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ABSTRACT

Graph neural networks (GNNs) are emerging machine learning models on graphs.1

One key property behind the expressiveness of existing GNNs is that the learned2

node representations are permutation-equivariant. Though being a desirable prop-3

erty for certain tasks, however, permutation-equivariance prevents GNNs from4

being proximity-aware, i.e., preserving the walk-based proximities between pairs5

of nodes, which is another critical property for graph analytical tasks. On6

the other hand, some variants of GNNs are proposed to preserve node prox-7

imities, but they fail to maintain permutation-equivariance. How to empower8

GNNs to be proximity-aware while maintaining permutation-equivariance re-9

mains an open problem. In this paper, we propose Stochastic Message Passing10

(SMP), a general and simple GNN to maintain both proximity-awareness and11

permutation-equivariance properties. Specifically, we augment the existing GNNs12

with stochastic node representations learned to preserve node proximities. Though13

seemingly simple, we prove that such a mechanism can enable GNNs to preserve14

node proximities in theory while maintaining permutation-equivariance with cer-15

tain parametrization. Extensive experimental results demonstrate the effectiveness16

and efficiency of SMP for tasks including node classification and link prediction.17

1 INTRODUCTION18

Graph neural networks (GNNs), as generalizations of neural networks in analyzing graphs, have19

attracted considerable research attention. GNNs have been widely applied to various applications20

such as social recommendation (Ma et al., 2019), physical simulation (Kipf et al., 2018), and protein21

interaction prediction (Zitnik & Leskovec, 2017).22

One key property of most existing GNNs is permutation-equivariance, i.e., if we randomly permu-23

tate the IDs of nodes while maintaining the graph structure, the representations of nodes in GNNs24

are permutated accordingly. Mathematically, permutation-equivariance reflects one basic symmet-25

ric group of graph structures. Although it is a desirable property for tasks such as node or graph26

classification (Keriven & Peyré, 2019; Maron et al., 2019b), permutation-equivariance also prevents27

GNNs from being proximity-aware, i.e., permutation-equivariant GNNs cannot preserve walk-based28

proximities between nodes such as the shortest distance or high-order proximities (see Theorem 1).29

Pairwise proximities between nodes are crucial for graph analytical tasks such as link predic-30

tion (Hu et al., 2020; You et al., 2019). To enable a proximity-aware GNN, Position-aware GNN31

(P-GNN) (You et al., 2019)1 proposes a sophisticated GNN architecture and shows better perfor-32

mance for proximity-aware tasks. But P-GNN needs to explicitly calculate the shortest distance be-33

tween nodes and its computational complexity is unaffordable for large graphs. Moreover, P-GNN34

completely ignores the permutation-equivariance property. Therefore, it cannot produce satisfactory35

results when permutation-equivariance is helpful.36

In real-world scenarios, both proximity-awareness and permutation-equivariance are indispensable37

properties for GNNs. Firstly, different tasks may require different properties. For example, recom-38

mendation applications usually require the model to be proximity-aware (Konstas et al., 2009) while39

permutation-equivariance is a basic assumption in centrality measurements (Borgatti, 2005). Even40

1In (You et al., 2019), the authors consider the special case of shortest distance between nodes and name
such property as “position-aware”. In this paper, we consider a more general case of any walk-based proximity.
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for the same task, different datasets may have different requirements on these two properties. Taking41

link prediction as an example, we observe that permutation-equivariant GNNs such as GCN (Kipf &42

Welling, 2017) or GAT (Velickovic et al., 2018) show better results than P-GNN in coauthor graphs,43

but the opposite in biological graphs (please see Section 5.2 for details). Unfortunately, in the current44

GNN frameworks, these two properties are contradicting, as we show in Theorem 1. Whether there45

exists a general GNN to be proximity-aware while maintaining permutation-equivariance remains46

an open problem.47

In this paper, we propose Stochastic Message Passing (SMP), a general and simple GNN to pre-48

serve both proximity-awareness and permutation-equivariance properties. Specifically, we augment49

the existing GNNs with stochastic node representations learned to preserve proximities. Though50

seemingly simple, we prove that our proposed SMP can enable GNNs to preserve walk-based prox-51

imities in theory (see Theorem 2 and Theorem 3). Meanwhile, SMP is equivalent to a permutation-52

equivariant GNN with certain parametrization and thus is at least as powerful as those GNNs in53

permutation-equivariant tasks (see Remark 1). Therefore, SMP is general and flexible in handling54

both proximity-aware and permutation-equivariant tasks, which is also demonstrated by our exten-55

sive experimental results. Besides, owing to the simple structure, SMP is computationally efficient,56

with a running time roughly the same as those of the most simple GNNs such as SGC (Wu et al.,57

2019) and is at least an order of magnitude faster than P-GNN on large graphs. Ablation studies58

further show that a linear instantiation of SMP is expressive enough as adding extra non-linearities59

does not lift the performance of SMP on the majority of datasets. Our contributions are as follows.60

• We propose SMP, a simple and general GNN to handle both proximity-aware and permutation-61

equivariant graph analytical tasks.62

• We prove that SMP has theoretical guarantees in preserving walk-based proximities and is at63

least as powerful as the existing GNNs in permutation-equivariant tasks.64

• Extensive experimental results demonstrate the effectiveness and efficiency of SMP. We show65

that a linear instantiation of SMP is expressive enough on the majority of datasets.66

2 RELATED WORK67

We briefly review GNNs and their permutation-equivariance and proximity-awareness property.68

The earliest GNNs adopt a recursive definition of node states (Scarselli et al., 2008; Gori et al.,69

2005) or a contextual realization (Micheli, 2009). GGS-NNs (Li et al., 2016) replace the recursive70

definition with recurrent neural networks (RNNs). Spectral GCNs (Bruna et al., 2014) defined graph71

convolutions using graph signal processing (Shuman et al., 2013; Ortega et al., 2018) with Cheb-72

Net (Defferrard et al., 2016) and GCN (Kipf & Welling, 2017) approximating the spectral filters us-73

ing a K-order Chebyshev polynomial and the first-order polynomial, respectively. MPNNs (Gilmer74

et al., 2017), GraphSAGE (Hamilton et al., 2017), and MoNet (Monti et al., 2017) are proposed75

as general frameworks by characterizing GNNs with a message-passing function and an updating76

function. More advanced variants such as GAT (Velickovic et al., 2018), JK-Nets (Xu et al., 2018b),77

GIN (Xu et al., 2018a), and GraphNets (Battaglia et al., 2018) follow these frameworks.78

Li et al. (Li et al., 2018), Xu et al. (Xu et al., 2018a), Morris et al. (Morris et al., 2019), and79

Maron et al. (Maron et al., 2019a) show the connection between GNNs and the Weisfeiler-Lehman80

algorithm (Shervashidze et al., 2011) of graph isomorphism tests, in which permutation-equivariance81

holds a key constraint. Maron et al. (Maron et al., 2019b) and Keriven et al. (Keriven & Peyré, 2019)82

analyze the permutation-equivariance property of GNNs more theoretically. To date, most of the83

existing GNNs are permutation-equivariant and thus are not proximity-aware. The only exception84

is P-GNN (You et al., 2019), which proposes to capture the positions of nodes using the relative85

distance between the target node and some randomly chosen anchor nodes. However, P-GNN cannot86

satisfy permutation-equivariance and is computationally expensive.87

Very recently, motivated by enhancing the expressive power of GNNs in graph isomorphism tests88

and distributed computing literature (Angluin, 1980; Linial, 1992; Naor & Stockmeyer, 1995),89

some studies suggest assigning unique node identifiers for GNNs (Loukas, 2020) such as one-hot90

IDs (Murphy et al., 2019) or random numbers (Dasoulas et al., 2019; Sato et al., 2020; Corso et al.,91

2020). For example, Sato et al. (Sato et al., 2020) novelly show that random numbers can enhance92

GNNs in tackling two important graph-based NP problems with a theoretical guarantee, namely the93
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minimum dominating set and the maximum matching problem, and Fey et al. (Fey et al., 2020) em-94

pirically show the effectiveness of random features in the graph matching problem. Our work differs95

in that we systematically study how to preserve permutation-equivariance and proximity-awareness96

simultaneously in a simple yet effective framework, which is a new topic different from these ex-97

isting works. Besides, we theoretically prove that our proposed method can preserve walk-based98

proximities by using the random projection literature. We also demonstrate the effectiveness of our99

method on various large-scale benchmarks for both node- and edge-level tasks, while no similar100

results are reported in the literature.101

The design of our method is also inspired by the random projection literature in dimensionality re-102

duction (Vempala, 2005) and to the best of our knowledge, we are the first to study random projection103

in the scope of GNNs. More remotely, our definition of node proximities is inspired and inherited104

from graph kernels (Gärtner et al., 2003; Borgwardt & Kriegel, 2005), network embedding (Perozzi105

et al., 2014; Grover & Leskovec, 2016), and general studies of graphs (Newman, 2018).106

3 MESSAGE-PASSING GNNS107

We consider a graphG = (V, E ,F) where V = {v1, ..., vN} is the set ofN = |V| nodes, E ⊆ V×V108

is the set of M = |E| edges, and F ∈ RN×d0 is a matrix of d0 node features. The adjacency matrix109

is denoted as A, where its ith row, jth column and an element denoted as Ai,:, A:,j , and Ai,j ,110

respectively. In this paper, we assume the graph is unweighted and undirected. The neighborhood111

of node vi is denoted as Ni and Ñi = Ni ∪ {vi}.112

The existing GNNs usually follow a message-passing framework (Gilmer et al., 2017), where the lth113

layer adopts a neighborhood aggregation function AGG(·) and an updating function UPDATE(·):114

m
(l)
i = AGG({h(l)

j ,∀j ∈ Ñi}),h
(l+1)
i = UPDATE([h(l)

i ,m
(l)
i ]), (1)

where h
(l)
i ∈ Rdl is the representation of node vi in the lth layer, dl is the dimensionality, and m

(l)
i115

are the messages. We also denote H(l) = [h
(l)
1 , ...,h

(l)
N ] and [·, ·] is the concatenation operation. The116

node representations are initialized as node features, i.e., H(0) = F. We denote a GNN following117

Eq. (1) with L layers as a parameterized function as follows2:118

H(L) = FGNN(A,F;W), (2)

where H(L) are final node representations learned by the GNN and W denotes all the parameters.119

One key property of the existing GNNs is permutation-equivariance.120

Definition 1 (Permutation-equivariance). Consider a graph G = (V, E ,F) and any permutation121

P : V → V so that G′ = (V, E ′,F′) has an adjacency matrix A′ = PAPT and a feature matrix122

F′ = PF, where P ∈ {0, 1}N×N is the permutation matrix corresponding to P , i.e., Pi,j = 1 iff123

P(vi) = vj . A GNN satisfies permutation-equivariance if the node representations are equivariant124

with respect to P , i.e.,125

PFGNN(A,F;W) = FGNN(PAPT ,PF;W). (3)

It is known that GNNs following Eq. (1) are permutation-equivariant (Maron et al., 2019b).126

Definition 2 (Automorphism). A graph G is said to have (non-trivial) automorphism if there exists127

a non-identity permutation matrix P 6= IN so that A = PAPT and F = PF. We denote the128

corresponding automorphic node pairs as CG =
⋃

P6=IN
{(i, j)|Pi,j 6= 0, i 6= j}129

Corollary 1. Using Definition 1 and 2, if a graph has automorphism, a permutation-equivariant130

GNN will produce identical node representations for automorphic node pairs:131

h
(L)
i = h

(L)
j ,∀(i, j) ∈ CG. (4)

Since the node representations are used for downstream tasks, the corollary shows that permutation-132

equivariant GNNs cannot differentiate automorphic node pairs. A direct consequence of Corol-133

lary 1 is that permutation-equivariant GNNs cannot preserve walk-based proximities between pairs134

of nodes. The formal definitions are as follows.135

2Since the final layer of GNNs is task-specific, e.g., a softmax layer for node classification or a readout layer
for graph classification, we only consider the GNN architecture to its last hidden layer.
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Definition 3 (Walk-based Proximities). For a given graph G = (V, E ,F), we use a matrix S ∈136

RN×N to denote walk-based proximities between pairs of nodes defined as:137

Si,j = S ({vi  vj}) , (5)

where vi  vj denotes walks from node vi to vj and S(·) is an arbitrary real-valued function. The138

length of a walk-based proximity is the maximum length of all the walks of the proximity.139

Typical examples of walk-based proximities include the shortest distance (You et al., 2019), the high-140

order proximities (a sum of walks weighted by their lengths) (Zhang et al., 2018), and random walk141

probabilities (Klicpera et al., 2019). Next, we give a definition of preserving walk-based proximities.142

Definition 4. For a given walk-based proximity, a GNN is said to be able to preserve the proximity143

if there exists a decoder function Fde(·) satisfying that for any graph G = (V, E ,F), there exist144

parameters WG so that ∀ε > 0:145 ∣∣∣Si,j −Fde

(
H

(L)
i,: ,H

(L)
j,:

)∣∣∣ < ε, (6)

where146

H(L) = FGNN(A,F;WG). (7)

Note that we do not constrain the GNN architecture as long as it follows Eq. (1), and the decoder147

function is also arbitrary (but notice that it cannot take the graph structure as inputs). In fact, both148

the GNN and the decoder function can be arbitrarily deep and with sufficient hidden units.149

Theorem 1. The existing permutation-equivariant GNNs cannot preserve any walk-based proximity150

except the trivial solution that all node pairs have the same proximity.3151

The formulation and proof of the theorem are given in Appendix A.1. Since walk-based proximities152

are rather general and widely adopted in graph analytical tasks such as link prediction, the theorem153

shows that the existing permutation-equivariant GNNs cannot handle these tasks well.154

4 THE MODEL155

4.1 A GNN FRAMEWORK USING STOCHASTIC MESSAGE PASSING156

A major shortcoming of permutation-equivariant GNNs is that they cannot differentiate automorphic157

node pairs. To solve that problem, we need to introduce some mechanism as “symmetry breaking”,158

i.e., to enable GNNs to distinguish these nodes. To achieve this goal, we sample a stochastic matrix159

E ∈ RN×d where each element follows an i.i.d. normal distribution N (0, 1). The stochastic matrix160

can provide signals in distinguishing the nodes because they are randomly sampled without being161

affected by the graph automorphism. In fact, we can easily calculate that the Euclidean distance162

between two stochastic signals divided by a constant
√
2 follows a chi distribution χd:163

1√
2
|Ei,: −Ej,:| ∼ χd,∀i, j. (8)

When d is reasonably large, e.g., d > 20, the probability of two signals being close is very low.164

Then, inspired by the message-passing framework, we apply a GNN on the stochastic matrix so that165

nodes can exchange information of the stochastic signals:166

Ẽ = FGNN (A,E;W) . (9)

We call Ẽ the stochastic representation of nodes. Using the stochastic matrix and message-passing,167

Ẽ can be used to preserve node proximities (see Theorem 2 and Theorem 3). Then, to let our model168

still be able to utilize node features, we concatenate Ẽ with the node representations from another169

GNN with node features as inputs:170

H = Foutput([Ẽ,H
(L)])

Ẽ = FGNN (A,E;W) ,H(L) = FGNN′(A,F;W
′),

(10)

3Proposition 1 in (You et al., 2019) can be regarded as a special case of Theorem 1 using the shortest
distance proximity.
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where Foutput(·) is an aggregation function such as a linear function or simply the identity mapping.171

In a nutshell, our proposed method augments the existing GNNs with a stochastic representation172

learned by message-passings to differentiate different nodes and preserve node proximities.173

There is also a delicate choice worthy mentioning, i.e., whether the stochastic matrix E is fixed or174

resampled in each epoch. By fixing E, the model can learn to memorize the stochastic representation175

and distinguish different nodes, but with the cost of unable to handle nodes not seen during training.176

On the other hand, by resampling E in each epoch, the model can have a better generalization177

ability since the model cannot simply remember one specific stochastic matrix. However, the node178

representations are not fixed (but pairwise proximities are preserved; see Theorem 2). In these cases,179

Ẽ is more capable of handling pairwise tasks such as link prediction or pairwise node classification.180

In this paper, we use a fixed E for transductive datasets and resample E for inductive datasets.181

Time Complexity From Eq.(10), the time complexity of our framework mainly depends on the182

two GNNs in learning the stochastic and permutation-equivariant node representations. In this paper,183

we instantiate these two GNNs using simple message-passing GNNs such as GCN (Kipf & Welling,184

2017) and SGC (Wu et al., 2019) (see Section 4.2 and Section 4.3). Thus, the time complexity of185

our method is the same as these models, which is O(M), i.e., linear with respect to the number of186

edges. We also empirically compare the running time of different models in Appendix 5.5. Besides,187

many acceleration schemes for GNNs such as sampling (Chen et al., 2018a;b; Huang et al., 2018)188

or partitioning the graph (Chiang et al., 2019) can be directly applied to our framework.189

4.2 A LINEAR INSTANTIATION190

Based on the general framework shown in Eq. (10), we attempt to explore its minimum model191

instantiation, i.e., a linear model. Specifically, inspired by Simplified Graph Convolution (SGC) (Wu192

et al., 2019), we adopt a linear message-passing for both GNNs, i.e.,193

H = Foutput([Ẽ,H
(L)]) = Foutput(

[
ÃKE, ÃKF

]
), (11)

where Ã = (D+ I)−
1
2 (A+ I)(D+ I)−

1
2 is the normalized graph adjacency matrix with self-loops194

proposed in GCN (Kipf & Welling, 2017) and K is the number of propagation steps. We also set195

Foutput(·) in Eq. (11) as a linear mapping or identity mapping.196

Though seemingly simple, we show that such an SMP instantiation possesses a theoretical guarantee197

in preserving the walk-based proximities.198

Theorem 2. An SMP in Eq. (11) with the message-passing matrix Ã and the number of propagation199

stepsK can preserve the walk-based proximity ÃK(ÃK)T with high probability if the dimensional-200

ity of the stochastic matrix d is sufficiently large, where the superscript T denotes matrix transpose.201

The theorem is regardless of whether E are fixed or resampled.202

The mathematical formulation and proof of the theorem are given in Appendix A.2. In addition, we203

show that SMP is equivalent to a permutation-equivariant GNN with certain parametrization.204

Remark 1. Suppose we adopt Foutput(·) as a linear function with the output dimensionality the205

same as FGNN′ . Then, Eq. (10) is equivalent to the permutation-equivariant FGNN′(A,F;W
′) if the206

parameters in Foutput(·) are all-zeros for Ẽ and an identity matrix for H(L).207

The result is straightforward from the definition. Then, we have the following corollary.208

Corollary 2. For any task, Eq. (10) with the aforementioned linear Foutput(·) is at least as powerful209

as the permutation-equivariant FGNN′(A,F;W
′), i.e., the minimum training loss of using H in210

Eq. (10) is equal to or smaller than using H(L) = FGNN′(A,F;W
′).211

In other words, SMP will not hinder the performance4 even the tasks are permutation-equivariant212

since the stochastic representations are concatenated with the permutation-equivariant GNNs fol-213

lowed by a linear mapping. In these cases, the linear SMP is equivalent to SGC (Wu et al., 2019).214

Combining Theorem 2 and Corollary 2, the linear SMP instantiation in Eq. (11) is capable of han-215

dling both proximity-aware and permutation-equivariant tasks.216

4Similar to previous works such as (Hamilton et al., 2017; Xu et al., 2018a), we only consider the minimum
training loss because the optimization landscapes and generalization gaps are difficult to analyze analytically.
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4.3 NON-LINEAR EXTENSIONS217

One may question whether a more sophisticated variant of Eq. (10) can further improve the expres-218

siveness of SMP. There are three adjustable components in Eq. (10): two GNNs in propagating the219

stochastic matrix and node features, respectively, and an output function. In theory, adopting non-220

linear models as either component is able to enhance the expressiveness of SMP. Indeed, if we use221

a sufficiently expressive GNN in learning Ẽ instead of linear propagations, we can prove a more222

general version of Theorem 2 as follows.223

Theorem 3. An SMP variant following Eq.(10) with FGNN (A,E;W) containing L layers can224

preserve any length-L walk-based proximity if the message-passing and updating functions in the225

GNN are sufficiently expressive. In this theorem, we also assume the Gaussian random vectors E226

are rounded to machine precision so that E is drawn from a countable subspace of R.227

The proof of the theorem is given in Appendix A.3. Similarly, we can adopt more advanced methods228

for Foutput(·) such as gating or attention so that the two GNNs are more properly integrated.229

Although non-linear extensions of SMP can, in theory, increase the model expressiveness, they also230

take a higher risk of over-fitting due to model complexity, not to mention that the computational cost231

will also increase. In practice, we find in ablation studies that the linear SMP instantiation in Eq. (11)232

works reasonably well on most of the datasets (please refer to Section 5.4 for further details).233

5 EXPERIMENTS234

5.1 EXPERIMENTAL SETUPS235

Datasets We conduct experiments on the following ten datasets: two simulation datasets, Grid236

and Communities (You et al., 2019), a communication dataset Email (You et al., 2019), two coau-237

thor networks, CS and Physics (Shchur et al., 2018), two protein interaction networks, PPI (Hamil-238

ton et al., 2017) and PPA (Hu et al., 2020), and three GNN benchmarks, Cora, CiteSeer, and239

PubMed (Yang et al., 2016). We only report the results of three benchmarks for the node classi-240

fication task and the results for other tasks are shown in Appendix B due to the page limit. More241

details of the datasets including their statistics are provided in Appendix C.1. These datasets cover242

a wide spectrum of domains, sizes, and with or without node features. Since Email and PPI contain243

more than one graph, we conduct experiments in an inductive setting on these two datasets, i.e., the244

training, validation, and testing set are split with respect to different graphs.245

Baselines We adopt two sets of baselines. The first set is permutation-equivariant GNNs including246

GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018), and SGC (Wu et al., 2019), which are247

widely adopted GNN architectures. The second set contains P-GNN (You et al., 2019), the only248

proximity-aware GNN to date. We use the P-GNN-F version.249

In comparing with the baselines, we mainly evaluate two variants of SMP with different Foutput(·):250

SMP-Identity, i.e., Foutput(·) as an identity mapping, and SMP-Linear, i.e., Foutput(·) as a linear251

mapping. Note that both variants adopt linear message-passing functions as SGC. We conduct more252

ablation studies with different SMP variants in Section 5.4.253

For fair comparisons, we adopt the same architecture and hyper-parameters for all the methods254

(please refer to Appendix C.2 for the details). For datasets without node features, we adopt a con-255

stant vector as the node features. We experiment on two tasks: link prediction and node classifica-256

tion. Additional experiments on graph reconstruction, pairwise node classification, and running time257

comparison are provided in Appendix B. We repeat the experiments 10 times for datasets except for258

PPA and 3 times for PPA, and report the average results.259

5.2 LINK PREDICTION260

Link prediction aims to predict missing links of a graph. Specifically, we split the edges into 80%-261

10%-10% and use them for training, validation, and testing, respectively. Besides adopting those real262

edges as positive samples, we obtain negative samples by randomly sampling an equal number of263

node pairs that do not have edges. For all the methods, we set a simple classifier: Sigmoid(HT
i Hj),264

i.e., use the inner product to predict whether a node pair (vi, vj) forms a link, and use AUC (area265
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Table 2: The results of link prediction tasks measured in AUC (%). The best results and the second-
best results for each dataset, respectively, are in bold and underlined.

Model Grid Communities Email CS Physics PPI

SGC 57.6±3.8 51.9±1.6 68.5±7.0 96.5±0.1 96.6±0.1 80.5±0.4
GCN 61.8±3.6 50.3±2.5 67.4±6.9 93.4±0.3 93.8±0.2 78.0±0.4
GAT 61.0±5.5 51.1±1.6 53.5±6.3 93.7±0.9 94.1±0.4 79.3±0.5

PGNN5 73.4±6.0 97.8±0.6 70.9±6.4 82.2±0.5 Out of memory 80.8±0.4

SMP-Identity 55.1±4.8 98.0±0.7 72.9±5.1 96.5±0.1 96.5±0.1 81.0±0.2
SMP-Linear 73.6±6.2 97.7±0.5 75.7±5.0 96.7±0.1 96.1±0.1 81.9±0.3

under the curve) as the evaluation metric. One exception to the aforementioned setting is that on the266

PPA dataset, we follow the splits and evaluation metric (i.e., Hits@100) provided by the dataset (Hu267

et al., 2020). The results except PPA are shown in Table 2. We make the following observations.268

• Our proposed SMP achieves the best results on five out of the six datasets and is highly compet-269

itive (the second-best result) on the other (Physics). The results demonstrate the effectiveness of270

our proposed method on link prediction tasks. We attribute the strong performance of SMP to its271

capability of maintaining both proximity-awareness and permutation-equivariance properties.272

• On Grid, Communities, Email, and PPI, both SMP and P-GNN outperform the permutation-273

equivariant GNNs, proving the importance of preserving node proximities. Although SMP is274

simpler and more computationally efficient than P-GNN, SMP reports even better results.275

• When node features are available (CS, Physics, and PPI), SGC can outperform GCN and GAT.276

The results re-validate the experiments in SGC (Wu et al., 2019) that the non-linearity in GNNs is277

not necessarily indispensable. Some plausible reasons include that the additional model complex-278

ity brought by non-linear operators makes the models tend to overfit and also difficult to train (see279

Appendix B.6). On those datasets, SMP retains comparable performance on two coauthor graphs280

and shows better performance on PPI, possibly because node features on protein graphs are less281

informative than node features on coauthor graphs for predicting links, and thus preserving graph282

structure is more beneficial on PPI.283

• As Email and PPI are conducted in an inductive setting, i.e., using different graphs for train-284

ing/validation/testing, the results show that SMP can handle inductive tasks as well.285

Table 1: The results of link prediction on the
PPA dataset. The best result and the second-best
result are in bold and underlined, respectively.

Model Hits@100

SGC 0.1187±0.0012
GCN 0.1867±0.0132
GraphSAGE 0.1655±0.0240

P-GNN Out of Memory

Node2vec 0.2226±0.0083
Matrix Factorization 0.3229±0.0094

SMP-Identity 0.2018±0.0148
SMP-Linear 0.3582±0.0070

The results on PPA are shown in Table 1. SMP286

again outperforms all the baselines, showing that287

it can handle large-scale graphs with millions of288

nodes and edges. PPA is part of a recently re-289

leased Open Graph Benchmark (Hu et al., 2020).290

The superior performance on PPA further demon-291

strates the effectiveness of our proposed method292

in the link prediction task.293

5.3 NODE CLASSIFICATION294

Next, we conduct experiments of node classifica-295

tion, i.e., predicting the labels of nodes. Since296

we need ground-truths in the evaluation, we only297

adopt datasets with node labels. Specifically, for298

CS and Physics, following (Shchur et al., 2018), we adopt 20/30 labeled nodes per class for train-299

ing/validation and the rest for testing. For Communities, we adjust the number as 5/5/10 labeled300

nodes per class for training/validation/testing. For Cora, CiteSeer, and PubMed, we use the default301

splits that came with the datasets. We do not adopt Email because some graphs in the dataset are too302

small to show stable results and exclude PPI as it is a multi-label dataset.303

5The results of PGNN are slightly different compared to the paper because we adopt a more practical and
common setting that negative samples in the data are not known apriori but randomly sampled in each epoch.
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We use a softmax layer on the learned node representations as the classifier and adopt accuracy,304

i.e., how many percentages of nodes are correctly classified, as the evaluation criteria. We omit the305

results of SMP-Identity for this task since the node representations in SMP-Identity have a fixed306

dimensionality that does not match the number of classes.307

Table 3: The results of node classification tasks measured by accuracy (%). The best results and the
second-best results for each dataset, respectively, are in bold and underlined.

Model Communities CS Physics Cora CiteSeer PubMed

SGC 7.1±2.1 67.2±12.8 92.3±1.6 76.9±0.2 63.6±0.0 74.2±0.1
GCN 7.5±1.2 91.1±0.7 93.1±0.8 81.4±0.5 71.3±0.5 79.3±0.4
GAT 5.0±0.0 90.5±0.5 93.1±0.4 82.9±0.5 71.2±0.6 77.9±0.5

PGNN 5.2±0.5 77.6±7.6 Out of memory 59.2±1.5 55.7±0.9 Out of memory

SMP-Linear 99.9±0.3 91.5±0.8 93.1±0.8 80.9±0.8 68.2±1.0 76.5±0.8

The results are shown in Table 3. From the table, we observe that SMP reports nearly perfect results308

on Communities. Since the node labels are generated by graph structures on Communities and there309

are no node features, the model needs to be proximity-aware to handle it well. P-GNN, which shows310

promising results in the link prediction task, also fails miserably here.311

On the other five graphs, SMP reports highly competitive performance. These graphs are commonly-312

used benchmarks for GNNs. P-GNN, which completely ignores permutation-equivariance, performs313

poorly as expected. In contrast, SMP can manage to recover the permutation-equivariant GNNs314

and avoid being misled, as proven in Remark 1. In fact, SMP even shows better results than its315

counterpart, SGC, indicating that preserving proximities is also helpful for these datasets.316

5.4 ABLATION STUDIES317

We conduct ablation studies by comparing different SMP variants, including SMP-Identity, SMP-318

Linear, and the additional three variants as follows:319

• SMP-MLP: we set Foutput(·) as a fully-connected network with 1 hidden layer.320

• SMP-Linear-GCNfeat: we set FGNN′(A,F;W
′) in Eq. (10) to be a GCN (Kipf & Welling,321

2017), i.e., induce non-linearity in message passing for features. Foutput(·) is still linear.322

• SMP-Linear-GCNboth: we set both FGNN (A,E;W) and FGNN′(A,F;W
′) to be a GCN (Kipf323

& Welling, 2017), i.e., induce non-linearity in message passing for both features and stochastic324

representations. Foutput(·) is linear.325

We show the results for link prediction tasks in Table 4. The results for node classification and326

pairwise node classification, which imply similar conclusions, are provided in Table 10 and Table 11327

in Appendix B.5. We make the following observations.328

• In general, SMP-Linear shows good-enough performance, achieving the best or second-best re-329

sults on six datasets and highly competitive on the other (Communities). SMP-Identity, which330

does not have parameters in the output function, performs slightly worse. The results demon-331

strate the importance of adopting a learnable linear layer in the output function, which is con-332

sistent with Remark 1. SMP-MLP does not lift the performance in general, showing that adding333

extra complexities in Foutput(·) brings no gain in those datasets.334

• SMP-Linear-GCNfeat reports the best results on Communities, PPI, and PPA, indicating that335

adding extra non-linearities in propagating node features are helpful for some graphs.336

• SMP-Linear-GCNboth reports the best results on Gird with a considerable margin. Recall that337

Grid has no node features. The results indicate that inducing non-linearities can help the stochas-338

tic representations capture more proximities, which is more helpful for featureless graphs.339

5.5 EFFICIENCY COMPARISON340

To compare the efficiency of different methods quantitatively, we report the running time of different341

methods in Table 5. The results are averaged over 3,000 epochs on an NVIDIA TESLA M40 GPU342
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Table 4: The ablation study of different SMP variants for the link prediction task. Datasets except
PPA are measured by AUC (%) and PPA is measured by Hits@100. The best results and the second-
best results for each dataset are in bold and underlined, respectively.

Model Grid Communities Email CS Physics PPI PPA

SMP-Identity 55.1±4.8 98.0±0.7 72.9±5.1 96.5±0.1 96.5±0.1 81.0±0.2 0.2018±0.0148
SMP-Linear 73.6±6.2 97.7±0.5 75.7±5.0 96.7±0.1 96.1±0.1 81.9±0.3 0.3582±0.0070
SMP-MLP 72.1±4.3 97.8±0.6 62.7±8.1 88.9±0.8 89.2±0.4 80.1±0.3 0.2035±0.0038
SMP-Linear-GCNfeat 72.8±4.2 98.0±0.4 74.2±3.9 92.9±0.6 94.3±0.2 82.3±1.0 0.4090±0.0087
SMP-Linear-GCNboth 80.5±3.9 97.3±0.7 73.4±5.5 89.8±2.0 91.7±0.2 79.7±0.3 0.2125±0.0232

Table 5: The average running time (in milliseconds) for each epoch (including both training and
testing), on link prediction task.

Model Grid Communities Email CS Physics PPI

SGC 25 28 58 210 651 704
GCN 25 35 75 214 612 784
GAT 36 43 140 258 801 919

PGNN 81 84 206 19,340 Out of Memory 6,521

SMP-Identity 26 37 96 284 751 840
SMP-Linear 28 26 84 212 616 832
SMP-MLP 23 28 83 237 614 831
SMP-Linear-GCNfeat 23 29 90 231 636 855
SMP-Linear-GCNboth 34 40 95 228 626 895

with 12 GB of memory. The results show that SMP is computationally efficient, i.e., only marginally343

slower than SGC and comparable to GCN. P-GNN is at least an order of magnitude slower except344

for the extremely small graphs such as Grid, Communities, or Email with no more than a thousand345

nodes. In addition, the expensive memory cost makes P-GNN unable to work on large-scale graphs.346

5.6 MORE EXPERIMENTAL RESULTS347

Besides the aforementioned experiments, we also conduct experiments on the following tasks: graph348

reconstruction (Appendix B.1), pairwise node classification (Appendix B.2), and comparing with349

one-hot IDs (Appendix B.3). Please refer to the Appendix for experimental results and correspond-350

ing analyses.351

6 CONCLUSION352

In this paper, we propose SMP, a general and simple GNN to maintain both proximity-awareness353

and permutation-equivariance properties. We propose to augment the existing GNNs with stochastic354

node representations learned to preserve node proximities. We prove that SMP can enable GNN to355

preserve node proximities in theory and is equivalent to a permutation-equivariant GNN with certain356

parametrization. Experimental results demonstrate the effectiveness and efficiency of SMP. Ablation357

studies show that a linear SMP instantiation works reasonably well on most of the datasets.358
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A THEOREMS AND PROOFS504

A.1 THEOREM 1505

Here we formulate and prove Theorem 1.506

Theorem 1. For any walk-based proximity function S(·), a permutation-equivariant GNN cannot507

preserve S(·), except the trivial solution that all node pairs have the same proximity, i.e., Si,j =508

c,∀i, j, where c is a constant.509

Proof. We prove the theorem by contradiction. Assume there exists a non-trivial S(·) which a510

permutation-equivariant GNN can preserve. Consider any graph G = (V, E ,F) and denote N =511

|V|. We can create G′ = (V ′, E ′,F′) with |V ′| = 2N so that:512

E ′i,j =


Ei,j if i ≤ N, j ≤ N
Ei−N,j−N if i > N, j > N

0 else
, F′i,: =

{
Fi,: if i ≤ N
Fi−N,: if i > N

. (12)

Basically, we generate two “copies” of the original graph, one indexing from 1 to N , and the other513

indexing from N +1 to 2N . By assumption, there exists a permutation-equivariant GNN which can514

preserve S(·) in G′ and we denote the node representations as H′(L) = FGNN(A
′,F′;WG′). It is515

easy to see that node v′i and v′i+N in G′ form an automorphic node pair. Using Corollary 1, their516

representations will be identical in any permutation-equivariant GNN, i.e.,517

H
′(L)
i,: = H

′(L)
i+N,:,∀i ≤ N. (13)

Also, note that there exists no walk from the two copies, i.e.
{
v′i  v′j

}
=
{
v′j  v′i

}
= ∅,∀i ≤518

N, j > N . As a result, for ∀i ≤ N, j ≤ N, ∀ε > 0, we have:519

|Si,j − S(∅)| ≤
∣∣∣Si,j −Fde

(
H
′(L)
i,: ,H

′(L)
j,:

)∣∣∣+ ∣∣∣S(∅)−Fde

(
H
′(L)
i,: ,H

′(L)
j,:

)∣∣∣
=
∣∣∣Si,j −Fde

(
H
′(L)
i,: ,H

′(L)
j,:

)∣∣∣+ ∣∣∣Si,j+N −Fde

(
H
′(L)
i,: ,H

′(L)
j+N,:

)∣∣∣ < 2ε.
(14)

We can prove the same for ∀i > N, j > N . The equation naturally holds if i ≤ N, j > N or520

i > N, j ≤ N since
{
v′i  v′j

}
= ∅. Combining the results, we have ∀ε > 0,∀i, j, |Si,j − S(∅)| <521

2ε. Since ε can be arbitrarily small, the equation shows that all node pairs have the same proximity522

c = S(∅), which leads to a contraction and finishes our proof.523

Notice that in our proof, G′ can be constructed for any graph, so rather than designing one specific524

counter-example, we have shown that there always exists an infinite number of counter-examples by525

constructing automorphisms in the graph.526

Some may find that our counter-examples in the above proof will lead to multiple connected com-527

ponents. Next, we give an alternative proof maintaining one connected component (assuming the528

original graph is connected) under the assumption that the walk-based proximity is of finite length.529

Proof. Similar to the previous proof, we assume there exists a non-trivial S(·) which a permutation-530

equivariant GNN can preserve. Besides, we assume the length of S(·) is upper bounded by lmax,531

where lmax is any finite number, i.e., ∀i, j,532

Si,j = S ({vi  vj}) = S ({vi  vj |len(vi  vj) ≤ lmax}) . (15)
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Then, for a connected graph G = (V, E ,F), we create G′ = (V ′, E ′,F′) similar to Eq. (12). Specif-533

ically, denoting Ñ = N + lmax, we let G′ have 3Ñ nodes so that:534

E ′i,j =



Ei,j if i, j ≤ N

1 if N ≤ i, j ≤ Ñ + 1, |j − i| = 1

Ei−Ñ,j−Ñ if Ñ < i, j ≤ Ñ +N

1 if Ñ +N ≤ i, j ≤ 2Ñ + 1, |j − i| = 1

Ei−2Ñ,j−2Ñ if 2Ñ < i, j ≤ 2Ñ +N

1 if 2Ñ +N ≤ i, j, |j − i| = 1

1 if i = 3Ñ , j = 1 or j = 3Ñ , i = 1

0 else

,F′i,: =



Fi,: if i ≤ N

0 if N < i ≤ Ñ

Fi−Ñ,: if Ñ < i ≤ Ñ +N

0 if Ñ +N < i ≤ 2Ñ

Fi−2Ñ,: if 2Ñ < i ≤ 2Ñ +N

0 if 2Ñ +N < i

.

(16)
Intuitively, we create three “copies” of G and three “bridges” to connect the copies and thus make535

G′ also connected. It is also easy to see that nodes v′i, v
′
i+Ñ

, and v′
i+2Ñ

all form automorphic node536

pairs and thus we have:537

H
′(L)
i,: = H

′(L)
i+Ñ,:

= H
′(L)
i+ ˜2N,:

,∀i ≤ Ñ . (17)

Next, we can see that the nodes in G′ are divided into six parts (three copies and three bridges),538

which we denote as V ′1 = {v1, ..., vN}, V ′2 = {vN+1, ..., vÑ}, V ′3 =
{
vÑ+1, ..., vÑ+N

}
, V ′4 =539 {

vÑ+N+1, ..., v2Ñ
}

, V ′5 =
{
v2Ñ+1, ..., v2Ñ+N

}
, and V ′6 =

{
v2Ñ+N+1, ..., v3Ñ

}
. Since V ′2, V ′4, V ′6540

are bridges with length lmax, any walk crosses these bridges will have a length large than lmax. For541

example, let us focus on vi ∈ V ′1, i.e., i ≤ N . If vj is in V ′3, V ′4, or V ′5 (i.e., Ñ < j ≤ 2Ñ +N ), any542

walk vi  vj will either pass the bridge V ′2 or V ′6 and thus has a length larger than lmax. As a result,543

we have:544

Si,j = S ({vi  vj}) = S ({vi  vj |len(vi  vj) ≤ lmax}) = S (∅) . (18)

If vj ∈ V ′1 or vj ∈ V ′2, i.e., j ≤ Ñ , we can use the fact that vj and vj+Ñ forms an automorphic node545

pair similar to Eq. (14), i.e., ∀ε > 0, we have546

|Si,j − S(∅)| ≤
∣∣∣Si,j −Fde

(
H
′(L)
i,: ,H

′(L)
j,:

)∣∣∣+ ∣∣∣S(∅)−Fde

(
H
′(L)
i,: ,H

′(L)
j,:

)∣∣∣
=
∣∣∣Si,j −Fde

(
H
′(L)
i,: ,H

′(L)
j,:

)∣∣∣+ ∣∣∣Si,j+Ñ −Fde

(
H
′(L)
i,: ,H

′(L)
j+Ñ,:

)∣∣∣ < 2ε.
(19)

Similarly, if vj ∈ V ′6, i.e., 2Ñ +N < j, we can use the fact that vj and vj−Ñ forms an automorphic547

node pair to prove the same inequality. Thus, we prove that if i ≤ N, ∀ε > 0,∀j, |Si,j − S(∅)| < 2ε.548

The same proof strategy can be applied to i > N . Since ε can be arbitrarily small, the results show549

that all node pairs have the same proximity S(∅), which leads to a contraction and finishes our550

proof.551

A.2 THEOREM 2552

Here we formulate and prove Theorem 2. Note that some notations and definitions are introduced in553

Appendix A.1.554

Theorem 2. For the walk-based proximity S = ÃK(ÃK)T , SMP can preserve the proximity with555

high probability if the dimensionality of the stochastic matrix is sufficiently large, i.e., ∀ε > 0,∀δ >556

0, there ∃d0 so that any d > d0:557

P (|Si,j −Fde (Hi,:,Hj,:)| < ε) > 1− δ, (20)

where H are the node representation obtained from SMP in Eq. (11). The result holds for any558

stochastic matrix and thus is regardless of whether E is fixed or resampled during each epoch.559

Proof. Our proof is mostly based on the standard random projection theory. Firstly, since we have560

proven in Theorem 1 that the permutation-equivariant representations cannot preserve any walk-561

based proximity, here we prove that we can preserve the proximity only using Ẽ, which can be562
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easily achieved by ignoring H(L) in Foutput([Ẽ,H
(L)]), e.g., if we set Foutput as a linear function, the563

model can learn to set the corresponding weights for H(L) as all-zeros.564

We set the decoder function as a normalized inner product:565

Fde (Hi,:,Hj,:) =
1

d
Hi,:H

T
j,:. (21)

Then, denoting ai = ÃK
i,: and recalling Ẽ = ÃKE, we have:566

|Si,j −Fde (Hi,:,Hj,:)| = |aiaTj −
1

d
Ẽi,:Ẽ

T
j,:| = |aiaTj − ai

1

d
EETaTj |. (22)

Since E is a Gaussian random matrix, from the Johnson-Lindenstrauss lemma (Vempala, 2005) (in567

the inner product preservation forum, e.g., see Corollary 2.1 and its proof in (Sham & Greg, 2020)),568

∀0 < ε′ < 1
2 , we have:569

P

(
|aiaTj − ai

1

d
EETaTj | ≤

ε′

2
(‖ai‖+ ‖aj‖)

)
> 1− 4e−

(ε′2−ε′3)d
4 . (23)

By setting ε′ = ε
maxi‖ai‖ , we have ε > ε′

2 (‖ai‖+ ‖aj‖) and:570

P (|Si,j −Fde (Hi,:,Hj,:)| < ε) > 1− 4e−
( ε
maxi‖ai‖

2− ε
maxi‖ai‖

3)d

4 , (24)
which leads to the theorem by solving and setting d0 as follows:571

4e−
( ε
maxi‖ai‖

2− ε
maxi‖ai‖

3)d0

4 = δ ⇒ d0 =
4 log 4

δ (maxi ‖ai‖)3

ε2 maxi ‖ai‖ − ε3
. (25)

572

A.3 THEOREM 3573

Here we formulate and prove Theorem 3. Note that some notations and definitions are introduced in574

Appendix A.1.575

Theorem 3. For any length-L walk-based proximity, i.e.,

Si,j = S ({vi  vj}) = S ({vi  vj |len(vi  vj) ≤ L}) ,
where len(·) is the length of a walk, there exists an SMP variant in Eq. (10) with FGNN (A,E;W)576

containing L layers (including the input layer) to preserve that proximity if the following conditions577

hold: (1) The stochastic matrix E contains unique signals for different nodes, i.e. Ei,: 6= Ej,:,∀i 6=578

j. (2) The message-passing and updating functions in learning Ẽ are bijective. (3) The decoder579

function Fde(·) also takes E as inputs and is universal approximation.580

Proof. Similar as Theorem 2, we only utilize Ẽ during our proof. We use e
(l)
i , 0 ≤ l < L to581

denote the node representations in the lth layer of FGNN (A,E;W), i.e., e(0)i = Ei,: and e
(L−1)
i =582

Ẽi,:. Our proof strategy is to show that the stochastic node representations can remember all the583

information about the walks.584

Firstly, as the message-passing and updating function are bijective by assumption, we can recover585

from the node representations in each layer all their neighborhood representations in the previous586

layer. Specifically, there exist F (l)(·), 1 ≤ l < L such that:587

F (l)
(
e
(l)
i

)
=
[
e
(l−1)
i ,

{
e
(l−1)
j , j ∈ Ni

}]
6. (26)

For notation conveniences, we split the function into two parts, one for the node itself and the other588

for its neighbors:589

F (l)
self

(
e
(l)
i

)
= e

(l−1)
i ,

F (l)
neighbor

(
e
(l)
i

)
=
{
e
(l−1)
j , j ∈ Ni

}
.

(27)

6To let F (l)(·) output a set with arbitrary lengths, we can adopt sequence-based models such an LSTM.
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For the first function, if we successively apply such functions from the lth layer to the input layer, we590

can recover the input features of the GNN, i.e., E. Since the stochastic matrix E contains a unique591

signal for different nodes, we can decode the node ID from e
(0)
i , i.e., there existsF (0)

self

(
e
(0)
i ;E

)
= i.592

For brevity, we denote applying such l + 1 functions to get the node ID as593

F (0:l)
self

(
e
(l)
i

)
= F (0)

self

(
F (1)

self

(
...
(
F (l)

self

(
e
(l)
i

)))
;E
)
= i. (28)

For the second function, we can apply F (l−1)
neighbor to the decoded vector set so that we can recover their594

neighborhood representations in the (l − 2)th layer, etc.595

Next, we show that for e(l−1)j , there exists a length-l walk vi  vj = (va1 , va2 , ..., val), where596

va1 = vi, val = vj if and only if F (0:l−1)
self

(
e
(l−1)
j

)
= al = j and there exists e(l−2), ..., e(0) such597

that:598

e(l−2) ∈ F (l−1)
neighbor

(
e
(l−1)
j

)
,F (0:l−2)

self

(
e(l−2)

)
= al−1,

e(l−3) ∈ F (l−2)
neighbor

(
e(l−2)

)
,F (0:l−3)

self

(
e(l−3)

)
= al−2,

...

e(0) ∈ F (1)
neighbor

(
e(1)

)
,F (0:0)

self

(
e(0)

)
= a1 = i.

(29)

This result is easily verified as:599

(va1 , va2 , ..., val) is a walk⇔ Eai,aj = Eaj ,ai = 1⇔ ai ∈ Nai+1
,∀1 ≤ i < l

⇔ ∃e(i−1) ∈ F (i)
neighbor

(
e(i)
)
,F (0:i−1)

self

(
e(i−1)

)
= ai,∀1 ≤ i < l.

(30)
Note that all the information is encoded in Ẽ, i.e., we can decode {vi  vj |len(vi  vj) ≤ L} from600

e
(L−1)
j by successively applying F (l)

self (·) ,F
(l)
neighbor (·). We can also apply F (0:L−1)

self to e
(L−1)
i to get601

the start node ID i. Putting it together, we have:602

F
(
e
(L−1)
j , e

(L−1)
i

)
= {vi  vj |len(vi  vj) ≤ L} , (31)

whereF(·) is composed ofF (l)
self (·) , 0 ≤ l < L andF (l)

neighbor (·) , 1 ≤ l < L. Applying the proximity603

function S(·), we have:604

S
(
F
(
e
(L−1)
j , e

(L−1)
i

))
= Si,j . (32)

We finish the proof by setting the real decoder function Fde(·) to arbitrarily approximate this desired605

function S (F (·, ·)) under the universal approximation assumption.606

B ADDITIONAL EXPERIMENTAL RESULTS607

B.1 GRAPH RECONSTRUCTION608

To verify that our proposed SMP can indeed preserve node proximities, we conduct experiments of609

graph reconstruction (Wang et al., 2016), i.e., using the node representations learned by GNNs to610

reconstruct the edges of the graph. Graph reconstruction corresponds to the first-order proximity611

between nodes, i.e., whether two nodes directly have a connection, which is the most straight-612

forward node proximity (Tang et al., 2015). Specifically, following Section 5.2, we adopt the inner613

product classifier Sigmoid(HT
i Hj) and use AUC as the evaluation metric. To control the impact614

of node features (i.e., since many graphs exhibit assortative mixing, even models only using node615

features can reconstruct the edges to a certain extent), we do not use node features for all the models.616

We report the results in Table 6. The results show that SMP greatly outperforms permutation-617

equivariant GNNs such as GCN and GAT in graph reconstruction, clearly demonstrating that SMP618

can better preserve node proximities. PGNN shows highly competitive results as SMP. However,619

similar to other tasks, the intensive memory usage makes PGNN unable to handle medium-scale620

graphs such as Physics and PubMed.621
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Table 6: The results of graph reconstruction measured in AUC (%). The best and the second-best
results for each dataset, respectively, are in bold and underlined. OOM represents out of memory.

Model Grid Communities Email CS Physics PPI Cora CiteSeer PubMed

SGC 74.8±0.4 65.4±1.6 71.6±0.3 66.7±0.1 66.2±0.0 76.3±0.2 56.7±9.7 58.5±0.1 71.9±0.1
GCN 73.0±0.3 63.7±1.2 72.5±0.4 75.5±0.4 76.8±0.4 79.2±0.4 68.2±3.9 69.8±8.0 77.2±2.1
GAT 59.6±1.2 52.9±1.1 56.9±1.9 57.0±1.4 59.1±0.7 61.1±1.9 57.8±1.0 63.2±1.5 58.8±0.8

PGNN 99.4±0.1 97.7±0.1 85.6±0.8 97.2±0.6 OOM 85.2±0.6 98.1±0.6 99.7±0.1 OOM

SMP-Identity 99.2±0.1 97.5±0.1 80.0±0.3 77.1±2.3 73.7±0.3 79.5±0.2 89.7±5.7 97.1±0.8 77.0±0.1
SMP-Linear 99.1±0.1 97.8±0.1 86.7±0.2 96.3±0.2 95.5±0.2 85.5±0.1 96.3±0.1 98.2±0.1 95.8±0.2

B.2 PAIRWISE NODE CLASSIFICATION622

Besides standard node classification experiments reported in Section 5.3, we follow (You et al.,623

2019) and experiment on pairwise node classification, i.e., predicting whether two nodes have the624

same label. Compared with standard node classification, pairwise node classification focuses more625

on the relations between nodes and thus requires the model to be proximity-aware to perform well.626

Similar to link prediction, we split the positive samples (i.e., node pairs with the same label) into an627

80%-10%-10% training-validation-testing set with an equal number of randomly sampled negative628

pairs. For large graphs, since the possible positive samples are intractable (i.e. O(N2)), we use a629

random subset. Since we also need node labels as the ground-truth, we only conduct pairwise node630

classification on datasets when node labels are available. We also exclude the results of PPI since631

the dataset is multi-label and cannot be used in a pairwise setting (You et al., 2019). Similar to632

Section 5.2, we adopt a simple inner product classifier and use AUC as the evaluation metric.633

The results are shown in Table 7. We observe consistent results as link prediction in Section 5.2, i.e.,634

SMP reports the best results on four datasets and the second-best results on the other three datasets.635

These results again verify that SMP can effectively preserve and utilize node proximities when636

needed while retaining comparable performance when the tasks are more permutation-equivariant637

like, e.g., on CS and Physics.638

Table 7: The results of pairwise node classification tasks measured in AUC (%). The best results
and the second-best results for each dataset, respectively, are in bold and underlined.

Model Communities Email CS Physics Cora CiteSeer PubMed

SGC 67.4±2.4 56.3±5.4 99.8±0.0 99.6±0.0 99.2±0.3 95.5±0.7 92.3±0.3
GCN 64.9±2.3 55.0±5.7 96.8±0.7 99.7±0.1 97.7±0.6 92.9±1.2 94.8±0.4
GAT 52.5±1.3 47.7±2.7 95.2±0.6 96.3±0.2 91.6±0.7 73.6±2.7 87.1±0.2

PGNN 98.6±0.5 63.3±5.5 90.0±0.5 Out of memory 85.5±1.2 49.8±1.8 Out of memory

SMP-Identity 98.8±0.5 56.9±4.1 99.7±0.0 99.6±0.0 99.2±0.2 95.2±1.1 91.9±0.3
SMP-Linear 98.8±0.5 74.5±4.1 99.8±0.0 99.6±0.0 99.3±0.3 95.3±0.4 93.4±0.2

B.3 COMPARISON WITH USING IDS639

We further compare SMP with augmenting GNNs using a one-hot encoding of node IDs, i.e., the640

identity matrix. Intuitively, since the IDs of nodes are unique, such a method does not suffer from the641

automorphism problem and should also enable GNNs to preserve node proximities. However, theo-642

retically speaking, using such a one-hot encoding has two major problems. Firstly, the dimensional-643

ity of the identity matrix is N ×N , and thus the number of parameters in the first message-passing644

layer is also on the order of O(N). Therefore, the method will inevitably be computationally ex-645

pensive and may not be scalable to large-scale graphs. A large number of parameters will also more646

likely lead to the overfitting problem. Secondly, the node IDs are not transferable across different647

graphs, i.e., the node v1 in one graph and the node v1 in another graph do not necessarily share a648

similar meaning. But as the parameters in the message-passings depend on the node IDs (since they649

are input features), such a mechanism cannot handle inductive tasks well.7650

7One may question whether SMP is transferable across different graphs since the stochastic features are
independently drawn. Empirically, we find that SMP reports reasonably well results on inductive datasets such
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Table 8: The results of comparing SMP with using one-hot IDs in GCNs. OOM represents out of
memory. — represents the task is unavailable.

Task Model Grid Communities Email CS Physics PPI Cora CiteSeer PubMed

Link GCNonehot 91.5±2.1 98.3±0.7 71.2±3.5 93.1±1.3 OOM 78.6±0.3 86.8±1.5 81.7±1.1 89.4±0.5
Prediction SMP-Linear 73.6±6.2 97.7±0.5 75.7±5.0 96.7±0.1 96.1±0.1 81.9±0.3 92.7±0.7 92.6±1.0 95.4±0.2

Pairwise Node GCNonehot — 98.9±0.5 67.3±5.6 97.6±0.2 OOM — 98.2±0.3 94.4±1.2 98.9±0.1
Classification SMP-Linear — 98.8±0.5 74.5±4.1 99.8±0.0 99.6±0.0 — 99.3±0.3 95.3±0.4 93.4±0.2

Node GCNonehot — 99.6±1.0 — 86.9±1.5 OOM — 77.6±1.1 57.7±5.8 74.9±0.6
Classification SMP-Linear — 99.9±0.3 — 91.5±0.8 93.1±0.8 — 80.9±0.8 68.2±1.0 76.5±0.8

We also empirically compare such a method with SMP and report the results in Table 8. The results651

show that SMP-Linear outperforms GCNonehot in most cases. Besides, GCNonehot fails to handle652

Physics, which is only a medium-scale graph, due to the heavy memory usage. One surprising result653

is that GCNonehot outperforms SMP-Linear on Grid, the simulated graph where nodes are placed on654

a 20 × 20 grid. A plausible reason is that since the edges in Grid follow a specific rule, using a655

one-hot encoding gives GCNonehot enough flexibility to learn and remember the rules, and the model656

does not overfit because the graph has a rather small scale.657

B.4 ADDITIONAL LINK PREDICTION RESULTS658

We further report the results of link prediction on three GNN benchmarks: Cora, CiteSeer, and659

PubMed. The results are shown in Table 9. The results show similar trends as other datasets pre-660

sented in Section 5.2, i.e., SMP reports comparable results as other permutation-equivariant GNNs661

while PGNN fails to handle the task well.662

Table 9: The results of the link prediction task measured in AUC (%). The best results and the
second-best results for each dataset, respectively, are in bold and underlined.

Model Cora CiteSeer PubMed

SGC 93.6±0.6 94.7±0.8 95.8±0.2
GCN 90.6±1.0 78.2±1.7 92.4±0.9
GAT 88.5±1.2 87.8±1.0 89.2±0.8

PGNN 75.4±2.3 70.6±1.1 Out of memory

SMP-Identity 93.0±0.6 92.9±0.5 94.5±0.3
SMP-Linear 92.7±0.7 92.6±1.0 95.4±0.2
SMP-MLP 82.8±0.9 80.7±1.1 88.0±0.6
SMP-Linear-GCNfeat 86.7±1.4 81.1±1.4 90.5±0.6
SMP-Linear-GCNboth 80.1±2.5 80.0±2.0 81.1±2.0

B.5 ADDITIONAL ABLATION STUDIES663

We report the ablation study results for the node classification task and pairwise node classification664

task in Table 10 and Table 11, respectively. The results again show that SMP-Linear generally665

achieves good-enough results on the majority of the datasets and adding non-linearities does not666

necessarily lift the performance of SMP.667

We also compare whether the stochastic signals E are fixed or not during different training epochs668

for our proposed SMP. For brevity, we only report the results for the link prediction task in Table 12.669

The results show that fixing E usually leads to better results on transductive datasets (recall that670

datasets except Email and PPI are transductive) and resampling E leads to better results on inductive671

datasets in general. The results are consistent with our analysis in Section 4.1.672

as Email and PPI. One plausible reason is that since the proximities of nodes are preserved even the random
features per se are different (see Theorem 2), all subsequent parameters based on proximities can be transferred.
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Table 10: The ablation study of different SMP variants for the node classification task. The best
results and the second-best results are in bold and underlined, respectively.

Model Communities CS Physics Cora CiteSeer PubMed

SMP-Linear 99.9±0.3 91.5±0.8 93.1±0.8 80.9±0.8 68.2±1.0 76.5±0.8
SMP-MLP 100.0±0.2 90.1±0.5 92.3±0.8 79.3±0.8 67.0±1.5 76.8±0.9
SMP-Linear-GCNfeat 100.0±0.0 89.8±0.7 92.9±0.8 78.9±1.2 67.8±0.6 77.3±0.6
SMP-Linear-GCNboth 100.0±0.2 77.4±4.2 87.1±3.5 69.2±2.5 49.8±3.1 68.1±4.1

Table 11: The ablation study of different SMP variants for the pairwise node classification task. The
best results and the second-best results are in bold and underlined, respectively.

Model Communities Email CS Physics Cora CiteSeer PubMed

SMP-Identity 98.8±0.5 56.9±4.1 99.7±0.0 99.6±0.0 99.2±0.2 95.2±1.1 91.9±0.3
SMP-Linear 98.8±0.5 74.5±4.1 99.8±0.0 99.6±0.0 99.3±0.3 95.3±0.4 93.4±0.2
SMP-MLP 98.7±0.3 65.4±6.3 94.3±0.6 97.6±0.4 90.3±3.0 67.7±13.7 93.4±0.4
SMP-Linear-GCNfeat 99.0±0.4 60.2±9.3 95.6±0.7 98.3±0.7 96.1±0.7 88.8±1.6 94.8±0.2
SMP-Linear-GCNboth 98.8±0.4 61.6±6.0 95.2±0.7 97.8±0.8 94.3±1.9 83.5±3.9 94.1±0.7

B.6 COMPARISON OF PERMUTATION-EQUIVARIANT GNNS FOR LINK PREDICTION673

To investigate the performance of linear and non-linear variants of permutation-equivariant GNNs674

for the link prediction task, we additionally report both the training accuracies and the testing accu-675

racies of SGC, GCN, and GAT in Table 13. Notice that to ensure a fair comparison, we do not adopt676

the early stopping strategy here so that different models have the same number of training epochs677

(otherwise, if a model tends to overfit, the early stopping strategy will terminate the training process678

when the number of training epochs is small and result in a spurious underfitting phenomena).679

The results show that non-linear variants of GNNs (GCN and GAT) are more likely to overfit, i.e.,680

the margins between the training accuracies and the testing accuracies are usually larger, than the681

linear variant SGC. Besides, though possessing extra model expressiveness, non-linear GNNs are682

also difficult to train, i.e., the training accuracies of GCN and GAT are not necessarily higher than683

SGC. The results are consistent with the literature Wu et al. (2019); He et al. (2020).684

C EXPERIMENTAL DETAILS FOR REPRODUCIBILITY685

C.1 DATASETS686

• Grid (You et al., 2019): A simulated 2D grid graph with size 20× 20 and no node feature.687

• Communities (You et al., 2019): A simulated caveman graph (Watts, 1999) composed of 20688

communities with each community containing 20 nodes. The graph is perturbed by rewiring 1%689

edges randomly. It has no node feature and the label of each node indicates which community690

the node belongs to.691

• Email8 (You et al., 2019): Seven real-world email communication graphs. Each graph has six692

communities and each node has an integer label indicating the community the node belongs to.693

• Coauthor Networks9 (Shchur et al., 2018): Two networks from Microsoft academic graph in694

CS and Physics with their nodes representing authors and edges representing co-authorships695

between authors. The node features are embeddings of the paper keywords of the authors.696

• PPI8 (Hamilton et al., 2017): 24 protein-protein interaction networks. Each node has a 50-697

dimensional feature vector.698

• PPA10 (Hu et al., 2020): A network representing biological associations between proteins from699

58 different species. The node features are one-hot vectors of the species that the proteins are700

taken from.701

8https://github.com/JiaxuanYou/P-GNN/tree/master/data
9https://github.com/shchur/gnn-benchmark/tree/master/data/npz/

10https://snap.stanford.edu/ogb/data/linkproppred/ppassoc.zip
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Table 12: The results of comparing whether the stochastic signals E are fixed or not during different
training epochs for the link prediction task. The better of the two results are in bold.

Model E Grid Communities CS Physics Email PPI

SMP-Identity Fixed 55.1±4.8 98.0±0.7 96.5±0.1 96.5±0.1 75.9±3.9 80.4±0.4
Not Fixed 55.2±4.1 97.6±0.7 96.4±0.1 96.5±0.1 72.9±5.1 81.0±0.2

SMP-Linear Fixed 73.6±6.2 97.7±0.5 96.7±0.1 96.1±0.1 71.3±3.9 71.5±0.7
Not Fixed 64.4±2.9 97.4±0.1 96.2±0.1 96.1±0.1 75.7±5.0 81.9±0.3

Table 13: The results of SGC, GCN, and GAT for the link prediction task. Both the training accura-
cies and the testing accuracies are reported.

Method Results Grid Communities Email CS Physics PPI Cora CiteSeer PubMed

SGC Train 52.4±0.5 50.4±0.5 68.4±1.0 98.3±0.0 97.7±0.0 84.9±0.4 99.5±0.0 99.9±0.0 98.9±0.0
Test 51.6±2.9 49.2±1.6 67.0±9.3 96.5±0.1 96.5±0.1 78.8±0.7 92.5±0.7 94.0±0.5 95.6±0.3

GCN Train 51.3±1.0 50.0±0.6 68.9±4.0 95.3±0.3 95.1±0.3 76.1±0.6 96.5±1.0 77.3±1.3 93.9±1.6
Test 54.6±4.3 49.2±1.1 66.0±3.1 93.2±0.3 93.8±0.3 74.9±0.6 89.2±0.3 76.1±2.5 90.6±1.2

GAT Train 47.5±1.4 49.6±0.3 52.2±3.6 95.7±0.9 96.4±0.5 82.3±0.3 97.2±0.5 99.3±0.1 98.3±0.1
Test 50.8±6.0 50.8±2.1 47.6±4.4 91.0±1.1 93.9±0.3 78.5±0.4 75.7±1.7 81.0±0.7 83.7±1.3

• Cora, CiteSeer, PubMed11 (Yang et al., 2016): Three citation graphs where nodes correspond702

to papers and edges correspond to citations between papers. The node features are bag-of-words703

and the node labels are the ground truth topics of the papers.704

We summarize the statistics of datasets in Table 14.705

C.2 HYPER-PARAMETERS706

We use the following hyper-parameters:707

• All datasets except PPA: we uniformly set the number of layers for all the methods as 2, i.e., 2708

message-passing steps, and set the dimensionality of hidden layers as 32, i.e., H(l) ∈ RN×32,709

for all 1 ≤ l ≤ L (for GAT, we use 4 heads with each head containing 8 units). We use Adam710

optimizer with an initial learning rate of 0.01 and decay the learning rate by 0.1 at epoch 200.711

The weight decay is 5e-4. We train the model for 1,000 epochs and evaluate the model every 5712

epochs. We adopt an early-stopping strategy by reporting the testing performance at the epoch713

which achieves the best validation performance. For SMP, the dimensionality of the stochastic714

matrix is d = 32. For P-GNN, we use the P-GNN-F version, which uses the truncated 2-hop715

shortest path distance instead of the exact shortest distance.716

• PPA: as suggested in the original paper (Hu et al., 2020), we set the number of GNN layers717

as 3 with each layer containing 256 hidden units and add a three-layer MLP after taking the718

Hadamard product between pair-wise node embeddings as the predictor, i.e., MLP(Hi �Hj).719

We use Adam optimizer with an initial learning rate of 0.01. We set the number of epochs for720

training as 40, evaluate the results on validation sets every epoch, and report the testing results721

using the model with the best validation performance. We also found that the dataset had issues722

with exploding gradients and adopt a gradient clipping strategy by limiting the maximum p2-723

norm of gradients as 1.0. The dimensionality of the stochastic matrix in SMP is d = 64.724

C.3 HARDWARE AND SOFTWARE CONFIGURATIONS725

All experiments are conducted on a server with the following configurations.726

• Operating System: Ubuntu 18.04.1 LTS727

• CPU: Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz728

• GPU: NVIDIA TESLA M40 with 12 GB of memory729

11https://github.com/kimiyoung/planetoid/tree/master/data
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Table 14: The statistics of the datasets. For datasets with more than one graph, #Nodes and #Edges
are summed over all the graphs and the experiments are conducted in an inductive setting.

Dataset #Graphs #Nodes #Edges #Features #Classes

Grid 1 400 760 - -
Communities 1 400 3,800 - 20

Email 7 1,005 25,571 - 42
CS 1 18,333 81,894 6,805 15

Physics 1 34,493 247,962 8,415 5
PPI 24 56,944 818,716 50 -
PPA 1 576,289 30,326,273 58 -
Cora 1 2,708 5,429 1,433 7

CiteSeer 1 3,327 4,732 3,703 6
PubMed 1 19,717 44,338 500 3

• Software: Python 3.6.8, PyTorch 1.4.0, PyTorch Geometric 1.4.3, NumPy 1.18.1, Cuda 10.1730
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