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Abstract

While large language models (LLMs) demon-
strate exceptional reasoning capabilities, ex-
isting methods predominantly rely on super-
vised fine-tuning (SFT) followed by reinforce-
ment learning (RL) on reasoning-specific data.
These approaches critically depend on external
supervisions—such as labeled reasoning traces,
verified golden answers, or pre-trained reward
models—which limits scalability and practical ap-
plicability. In this work, we propose Entropy Min-
imized Policy Optimization (EMPO), which makes
an early attempt at fully unsupervised LLM rea-
soning incentivization. EMPO does not require
any supervised information. By continuously min-
imizing the predictive entropy of LLMs on un-
labeled user queries in a latent semantic space,
EMPO enables purely self-supervised evolution of
reasoning capabilities with strong flexibility and
practicality.

1. Introduction

Large language models (LLMs) have demonstrated ex-
ceptional potential in challenging tasks such as mathe-
matical reasoning (Guan et al., 2025) and code genera-
tion (Daya Guo, 2024). A prevailing paradigm for train-
ing reasoning LL.Ms involves firstly performing supervised
fine-tuning (SFT) and then reinforcement learning (RL), or
iterative combinations of both, applied to reasoning-specific
datasets after pretraining (Yang et al., 2024). Unfortunately,
these methods typically depend on large-scale reasoning
datasets with various forms of supervised information, such
as human-labeled reasoning traces, verified golden answers,
or an additional pre-trained reward model.

Recent advancements, such as the pioneering work PFPO
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(Jiao et al., 2024) leverage self-consistency to generate
pseudo label. Despite the promising results, the proposed
method still necessitates supervision from instruction fine-
tuning data and supervision signals from the frontier LLMs
to initialize the RL process.

Recent advanced DeepSeek-R1-Zero directly initiating RL
from the base model (Guo et al., 2025) and autonomously
evolves sophisticated reasoning behaviors such as reflec-
tion and self-critic by exploring the reward signals provided
by rule-based rewards, i.e., verified golden answers or an
additional pre-trained reward model. Our motivation is to
devise a fully unsupervised approach for powerful reasoning
capability. Specifically, we propose a novel reinforcement
learning algorithm termed as Entropy Minimized Policy
Optimization (EMPO), which incentivizes the reasoning ca-
pability of LLMs in a fully unsupervised manner by mini-
mizing their predictive entropy in a latent semantic space.
This method optimizes the model to favor reasoning traces
yielding consistent answers, enhancing output reliability.
The semantic entropy objective we propose to minimize
is a well-established measurement of LLMs’ uncertainty,
which extends beyond mathematical reasoning to free-form
question-answering tasks. We further introduce entropy
thresholding to filter unreliable reasoning traces, stabilizing
the unsupervised training process.

2. Related Work

Self-Supervised and Semi-Supervised Reasoning. To
address the dependency on labeled data, several self-
supervised and unsupervised methods have emerged.
(Huang et al., 2022) propose a self-improvement frame-
work where LL.Ms generate high-confidence answers using
Chain-of-Thought (CoT) prompting and self-consistency,
subsequently fine-tuning on these pseudo-labels. However,
the performance gains are often limited, and there is a risk
of model collapse, as noted in (Shumailov et al., 2024).
These methods, while reducing reliance on external labels,
still involve supervised fine-tuning steps, contrasting with
EMPO’s fully unsupervised RL approach.

Entropy Minimization and Semantic Consistency. En-
tropy minimization is a well-established technique in semi-
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Figure 1. Overview of the proposed method. (a) Previous methods like PPO (Schulman et al., 2017) or GRPO (Shao et al., 2024) typically
rely on external supervised signals, e.g., a pretrained reward model or golden answers. (b) The proposed Entropy Minimized Policy
Optimization (EMPO) samples a set of responses from the current policy model and then builds semantic clusters according to their
equivalence. By continuously minimizing the entropy at a meaning level, our method achieves competitive benchmark performance
without any external supervision, i.e., rule-based reward, pre-defined test cases, or a pretrained reward model.

supervised and unsupervised learning, with roots in tra-
ditional machine learning. (Grandvalet & Bengio, 2004)
demonstrate that minimizing entropy on unlabeled data can
improve classification accuracy by encouraging model confi-
dence. Test-time adaptation methods like Tent (Wang et al.,
2020; Zhang et al., 2024) adapt models to new domains by
minimizing entropy on test data, filling domain gaps with-
out additional labels. These approaches highlight the poten-
tial of entropy minimization as an unsupervised objective,
which EMPO leverages for LLM reasoning by extending it
to semantic entropy (Kuhn et al., 2023) in a latent space.
(Farquhar et al., 2024) further validate semantic entropy’s
utility in detecting hallucinations, reinforcing its relevance.

3. Method

We propose an RL-based method to minimize the entropy of
LLM generations in a latent semantic space for incentiviz-
ing its reasoning capability. We term our method Entropy-
Minimized Policy Optimization (EMPO), which is devised in
a fully unsupervised manner without any forms of external
supervised information.

3.1. Semantic Entropy Minimization Objective

In this work, we choose semantic entropy (Kuhn et al.,
2023) as our unsupervised optimization objective, which is
a natural extension of classical Shannon entropy specified

for large language models. Specifically, we first samples a
group of outputs {01, - - - , 0} and then clusters the output
sequences according to their meaning. That is, if two outputs
share the same meaning, they should be merged into one
same cluster in the semantic space. This can be done without
notable computational cost by predefined rules such as N-
gram, regular expressions or an additional small language
model. Once built such a set of meaning clusters {c} in
semantic space, we then approximate the probability over
the meanings as the proportion of sampled answers as

p(ejlz) = |esl/G, )]

where ¢; € {c} is the j-th meaning cluster. |c;| denotes the
numbers of outputs that belong to c;. Finally, given question
q, the semantic entropy (denoted as H) over the model’s
output meanings distribution can be estimated as follows:

H=— " ple;lg)logp(c;lg). @)
c;je{c}

As proven by previous work, semantic entropy has a strong
negative relationship with model accuracy, which can be
used as an efficient measurement to detect unreliable LLM
generations such as confabulation and hallucination (Kuhn
et al., 2023; Farquhar et al., 2024).
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3.2. Entropy-Minimized Policy Optimization

We propose Entropy-Minimized Policy Optimization
(EMPO), an RL-based method that optimizes the pre-trained
large language model 7y to favor low semantic entropy
responses given unlabeled user questions {¢;}?_;. Given
input questions, EMPO incentivizes the outputs that belong
to higher probability meaning cluster, and thus minimizes
the semantic entropy over the meaning distribution. Specif-
ically, given a question ¢, our EMPO first samples a group
of output {01, ...,0¢} from the current model 7y and then
merges them into a set of M meaning clusters {c1,...cp}.
As we mentioned before, this can be done without notable
computational cost (please refer to the quantitative results
in Appendix F) by predefined rules such as N-gram, regular
expressions or an additional small language model (SLM).
Once built such a meaning set, EMPO approximately mini-
mizes the semantic entropy H by maximizing the following
objective

Teueo = B(g}~P(Q), {0}, ~ma(0l9)]
1 |G|
€] Z(min(Ai, clip(1,1 —¢,1+¢)4;)|, 3)
i=1
S.t. 1w < H < Opign

where H is the semantic entropy defined in Eq. 2. The
questions results in highly unreliable answers with entropy
greater than 0,4, are filtered out. Besides, we also filter
out low-entropy answers to maintain the diversity of model
outputs and further avoid potential reward hacking. Fol-
lowing previous work (Yu et al., 2025), we remove the KL
constraint for better performance. € clips extremely high or
low advantages for stability similar to common practice.

4. Experiments
4.1. Experimental Settings

We conduct experiments on multiple datasets including both
closed-form math reasoning tasks and free-form natural
reasoning tasks. Our EMPO shows competitive performance
by purely RL in a fully unsupervised manner compared to
supervised finetuning and RL methods.

Prompt Collection and Data Engineering. For mathe-
matical reasoning, following the common practice (Face,
2025; Jiao et al., 2024; Zhang et al., 2025), we adopt
20,000 prompts randomly selected from NuminaMath-CoT
dataset (LI et al., 2024) for training without additional data
engineering. For free-form natural reasoning tasks, we adopt
the prompts from Natural Reasoning, a large-scale dataset
consisting of diverse reasoning questions from multiple do-
mains (e.g., Physics, Computer Science, Economics, Social
Sciences and more) and select a subset consisted of 18,000

questions. Details about data filtering can be found in Ap-
pendix G.

Evaluation. o For mathematical reasoning, the performance
is evaluated on a diverse suite of benchmarks including Min-
erva Math, MATH, AMC23, OlympaidBench and AIME24.
o For free-form natural reasoning, we evaluate the models
on MMLU-Pro (Wang et al., 2024) and GPQA (Rein et al.,
2024) benchmarks, which consist of challenging reasoning-
focused problems across various subjects, e.g., biology, busi-
ness, chemistry, computer science and so on.

Model training. o For mathematical reasoning tasks, we
train Qwen2.5-Math-1.5B and 7B Base models with our
EMPO. The baselines we consider include supervised fine-
tuning (SFT) and the representative GRPO. We also com-
pared with Qwen2.5-Math Instruction models for a more
comprehensive comparison, where the instruction model
is trained by iteratively supervised finetuning and RL on
private data. o For free-form natural reasoning tasks, we
initialize from Qwen2.5-3B, 7B and 14B Base models. We
consider the corresponding Instruct model, the original Base
model with or without few-shot CoT prompt as baselines.
Besides, we also compare with SFT where the Base model
is tuned to fit the response of Llama3.3-70B-Instruct.

4.2. Main Results

Performance on Mathematical and Natural Reasoning
Tasks. We conduct experiments on mathematical tasks to
evaluate our method. The main results are shown in Ta-
ble 1. EMPO has successfully incentivized the Qwen2.5-
Math Base model with reasoning capability without depen-
dency on any external supervision. We observe a substantial
improvement in the average performance on commonly used
mathematical reasoning benchmarks from 28.1% to 42.1%
and 30.7% to 48.1% on 1.5B and 7B models, respectively.
On the MMLU-Pro benchmark, our EMPO improves the
accuracy from 32.1% to 50.1% and 32.7% to 58.8% on
Qwen2.5-7B and 14B Base model respectively. Besides,
on more challenging GPQA benchmark, EMPO results in
increasing accuracy from 15.9% to 28.8% on 7B model,
30.6% to 35.3% on 14B model. Notably, through fully un-
supervised RL training, the 1.5B and 7B model has both
achieved competitive performance (42.1% and 48.1%) near
to Qwen2.5-Math-Instruct (40.5% and 49.4%), where the
latter depends on private dataset and multi-stage iteratively
supervised fine-tuning and reinforcement learning.

Training Dynamics We further conduct experiments to
investigate the reliability of our unsupervised reward signals.
As shown in Figure 2, the unsupervised reward signals of
EMPO have a strongly negative correlation with the true
rewards based on golden answers. Thus by continuously
minimizing the semantic entropy objective, the model can
boost its accuracy in a fully unsupervised manner.
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Table 1. Accuracy on mathematical reasoning benchmarks. We report the pass@1 accuracy tested with greedy decoding. Here ¢, r, a
denote the dependency on questions, human-verified reasoning traces and golden answers respectively.

Supervision MATH Minerva Olympiad AIME24 AMC23 Avg.
frontier model
1.5B model
Qwen2.5-Math None 52.2 10.7 25.2 10.0 42.5 28.1
Qwen2.5-Math-Instruct {q,r,a} 73.8 30.9 38.7 6.7 52.5 40.5
Qwen2.5-Math w/SFT {g,7,a} 61.8 26.1 27.1 33 37.5 31.2
Qwen2.5-Math w/GRPO {q,a} 75.2 32.0 33.6 16.7 52.5 42.0
Qwen2.5-Math w/EMPO {q} 73.0 324 36.6 13.3 55.0 42.1
7B model
Qwen2.5-Math None 64.8 15.1 26.7 6.7 40.0 30.7
Qwen2.5-Math Instruct {q,r,a} 82.8 43.8 41.2 16.7 62.5 494
Qwen2.5-Math w/SFT {g,7,a} 72.2 34.6 33.2 10.0 45.0 39.0
Qwen2.5-Math w/ODPO {q,a} 76.8 30.9 37.9 26.7 62.5 47.0
Qwen2.5-Math w/GRPO {q,a} 77.8 39.7 39.1 20.0 57.5 46.8
Qwen2.5-Math w/EMPO {q} 78.0 40.4 37.3 20.0 65.0 48.1

Table 2. Accuracy results on free-form natural reasoning benchmarks. We report pass@1 accuracy tested with greedy decoding. Here
{q,7,a} denote the dependency on questions, human-verfied reasoning traces and verifiable golden answers respectively.

Supervision MMLU Pro GPQA
STEM  Humanities Social Other Avg.
7B model
Qwen2.5-Base - 30.1 23.8 45.9 343 321 15.9
Qwen2.5-Base 5-shot {q,r,a} 45.7 36.3 59.1 494  46.8 23.5
Qwen2.5-Instruct {q,r,a} 56.9 38.1 64.1 58.6 552 353
Qwen?2.5-Base w/SFT {q,r,a} 32,6 7.1 158 301 256 224
Qwen2.5-Base w/GRPO {q,a} 57.1 36.2 64.4 56.6 545 33.8
Qwen2.5-Base w/EMPO {q} 52.4 34.6 59.0 509  50.1 28.8
14B model
Qwen2.5-Base - 30.8 28.0 44.4 33.0 327 30.6
Qwen2.5-Base 5-shot {q,r,a} 51.9 35.8 63.4 544 514 332
Qwen?2.5-Instruct {q,r,a} 63.6 47.1 73.8 66.7 629 429
Qwen2.5-Base w/SFT {q,r,a} 37.0 27.8 40.2 38.0 36.1 28.5
Qwen2.5-Base w/GRPO {q,a} 62.9 42.1 68.6 59.8  59.6 35.6
Qwen2.5-Base w/EMPO {¢} 61.4 41.6 68.3 60.0  58.8 35.3
Total Entropy Accuracy Reward In a well-pre-trained model, outputs that are semantically
1.7 0.45 consistent are more likely to align with correct and coher-
_ 1.6 L 042 ent reasoning. EMPO leverages this by incentivizing the
§“ 15 S 0.39 model to favor such consistent outputs, effectively guiding
i & 0.36 it to refine its selection from its collection of existing rea-
13 0.33 soning strategies without requiring external validation of
0 20 40 60 80 % w @ ® correctness.
Step Step

Figure 2. We visualize the training dynamics when tune Qwen2.5-
Math-7B with EMPO. The left illustrates the running average of
semantic entropy (Eq. 2). Along the unsupervised RL-based train-
ing trajectory, EMPO establishes a stable learning process with
consistently decreased semantic entropy and improved accuracy.

EMPO’s success highlights that intrinsic reward signals, de-
rived purely from the model’s objective to minimize seman-
tic entropy and thus achieve greater consistency in its out-
puts, can be surprisingly potent for this elicitation process.

5. Conclusions and Future Work

In this work, we make an early attempt at incentivizing the
reasoning capability of LLMs by fully unsupervised RL-
based techniques. EMPO offers a particularly scalable, cost-
effective, and practical approach to unlocking and refining
the vast reasoning potential embedded within pre-trained
LLMs, especially in domains where curated supervisory
data is scarce or prohibitively expensive to obtain. Exploring
semi-supervised learning or online learning scenarios would
be an interesting future research direction.
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Appendices

A. Prompt Templates
We provide the prompt templates used for training and evaluation.

For mathematical reasoning tasks, we adopt the following reasoning prompt template similar with Online-DPO-R1
project (Zhang et al., 2025) for both training and testing.

Mathematical Reasoning Training and Evaluation Template

< |im_start| >system

Please reason step by step, and output your final answer within \boxed{}.

< |im_end| >

< |im_start| >user

{Question} Let’s think step by step and output the final answer within \boxed{}.
< |im_end| >

< |im_start| >assistant

\ J

To train models with our EMPO for free-form natural reasoning tasks, we adopt the following reasoning prompt template
similar that we used in mathematical tasks for training.

< |im_start| >system

Reason step by step, and output your final answer within \boxed{}.

< |im_end| >

< |im_start| >user

{Question} Reason step by step and output the final answer within \boxed{}.
< |im_end| >

< |im_start| >assistant

Since the MMLU-Pro and GPQA are both close-formed multi-choice benchmark. To evaluate the natural reasoning
capability of the models, we use the following prompt template during testing.

< |im_start| >system

Reason step by step, and output your final answer (the correct letter choice from A-P) within \boxed{}.

< |im_end| >

< |im_start| >user

{Question} Reason step by step and output the final answer (the correct letter choice from A-P) within \boxed{}.
< |im-end| >

< |im_start| >assistant

< |im_start| >system

Reason step by step, and output your final answer (A, B, C, or D) within \boxed{}.

< |im_end| >

< |im_start| >user

{Question} Reason step by step and output the final answer (A, B, C, or D) within \boxed{}.
< |im_end| >

< |im_start| >assistant



2nd Workshop on Test-Time Adaptation

B. Case Study

Question: Janet rolls a standard 6-sided die 4 times and keeps a running total of the numbers she rolls. What is
the probability that at some point, her running total will equal 3? The final answer can be written in the form
~, where m and n are relatively prime positive integers. What is mm + n? Response: To solve this problem, we
need to determine the probability that at some point during 4 rolls of a standard 6-sided die, the running total will equal
3. We can use dynamic programming to keep track of the probabilities of each possible running total after each roll.
Here’s the plan:

1. Initialize a list to keep track of the probability of each possible running total after each roll.

2. Start with the initial condition that the probability of a running total of 0 after O rolls is 1.

3. For each roll, update the probabilities of each possible running total by considering the outcomes of rolling a 1, 2, 3,
4,5, 0r6.

4. After each roll, check if the probability of a running total of 3 is non-zero.

5. The final answer will be the probability of a running total of 3 after 4 rolls. Let’s implement this in Python:

It looks like there was an issue with the implementation. The probability of the running total being exactly 3 after 4
rolls should not be zero, so let’s correct the approach and re-implement the solution. Here’s the corrected plan:

1. Initialize a list to keep track of the probability of each possible running total after each roll.

2. Start with the initial condition that the probability of a running total of 0 after O rolls is 1.

3. For each roll, update the probabilities of each possible running total by considering the outcomes of rolling a 1, 2, 3,
4,5, or6.

4. After each roll, check if the probability of a running total of 3 is non-zero.

5. The final answer will be the probability of a running total of 3 after 4 rolls.

Let’s re-implement this in Python:

It seems there is still an issue with the implementation. Let’s manually check the logic and correct it step by step.

1. Initialize the probability list with the initial condition that the probability of a running total of 0 after O rolls is 1.

2. For each roll, update the probabilities of each possible running total by considering the outcomes of rolling a 1, 2, 3,
4,5, or 6.

3. After each roll, check if the probability of a running total of 3 is non-zero.

4. The final answer will be the probability of a running total of 3 after 4 rolls. Let’s manually simulate the process: -
After O rolls: Probability of 0 is 1...The probability of a running total of 3 after 4 rolls is 4/1296, which simplifies to
1/324. Therefore, the final answer in the form of m/n is 1/324, and the sum m + n is 1 + 324 = 325. The final answer is

[325).

C. Implementation details about semantic clustering

We detail the implementation of semantic clustering in our EMPO. The semantic cluster process is shown as Algorithm 1.
We also provide the simplified python code to show how we determine whether two model outputs are equivalent or not in
mathematical reasoning (Algorithm 2) and free-form natural reasoning tasks (Algorithm 3).

D. Additional Results on Llama3 model series

We conduct additional experiments to validate the efficacy of our EMPO on other model series beyond Qwen2.5. The results
are shown in Table 3. Consistent with other concurrent practice, we are unable to implement R1-Zero-like training on
the Llama series, i.e., directly initializing RL process from the Base model without SFT). Thus, we instead consider a
semi-supervised learning approach by initializing from instruct-tuned model and enhance the reasoning capability with our
EMPO.
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Algorithm 1 Semantic Clustering

Require: question ¢, model responses {0s, . .., 0}, verifier V
C «+ {01}
for i = 2to G do
for all c € C' do
0. + first(c) {Randomly select one element}
if V(q, o, 0;) then
¢ < cU{o;} {Add to existing cluster}
break
end if
end for
C + CU{{o;}} {Create new cluster}
end for
return C

Algorithm 2 Implementation of verifier for mathematical reasoning tasks.

from math_verify import parse, verify

def are_equivalent (model_output_-1, model_output-2)
prediction_1 = parse (model_output_1)
prediction_-2 = parse (model_output_2)

return verify (prediction_1, prediction_2)

E. Additional training details

F. Computational Cost of Semantic Clustering

To evaluate the additional computational overhead introduced by semantic clustering in EMPO, we conducted comparative
analyses of EMPO and GRPO in terms of total training duration and GPU memory utilization. The results of mathematical
reasoning and natural reasoning are shown in Table and Table 5, respectively. It is worthy to note that the 14B model
experiments requires slightly less computational time than the 7B model. This is because, in our 14B experiments, we
reduced the batch size and maximum response length from 2 and 1024 to 1 and 768, respectively, compared to the 3B and
7B configurations. This adjustment was made to fit the limited GPU memory of one single 8 x A100 machine.

G. Details of Prompt Collection

For mathematical reasoning, we directly use 20,000 prompts randomly selected from Numina-Math-CoT. For free-form
natural reasoning tasks, we adopt the prompts from Natural Reasoning' by filtering out the questions with over-long prompt,
reference answer. Besides, we use the response length of Llama3.3-70B-Instruct as a difficulty estimation metric, and filter
out overly difficult samples with response lengths exceeding 4096 tokens. The data collection python code is demonstrated
as follow:

"https://huggingface.co/datasets/facebook/natural _reasoning
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Algorithm 3 Implementation of verifier for natural reasoning tasks.

verifier = AutoModelForCausallM.from_pretrained (...)
tokenizer = AutoTokenizer.from_pretrained (...)
def are_equivalent (model_output_-1, model_output_-2, gquestion, verifier)
prediction_.1 = parse (model_output_1)
prediction_2 = parse (model_output_2)
prompt = (
f"User: ### Question: {question}\n\n"
f"##4# Ground Truth Answer: {prediction_1}\n\n"
f"### Student Answer: {prediction_2}\n\n"
"For the above question, please verify if the student'’s
answer is equivalent to the ground truth answer.\n"
"Do not solve the question by yourself; Jjust check if the
student’s answer 1s equivalent to the ground truth
answer .\n"
"If correct, output \”Final Decision: Yes\”. If incorrect,
output \"Final Decision: No\".\n"
"Assistant: Final Decision: "
)
inputs = self.tokenizer (modified_prompt,
return_tensors="pt").to(self.model.device)
input_ids = inputs.input_ids

# inference for output logits
with torch.inference_mode () :

outputs = self.model.forward (input_ids)
logits = outputs.logits

# get next output logits
next_token_logits = logits [0, input_-ids.shapel[l] - 1,

# get the token ID of "Yes" and "No"

decision_tokens = self.tokenizer ("Yes", "No'")
yves_id = decision_tokens.input_ids [0]
no_id = decision_tokens.input_ids[1]

# calculate probability

probs = torch.softmax (next_token_logits, dim=0)
yves_prob = probs[yes_id].item ()
no_prob = probs[no_id].item/()

return yes_prob > no_prob
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Table 3. Accuracy on mathematical reasoning benchmarks.
i Ol d
Supervision MATH Minerva  OYmPId . prmot AMC23  Ave.

Math Bench

[frontier model

Llama-3.1-70B-Instruct {q,r,a} 64.6 353 31.9 16.7 30.1 35.7
Eurus-2-7B-PRIME {q,r,a} 79.2 38.6 42.1 26.7 57.8 48.9
1B model

Llama3.2-Instruct None 27.2 5.1 5.6 0.0 10.0 9.6
Llama3.2-Instruct w/GRPO {q,a} 29.8 3.7 6.4 0.0 12.5 10.5
Llama3.2-Instruct w/EMPO {q} 31.0 5.1 7.9 33 7.5 11.0
3B model

Llama3.2-Instruct None 46.2 19.1 15.3 3.3 20.0 20.8
Llama3.2-Instruct w/GRPO {q,a} 49.2 224 17.6 13.3 32.5 27.0
Llama3.2-Instruct w/EMPO {q} 49.8 20.2 18.4 133 30.0 26.3

Table 4. Comparison of total runtime (measured as 8x A100 GPU hours) and storage cost (measured by max total GPU memory
utilization) between GRPO and EMPO. The GPU Memory semantic cluster process requires minimal computation and storage.

Qwen2.5-1.5B-Math Qwen2.5-7B-Math

GPU Hours GPU Memory GPU Hours GPU Memory (GiB)
GRPO 11.2 240.4 8.5 501.3
EMPO 11.7 208.2 8.7 532.7

Algorithm 4 Python code of data filtering in a huggingface-like style.

from datasets import load_dataset

dataset=1load_dataset ("facebook/Natural —~Reasoning')
filtered_dataset = dataset.filter (
lambda x: (
# no answer
len(x["reference_answer"]) > 0

# over—-long answer
and len(x["reference_answer"]) < 129
# overly difficult questions

and len(x["llama_responses"]) < 4096

# over—-long prompt

and len(x["guestion"]) < 512

# proof-oriented

and ("prove!" not in x["qguestion'"].lower ())
and ("proof" not in x["qguestion"].lower ())

H. Additional Result about Pass @k

We provide additional visualization pass @k results of models trained with EMPO. The results are shown as follow.

I. The Influence of Clustering Quality on the Performance of EMPO

In our mathematical reasoning experiments, semantic clustering is achieved solely through regular expression matching
without introducing additional models. Due to the naturally structured response formats in mathematical tasks, regular
expression could accurately determine answer equivalence, resulting in relatively high clustering quality.

However, in more general free-form natural reasoning tasks where model responses are free-form much more diverse (e.g.,
matrix, numbers, a few lines of sentences/codes...), the clustering quality can impact EMPO’s effectiveness. For instance, in

10
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Table 5. Comparison of total runtime (measured as 8 x A100 GPU hours) and storage cost (measured by total GPU memory utilization)
between GRPO and EMPO. The GPU Memory semantic cluster process requires minimal computation and storage.

Qwen2.5-3B Qwen2.5-7B Qwen2.5-14B
GPU Hours GPU Memory GPU Hours GPU Memory (GiB) GPU Hours GPU Memory
GRPO 9.5 274.8 12.4 508.6 11.0 588.2
EMPO 11.1 286.9 14.6 532.7 11.5 541.1
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our more early practice, we tried DeBERTa (a bert-like model with 300M parameters trained by microsoft) for semantic
clustering. Due to the poor quality of semantic clustering, our EMPO straggled to scale up and suffered from frequent reward
hacking. Subsequently, by leveraging the general-verifier released by Tiger-Lab (a fine-tuned Qwen2.5-1.5B-Math model)
for clustering, we successfully generalized EMPO to more general free-form reasoning tasks. Noted that even though this
small language model undergoes supervised finetuning, it serves within our fully unsupervised framework as a fixed utility
function for semantic comparison, rather than serving as a external supervisor for task-specific feedback. There are several
fundamental difference between cluster model and the reward model used in supervised RL:

* The cluster model does not evaluate output correctness relative to input queries. It just provides pairwise comparisons

between the model’s own outputs. That is, it only provides binary answer about “whether these two answer is the
same?” rather than “which answer is better?”.

* The cluster model does not provide any guidance, such as gradient information or hints on how to refine the reasoning
traces.

* Compared to reward model or human-verifier golden answers, it can be much easier to implement such a cluster model.

For example, in mathematical reasoning tasks, only regular expressions are enough for clustering. In natural reasoning
tasks, a finetuned Qwen2.5-1B model can provide high quality semantic cluster results.
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