X1i − X2s)TU(X1j − X2l), (7)

which can deal with ultra-high-dimensional data, but is not invariant under scalar transformations. These motivate
us to establish a new spatial rank testing method for the high-dimensional data, which could avoid estimating the
location parameters in the construction of test statistic, hence be available for ultra-high-dimensional data. Essentially,
the proposed high-dimensional spatial rank test is a reworking of Cn (CC) (Chakraborty et al., 2017) by embedding the
process of re-scaling and leveraging the leave-out strategy in Feng et al. (2016) to remove bias, which can be invariant
under scalar transformations and just has the power to deal with ultra-high-dimensional data, allowing the dimension to
grow almost exponentially with the sample sizes.

Specifically, we first estimate the scale of each variable by spatial-rank-based procedures; then on this basis we
construct the high-dimensional spatial rank test via the leave-out method as in Feng and Sun (2015) and Feng et al.
(2016). By embedding the estimated scales in the test statistic, we aim to treat all the variables in a ‘‘fair’’ way. Unlike the
spatial-sign-based methods, there is no need for the proposed test to estimate the location parameters for spatial ranks.
As a result, the bias could be avoided, which makes it available even as the dimension grows almost exponential with the
sample sizes.

The rest of the paper is organized as follows. We introduce the proposed high-dimensional spatial rank test for high-
dimensional data in Section 2, and then establish its theoretical framework, including the limiting null distribution,
the power performance under the local alternative and the asymptotic relative efficiency in Section 3. The numerical
performance of the proposed test is demonstrated in Section 4, and two real data analyses are demonstrated in Section 5.
Finally, we conclude this paper in Section 6 and relegate the technical proofs to Supplementary Material.

2. The proposed spatial rank test

The proposed spatial rank test in this paper is based on the assumption of equal scatter matrix, i.e. Σn = Σ1n = Σ2n.
The testing problem in situation of unequal scatter matrices is not the focus of this paper, which was studied by some
other literature, such as Lix et al. (2005). In this paper, we will propose the test statistic and establish its asymptotic
properties based on the equal scatter matrix assumption, while just investigating the performance of the proposed test
in situation of unequal scatter matrices via some numerical results in later section.

The proposed test statistic is a reworking of Cn (CC) in (7) proposed by Chakraborty et al. (2017). The underlying
defect in Cn (CC) is that it is invariant only to the ‘‘homogeneous positive scale transformations’’, saying X ki → dX ki + c ,
where d > 0 is a scalar and c is a vector of constants. The power of CC overly depends on the underlying variance
magnitudes. However, in practical applications, different variables may have completely different practical meanings and
scales. This motivates us to utilize individual information for each variable in a relatively ‘‘fair’’ way, rather than scaling
all the variables in the same magnitude. To accomplish this, one practical solution is to estimate the diagonal matrix of
Σn, Dn, which is a diagonal matrix with the same diagonal elements as in Σn.

Specifically, for the kth sample X k = (X k1, . . . ,X knk )
T , k ∈ {1, 2}, we first obtain the diagonal matrix Dk, which

satisfies

diag

{
1
nk

nk∑
i=1

RD−1/2k Xk
(D−1/2k X ki)RD−1/2k Xk

(D−1/2k X ki)

}
∝ Ipn ,

where D−1/2k X k ≜ (D−1/2k X k1, . . . ,D
−1/2
k X knk ). Here RY (y) = n−1

∑n
i=1 U(y − Y i) denotes the spatial rank function of any

dataset Y = (Y 1, . . . ,Y n). The spatial ranks RY (Y i) are automatically centered, i.e.
∑n

i=1 RY (Y i) = 0. Let RCOV (Y ) =
n−1

∑n
i=1 RY (Y i)RY (Y i)T denote the spatial rank covariance matrix of Y . To accomplish this, for each k ∈ {1, 2}, by taking
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the sample variance matrix of X k as an initial value, we can iteratively update Dk in the following way:

Dk ← D1/2
k diag

{
1
nk

nk∑
i=1

RD−1/2k Xk
(D−1/2k X ki)RD−1/2k Xk

(D−1/2k X ki)

}
D1/2

k ,

Dk ←
pn

tr(Dk)
Dk.

The above iterative algorithm stops at the m+ 1th iteration, if the F-norm of the difference between the Dk obtained in
the m+1th iteration and that obtained in the mth iteration is less than 0.0001. After the algorithm is stopped, we denote
the resulting Dk as D̂k,nk , for each k ∈ {1, 2}. Up to now, although there is still no theoretical proof on the convergence of
the above iterative algorithm, even for the low-dimensional case, it is often very effective for practical use. It should be
noted that this algorithm is always convergent in the later numerical studies.

Then, we consider the following test statistic:

Gn =
1

n1(n1 − 1)
1

n2(n2 − 1)

n1∑ n1∑
i̸=j

n2∑ n2∑
s̸=l

U
(
D̂−1/2n (X1i − X2s)

)T
U
(
D̂−1/2n (X1j − X2l)

)
, (8)

where D̂n ≜
n1
n D̂1,n1 +

n2
n D̂2,n2 . It is not difficult to see that Gn still has a drawback. Due to the dependence between

(X1i,X1j,X2s,X2l) and D̂n, a non-negligible bias occurs, which is infeasible to correct, because the bias term depends on
Σn as in Feng et al. (2015). This motivates us to use the leave-out method as in Feng and Sun (2015) to remove the bias.

Therefore, we propose using the following high-dimensional spatial rank test statistic (abbreviated as SR hereafter):

Tn =
1

n1(n1 − 1)
1

n2(n2 − 1)

n1∑ n1∑
i̸=j

n2∑ n2∑
s̸=l

U(D̂−1/2n(i,j,s,l)(X1i − X2s))T

U(D̂−1/2n(i,j,s,l)(X1j − X2l)), (9)

where D̂n(i,j,s,l) =
n1
n D̂1,n1(i,j)+

n2
n D̂2,n2(s,l). Here D̂1,n1(i,j) and D̂2,n2(s,l) denote the corresponding estimations of Dn, by applying

the leave-two-out method to {X1a}a̸=i,j and {X2b}b̸=s,l, respectively. Obviously, if µ1n ̸= µ2n, U(D̂−1/2n(i,j,k,l)(X1i − X2k)) will
deviate from zero hence the value of Tn will not be too small. Accordingly, we may reject the null hypothesis if Tn has a
large enough value.

3. Theoretical results

We impose the following conditions for the asymptotic analysis of the proposed test: as n, pn →∞,

(C1) n1/n→ κ ∈ (0, 1);
(C2) tr(R4

n) = o(tr2(R2
n)) where Rn ≜ D−1/2n ΣnD

−1/2
n and

(C3) tr(R2
n)− pn = o(n−1pn2) and log(pn) = o(n).

Condition (C2) is the same as Condition (4) used in Park and Ayyala (2013). Condition (C3) is imposed to ensure the
consistency of the diagonal matrix estimators. To control the difference between D−1/2n (X ki−µkn) and εki ≜ Σn

−1/2(X ki−

µkn) for each k ∈ {1, 2} and each i ∈ {1, . . . , nk}, we need to restrict the correlation between the corresponding variables.
To better understand Conditions (C2) and (C3), let λn,1, . . . , λn,pn define all the eigenvalues of Rn and let νn,t =

∑pn
i=1 λt

n,i

for any positive integer t , then it can be concluded that Conditions (C2) and (C3) are equivalent to the following Conditions
(C2′) and (C3′) respectively:

(C2′) νn,4 = o(ν2
n,2) and

(C3′) νn,2 − pn = o(n−1p2n) and log pn = o(n).

In the special case where λn,1, . . . , λn,pn are all bounded, Condition (C2) holds, because in this case νn,4 = O(pn) and
νn,2 = O(pn). Further, in this case, by using Conditions (C2) and (C3) together, we can conclude that pn/n→∞.

We then present the asymptotic null distribution of Tn under Conditions (C1)–(C3).

Theorem 1. Under Conditions (C1)–(C3) and H0, as (pn, n)→∞,

Tn/σn
L
−→ N(0, 1), (10)

where σ 2
n ≜

(
1

2n1(n1−1)pn2
+

1
2n2(n2−1)pn2

+
1

n1n2pn2

)
tr(R2

n).
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Note that we relegate the proof of Theorem 1 to the Supplementary Material, and the proofs of the other theorems or
propositions are the same.

To estimate σn, we need to estimate tr(R2
n) first, whose estimation can be obtained by using one of the following three

ratio-consistent estimators:

t̂r(R2
n)k =

2pn2

P4
nk

k,∗∑
U
(
D̂−1/2k,nk(i1,i2,i3,i4)

(X ki1 − X ki2 )
)T

U
(
D̂−1/2k,nk(i1,i2,i3,i4)

(X ki3 − X ki4 )
)

U
(
D̂−1/2k,nk(i1,i2,i3,i4)

(X ki3 − X ki2 )
)T

U
(
D̂−1/2k,nk(i1,i2,i3,i4)

(X ki1 − X ki4 )
)

,

for each k ∈ {1, 2}, and

t̂r(R2
n)3

=
pn2

n2
1n

2
2

n1∑ n1∑
i1 ̸=i2

n2∑ n2∑
i3 ̸=i4(

U
(
D̂−1/21,n1(i1,i2)

(X1i1 − X1i2 )
)T

U
(
D̂−1/22,n2(i3,i4)

(X2i3 − X2i4 )
))2

,

where P4
nk ≜ nk(nk−1)(nk−2)(nk−3), D̂k,nk(i1,i2,i3,i4) are the estimators of Dn with the leave-four-out samples {X ks}s̸=i1,i2,i3,i4

respectively and
∑k,∗ denotes the summation over {(i1, i2, i3, i4) ⊆ {1, . . . , nk} : i1, i2, i3 and i4 are not equal to each other}.

Then the ratio-consistency of t̂r(R2
n)k for each k ∈ {1, 2, 3} can be established as follows.

Proposition 1. Under Condition (C1)–(C3), as (pn, n)→∞,

t̂r(R2
n)k

tr(R2
n)

p
→ 1, k = 1, 2, 3. (11)

Accordingly, we obtain the following ratio-consistent estimator of σ 2
n :

σ̂ 2
n =

1
2n1(n1 − 1)pn2

t̂r(R2
n)1 +

1
2n2(n2 − 1)pn2

t̂r(R2
n)2 +

1
n1n2pn2

t̂r(R2
n)3.

On this ground, by taking Tn/σ̂n as the test statistic, we will reject H0 with the significance level α, once Tn/σ̂n > zα ,
where zα is the upper α-quantile of N(0, 1).

Next, we consider the asymptotic distribution of Tn under the alternative hypothesis. To achieve this, we need to use
one more condition:

(C4) c0n = E(∥D−1/2n (X ki − X kj)∥−1) exists, (µ1n − µ2n)TD−1n (µ1n − µ2n) = O(c−20n σn) and (µ1n − µ2n)TD
−1/2
n RnD

−1/2
n (µ1n −

µ2n) = o(npc−20 σn).

Condition (C4) constrains that the difference between µ1n and µ2n is small enough, which enables the variance of Tn
to be asymptotically bounded by σ 2

n . In the special case where λn,1, . . . , λn,pn are all bounded, Condition (C4) becomes
(µ1n − µ2n)TD−1n (µ1n − µ2n) = O(n−1p1/2n ) and (µ1n − µ2n)TD

−1/2
n RnD

−1/2
n (µ1n − µ2n) = O(n−1p3n), which implies that

∥µ1n − µ2n∥
2
= O(n−1p1/2n ). Furthermore, if we let µ1n − µ2n ≜ (δn, . . . , δn), then ∥µ1n − µ2n∥

2
= O(n−1p1/2n ) will reduce

to δn = O(n−1/2p−1/4n ), which can be viewed as a high-dimensional version of the local alternative hypotheses.
Now, we are ready to present the explicit power expression of the proposed test.

Theorem 2. Under Conditions (C1)–(C4), as (pn, n)→∞,

Tn − c20n(µ1n − µ2n)TD−1n (µ1n − µ2n)
σn

L
−→ N(0, 1). (12)

Based on this, the asymptotic power of the proposed test (abbreviated as SR) is

βSR = Φ

(
−zα +

2c20npnκ(1− κ)(µ1n − µ2n)TD−1n (µ1n − µ2n)√
2tr(Rn

2)

)
. (13)

Recall that under some specific conditions, Park and Ayyala (2013) have proved that the asymptotic power of Pn (PA) is

βPA = Φ

(
−zα +

npκ(1− κ)(µ1n − µ2n)TDn
−1(µ1n − µ2n)

E(∥εki∥
2)
√
2tr(Rn

2)

)
. (14)
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Table 1
Empirical size and power comparison at 5% significance when pn < n, where Sn (TR) and Tn (SR) are the traditional spatial-rank-based test statistic
proposed in Oja (2010) and the proposed test statistic in this paper, respectively.

Size Dense case Sparse case

(ni, pn) (30,24) (40,32) (30,24) (40,32) (30,24) (40,32)

Set-up Sn Tn Sn Tn Sn Tn Sn Tn Sn Tn Sn Tn
(I) 0.016 0.063 0.013 0.054 0.27 0.63 0.41 0.96 0.42 0.58 0.63 0.96
(II) 0.007 0.065 0.018 0.052 0.27 0.64 0.43 0.98 0.42 0.58 0.69 0.96
(III) 0.014 0.064 0.008 0.057 0.19 0.50 0.31 0.82 0.29 0.45 0.46 0.81
(IV) 0.012 0.049 0.011 0.053 0.51 0.60 0.72 0.91 0.29 0.54 0.54 0.59
(V) 0.012 0.053 0.009 0.045 0.18 0.45 0.25 0.78 0.24 0.44 0.43 0.76
(VI) 0.014 0.043 0.013 0.057 0.10 0.79 0.14 0.86 0.26 0.68 0.44 0.77

The asymptotic relative efficiency (ARE) of Tn (SR) with respect to Pn (PA) is

ARE(SR, PA) =2c20nE(∥εki∥
2)

≈2{E(∥εki − εkj∥
−1)}2E(∥εki∥

2)

={E(∥εki − εkj∥
−1)}2E(∥εki − εkj∥

2) ≥ 1, (15)

by using the Cauchy inequality and the fact that c0n = E(∥εki − εkj∥
−1)(1 + o(1)) under Condition (C4) (see the proof of

Theorem 1). Recall that from the definition of εki, it can be seen that εki are i.i.d. zero-mean random vectors. In situation
where ∥εki − εkj∥

2/E(∥εki − εkj∥
2)→p 1, Tn (SR) has the same asymptotic efficiency as Pn (PA), otherwise has higher

asymptotic efficiency than Pn (PA). Taking the standard multivariate t-distributions for example, for ν = 6, 5, 4, 3, the
ARE values are 1.22, 1.31, 1.48 and 1.98 respectively, which suggests that as ν becomes smaller, the distribution becomes
more heavy-tailed, and then the ARE of Tn (SR) with respect to Pn (PA) becomes higher. This will be verified via some
numerical results in the following section.

4. Numerical results

In this section, we report some numerical results to demonstrate the performance of the proposed test Tn (SR), with
comparison to some commonly used two-sample tests, such as the traditional spatial-rank-based test Sn (TR) and those
proposed in Chen et al. (2010), Feng et al. (2016), Park and Ayyala (2013) and Chakraborty et al. (2017), abbreviated as
Wn (CQ), Rn (SS), Pn (PA), Cn (CC), respectively.

We consider the following commonly studied simulation set-ups:

(I) Multivariate normal distribution. X ki ∼ N(µkn,Rn).
(II) Multivariate normal distribution with different component variances. X ki ∼ N(µkn,Σn), where Σn = D1/2

n RnD
1/2
n ,

Dn = diag{d21, . . . , d
2
pn}, d

2
j = 3 for each j ≤ pn/2 and d2j = 1, for each j > pn/2.

(III) Multivariate t-distribution tpn,3. X ki are generated from tpn,3 with Σn = Rn.
(IV) Multivariate t-distribution with different component variances. X ki are generated from tpn,3 and d2j are generated

from χ2
2 .

(V) Multivariate mixture normal distribution MNpn,γ ,9. X ki are generated from γ fpn (µkn,Rn) + (1 − γ )fpn (µkn, 9Rn),
denoted by MNpn,γ ,9, where fpn (·; ·) is the density function of pn-variate multivariate normal distribution and γ
equals 0.8.

(VI) Multivariate skew t-distribution. X ki are from Stpn (µkn,Rkn, α, 3) (Azzalini and Capitanio, 2003) with α = (1, . . . , 1).

First, we consider the low-dimensional case with pn < n and compare Tn (SR) with Sn (TR). Here the common
correlation matrix is set to be Rn = (0.5|i−j|). For power comparison, we consider the same configurations of H1:
η = ∥D−1/2n (µ1n − µ2n)∥2/

√
tr(R2

n) = 0.5. Without loss of generality, under H1, we fix µ1n = 0 and then set up µ2n
in the following way. Let µkn = (µkn,1, . . . , µkn,pn )

T . The percentages of µ1n,l = µ2n,l among l ∈ {1, . . . , pn} for the
sparse case and the dense case are chosen to be 95% and 50%, respectively. Further, for each percentage level, all the
nonzero µ2n,l are set to be equal. Two combinations of (nk, pn) are considered: (30, 24) and (40, 32). Table 1 reports the
empirical size and the power results of these two tests, where all the numerical results are obtained based on 2500
replications as well as in the following numerical results reported in the remaining tables. The empirical sizes of Sn (TR)
are significantly smaller than the nominal level, by contrast SR can better control the empirical sizes in general. Also, Tn
(SR) is much more powerful than Sn (TR) in all the cases. These results are consistent with the previous conclusions in Bai
and Saranadasa (1996), which suggests that in large pn situation classical Mahalanobis distance may lose efficiency due
to the contamination bias that is generated when estimating the covariance matrix. And, when pn/n → c ∈ (0, 1), the
estimation of the scatter matrix is singular hence cannot be inverted in the construction of the test statistic.

Then, we consider the high-dimensional case with pn > n, and compare Tn (SR) with Wn (CQ), Rn (SS), Pn (PA) and
Cn (CC). The sample sizes are chosen as n1 = n2 = 20, and the dimension has four choices, pn = 100, 200, 400, 800.
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Table 2
Empirical size and power comparison at 5% significance with equal scatter matrix, where Wn (CQ), Rn (SS), Pn (PA), Cn (CC), Tn (SR) are the test
statistics proposed by Chen et al. (2010), Feng et al. (2016), Park and Ayyala (2013), Chakraborty et al. (2017) and this paper, respectively.
(ni, pn) Size Dense case Sparse case

Wn Rn Pn Cn Tn Wn Rn Pn Cn Tn Wn Rn Pn Cn Tn
Set-up (I)

(20,100) 0.069 0.048 0.050 0.061 0.063 0.83 0.77 0.77 0.84 0.82 0.79 0.73 0.74 0.75 0.79
(20,200) 0.053 0.034 0.033 0.052 0.050 0.87 0.81 0.83 0.87 0.86 0.86 0.81 0.82 0.86 0.87
(20,400) 0.055 0.025 0.041 0.045 0.047 0.90 0.80 0.85 0.89 0.90 0.89 0.80 0.85 0.91 0.90
(20,800) 0.054 0.012 0.040 0.032 0.045 0.92 0.81 0.89 0.91 0.92 0.91 0.79 0.88 0.88 0.91

Set-up (II)

(20,100) 0.075 0.050 0.043 0.063 0.060 0.44 0.78 0.78 0.42 0.82 0.40 0.73 0.73 0.36 0.78
(20,200) 0.045 0.031 0.025 0.054 0.044 0.47 0.81 0.82 0.46 0.87 0.44 0.81 0.82 0.43 0.87
(20,400) 0.060 0.025 0.041 0.047 0.057 0.46 0.81 0.86 0.42 0.91 0.42 0.80 0.85 0.38 0.90
(20,800) 0.066 0.012 0.038 0.045 0.056 0.42 0.80 0.85 0.44 0.90 0.45 0.79 0.88 0.44 0.91

Set-up (III)

(20,100) 0.058 0.043 0.033 0.065 0.062 0.42 0.64 0.29 0.65 0.62 0.37 0.59 0.29 0.57 0.58
(20,200) 0.042 0.030 0.015 0.056 0.047 0.44 0.67 0.34 0.70 0.69 0.41 0.63 0.27 0.64 0.63
(20,400) 0.061 0.020 0.039 0.048 0.057 0.44 0.63 0.32 0.69 0.67 0.41 0.63 0.31 0.70 0.66
(20,800) 0.044 0.007 0.037 0.027 0.053 0.44 0.61 0.32 0.70 0.72 0.44 0.60 0.32 0.68 0.71

Set-up (IV)

(20,100) 0.058 0.043 0.033 0.098 0.063 0.11 0.68 0.33 0.12 0.67 0.07 0.70 0.33 0.16 0.69
(20,200) 0.075 0.030 0.017 0.087 0.044 0.09 0.73 0.33 0.10 0.73 0.13 0.65 0.28 0.16 0.65
(20,400) 0.064 0.020 0.039 0.078 0.057 0.10 0.64 0.30 0.14 0.69 0.09 0.62 0.29 0.14 0.66
(20,800) 0.057 0.007 0.037 0.065 0.052 0.10 0.60 0.32 0.08 0.73 0.09 0.62 0.32 0.10 0.72

Set-up (V)

(20,100) 0.075 0.040 0.055 0.051 0.052 0.42 0.59 0.35 0.61 0.60 0.35 0.55 0.30 0.54 0.57
(20,200) 0.065 0.030 0.045 0.055 0.052 0.43 0.60 0.32 0.65 0.63 0.41 0.56 0.32 0.64 0.61
(20,400) 0.061 0.022 0.037 0.053 0.053 0.41 0.57 0.30 0.63 0.64 0.39 0.57 0.28 0.63 0.64
(20,800) 0.055 0.008 0.040 0.026 0.056 0.41 0.54 0.30 0.65 0.68 0.39 0.52 0.28 0.62 0.66

Set-up (VI)

(20,100) 0.072 0.043 0.055 0.130 0.062 0.37 0.67 0.31 0.75 0.68 0.41 0.58 0.31 0.65 0.57
(20,200) 0.053 0.031 0.038 0.130 0.059 0.30 0.60 0.24 0.65 0.57 0.31 0.48 0.18 0.65 0.47
(20,400) 0.051 0.022 0.047 0.170 0.053 0.42 0.62 0.32 0.89 0.72 0.41 0.69 0.34 0.86 0.74
(20,800) 0.045 0.002 0.050 0.140 0.056 0.46 0.65 0.33 0.93 0.77 0.45 0.34 0.28 0.88 0.69

The other settings are all the same as the low dimensional case. Table 2 reports the empirical size and power results of
these five tests under normal and non-normal set-ups. It can be seen that the empirical sizes obtained by Wn (CQ), Pn
(PA) and Tn (SR) are generally close to the nominal level for all these set-ups. The empirical sizes of Cn (CC) test are much
larger than the nominal level under set-ups (IV) and (VI), because the two tests were constructed under the equal variance
assumption. On the other hand, the empirical sizes of SS are too conservative when pn/n2 is large. This result is predictable,
because Rn (SS) can only allow the dimension pn to be the square of the sample size n at most. As shown in Feng et al.
(2016), when pn/n2 is large enough, there would be a non-negligible bias term in the Rn (SS) test statistic, because it
includes the estimations of the location parameters. In contrast, demonstrated by these size results in Table 2, Tn (SR) has
advantages in dealing with ultra-high-dimensional data, which can allow the dimension to grow almost exponentially
with the sample sizes.

Next, according to Table 2, we compare the power performance of the listed methods under the above set-ups as
follows.

(1) Under the normal case with equal component variances (Set-up (I)), the power performance of all these methods is
generally similar.

(2) Under the normal case with different component variances (Set-up (II)), the power performance of Pn (PA), Rn (SS)
and Tn (SR) is generally similar and better than Wn (CQ) and Cn (CC), while Wn (CQ) and Cn (CC) fail because they
are not invariant under scalar transformations.

(3) Under the non-normal cases (Set-ups (III)–(VI)), most of the time Rn (SS), Cn (CC) and Tn (SR) have better power
performance than Pn (PA) and Wn (CQ), since Rn (SS), Cn (CC) and Tn (SR) are nonparametric methods, which can
handle heavy-tailed data. There are also some exceptions. For example, Cn (CC) fails for Set-up (IV) due to the
different component variances. In addition, for Set-up (VI), Cn (CC) has larger empirical power values than the other
four methods, which, however, does not mean that Cn (CC) performs well in such situation, as its empirical size is
out of control.

(4) Tn (SR) generally outperforms the other four methods in power comparison, especially in situation of heavy-tail and
different component variances. And, the higher the dimension is, the more obvious such advantage is. However, in
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Fig. 1. Convergence path of the iterative algorithm that is employed to obtain D̂k,nk , under Set-up (III) with n = 50 and p = 100, where the horizontal
axis corresponds to the iteration number m, while the vertical axis corresponds to the F-norm of the difference between the corresponding Dk in
the m+ 1th and mth iterations of the algorithm.

Table 3
Empirical size and power comparison at 5% significance with unequal scatter matrices, where Wn (CQ), Rn (SS), Pn (PA), Cn (CC), Tn (SR) are the test
statistics proposed by Chen et al. (2010), Feng et al. (2016), Park and Ayyala (2013), Chakraborty et al. (2017) and this paper, respectively.
Set-up Size Dense case Sparse case

Wn Rn Pn Cn Tn Wn Rn Pn Cn Tn Wn Rn Pn Cn Tn
(ni, pn) = (20, 200)

(I) 0.058 0.028 0.042 0.062 0.065 0.95 0.89 0.93 0.95 0.95 0.92 0.87 0.88 0.92 0.93
(II) 0.065 0.025 0.034 0.071 0.055 0.58 0.91 0.93 0.57 0.95 0.52 0.87 0.88 0.52 0.93
(III) 0.044 0.022 0.025 0.045 0.039 0.55 0.79 0.43 0.78 0.77 0.49 0.74 0.36 0.77 0.72
(IV) 0.066 0.021 0.026 0.082 0.046 0.65 0.80 0.45 0.10 0.79 0.11 0.75 0.40 0.18 0.74
(V) 0.061 0.023 0.052 0.059 0.051 0.53 0.73 0.39 0.77 0.74 0.49 0.72 0.38 0.75 0.75
(VI) 0.047 0.053 0.027 0.140 0.051 0.36 0.64 0.26 0.77 0.62 0.31 0.56 0.22 0.67 0.54

(ni, pn) = (20, 800)

(I) 0.072 0.011 0.056 0.048 0.059 0.98 0.91 0.97 0.99 0.98 0.98 0.90 0.98 0.95 0.99
(II) 0.069 0.015 0.052 0.047 0.058 0.64 0.91 0.97 0.60 0.98 0.59 0.90 0.98 0.55 0.99
(III) 0.073 0.013 0.046 0.039 0.046 0.56 0.73 0.36 0.80 0.85 0.52 0.68 0.41 0.79 0.80
(IV) 0.062 0.012 0.041 0.068 0.041 0.70 0.70 0.40 0.09 0.87 0.13 0.58 0.36 0.12 0.74
(V) 0.044 0.015 0.046 0.041 0.048 0.52 0.60 0.35 0.76 0.81 0.51 0.60 0.39 0.74 0.77
(VI) 0.041 0.003 0.032 0.150 0.043 0.45 0.59 0.32 0.88 0.75 0.41 0.60 0.28 0.84 0.65

the case of lower dimension and equal component variances, the power advantage of Tn (SR) is not obvious enough,
and sometimes the power of Tn (SR) is a little worse than that of some of the remaining methods.

Then, we consider the case of unequal scatter matrices, where Σ1n ̸= Σ2n. Let R1n = (0.5|i−j|) and R2n = Ipn , and the

other settings are all the same as in the above equal scatter matrix case except that η = ∥D−1/2n (µ1n −µ2n)∥2/
√
tr(R2

1) =
0.5. We consider two choices of (nk, pn): (20, 200), (20, 800). The corresponding results are summarized in Table 3, which
suggests that Tn (SR) can well control the empirical sizes in this case and the rest results are very similar to Table 2.
Interestingly, Tn (SR) has very good performance in the unequal scatter matrices case, though it is constructed based on
the equal scatter matrix assumption.

To further investigate the application range of Tn (SR), we consider four additional simulation set-ups with different
correlation structures and distributions. The moving average model is considered:

Xkij = ∥ρk∥
−1(ρk1Zkij + ρk2Zki(j+1) + · · · + ρkTkZki(j+Tk−1))+ µkn,j,

for k = 1, 2, i = 1, . . . , nk and j = 1, . . . , pn where ρk = (ρk1, . . . , ρkTk )
T , µkn = (µkn,1, . . . , µkn,pn )

T are generated in the
same way as in the above elliptical cases, and {Zkij} are i.i.d. random variables. Consider four set-ups for the innovation
{Zkij}:
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Fig. 2. The heat map of the two samples with all the 7457 genes via row scaling, where samples are arranged horizontally, the red bar corresponds
to the tumor group and the blue bar corresponds to the normal group.

(VII) All the Zkij are from N(0, 1);
(VIII) The Zkij for all the j ∈ {1, . . . , pn/2} are from centralized Gamma(8,1), and the others are from N(0, 1);
(IX) All the Zkij are from t3;
(X) All the Zkij are from 0.8N(0, 1)+ 0.2N(0, 9).

Note that the coefficients {ρkl}
Tk
l=1 are generated independently from U(2, 3) only once, and then are used for all the above

four set-ups. The correlations among Xkij and Xkil are determined by |j− l| and Tk. We consider the ‘‘full dependence’’
for the first sample and the ‘‘2-dependence’’ for the second sample, i.e. T1 = pn and T2 = 3, to ensure that X ki have

different covariances for different k ∈ {1, 2}. For simplicity, set η = ∥µ1n − µ2n∥
2/

√
tr(Λ2

1)+ tr(Λ2
2) = 0.1 where Λk

is the covariance matrix of X ki and (nk, pn) = (20, 200), (20, 800) for each k ∈ {1, 2}. Table 4 reports the simulation
results for these four moving average models, which are non-elliptical and skewed distributions. It suggests that Tn (SR)
generally outperforms all the other methods listed above for these four set-ups, which partly highlights the robustness
of the proposed method.

Finally, recall that we employ an iterative algorithm to obtain D̂k,nk in Section 2, while establishing the proposed testing
statistic. Although the convergence of the algorithm has not been proved theoretically, the algorithm is always convergent
in our numerical studies. Fig. 1 presents its convergence path under certain set-up (n = 50, p = 100, Set-up (III)),
where the horizontal axis corresponds to the iteration number m, while the vertical axis corresponds to the F-norm of



10 L. Feng, X. Zhang and B. Liu / Computational Statistics and Data Analysis 144 (2020) 106889

Fig. 3. The histograms of the p-values of the normality tests, the sample means and the sample standard deviations, for the tumor group and the
normal group respectively.

Table 4
Empirical size and power comparison at 5% significance with moving average model, where Wn (CQ), Rn (SS), Pn (PA), Cn (CC), Tn (SR) are the test
statistics proposed by Chen et al. (2010), Feng et al. (2016), Park and Ayyala (2013), Chakraborty et al. (2017) and this paper, respectively.
Set-up Size Dense case Sparse case

Wn Rn Pn Cn Tn Wn Rn Pn Cn Tn Wn Rn Pn Cn Tn
(ni, pn) = (20, 200)

(VII) 0.067 0.058 0.064 0.071 0.059 0.32 0.28 0.26 0.22 0.31 0.43 0.42 0.36 0.47 0.50
(VIII) 0.039 0.041 0.061 0.026 0.048 0.23 0.32 0.31 0.20 0.33 0.38 0.72 0.69 0.39 0.76
(IX) 0.063 0.037 0.071 0.045 0.051 0.41 0.34 0.35 0.36 0.41 0.42 0.44 0.34 0.51 0.53
(X) 0.065 0.054 0.063 0.061 0.057 0.29 0.27 0.26 0.24 0.33 0.34 0.36 0.28 0.41 0.47

(ni, pn) = (20, 800)

(VII) 0.066 0.048 0.067 0.043 0.058 0.32 0.27 0.26 0.24 0.28 0.33 0.35 0.22 0.36 0.40
(VIII) 0.041 0.040 0.063 0.062 0.047 0.37 0.43 0.38 0.31 0.46 0.38 0.72 0.68 0.41 0.74
(IX) 0.059 0.039 0.078 0.085 0.054 0.39 0.32 0.31 0.36 0.42 0.41 0.29 0.31 0.44 0.49
(X) 0.064 0.034 0.062 0.023 0.051 0.34 0.32 0.28 0.29 0.34 0.31 0.31 0.23 0.33 0.35

the difference between the corresponding Dk in the m+ 1th and mth iterations of the algorithm. It can be seen that the
algorithm converges very fast. We note that such fast convergence also occurs under the remaining set-ups.

In summary, all the above numerical results demonstrate that the proposed test method is efficient under a wide
range of distributions. These results suggest that the proposed method generally has more advantages than the existing
methods in comparison, especially in heavy-tailed and ultra-high-dimensional situations.

5. Real data analyses

5.1. Carcinoma dataset

In this subsection, we first apply the proposed testing method to a carcinoma dataset, which consists of 7457 genes
measurements for 18 patients on both tumor and normal tissues. The dataset was previously studied by Notterman
et al. (2001) and William et al. (2016), and can be freely downloaded at the following web site: ‘‘http://genomics-
pubs.princeton.edu/oncology’’. Below we will apply the proposed method to test the hypothesis that the tissues in the
tumor group have the same expression levels, in terms of these 7457 genes, as those in the normal group, where the
dimension 7457 is eventually larger than the square of the sample sizes 324. Fig. 2 plots the heat map of the tumor and
normal groups with all the 7457 genes via row scaling. From Fig. 2, it is difficult to see the difference between the two

http://genomics-pubs.princeton.edu/oncology
http://genomics-pubs.princeton.edu/oncology
http://genomics-pubs.princeton.edu/oncology
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Fig. 4. The heat map of the two samples with a selected group of genes via row scaling.

groups with the naked eye. It should be noted that the 18 normal tissues and 18 tumor tissues are paired data collected
from 18 patients, where the dependence between normal and tumor tissues may exist. To demonstrate the proposed
method, this dependency is ignored in this application.

Note that the original focus of the research on this dataset is to identify the genes with significant differences between
the tumor and normal groups, as in Notterman et al. (2001) and William et al. (2016). In fact, some genetic differences
between the two groups have been well recognized by many researchers, while we just use this dataset to test whether
the proposed method is available to discover such well-known differences.

First, the normal distribution was tested for each gene, using the Shapiro–Wilk test. The left-most two panels of Fig. 3
present the histograms of the p-values of the normality tests for the tumor group and the normal group respectively,
which indicate that for a large number of genes the expression data are non-normal. In fact, under the significance level
of 0.05, the overall rejection rates of all the normality tests are 26.64% and 27.56% for the tumor group and the normal
group respectively. This motivates us to use a non-parametric approach for testing the above hypothesis.

The rest four panels of Fig. 3 indicate that there exist some genes with very high values of sample mean and sample
variance in terms of expression. We see that the sample means vary largely for each of the two groups and recall that the
dimension is eventually larger than the square of the sample sizes, which raises a concern that using a spatial sign-based
approach may lead to an uncontrollable bias. Hence, in theory, a spatial rank-based approach seems more appropriate
for this dataset. Furthermore, the sample standard deviations also vary largely, which suggests that a scalar-invariant
approach may be necessary.
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Fig. 5. The heat map of the two samples with all the 672 genes via row scaling, where samples are arranged horizontally, the red bar corresponds
to the testing sample and the blue bar corresponds to the training sample.

Based on the above reasons, we apply the proposed Tn (SR) test to this dataset. The test statistic and p-value of the Tn
(SR) test are 14.8 and 0.000 respectively, hence the null hypothesis is rejected, which suggests that the gene expression
levels of the tumor group are significantly different from the normal group. In particular, we see that the main difference
lies in a small number of the genes. For example, we first get a sequence of p-values by applying the univariate t-test
to the two samples for each gene, then basing on the 100 genes with the lowest p-values we plot the heat map of the
two samples in Fig. 4, where the difference between the two samples is very clear. In addition, the (test statistic, p-value)
results of the remaining testing methods are listed as follows: Rn (SS) (7.062, 0.000); Wn (CQ) (12.130, 0.000); Pn (PA)
(5.814, 0.000); Cn (CC) (13.781, 0.000), where the null hypothesis is also rejected by these remaining methods.

5.2. Non-small-cell lung cancer dataset

In many fields of medical research and biology, random sample split has been frequently employed. Samples need to
be split into a training set and an independent testing set, where the former is used to carry on the statistical inference
and the latter to evaluate its performance. The samples corresponding to the two sets should have similar distributions.
Otherwise, using the testing sample to measure the performance of the inference based on the training sample may lead
to wrong conclusions. On this ground, testing the equality of the distributions or some distribution parameters between
the training sample and the testing sample is a necessary step of random sample split.

In this subsection, we will use the proposed method to test the equality of the location/mean parameters between
the training and testing samples from a non-small-cell lung cancer dataset. This dataset consists the expression of 672
genes that are associated with invasive activity for the frozen specimens of lung-cancer tissue from 125 randomly selected
patients, which was originally studied by Chen et al. (2007) and recently studied by Emura et al. (2019). The dataset can
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Fig. 6. The histograms of the p-values of the normality tests, the sample means and the sample standard deviations, for the testing sample and the
training sample, respectively.

be freely downloaded from ‘‘https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4882’’. Here the training sample
with 63 observations and the testing sample with 62 observations are divided in Chen et al. (2007). Fig. 5 plots the heat
map of the two samples with all the 672 genes via row scaling, where it is difficult to see the difference between the two
samples.

The normal distribution was tested for each gene, using the Shapiro–Wilk test. The left-most two panels of Fig. 6
present the histograms of the p-values of the normality tests for the testing sample and the training sample respectively,
which indicate that for a large number of genes the expression data are non-normal. Under the significance level of 0.05,
the overall rejection rates of all the normality tests are 52.62% and 56.99% for the testing sample and the training sample
respectively. This motivates us to use a non-parametric approach for testing the above hypothesis. The rest four panels
of Fig. 6 indicate that the distributions of these sample means and sample standard deviations are not centralized and
there exist some genes with very high values of sample mean and sample variance in terms of expression. In particular,
the sample standard deviations vary largely, which suggests that a scalar-invariant approach may be necessary.

Based on the above reasons, we apply the proposed Tn (SR) test to this dataset. The test statistic and p-value of the
Tn (SR) test are 1.42 and 0.078 respectively, hence the null hypothesis, i.e. the equality of the location/mean parameters
between the training and testing samples, is not rejected, which suggests that it is reasonable for Chen et al. (2007) to use
such training and testing sets in terms of parameters of the 672 genes between them. It is also reasonable for Emura et al.
(2019) to employ the same training and testing partition on some subset of the 672 genes. In addition, the (test statistic,
p-value) results of the remaining testing methods are listed as follows: Rn (SS) (0.001, 0.499); Wn (CQ) (−0.033, 0.513);
Pn (PA) (0.061, 0.475); Cn (CC) (1.244, 0.107), where the null hypothesis is not rejected for all these remaining methods.

6. Conclusion

In this paper, we propose a novel high-dimensional spatial rank test for two-sample location problem. In comparison
with many existing high-dimensional two-sample location testing procedures, the proposed test is highly competitive
in efficiency, even in heavy-tailed, non-elliptical and ultra-high dimensional situations. Both theoretical and numerical
investigations demonstrate the superiority of the proposed method. As for our future work, we will consider a high-
dimensional weighted spatial rank test for two-sample location problem, where each summand in the test statistic will
be assigned with a weight related to the corresponding observations. Hopefully, such a weighted test may have better
power performance under certain local alternative hypothesis.
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