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Abstract

Training of large-scale models in general requires enormous amounts of traning
data. Dataset distillation aims to extract a small set of synthetic training samples
from a large dataset with the goal of achieving competitive performance on test
data when trained on this sample, thus reducing both dataset size and training time.
In this work, we tackle dataset distillation at its core by treating it directly as a
bilevel optimization problem. Re-examining the foundational back-propagation
through time method, we study the pronounced variance in the gradients, compu-
tational burden, and long-term dependencies. We introduce an improved method:
Random Truncated Backpropagation Through Time (RaT-BPTT) to address them.
RaT-BPTT incorporates a truncation coupled with a random window, effectively
stabilizing the gradients and speeding up the optimization while covering long
dependencies. This allows us to establish new dataset distillation state-of-the-art
for a variety of standard dataset benchmarks.

1 Introduction

Dataset Distillation, introduced by [54], aims to condense a given dataset into a small synthetic
version such that when neural networks are trained on this distilled version, they achieve good
performance on the original distribution. The distilled datasets thus speed up model-training [36] by
using less data and training steps, and have found numerous applications including protecting privacy
[11, 5], continual learning [55, 42], federated learning [59, 29], and neural architecture search [47].

Dataset distillation is an instance of bilevel optimization [8] where one optimization output (in this
instance, the learning algorithm trained on the small dataset) is fed into another optimization problem
(the generalization error on the target set) which we intend to minimize. In general, this problem
is intractable, as the inner loop involves a multi-step computation with a large number of steps.
Early works [54, 48, 9] tackle this problem via back-propagation through time (BPTT), the go-to
method for bilevel optimization [14, 34]. BPTT unrolls the inner loop for a certain number of steps
and calculate the meta-gradient for the distilled dataset. However, long unrolling introduces large
computational and memory requirements, limiting performance. Numerous follow-up works turn to
replacing the inner loop with closed-form differentiable surrogates [37, 38, 64, 32] or modify the
outer loop objective using proxy training-metrics [3, 62, 63] (see the appendix for related work).

In this paper, we refine BPTT and achieve state-of-the-art performance across a vast majority of
the CIFAR10, CIFAR100, CUB and TinyImageNet benchmarks. For dataset distillation, the inner
problem presents unique challenges – the pronounced non-convex nature when training a neural
network from scratch on the distilled data. One has to use long unrolling to encapsulate the long
dependencies inherent in the inner optimization. However, this results in BPTT suffering from slow
optimization and huge memory demands, a consequence of backpropagating through all intermediate
steps. This is further complicated by considerable instability in meta-gradients, emerging from the
multiplication of Hessian matrices during long unrolling. Therefore, the performance is limited.
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To address these challenges, we integrate the concepts of randomization and truncation with BPTT,
leading to the Random Truncated Backpropagation Through Time (RaT-BPTT) method. The refined
approach unrolls within a randomly anchored smaller fixed-size window along the training trajectory
and aggregates gradients within that window (see Fig. 1 for a cartoon illustration). The random
window design ensures that the RaT-BPTT gradient serves as a random subsample of the full BPTT
gradient, covering the entire trajectory, while the truncated window design enhances gradient stability
and alleviates memory burden. Consequently, RaT-BPTT provides expedited training and superior
performance compared to BPTT.

Figure 1: Illustration of bilevel optimization of
the outer loss when training for 2 steps. We show
BPTT (left), Truncated BPTT (middle) and our
proposed RaT-BPTT (right). RaT-BPTT picks a
window in the learning trajectory (randomly) and
tracks the gradients for the chosen window, as op-
posed to T-BPTT that uses a fixed window, and
BPTT that uses the entire trajectory.

Overall, our method is embarrassingly simple –
we show that a careful analysis and modification
of backpropagation lead to results exceeding the
current state-of-the-art, without resorting to var-
ious approximations, a pool of models in the
optimization, or additional heuristics. Since our
approach does not depend on large-width ap-
proximations, it works for any architecture, in
particular commonly used narrower models, for
which methods that use inner-loop approxima-
tions perform less well. Moreover, our method
can be seamlessly combined with prior methods
on dataset re-parameterization [9], leading to
further improvements. To our knowledge, we
are the first to introduce truncated backpropaga-
tion through time [44] to the dataset distillation
setting, and to combine it with random position-
ing of the unrolling window.

2 Methods

Denote the original training set as D and the distilled set as U . With an initialization θ0 for the
inner-loop learner A, we perform the optimization for T steps to obtain θT (U) with loss L(θT (U),D).
We add (U) to denote its dependence on U . The dataset distillation problem can be formulated as

min
U

L(θT (U),D) (outer loop) such that θT (U) = A(θ0,U , T ) (inner loop) (1)

When the inner-loop learner A is gradient descent with learning rate α, one could leverage the chain
rule to get the gradient of BPTT with respect to the distilled data:

GBPTT = −α
∂L(θT (U),D)

∂θ

T−1∑
i=1

ΠT−1
j=i+1

[
1− α

∂2L(θj(U),U)
∂θ2

]
∂2L(θi(U),U)

∂θ∂U
(2)

This computation indicates that the meta-gradient is divided into T −1 segments. Each part represents
a matrix product Π[1− αH] where each H matrix corresponds to a Hessian matrix. Yet, computing
the meta-gradient demands the storage of all intermediate states to backpropagate through, and thus
is less computationally efficient.

To circumvent these challenges, the prevalent strategy is to adopt the truncated BPTT (T-BPTT)
method [56, 39], which unrolls the inner loop for the same T steps but only propagates backwards
through a smaller window of M steps. Therefore, in the T-BPTT gradient, the sum in Eq. (2) starts at
T −M . This technique omits the initial T −M − 1 terms, each being a product of more than M
Hessian matrices. Assuming the inner loss function is strongly convex, T-BPTT aligns well with
BPTT [44]. The convexity assumption implies positive eigenvalues of the Hessians, causing the
term Π[1 − αH] to vanish as the number of factors increases, allowing for good performance of
T-BPTT with less memory requirement and faster optimization time. However, in our scenario, the
task involves training a random neural network on distilled data; it is thus inherently non-convex,
with multiple minima.

We visualize the training curve and the norm of meta-gradients through outer-loop optimization steps
in Fig. 3 and Fig. 2, respectively. All experiments are on CIFAR10 with IPC (image per class) 10. A
comparison between BPTT and T-BPTT reveals that: 1) meta-gradients from T-BPTT show more
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Figure 2: Meta-gradient norm in the first 500
steps. BPTT: unroll 120 steps). T-BPTT: un-
roll 120 steps and backpropagate 40 steps. RaT-
BPTT: we randomly place the backpropagation
window for each epoch (25 steps)
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Figure 3: Test Accuracy during distillation
with BPTT, T-BPTT, R-BPTT, and our RaT-
BPTT.

stability than from BPTT, largely due to the excluded T −M + 1 gradient terms. This highlights the
non-convexity of the inner problem, marked by Hessian matrices having negative eigenvalues. The
impact of these eigenvalues intensifies the variance, resulting in unstable gradients. However, once
gradients stabilize, T-BPTT displays swift early progress. 2) BPTT ends up with higher accuracy
than T-BPTT, suggesting T-BPTT might overlook vital initial phase details, crucial since neural
network optimization often peaks early in the inner loop. The challenge thus is how to merge the
good performance of BPTT with the computational speedup of T-BPTT.

To this end, we propose the Random Truncated BPTT (RaT-BPTT) in Alg. 1, which randomly places
the truncated window along the inner unrolling chain. The gradient of RaT-BPTT is

GRaT−BPTT = −α
∂L(θN (U),D)

∂θ

N−1∑
i=N−M

ΠN−1
j=i+1

[
1− α

∂2L(θj(U),U)
∂θ2

]
∂2L(θi(U),U)

∂θ∂U
(3)

Looking at the gradients, RaT-BPTT differs by randomly sampling M consecutive parts in GBPTT

and leaving out the shared Hessian matrix products. Therefore, RaT-BPTT is a subsample version of
BPTT, spanning the entire learning trajectory. Moreover, the maximum number of Hessians in the
product is restricted to less than M. It thus inherits the benefits of both the accelerated performance
and gradient stabilization from T-BPTT. As illustrated in Fig. 3, RaT-BPTT consistently outperforms
other methods throughout the optimization process. We also examine performing full unrolling along
trajectories of randomly sampled lengths (R-BPTT) as a sanity check. The gradients are similarly
unstable and the performance is worse than full unrolling with BPTT.

3 Experimental Results Algorithm 1 Dataset Distillation with RaT-BPTT. Differ-
ences from BPTT are highlighted in purple.
Input: Target dataset D. N: total number of unrolling
steps. T: truncated window size.

1: Initialize distilled data U from Gaussian
2: while Not converged do
3: Uniformly sample M in [0, N − T ] as the current

unrolling length
4: Sample a batch of data d ∼ D
5: Randomly initialize θ0 from p(θ)
6: for t = 0 → M + T − 1 do
7: If t == M , start accumulating gradients
8: Sample a mini-batch of distilled data ut ∼ U
9: Update network θt+1 = θt − α∇ℓ(ut; θt)

10: end for
11: Compute classification loss L = ℓ(d, θT+M )
12: Update U with respect to L.
13: end while

In this section, we present an evaluation
of our method, RaT-BPTT, comparing
it to a range of SOTA methods across
multiple benchmark datasets.

Datasets We run experiments on four
standard datasets, CIFAR-10 (10 classes,
32× 32), CIFAR-100 (100 classes, 32×
32, [23]), Caltech Birds 2011 (200
classes, CUB200, 32×32, [51]) and Tiny-
ImageNet (200 classes, 64 × 64, [24] ).
We distill datasets with 1, 10, and 50 im-
ages per class for the first two datasets
and with 1 and 10 images per class for
the last two datasets.

Baselines We compare our methods to
two lines of SOTA methods 1) Inner-loop
surrogates: BPTT (the non-factorized
version of LinBa in [9]), Neural Tangent Kernel (KIP) [38], Random Gaussian Process (RFAD) [32],
and empirical feature kernel (FRePO) [64], and reparameterized convex implicit gradient (RCIG)
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Table 1: Performance on standard datasets: The AVG column shows the average performance across datasets. *
indicates evaluations using wider ConvNets. FRePO and RCIG are the re-evaluated results with narrow networks.
Results highlight top performance for narrow networks while results are best for wide networks.

Dataset CIFAR-10 CIFAR-100 CUB200 T-ImageNet AVGImg/class(IPC) 1 10 50 1 10 50 1 10 1 10

BPTT [9] 49.1±0.6 62.4±0.4 70.5±0.4 21.3±0.6 34.7±0.5 - - - - - -
KIP* [38] 49.9±0.2 62.7 ±0.3 68.6±0.2 15.7±0.2 28.3±0.1 - - - - - -

Inner RFAD* [32] 53.6±1.2 66.3±0.5 71.1±0.4 26.3±1.1 33.0±0.3 - - - - - -
Loop FRePO* [64] 46.8±0.7 65.5±0.6 71.7±0.2 28.7±0.1 42.5 ±0.2 44.3±0.2 12.4±0.2 16.8±0.1 15.4±0.3 25.4±0.2 36.9±0.3

FRePO 45.6±0.1 63.5±0.1 70.7±0.1 26.3±0.1 41.3 ±0.1 41.5±0.1 - - 16.9±0.1 22.4±0.1 -
RCIG* [33] 53.9±1.0 69.1±0.4 73.5±0.3 39.3±0.4 44.1±0.4 46.7±0.1 12.1±0.2 15.7±0.3 25.6±0.3 29.4±0.2 40.9±0.4

RCIG 49.6±1.2 66.8±0.3 - 35.5±0.7 - - - - 22.4±0.3 - -

DSA [61] 28.8±0.7 52.1±0.5 60.6±0.5 13.9±0.3 32.3±0.3 42.8±0.4 1.3±0.1 4.5±0.3 6.6±0.2 14.4±2.0 25.7±0.7

Modified DM [63] 26.0±0.8 48.9±0.6 63.0±0.4 11.4±0.3 29.7±0.3 43.6±0.4 1.6±0.1 4.4±0.2 3.9±0.2 12.9±0.4 24.5±0.4

Objectives MTT [3] 46.3±0.8 65.3±0.7 71.6±0.2 24.3±0.3 40.1±0.4 47.7±0.3 2.2±0.1 - 8.8±0.3 23.2±0.2 -
FTD [12] 46.8±0.3 66.6±0.3 73.8±0.2 25.2±0.2 43.4±0.3 50.7±0.3 - - 10.4±0.3 24.5±0.2 -

Ours 53.2±0.7 69.4±0.4 75.3±0.3 35.3±0.4 47.5±0.2 50.6±0.2 13.8±0.3 17.7±0.2 20.1±0.3 24.4±0.2 40.8±0.3

Ours (transfer to wide) 54.1±0.4 71.0±0.2 75.4±0.2 36.5±0.3 47.9±0.2 51.0±0.3 14.2±0.3 17.9±0.3 20.3±0.1 24.9±0.1 41.2±0.3

[33], 2) Modified objectives: gradient matching with augmentation (DSA) [61], distribution matching
(DM) [63], trajectory matching (MTT) [3], and flat trajectory distillation (FTD) [7].

Setup Following previous works, we employ standard ConvNet architectures [61, 9, 3] —three layers
for 32× 32 images and four layers for 64× 64 images. We use the Higher package [17] to efficiently
calculate the meta-gradients. We opt for a simple setup: using Adam for inner optimization with a
learning rate of 0.001, and applying standard augmentations (flip and rotation) on the target set.

Evaluation For evaluations, we follow the protocol from [9, 61], assessing each distilled dataset on
ten random neural networks and noting mean and standard deviation. For other baseline methods,
we reference the best original paper results. Notably, [64, 33] uses a wider ConvNet to minimize
surrogate approximation differences. Aligning with this, we conduct a transfer evaluation, distilling
with a narrow network and evaluating with their wider one.

Further details, our code, and distilled checkpoints are in the Appendix.

3.1 Performance Figure 4: RaT-BPTT with parameterization.

Dataset CIFAR-10
Img/class(IPC) 1 10

Para- IDC [22] 50.0±0.4 67.5±0.5

meteri- LinBa [9] 66.4±0.4 71.2±0.4

zation HaBa [30] 48.3±0.8 69.9±0.4

Linear + RaT-BPTT 68.2±0.4 72.8±0.4

Our simple approach demonstrates competitive perfor-
mance across multiple datasets (Table 1). With 10 and
50 images per class, we achieve state-of-the-art results on
the CIFAR-100, CIFAR-10, and CUB200 datasets without
any inner loop approximations. Comparing all IPC values
in 1, 10, 50, our method matches the RCIG technique’s
performance across all datasets. Encouragingly, without
optimizing specifically for wider networks, our approach still attains top results on CIFAR10, CI-
FAR100, and CUB200 for all IPC values. Evaluating datasets from broader-network methods on
narrower configurations shows a performance decrease, e.g., a drop from 39.3% to 35.5% (RCIG,
CIFAR100, IPC1) and from 25.4% to 22.4% (FrePO, TinyImageNet, IPC10). Our method seamlessly
adapts to both wider and narrower networks, marking a distinct edge over previous benchmarks.

A separate and complimentary line of work aims to improve the optimization via parameterization
of the distilled dataset [30, 22, 9]. Our method can be seamlessly combined with these techniques,
and Fig. 4 shows the combination of linear parameterization [9] and RaT-BPTT. In configurations
where parameterization surpasses standard RaT-BPTT, the combined method boosts performance by
approximately 1.6%. We defer the ablation studies and discussion of limitations to the Appendix.

4 Conclusion

In this work, we proposed a simple yet effective method for dataset distillation, based on random trun-
cated backpropagation through time. Through a careful analysis of BPTT, we show that randomizing
the window allows to cover long dependencies in the inner problem while truncation addressed the
unstable gradient and the computational burden. Our method achieves state of the art performance
across multiple standard benchmarks, across both narrow as well as wide networks. We thus hope to
provide a step towards model training at scale by advancing state-of-the-art of dataset distillation.
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A Limitations

Algorithm Design The design of our method is primarily guided by intuitions and observations from
empirical studies. Throughout the algorithm’s development, we aim to strike a balance between
scalability and effectiveness. Our approach currently involves tuning the ratio between the unrolling
length and window size, scaling the unrolling length in accordance with the IPC number and GPU size.
While this approach has demonstrated promise, we acknowledge that the current algorithmic choice
might not represent the absolute optimal solution. Further research could investigate alternative
algorithm designs.

Application to larger models and datasets A notable strength of our methodology is its versatility:
it is compatible with all differentiable loss functions and network architectures, emphasizing its
broad applicability. However, we only focus on illustrating the method’s capabilities with standard
benchmarks in the literature. This decision leaves a promising avenue for future work to apply and
validate our method across various domains and tasks beyond image classification. It’s also worth
highlighting that while surrogate-based techniques are constrained to using the MSE loss to convexify
the inner problem, our approach is agnostic to the specific loss function employed. This flexibility
paves the way for our method’s application in other realms, such as audio and text data distillation.

GPU memory usage Despite the significant improvements introduced by RaT-BPTT, it still ne-
cessitates unrolling and backpropagating over several steps, which require storing all intermediate
parameters in the GPU. Consequently, this method incurs substantial memory consumption, often
exceeding that of directly training the model. For larger models, one might need to implement
checkpointing techniques to manage memory usage effectively.

B Related Work

Numerous follow up works have proposed clever strategies to improve upon the original direct
bilevel optimization (Eq. (1)) in [54], like also learning soft labels [2, 48] (see [28, 41, 57, 15] for
recent surveys and [6] for benchmarking). Most of them have focused on 1) approximating the
function in the inner-loop with more tractable expressions, 2) changing the outer-loop objective and
3) re-parametrization of the data.

Inner-loop surrogates: The first innovative works [37, 38] tackle inner-loop intractability by approxi-
mating the inner network with the Neural Tangent Kernel (NTK) which describes the neural net in
the infinite-width limit with suitable initialization ([19, 26, 1]) and allows for convex optimization,
but scales unfavorably. To alleviate the scaling, random feature approximations have been proposed:
[32] leverage a Neural Network Gaussian process (NNGP) to replace the NTK, using MC sampling
to approximate the averaged GP. [64] propose to use the Gram matrix of the feature extractor as the
kernel, equivalent to only training the last layer with MSE loss. A very recent work [33] assumes that
the inner optimization is convex by considering linearized training in the lazy regime and replaces
the meta-gradient with implicit gradients, thus achieving most recent state-of-the-art. Yet all of these
approaches inevitably face the discrepancies between learning in the lazy regime and feature learning
in data-adaptive neural nets (e.g. [16] and numerous follow ups) and often need to maintain a large
model pool. Moreover, inner-loop surrogates, be it NTK, NNGP or random features, tend to show
higher performance on wide networks, where the approximation holds better, and be less effective for
the narrower models used in practice.

Modified objective: A great number of interesting works try to replace the elusive test accuracy
objective with metrics that match the networks trained on full data and on synthetic data. [62] propose
to match the gradient between the two networks with cosine similarity, with various variations
(like differentiable data augmentation [61] (DSA)) and improvements ([20, 27]). Other works
pioneer feature alignment [53], matching the training trajectories (MTT, introduced in [3] and refined
in [12, 7, 60]), and loss-curvature matching [45]. More tangentially, note that the adaptation of
optimization metrics has also been taken further to dataset generation for generalization attacks [58]
or adversarial perturbations [49] as well as generating distilled data with a robustness objective [50].

Data Parametrization: A separate line of work aims to improve the optimization via parameterization
of the distilled dataset. Since these works can be viewed as orthogonal to improving the bilevel
optimization directly, we only mention them briefly: [30, 52] leverage encoder-decoder networks,
[25, 4] use generative priors, [22, 31] propose multi-scale augmentation. Perhaps most relevant
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to our work is [9] which gives a linear basis with weights for the dataset while remaining in the
bilevel optimization framework directly. In principle, most of these ideas to parameterize the data
can be combined with most of the methods to tackle the optimization in Eq. 1, so these constitute
complimentary approaches to improve dataset distillation.

Dataset distillation shares many characteristics with coreset selection [21], which finds representative
samples from the training set to still accurately represent the full dataset on downstream tasks.
However, since dataset distillation generates synthetic samples, it is not limited to the set of images
and labels given by the dataset and has the benefit of using continuous gradient-based optimization
techniques rather than combinatorial methods, providing added flexibility and performance. The
concept of coreset selection has been further refined within the realm of deep learning, whereby
information is condensed for each forward pass, as elaborated by [10]. Both coresets and distilled
datasets have found numerous applications including speeding up model-training [36], reducing
catastrophic forgetting [43, 64], federated learning [18, 46] and neural architecture search [47].

C Experiments

C.1 Experimental Details

Data Preprocessing: Leveraging a regularized ZCA transformation with a regularization strength
of λ = 0.1 across all datasets, our approach adheres to the methods established by prior studies
[37, 38, 64, 32, 9]. We apply the inverse ZCA transformation matrix for distillation visualization,
using the mean and standard deviation to reverse-normalize optimized data.

Models Following previous works, we use Instance Normalization for all networks for both training
and evaluation.

Initialization In contrast to conventional real initialization widely used in nearly all previous works,
we employ random initialization for distilled data, hypothesizing that there is a reduction in bias from
such uninformative initialization. Data are initialized via a Gaussian distribution and normalized to
norm 1. For RaT-BPTT, we note comparable performance and convergence between random and real
initialization.

Label Learning Following previous works that leverage learnable labels, we optimize both the data
and label for CIFAR10-IPC50, all IPCs for CIFAR100, CUB-200, and Tiny-ImageNet. We forego
normalization for label probability, hence the labels retain their positive real value representation.

Training In addition to the RaT-BPTT algorithm, we incorporate meta-gradient clipping with an
exponential moving average to counter gradient explosion. We find that the proper combination of
normalizing initialization and learning rate (0.001 for Adam) is crucial for successful distillation
image training. While using instance normalization, an image scaled by α leads to meta-gradient
scaling by 1

α . As a result, one should use an α times larger learning rate for Adam or α2 times larger
for SGD to achieve the same optimization trajectory. We thus adopt a similar initialization scale to
that of neural network training (normalized to norm 1), combined with a standard learning rate of
0.001 when using Adam. To maintain meta-gradient stability, we employ batch sizes of 5,000 for
CIFAR-10 and CIFAR-100, 3,000 for CUB-200, and 1,000 for Tiny-ImageNet. Note that one should
aim to further increase the batch size for Tiny-ImageNet until all the GPU memory is used.

Hyperparameters In an effort to minimize tuning requirements, we adhere to a standard baseline
across all configurations. Specifically, we utilize the Adam optimizer for both the inner loop (network
unrolling) and the outer loop (distilled dataset optimization) with learning rates uniformly set to
0.001. We refrain from applying weight decay or learning rate schedules that are used in prior works
[64, 33].

Evaluation We evaluate our optimized data using a seperate held-out test dataset (the test set in the
corresponding dataset). We adopt the same data augmentation as in previous work [9]. For depth 3
convolutional networks, we train using Adam with a learning rate of 0.001. No learning rate schedule
is used.

Code and Checkpoints

The code and checkpoints for RaT-BPTT could be found at https://anonymous.4open.science/
r/RaT-BPTT-45EE/
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C.2 Ablations on the Random Truncated Window

In Section 2, we justify the necessity of performing truncation to speed up and stabilize the gradient,
and the necessity of changing the truncated window to cover the entire trajectory. Now we provide an
ablation study on how to select the truncated window. We compare three methods, 1) random uniform
truncation, 2) backward moving, and 3) forward moving. For the forward (backward) moving method,
we initialize the window at the end (beginning). It is then shifted forward (backward) by the window
size whenever the loss remains stagnant for 2,000 steps.
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Figure 5: Comparison between random uni-
form truncation, backward moving, and for-
ward moving. Random uniform truncation
gives the best performance across the whole
training process. N=120, T=40 for IPC10
with CIFAR10.

From Figure 5, it is surprising that randomly uniform
window placement achieves the best performance
across the whole training process. A closer examina-
tion of the forward and backward moving curves sug-
gests that altering the window’s positioning can spur
noticeable enhancements in accuracy. Such findings
reinforce the idea that distinct truncation windows
capture varied facets of knowledge, bolstering our in-
tuition about the need for a comprehensive trajectory
coverage by the window.

One might ask whether uniform sampling is the best
design. Actually the answer is no. With careful tun-
ing by sampling more on the initial phase, we find that
one can further improve the final accuracy by 0.4%
for CIFAR10 with IPC10. However, it introduces
an additional hyper-parameter that requires careful
tuning. To keep our method simple, we choose to go
with the uniform one.

C.3 Ablations on curriculum
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Figure 6: Left Test accuracy during distillation for different unrolling length of 80, 120, 200, 300
with fixed window size 40. CIFAR-10, IPC10. Right Test accuracy during distillation for different
window size in 40, 60, 100 with fixed unrolling length 200.

Our RaT-BPTT implementation hinges on tuning two hyperparameters: unrolling length and back-
propagation window size. This section presents an ablation study exploring these parameters for
CIFAR-10, IPC10.

Unroll length

We initially fix the window size at 40 while varying the unrolling length. Notably, unrolling length
governs the long-term dependencies we can capture within the inner loop. Fig 6 reveals that a
moderate unrolling length, between twice and five times the window size, yields similar performance.
However, disproportionate unrolling, as seen with a window size of 40 and unrolling length of 300,
detrimentally affects performance.

Window size
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Next, we fix the unrolling length at 200 and experiment with window sizes of 40, 60, and 100. Fig 6
shows the latter two sizes yield comparable performance. In RaT-BPTT, GPU memory consumption
is directly proportional to the window size, thus a window size of 60, with an unrolling length of 200
steps, emerges as an optimal balance. As such, we typically maintain a window size to unrolling
length ratio of around 1:3.

In our implementation, we employ a window size and unrolling length of (60, 200) for CIFAR-10
IPC1 and CUB-200, (80, 250) for CIFAR-10 IPC10, and (100, 300) for all other datasets.

C.4 Other Metrics on Gradient Stability

In Figure 2, we investigated the stability of meta-gradients using gradient norms as a metric, predi-
cated on the notion that stable and efficient learning should manifest as consistent and decreasing
gradient norms throughout training. Expanding on this analysis, we now introduce another metric
for evaluating gradient stability: the normalized gradient variance, in line with the methodology
proposed by [13]. Each variance value reflects the instability across the batch samples, and the values
across time steps reflects the instability across training steps.

To calculate this metric, we compute the average variance of all gradient entries using a set of 100
samples from the evaluation batch. Given the different scales in gradient norms across different
methods, we normalize this variance against the square of the norm. This normalization yields a
more consistent metric, termed the normalized variance. Employing the same experimental setup as
in Figure 2, we present the results in Figure 7. It shows that RaT-BPTT not only maintains lower
variance at each training step but also demonstrates more consistent variance trajectories over the
course of training. These findings, in conjunction with the earlier results from Figure 2, collectively
offer a comprehensive view of the argued training instability.

C.5 Ablation on Stabilizing BPTT

In Figure 2, we have demonstrated the notable instability of meta-gradients via the gradient norm.
This section extends our analysis with ablation studies, indicating that both controlling the gradient
norm and incrementally increasing the unrolling parameter T of BPTT result in only marginal
improvements, which cannot compare to the gains garnered through RaT-BPP. We follow the setting
in Figure 3.

Our foundational approach has already incorporated gradient clipping to manage extreme gradient
norm values, employing a standard exponential moving average (EMA) with a 0.9 decay rate and
capping the gradient norm at twice the adaptive norm.

To further stabilize the gradient norm, we explored two additional methods: 1) BPTT-Gradient
Clipping, limiting the gradient norm to no more than 1.05 times the adaptive norm, and 2) BPTT-
Normalized Gradient, ensuring a consistent gradient norm of 1 throughout training. However, as
Figure 8 illustrates, these methods achieve only marginal enhancements over the basic BPTT approach.
Their performance trails behind RaT-BPTT, with a threefold increase in optimization time due to
extended backpropagation.
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Figure 7: Normalized variance across batch sam-
ples of the meta-gradient. RaT-BPTT has stable
and small variances. Same setting as in Figure 2.

0 10000 20000 30000 40000 50000 60000
Steps

62

63

64

65

66

67

68

69

Ac
cu

ra
cy

BPTT
RaTBPTT(ours)
BPTT-Gradient Clipping
BPTT-Normalized Gradient
BPTT-Increasing Window
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These findings highlight challenges such as deviation from the kernel regime, variance from ex-
tensive unrolling, and pronounced non-convexity, contributing to gradient instability, as evidenced
by fluctuating gradient norms. Addressing these issues solely by adjusting gradient norms proves
insufficient.

Alternatively, we examine limiting the maximum Hessian matrices in Equation (2) by gradually
extending the unrolling length T in BPTT. In Figure 8, the BPTT-Increasing Windows variant, which
linearly scales T from 10 to 180, underperforms both R-BPTT and standard BPTT. This underlines
the complexity within the inner loop, deviating significantly from the kernel regime and emphasizing
the importance of managing the unrolling window size.

C.6 Other Architectures

Table 2: Generalization to other architectures. We conduct transfer evaluation of a distilled dataset
trained with a 3-layer ConvNet and directly training the dataset with the architecture in the inner loop.
CIFAR10, IPC10.

Architecture VGG-11 AlexNet ResNet-18

Transfer 46.6±0.9 60.1±0.6 49.2±0.8

Direct Training 47.7±0.8 63.7±0.6 53.0±0.8

We further assessed our method across various architectures to demonstrate its universality. It
is noteworthy that our approach is already effective across different widths of the convolutional
networks (narrow and wide) we used. Additionally, we conducted tests using the standard VGG-11,
AlexNet, and ResNet-18, both training it from scratch and transferring from the distilled dataset.
To our knowledge, we are the pioneers in applying direct distillation to a standard-sized network
like ResNet-18 and VGG-11. Prior works never train directly on VGG11 and they only use small
or modified ResNets like ResNet-10 [59, 22], ResNet-12 [9] and ResNet-AP10 [22, 31] in these
settings.

The results are presented in Table 2. Our results yield better or comparable transfer results compared
with previous methods. Direct training further increases the numbers.

C.7 Ablation on the Inner Optimizer

We have opted for Adam instead of SGD to simplify the tuning process for the inner loop. This
decision was based on the ability to use a common learning rate without requiring decay in the
inner loop. In this section, we perform ablation studies on how the inner loop optimizer affect the
performance.

We implement RaT-BPTT (SGD) using SGD with learning rate 0.01 and learning rate decays at
[120, 200] by 0.2. For IPC10 on CIFAR10, RaT-BPTT (SGD) achieves a 69.0% accuracy (std 0.3%),
while RaT-BPTT (Adam) results in a slightly higher accuracy of 69.4% (std 0.4%). Thus, RaT-BPTT
(SGD) also outperforms previous methods in this setting by a large margin. It is crucial to note that
our improvement is attributed to factors beyond merely employing Adam in the inner loop.

It is also noteworthy to point out that we are not the first to use Adam for the inner loop during
training. [32] also uses Adam for their linearized inner loop. Some other papers [33, 64] have also
adopted Adam for the linear loop during evaluations. We suspect that whenever Adam was an option,
the benchmarking papers probably tried it without significant improvements.

C.8 Discussions on Efficiency

We have conducted a comparative analysis of the total training time for several methods, utilizing a
consistent computational environment on an RTX8000 with 48GB. It should be noted that we have
excluded RCIG from this comparison, as our reproduced accuracy falls short of the reported number.
The following are the recorded training times (in hours) for CIFAR10 with IPC10: KIP (over 150),
LinBa (100), FrePO (8), RaT-BPTT (22), MTT (14), and IDC (35). Among these methods, our cost
ranks as the third best.
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There are ways to further improve the efficiency. 1) The current package we utilize for meta-gradient
calculation, the higher package, as noted in [35], lacks efficiency compared to other methods. We
could lower the time cost by altering our implementation to more efficient methodologies. 2) The
references [35, 40] contain efficient designs for the meta-gradient calculation. As reported in [40], it
could lead to up to 2x speedups compared with the higher package. This improvement would not
only enhance the performance of our method but also bring it in line with the efficiency benchmarks
set by methodologies like FrePO. 3) Similar to FrePO, we may keep a pool of parameter checkpoints
to further optimize our method. This strategy would reduce the need for inner training from new
random initializations.

C.9 Visualization

We incorporate visualizations for IPC10 on CIFAR-10, representing standardly trained (Figure 9),
weakly boosted (Figure 11), and strongly boosted images (Figure 10). Upon inspection, the images
from both boosted categories appear more diverse compared to their standard counterparts.
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Figure 9: Visualization for RaT-BPTT standardly trained on CIFAR-10 with IPC10.
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Figure 10: Visualization for RaT-BPTT with strong boosting (Boost-DD). CIFAR-10 with IPC10.
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Figure 11: Visualization for RaT-BPTT with weak boosting (Boost-DD). CIFAR-10 with IPC10.
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