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ABSTRACT

With the adoption of recent laws ensuring the “right to be forgotten”, the problem
of machine unlearning has become of significant importance. This is particularly
the case for graph-structured data, and learning tools specialized for such data,
including graph neural networks (GNNs). This work introduces the first known
approach for approximate graph unlearning with provable theoretical guarantees.
The challenges in addressing the problem are two-fold. First, there exist multiple
different types of unlearning requests that need to be considered, including node
feature, edge and node unlearning. Second, to establish provable performance
guarantees, one needs to carefully evaluate the process of feature mixing dur-
ing propagation. We focus on analyzing Simple Graph Convolutions (SGC) and
their generalized PageRank (GPR) extensions, thereby laying the theoretical foun-
dations for unlearning GNNs. Empirical evaluations of six benchmark datasets
demonstrate excellent performance/complexity/privacy trade-offs of our approach
compared to complete retraining and general methods that do not leverage graph
information. For example, unlearning 200 out of 1208 training nodes of the Cora
dataset only leads to a 0.1% loss in test accuracy, but offers a 4-fold speed-up
compared to complete retraining with a (ϵ, δ) = (1, 10−4) “privacy cost”. We
also exhibit a 12% increase in test accuracy for the same dataset when compared
to unlearning methods that do not leverage graph information, with comparable
time complexity and the same privacy guarantee. Our code is available online1.

1 INTRODUCTION

Machine learning algorithms are used in many application domains, including biology, computer
vision and natural language processing. Relevant models are often trained either on third-party
datasets, internal or customized subsets of publicly available user data. For example, many computer
vision models are trained on images from Flickr users (Thomee et al., 2016; Guo et al., 2020)
while many natural language processing (e.g., sentiment analysis) and recommender systems heavily
rely on repositories such as IMDB (Maas et al., 2011). Furthermore, numerous ML classifiers
in computational biology are trained on data from the UK Biobank (Sudlow et al., 2015), which
represents a collection of genetic and medical records of roughly half a million participants (Ginart
et al., 2019). With recent demands for increased data privacy, the above referenced and many other
data repositories are facing increasing demands for data removal. Certain laws are already in place
guaranteeing the rights of certified data removal, including the European Union’s General Data
Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA) and the Canadian
Consumer Privacy Protection Act (CPPA) (Sekhari et al., 2021).

Removing user data from a dataset is insufficient to guarantee the desired level of privacy, since
models trained on the original data may still contain information about their patterns and features.
This consideration gave rise to a new research direction in machine learning, referred to as machine
unlearning (Cao & Yang, 2015), in which the goal is to guarantee that the user data information
is also removed from the trained model. Naively, one can retrain the model from scratch to meet

∗Equal contribution.
1https://github.com/thupchnsky/sgc_unlearn
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Figure 1: Illustration of three different types of approximate graph unlearning problems and a com-
parison with the case of unlearning without graph information (Guo et al., 2020). The colors of the
nodes capture properties of node features, and the red frame indicates node embeddings affected
by 1-hop propagation. When no graph information is used, the node embeddings are uncorrelated.
However, for the case of graph unlearning problems, removing one node or edge can affect the node
embeddings of the entire graph for a large enough number of propagation steps.

the privacy demand, yet retraining comes at a high computation cost and is thus not practical when
accommodating frequent removal requests. To avoid complete retraining, various methods for ma-
chine unlearning have been proposed, including exact approaches (Ginart et al., 2019; Bourtoule
et al., 2021) as well as approximate methods (Guo et al., 2020; Sekhari et al., 2021).

At the same time, graph-centered machine learning has received significant interest from the learning
community due to the ubiquity of graph-structured data. Usually, the data contains two sources of
information: Node features and graph topology. Graph Neural Networks (GNN) leverage both types
of information simultaneously and achieve state-of-the-art performance in numerous real-world ap-
plications, including Google Maps (Derrow-Pinion et al., 2021), various recommender system (Ying
et al., 2018), self-driving cars (Gao et al., 2020) and bioinformatics (Zhang et al., 2021b). Clearly,
user data is involved in training the underlying GNNs and it may therefore be subject to removal.
However, it is still unclear how to perform unlearning of GNNs.

We take the first step towards solving the approximate unlearning problem by performing a nontrivial
theoretical analysis of some simplified GNN architectures. Inspired by the unstructured data certified
removal procedure (Guo et al., 2020), we propose the first known approach for approximate graph
unlearning. Our main contributions are as follows. First, we introduce three types of data removal
requests for graph unlearning: Node feature unlearning, edge unlearning and node unlearning (see
Figure 1). Second, we derive theoretical guarantees for approximate graph unlearning mechanisms
for all three removal cases on SGC (Wu et al., 2019) and their GPR generalizations. In particular,
we analyze L2-regularized graph models trained with differentiable convex loss functions. The
analysis is challenging since propagation on graphs “mixes” node features. Our analysis reveals
that the degree of the unlearned node plays an important role in the unlearning process, while the
number of propagation steps may or may not be important for different unlearning scenarios. To
the best of our knowledge, the theoretical guarantees established in this work are the first provable
approximate unlearning studies for graphs. Furthermore, the proposed analysis also encompasses
node classification and node regression problems. Third, our empirical investigation on frequently
used datasets for GNN learning shows that our method offers an excellent performance-complexity-
privacy trade-off. For example, when unlearning 200 out of 1208 training nodes of the Cora dataset,
our method offers comparable test accuracy as complete retraining, but offers a 4-fold speed-up with
a (ϵ, δ) = (1, 10−4) “privacy cost”. We also test our model on datasets for which removal requests
are most likely to arise, including Amazon co-purchase networks.

Due to space limitations, all proofs and some detailed discussions are relegated to the Appendix.

2 RELATED WORKS

Machine unlearning and certified data removal. Cao & Yang (2015) introduced the concept of
machine unlearning and proposed distributed learners for exact unlearning. Bourtoule et al. (2021)
introduced sharding-based methods for unlearning, while Ginart et al. (2019) described unlearning
approaches for k-means clustering. These works focused on exact unlearning: The unlearned model
is required to perform identically to a completely retrained model. As an alternative, Guo et al.
(2020) introduced a probabilistic definition of unlearning motivated by differential privacy (Dwork,
2011). Sekhari et al. (2021) studied the generalization performance of machine unlearning methods.
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Golatkar et al. (2020) proposed heuristic-based selective forgetting in deep networks. These prob-
abilistic approaches naturally allow for “approximate” unlearning. None of these works addressed
the machine unlearning problem on graphs. To the best of our knowledge, the only work in this
direction is GraphEraser (Chen et al., 2021). However, the strategy proposed therein uses sharding,
which only works for exact unlearning and is hence completely different from our approximate ap-
proach. Also, the approach in Chen et al. (2021) relies on partitioning the graph using community
detection methods. It therefore implicitly makes the assumption that the graph is homophilic which
is not warranted in practice (Chien et al., 2021b; Lim et al., 2021). In contrast, our method works for
arbitrary graphs and allows for approximate unlearning while ensuring excellent trade-offs among
performance, privacy and complexity.

Differential privacy (DP) and DP-GNNs. Machine unlearning, especially the approximation ver-
sion described in Guo et al. (2020), is closely related to differential privacy (Dwork, 2011). In
fact, differential privacy is a sufficient condition for machine unlearning. If a model is differentially
private, then the adversary cannot distinguish whether the model is trained on the original dataset
or on a dataset in which one data point is removed. Hence, even without model updating, a DP
model will automatically unlearn the removed data point (see also the explanation in (Ginart et al.,
2019; Sekhari et al., 2021) and Figure 4). Although DP is a sufficient condition for unlearning, it
is not a necessary condition. Also, most of the DP models suffer from a significant degradation in
performance even when the privacy constraint is loose (Chaudhuri et al., 2011; Abadi et al., 2016).
Machine unlearning can therefore be viewed as a means to trade-off between performance and com-
putational cost, with complete retraining and DP on two different ends of the spectrum (Guo et al.,
2020). Several recent works proposed DP-GNNs (Daigavane et al., 2021; Olatunji et al., 2021a; Wu
et al., 2021; Sajadmanesh et al., 2022) – however, even for unlearning one single node or edge, these
methods require a high “privacy cost” (ϵ ≥ 5) to learn with sufficient accuracy.

Graph neural networks. While GNNs are successfully used for many graph-related problems,
accompanying theoretical analyses are usually difficult due to the combination of nonlinear feature
transformation and graph propagation. Recently, several simplified GNN models were proposed
that can further the theoretical understanding of their performance and scalability. SGCs (Wu et al.,
2019) simplify Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017) via linearization
(i.e., through the removal of all nonlinearities); although SGC in general underperforms compared
to state-of-the-art GNNs, they still offer competitive performance on many datasets. The analy-
sis of SGCs elucidated the relationship between low-pass graph filtering and GCNs which reveals
both advantages and potential limitations of GNNs. The GPR generalization of SGC is closely
related to many important models that resolve different issues inherent to GNNs. For example,
GPRGNN (Chien et al., 2021b) addresses the problem of universal learning on homophilic and het-
erophilic graph datasets and the issue of over-smoothing. SIGN (Frasca et al., 2020) based graph
models and S2GC (Zhu & Koniusz, 2020) allow for arbitrary sized mini-batch training, which im-
proves the scalability and leads to further performance improvements of methods (Sun et al., 2021;
Zhang et al., 2021a; Chien et al., 2022a) on the Open Graph Benchmark leaderboard Hu et al. (2020).
Hence, developing approximate graph unlearning approaches for SGC and generalizations thereof
is not only of theoretical interest, but also of practical importance.

3 PRELIMINARIES

Notation. We reserve bold-font capital letters such as S for matrices and bold-font lowercase letters
such as s for vectors. We use ei to denote the ith standard basis, so that eTi S and Sei represent the
ith row and column vector of S, respectively. The absolute value | · | is applied component-wise on
both matrices and vectors. We also use the symbols 1 for the all-one vector and I for the identity
matrix. Furthermore, we let G = (V, E) stand for an undirected graph with node set V = [n] of
size n and edge set E . The symbols A and D are used to denote the corresponding adjacency and
node degree matrix, respectively. The feature matrix is denoted by X ∈ Rn×F and the features
have dimension F ; For binary classification, the label are summarized in Y ∈ {−1, 1}n, while the
nonbinary case is discussed in Section 5. The relevant norms are ∥ · ∥, the l2 norm, and ∥ · ∥F , the
Frobenius norm. Note that we use ∥ · ∥ for both row and column vectors to simplify the notation.
The matrices A and D should not be confused with the symbols for an algorithm A and dataset D.
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Certified removal. Let A be a (randomized) learning algorithm that trains on D, the set of data
points before removal, and outputs a model h ∈ H, where H represents a chosen space of models.
The removal of a subset of points from D results in D′. For instance, let D = (X,Y). Suppose we
want to remove a data point, (eTi X, eTi Y) from D, resulting in D′ = (X′,Y′). Here, X′,Y′ are
equal to X,Y, respectively, except that the row corresponding to the removed data point is deleted.
Given ϵ > 0, an unlearning algorithm M applied to A(D) is said to guarantee an (ϵ, δ)-certified
removal for A, where ϵ, δ > 0 and X denotes the space of possible datasets, if

∀T ⊆ H,D ⊆ X , i ∈ [n] : P (M(A(D),D,D \ D′) ∈ T ) ≤ exp(ϵ)P (A(D′) ∈ T ) + δ,

P (A(D′) ∈ T ) ≤ exp(ϵ)P (M(A(D),D,D \ D′) ∈ T ) + δ. (1)
This definition is related to (ϵ, δ)-DP (Dwork, 2011) except that we are allowed to update the model
based on the removed point (see Figure 4). An (ϵ, δ)-certified removal method guarantees that the
updated model M(A(D),D,D \ D′) is “approximately” the same as the model A(D′) obtained by
retraining from scratch. Thus, any information about the removed data D \ D′ is “approximately”
eliminated from the model. Ideally, we would like to design M such that it satisfies equation (1) and
has a complexity that is significantly smaller than that of complete retraining.

4 APPROXIMATE GRAPH UNLEARNING WITH THEORETICAL GUARANTEES

Unlike standard machine unlearning, approximate graph unlearning uses datasets that contain not
only node features X but also the graph topology A, and therefore require different data removal pro-
cedures. We focus on node classification, for which the training dataset equals D = (X,YTr

,A).
Here, YTr

is identical to Y on rows indexed by points of the training set Tr while the remaining
rows are all zeros. Without loss of generality, we assume that the training set comprises the first m
nodes (i.e. Tr = [m]), where m ≤ n. An unlearning method M achieves (ϵ, δ)-approximate graph
unlearning with algorithm A if equation 1 is satisfied for D = (X,YTr

,A) and D′, which differ
based on the type of requests: Node feature unlearning, edge unlearning, and node unlearning.

4.1 UNLEARNING SGC AND COMPARISON WITH UNSTRUCTURED UNLEARNING

SGC is a simplification of GCN obtained by removing all nonlinearities from the latter model. This
leads to the following update rule: PKXW ≜ ZW, where W denotes the matrix of learnable
weights, K ≥ 0 equals the number of propagation steps and P denotes the one-step propagation
matrix. The standard choice of the propagation matrix is the symmetric normalized adjacency matrix
with self-loops, P = D̃−1/2ÃD̃−1/2, where Ã = A+I and D̃ equals the degree matrix with respect
to Ã. We will work with the asymmetric normalized version of P, P = D̃−1Ã. This choice is made
purely for analytical purposes and our empirical results confirm that this normalization ensures the
competitive performance of our unlearning methods.

The resulting node embedding is used for node classification by choosing an appropriate loss (i.e.,
logistic loss) and minimizing the L2-regularized empirical risk. For binary classification, W can be
replaced by a vector w; the loss equals L(w,D) =

∑
i:eT

i YTr ̸=0

(
ℓ(eTi Zw, eTi YTr

) + λ
2 ∥w∥2

)
,

where ℓ(eTi Zw, eTi YTr
) is a convex loss function that is differentiable everywhere. We also write

w⋆ = A(D) = argminw L(w,D), where the optimizer is unique whenever λ > 0.

We start with a high-level description of the approximate unstructured unlearning approach intro-
duced in Guo et al. (2020). Note that “certified removal” in the context of the former work refers
to approximate unlearning that provably satisfies (1). Let us denote the Hessian of L(·;D′) at
w⋆ by Hw⋆ = ∇2L(w⋆;D′). The authors of Guo et al. (2020) propose the following mecha-
nism for unlearning the mth training point: w− = M(w⋆,D,D \ D′) = w⋆ +H−1

w⋆∆guo, where
∆guo = λw⋆ +∇ℓ(eTmXw⋆, eTmYTr ). When ∇L(w−,D′) = 0, then w− is the unique optimizer
of L(·;D′). If ∇L(w−,D′) ̸= 0, then information about the removed data point remains present
in the model. One can show that the gradient residual norm ∥∇L(w−,D′)∥ determines the error
of w− when used to approximate the true minimizer of L(·;D′) (Guo et al., 2020). Hence, upper
bounds on ∥∇L(w−,D′)∥ can be used to establish approximate unlearning guarantees. More pre-
cisely, assume that we have ∥∇L(w−,D′)∥ ≤ ϵ′ for some ϵ′ > 0. Furthermore, consider training
with the noisy loss Lb(w,D) =

∑
i:eT

i YTr ̸=0

(
ℓ(eTi Xw, eTi YTr

) + λ
2 ∥w∥2

)
+ bTw, where b is

drawn randomly according to some distribution. Then one can leverage the following result.

4



Published as a conference paper at ICLR 2023

Theorem 4.1 (Theorem 3 from Guo et al. (2020)). Let A be the learning algorithm that returns the
unique optimum of the loss Lb(w,D). Suppose that ∥∇Lb(w

−,D′)∥ ≤ ϵ′, for some computable
bound ϵ′ > 0 independent on b and achieved by M . If b ∼ N (0, (c0ϵ

′/ϵ)2)d with c0 > 0, then M

satisfies (1) with parameters (ϵ, δ) for algorithm A applied to D′, where δ = 1.5e−c20/2.

Hence, if we can prove that ∥∇L(w−,D′)∥ is appropriately bounded for the graph setting as well,
then the unlearning mechanism M will ensure (ϵ, δ)-approximate graph unlearning. One of the
main contributions of Guo et al. (2020) is to bound the gradient residual norm ∥∇L(w−,D′)∥ of
the proposed unlearning mechanism with ∆guo = λw⋆ +∇ℓ(eTmXw⋆, eTmYTr ).

Motivated by the unlearning approach from Guo et al. (2020) pertaining to unstructured data, we
design an unlearning mechanism for graphs. We generalize their unlearning mechanism by replacing
∆guo with ∆ = ∇L(w⋆,D)−∇L(w⋆,D′). As an demonstrative example, for node unlearning we
consequently have

∆ = λw⋆ +∇ℓ(eTmZw⋆, eTmYTr
) +

m−1∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr
)−∇ℓ(eTi Z

′w⋆, eTi YTr
)
]
. (2)

Note that our generalized unlearning mechanism matches that ot Guo et al. (2020) when no graph
information is present. This can be seen by setting K = 0, which leads to Z = X and eTi Z =
eTi Z

′ ∀i ∈ [m − 1]. Hence, the third term in equation (2) is zero and thus ∆ = ∆guo. Note that
when graph information is present, the third term in equation (2) is, in general, bounded away from
zero. This term captures the impact of unlearning node m on all remaining training nodes [m− 1],
and including effects pertaining to edge and feature removal. This not only highlights the necessity
of investigating generalized unlearning mechanisms, but also the main difficulty of extending the
analysis of Guo et al. (2020) to graphs. A more detailed discussion regarding the intuition behind
our approach can be found in Appendix A.3. The main technical contribution of our work is to
establish bounds of the gradient residual norm for all three types of graph unlearning scenarios. For
this analysis, we need the loss function ℓ to satisfy the following properties.
Assumption 4.2. For any D, i ∈ [n] and w ∈ RF : (1) ∥∇ℓ(eTi Zw, eTi Y)∥ ≤ c (i.e. the norm of
∇ℓ is c-bounded); (2) ℓ′′ is γ2-Lipschitz; (3) ∥eTi X∥ ≤ 1; (4) ℓ′ is γ1-Lipschitz; (5) ℓ′ is c1-bounded.

Assumptions (1)-(3) are also needed for unstructured unlearning of linear classifiers (Guo et al.,
2020). To account for graph-structured data, we require additional assumptions (4)-(5) to establish
worst-case bounds. The additional assumptions may be avoided when working with data-dependent
bounds (Section 5). In all subsequent derivations, we assume that the unlearned data point cor-
responds to the mth node for node feature and node unlearning; for edge unlearning, we wish to
unlearn the edge (1,m). Generalizations for multiple unlearning requests are discussed in Section 5.

4.2 NODE FEATURE UNLEARNING FOR SGCS

We start with the simplest type of unlearning – node feature unlearning – for SGCs. In this case,
we remove the node feature and label of one node from D, resulting in D′ = (X′,Y′

Tr
,A). The

matrices X′,Y′
Tr

are identical to X,YTr
, respectively, except for the mth row of the former being

set to zero. Note that in this case, the graph structure remains unchanged.
Theorem 4.3. Suppose that Assumption 4.2 holds. For the node feature unlearning scenario and
Z = PKX and P = D̃−1Ã, we have

∥∇L(w−,D′)∥ = ∥(Hwη −Hw⋆)H−1
w⋆∆∥ ≤ γ2(2cλ+ (cγ1 + λc1)D̃mm)2

λ4(m− 1)
, (3)

where Hwη
denotes the Hessian of L(·;D′) at wη = w⋆ + ηH−1

w⋆∆ for some η ∈ [0, 1]. A similar
conclusion holds for the case when we wish to unlearn node features of a node that is not in Tr. In
this case we just replace D̃mm by the degree of the corresponding node. This result shows that the
norm bound is large if the unlearned node has a large degree, since a large-degree node will affect
the values of many rows in Z. Our result also demonstrates that the norm bound is independent of
K, due to the fact that P is right stochastic. We provide next a sketch of the proof to illustrate the
analytical challenges of graph unlearning compared to those of unstructured data unlearning.
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Although for node feature unlearning the graph topology does not change, all rows of Z = PKX
may potentially change due to graph information propagation. Thus, the original analysis from (Guo
et al., 2020), which corresponds to the special case Z = X, cannot be applied directly. There
are two particular challenges. The first is to ensure that the norm of each row of Z is bounded
by 1. We provide Lemma A.1 to guarantee this. It is critical to choose P = D̃−1Ã since all
other choices of degree normalization lead to worse bounds (see Appendix A.11). The second
and more difficult challenge is to bound ∥∆∥. When Z = X, the third term in equation (2) is
exactly zero, in accordance with Guo et al. (2020). Due to graph propagation, we have to further
bound the norm of the third term, which is highly nontrivial since the upper bound is not allowed
to grow with m or n. We first focus on one of the m − 1 terms in the sum. Using Assumption 4.2,
one can bound this term by ∥eTi (Z − Z′)∥ (we suppressed the dependency on λ, c, c1 and γ1 for
simplicity). The key analytical novelty is to explore the sparsity of Z − Z′ = PK(X − X′).
Note that X −X′ is an all-zero matrix except for its mth row being equal to eTmX. Thus, we have
∥eTi (Z−Z′)∥ = ∥eTi PK(X−X′)∥ = ∥eTi PKemeTmX∥ ≤ eTi P

Kem, where the last bound follows
from the Cauchy-Schwartz inequality, (3) in Assumption 4.2 and the fact that PK is a (component-
wise) nonnegative matrix. Thus, summing over i ∈ [m − 1] leads to the upper bound 1TPKem,

since m ≤ n. Next, observe that 1TPKem = 1TPKD̃−1D̃em = 1T
(
D̃−1Ã

)K
D̃−1emD̃mm =

1T D̃−1
(
ÃD̃−1

)K
emD̃mm. Since ÃD̃−1 is a left stochastic matrix, ÃD̃−1p is a probability

vector whenever p is a probability vector. Clearly, em is a probability vector. Hence, (ÃD̃−1)Kem
is also a probability vector. Since all diagonal entries of D̃−1 are nonnegative and upper bounded
by 1 given the self-loops for all nodes, 1T D̃−1p ≤ 1Tp = 1 for any probability vector p. Hence,
the term above is bounded by D̃mm. The bound depends on D̃mm and does not increase with m
or K. Although node feature unlearning is the simplest case of graph unlearning, our sketch of the
proof illustrates the difficulties associated with bounding the third term in ∆. Similar, but more
complicated approaches are needed for the analysis of edge unlearning and node unlearning.

4.3 EDGE AND NODE UNLEARNING FOR SGCS AND GPRS EXTENSIONS

Edge unlearning for SGC. We describe next the bounds for edge unlearning and highlight the
technical issues arising in the analysis of this setting. Here, we remove one edge (1,m) from D,

resulting in D′ = (X,YTr
,A′). The matrix A′ is identical to A except for Ã′

1m = Ã′
m1 = 0.

Furthermore, D̃′ is the degree matrix corresponding to Ã′. Note that the node features and labels
remain unchanged.
Theorem 4.4. Suppose that Assumption 4.2 holds. Under the edge unlearning scenario, and for
P = D̃−1Ã and Z = PKX, we have

∥∇L(w−,D′)∥ = ∥(Hwη
−Hw⋆)H−1

w⋆∆∥ ≤ 16γ2K
2 (cγ1 + c1λ)

2

λ4m
. (4)

Similar to what holds for the node feature unlearning case, Theorem 4.4 still holds when neither of
the two end nodes of the removed edge belongs to Tr.

Node unlearning for SGC. We now discuss the most difficult case, node unlearning. In this
case, one node is entirely removed from D, including node features, labels and edges. This results
in D′ = (X′,Y′

Tr
,A′). The matrices X′,Y′

Tr
are defined similarly to those described for node

feature unlearning. The matrix A′ is obtained by replacing the mth row and column in A by all-
zeros (similar changes are introduced in Ã, with Ãmm = 0). For simplicity, we let D̃′

mm = 1 as
this assumption does not affect the propagation results.
Theorem 4.5. Suppose that Assumption 4.2 holds. For the node unlearning scenario and Z = PKX
and P = D̃−1Ã, we have

∥∇L(w−,D′)∥ = ∥(Hwη −Hw⋆)H−1
w⋆∆∥ ≤

γ2

(
2cλ+K (cγ1 + c1λ)

(
2D̃mm − 1

))2
λ4(m− 1)

. (5)

The main challenge arises in the proof of Theorem 4.4 and 4.5 is bounding ∥∆∥ appropriately.
Unlike for the node feature unlearning case, now both graph structure and node features can change
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due to the unlearning request. We establish a series of lemmas to characterize the difference between
Z and Z′, which play important roles in our proofs (see Appendix A.8 and A.9 for complete proofs).

Approximate graph unlearning in GPR-based model. Our analysis can be extended to General-
ized PageRank (GPR)-based models (Li et al., 2019). The definition of GPR is

∑K
k=0 θkP

kS, where
S denotes a node feature or node embedding. The learnable weights θk are called GPR weights and
different choices for the weights lead to different propagation rules (Jeh & Widom, 2003; Chung,
2007). GPR-type propagations include SGC and APPNP rules as special cases (Chien et al., 2021b).
If we use linearly transformed features S = XW̄, for some weight matrix W̄, the GPR rule can
be rewritten as ZW = 1

K+1

[
X,PX,P2X, · · · ,PKX

]
W. This constitutes a concatenation of

the steps from 0 up to K. The learnable weight matrix W ∈ R(K+1)F×C combines θk and W̄.
These represent linearizations of GPR-GNNs (Chien et al., 2021b) and SIGNs (Frasca et al., 2020),
simple yet useful models for learning on graphs. For simplicity, we only describe the results for
node feature unlearning and delegate the analysis of edge and node unlearning to Appendix A.10.

Theorem 4.6. Suppose that Assumption 4.2 holds and considers the node feature unlearning case.
For Z = 1

K+1

[
X,PX,P2X, · · · ,PKX

]
and P = D̃−1Ã, we have

∥∇L(w−,D′)∥ = ∥(Hwη −Hw⋆)H−1
w⋆∆∥ ≤ γ2(2cλ+ (cγ1 + λc1)D̃mm)2

λ4(m− 1)
. (6)

Note that the resulting bound is the same as the bound in Theorem 4.3. This is due to the fact that
we used the normalization factor 1

K+1 in Z. Hence, given the same noise level, the GPR-based
models are more sensitive when we trained on the noisy loss Lb. Whether the general high-level
performance of GPR can overcompensate this drawback depends on the actual datasets considered.

5 EMPIRICAL ASPECTS OF APPROXIMATE GRAPH UNLEARNING

Logistic and least-squares regression on graphs. For binary logistic regression, the loss equals
ℓ(eTi Zw, eTi YTr ) = − log(σ(eTi YTre

T
i Zw)), where σ(x) = 1/(1 + exp(−x)) denotes the sig-

moid function. As shown in Guo et al. (2020), the assumptions (1)-(3) in Assumption 4.2 are
satisfied with c = 1 and γ2 = 1/4. By standard analysis, we show that our loss satisfies (4) and (5)
in Assumption 4.2 with γ1 = 1/4 and c1 = 1. For multi-class logistic regression, one can adapt the
“one-versus-all other-classes” strategy which leads to the same result. For least-square regression,
since the hessian is independent of w our approach offers (0, 0)-approximate graph unlearning even
without loss perturbations. See Appendix A.5 for the complete discussion and derivation.

Sequential unlearning. In practice, multiple users may request unlearning. Hence, it is desirable
to have a model that supports sequential unlearning of all types of data points. One can leverage
the same proof as in Guo et al. (2020) (induction coupled with the triangle inequality) to show that
the resulting gradient residual norm bound equals Tϵ′ at the T th unlearning request, where ϵ′ is the
bound for a single instance of approximate graph unlearning.

Data-dependent bounds. The gradient residual norm bounds derived for different types of approx-
imate graph unlearning contain a constant factor 1/λ4, and may be loose in practice. Following Guo
et al. (2020), we also examined data dependent bounds.

Corollary 5.1 (Application of Corollary 1 in Guo et al. (2020)). For all three graph unlearning
scenarios, we have ∥∇L(w−,D′)∥ ≤ γ2∥Z′∥op∥H−1

w⋆∆∥∥Z′H−1
w⋆∆∥.

Hence, there are two ways to accomplish approximate graph unlearning. If we do not allow any
retraining, we have to leverage the worst case bound in Section 4 based on the expected number
of unlearning requests. Importantly, we will also need to constrain the node degree of nodes to be
unlearned (i.e., do not allow for unlearning hub nodes), for both node feature and node unlearning.
Otherwise, we can select the noise standard deviation α, ϵ and δ and compute the corresponding “pri-
vacy budget” αϵ/

√
2 log(1.5/δ). Once the accumulated gradient residual norm exceeds this budget,

we retrain the model from scratch. Note that this still greatly reduces the time complexity compare to
retraining the model for every unlearning request (see Section 6). We also relegate the pseudo-code
of our method leveraging data-dependent bounds for sequential unlearning in Appendix A.6.
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Figure 2: Comparison of proposed SGC node feature unlearning (left column), edge unlearning
(middle column) and node unlearning (right column) with baseline methods. The shaded regions
in the second row represent the standard deviation of test accuracy. In the third row, we show the
accumulated unlearning time as a function of the number of unlearned points. The time needed for
each unlearning procedure is given in Appendix A.19.

6 EXPERIMENT

Settings. We test our methods on benchmark datasets for graph learning, including Cora, Citseer,
Pubmed (Sen et al., 2008; Yang et al., 2016; Fey & Lenssen, 2019) and large-scale dataset ogbn-
arxiv (Hu et al., 2020) and Amazon co-purchase networks Computers and Photo (McAuley et al.,
2015; Shchur et al., 2018). We either use the public splitting or random splitting based on similar
rules as public splitting and focus on node classification. Following Guo et al. (2020), we use
LBFGS as the optimizer for all methods due to its high efficiency on strongly convex problems.
Unless specified otherwise, we fix K = 2, δ = 10−4, λ = 10−2, ϵ = 1, α = 0.1 for all experiments,
and average the results over 5 independent trails with random initializations. Our baseline methods
include complete retraining with graph information after each unlearning request (SGC Retraining),
complete retraining without graph information after each unlearning request (No Graph Retraining),
and Unstructured Unlearning (Guo et al., 2020). Additional details can be found in Appendix A.19.

Bounds on the gradient residual norm. The first row of Figure 2 compares the values of both
worst-case bounds computed in Section 4 and data-dependent bounds computed from Corollary 5.1
with the true value of the gradient residual norm (True Norm). For simplicity, we set α = 0 during
training. The observation is that the worst-case bounds are looser than the data-dependent bounds,
and both bounds are indeed valid upper bounds for the actual gradient residual norm.

Dependency on node degrees. While an upper bound does not necessarily capture the dependency
of each term correctly, we show in Figure 3 (a) and (b) that our Theorem 4.5 and 4.6 indeed do so.
Here, each point corresponds to unlearning one node. We test for all nodes in the training set Tr and
fix λ = 10−4, α = 0. Our results show that unlearning a large-degree node is more expensive in
terms of the privacy budget (i.e., it induces a larger gradient residual norm). For other datasets, refer
to Appendix A.19.
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Figure 3: (a), (b) Simulation verification of the result in Theorem 4.5 and 4.6 pertaining to node
degrees. (d), (f) Accumulated unlearning time as a function of the number of removed nodes. The
unlearning time of Unstructured Unlearning is often higher than that of our proposed approximate
graph unlearning algorithms, because the number of retraining steps needed may be larger. (c), (e)
Performance of approximate graph unlearning methods on different datasets. We set α = 10, λ =
10−4 for Computers and λ = 10−4 for ogbn-arxiv. The number of repeated trials is 3 due to the
large amount of removed data. (g) Tradeoff between privacy ϵ and performance. To achieve similar
numbers of retraining, we set αϵ = 0.1. (h) The number of data points predicted by the membership
inference attack model to lie in the training set.

Performance of approximate graph unlearning methods. The time complexity of unlearning
and test accuracy of our proposed approximate graph unlearning methods after unlearning is shown
in Figures 2, and 3. It shows that: (1) Leveraging graph information is necessary when design-
ing unlearning methods for node classification tasks. (2) Our method supports unlearning a large
proportion of data points with a small loss in test accuracy. (3) Our method is around 4× faster
than completely retraining the model after each unlearning request. (4) Our methods have robust
performance regardless of the scale of the datasets. For more results see Appendix A.19.

Trade-off amongst privacy, performance and time complexity. As indicated in Theorem 4.1,
there is a trade-off amongst privacy, performance and time complexity. Comparing to exact un-
learning (i.e. SGC retraining), allowing approximate unlearning gives 4× speedup in time with
competitive performance. We further examine this trade-off by fixing λ and δ, then the trade-off
is controlled by ϵ and α. The results are shown in Figure 3 (g) for Cora, where we set αϵ = 0.1.
The test accuracy increases when we relax our constraints on ϵ, which agrees with our intuition.
Remarkably, we can still obtain competitive performance with SGC Retraining when we require ϵ
to be as small as 1. In contrast, one needs at least ϵ ≥ 5 to unlearn even one node or edge by
leveraging state-of-the-art DP-GNNs (Sajadmanesh et al., 2022; Daigavane et al., 2021) for reason-
able performance, albeit our tested datasets are different. This shows the benefit of our approximate
graph unlearning method as opposed to both retraining from scratch and DP-GNNs. Unfortunately,
the codes of these DP-GNNs are not publicly available, which prevents us from testing them on our
datasets in a unified treatment.

Membership inference attacks on unlearned models. We performed experiments pertaining to
the node unlearning task and applied the membership inference (MI) attack for GNNs reported
in Olatunji et al. (2021b) on our updated model. The experimental details are discussed in Ap-
pendix A.19. As shown in Figure 3 (h), even for full SGC retraining the attack can still identify
parts of the removed nodes in the training set (for relevant explanations, see Appendix A.2), and the
result of SGC node unlearning is slightly worse (w.r.t privacy) than retraining since our algorithm
performs approximate unlearning. Note that the performance of the MI attack on the original model
is consistent with the results in Olatunji et al. (2021b) and significantly worse than both our unlearn-
ing and complete retraining method. The results also highlight the fact that the privacy definition
considered in MI attacks and approximate unlearning are different (see Appendix A.2). Neverthe-
less, experiments show that our method offers similar privacy-preserving performance (in terms
of MI) as complete retraining, and better performance compared to just using the original model
without unlearning features.
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A APPENDIX

A.1 CONCLUSION

We introduced the first known framework for approximate graph unlearning. In this setting, new
analytical unlearning challenges had to be addressed due to the presence of complex graph feature
and topology data. Our analytical contributions pertain to novel proof techniques for approximate
graph unlearning, while our empirical studies on six benchmark datasets established fundamental
performance-complexity trade-offs between unlearning and complete retraining.
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A.2 FUTURE RESEARCH DIRECTIONS AND LIMITATIONS

Batch unlearning. In practice, it is likely that we not only require sequential unlearning, but also
batch unlearning: A number of users may request their data to be unlearned within a certain (short)
time frame. The approach in Guo et al. (2020) can ensure certified removal even in this scenario. The
generalization of our approach for batch unlearning is also possible, but will be discussed elsewhere.

Nonlinear models and hypergraph extension. Also akin to what was described in Guo et al.
(2020), we can leverage pre-trained (nonlinear) feature extractors or special graph feature trans-
forms to further improve the performance of the overall model. For example, Chien et al. (2022a)
proposed a node feature extraction method termed GIANT-XRT that greatly improves the perfor-
mance of simple network models such as MLP and SGC. If a public dataset is never subjected to
unlearning, one can pre-train GIANT-XRT on that dataset and use it for subsequent approximate
graph unlearning. If such a public dataset is unavailable, we have to make the node feature extractor
DP. In this case, we can either design a DP version of GIANT-XRT or leverage the DP-GNN model
described in Section 2. By applying Theorem 5 of Guo et al. (2020), the overall model can be shown
to guarantee approximate graph unlearning, where the parameters ϵ and δ now also depend on the
DP guarantees of the node feature extractor. There is also another line of work on Graph Scattering
Transforms (GSTs) (Gama et al., 2019; Pan et al., 2021) for use as feature extractors for graph in-
formation. Since a GST is a predefined mathematical transform and hence does not require training,
it can be easily combined with our approach (Pan et al., 2022). Finally, generalizing approximate
graph unlearning to hypergraphs can also be an interesting direction. Although the current SOTA
hypergraph neural networks heavily rely on nonlinear modules such as AllSet (Chien et al., 2022b),
we believe extension to classical hypergraph learning algorithms (Chien et al., 2021a) is possible.

Empirical metrics and MI. There is currently no empirical metric that can be used to evaluate
how well approximate machine unlearning methods preserve privacy. Although the definition of
approximate graph unlearning automatically and theoretically ensures that one cannot infer infor-
mation about the unlearned data point from the updated model (if one chooses to set ϵ, δ to 0), it
remains an open problem whether we can design an empirical metric that can accurately quantify
this privacy-preserving performance. Note that privacy-based attacks like the membership infer-
ence attack (Shokri et al., 2017; Olatunji et al., 2021b) have completely different design goals and
may not work well in unlearning practice. For example, assume that there are two nodes that share
similar features and neighborhood structures, come from the same class in the graph and are both
included in the training set. This scenario frequently arises in practice, especially for graphs with
strong homophily properties. In this case, even if we unlearn one of the nodes, the attack model will
still have a high probability of recognizing the unlearned node in the training set due to the presence
of the “similar” node. Thus, the viability of using the results returned by the attack models to assess
the performance of an unlearner is not clear. This is also verified by some preliminary experiments
on node unlearning tasks described in Section A.19 and the main text.

Societal impacts. The authors believe that for medical and biological sciences research, the right
to be forgotten may significantly set back potentially life-saving discoveries due to the need to have
access to many diverse data samples. But current trends seem to favor privacy over discovery rates
and timings. Hence, a compromise between data availability and the right to be forgotten has to be
established in the near future.

One current limitation of our work is that the newly proposed proof techniques do not apply to
general graph neural networks where nonlinear activation functions are used. Nevertheless, our work
is the first step towards developing approximate graph unlearning approaches for general GNNs.

A.3 INTUITION BEHIND THE MODEL UPDATE RULE

Our unlearning mechanism proposed in Section 4 is

w− = w⋆ +
[
∇2L(w⋆,D′)

]−1
[∇L(w⋆,D)−∇L(w⋆,D′)] ,

and the intuition is stated as follows. Our goal for the updated model is ∇L(w−,D′) = 0. By
Taylor series we have that

∇L(w−,D′) ≈ ∇L(w⋆,D′) +∇2L(w⋆,D′)(w− −w⋆) = 0.
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Therefore, we have

w− −w⋆ =
[
∇2L(w⋆,D′)

]−1
[0−∇L(w⋆,D′)]

w− = w⋆ +
[
∇2L(w⋆,D′)

]−1
[∇L(w⋆,D)−∇L(w⋆,D′)] .

The last equality holds due to the fact that w⋆ should be the unique optimizer for the strongly convex
loss L(w,D) over the entire dataset D.

A.4 ADDITIONAL ILLUSTRATIONS

𝒟 𝒟ᇱLearning 
algorithm 
𝐴 ⋅
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Figure 4: Difference between machine unlearning (as defined in Guo et al. (2020)) and Differential
Privacy (DP).

A.5 ADDITIONAL DISCUSSIONS

Details on on Assumption 4.2. Assumptions (2), (4) and (5) in our model and that of Guo et al.
(2020) require Lipschitz conditions with respect to the first argument of ℓ, but not the second. We
also implicitly assume that the second argument (corresponding to labels) does not effect the norm of
gradients or Hessians. One example that meets these constraints is the logistic loss: If ℓ(wTx, y) =
ℓ(ywTx) then all required assumptions hold.

Least-squares and logistic regression on graphs. Paralleling once again the results of Guo et al.
(2020), it is clear that our approximate graph unlearning mechanism can be used in conjunction
with least-squares and logistic regressions. For example, node classification can be performed
using a logistic loss. The node regression problem described in Ma et al. (2020); Jia & Benson
(2020) is related to least-squares regression. In particular, least-squares regression uses the loss
ℓ(eTi Zw, eTi YTr ) = (eTi Zw − eTi YTr )

2. Note that its Hessian is of the form (eTi Z)
TeTi Z, which

does not depend on w. Thus, based on the same arguments presented in Guo et al. (2020), our
proposed unlearning method M offers (0, 0)-approximate graph unlearning even without loss per-
turbations.

For binary logistic regression, the loss equals ℓ(eTi Zw, eTi YTr
) = − log(σ(eTi YTr

eTi Zw)), where
σ(x) = 1/(1+exp(−x)) denotes the sigmoid function. As shown in Guo et al. (2020), the assump-
tions (1)-(3) in 4.2 are satisfied with c = 1 and γ2 = 1/4. We only need to show that (4) and (5)
of 4.2 hold as well. Observe that ℓ′(x, eTi YTr

) =
(
σ(eTi YTr

x)− 1
)
. Since the sigmoid function

σ(·) is restricted to lie in [0, 1], |ℓ′| is bounded by 1, which means that our loss satisfies (5) in 4.2 with
c1 = 1. Based on the Mean Value Theorem, one can show that σ(x) is maxx∈R |σ(x)′|-Lipschitz.
Using some simple algebra, one can also prove that σ(x)′ = σ(x)(1− σ(x)) ⇒ maxx∈R |σ(x)′| =
1/4. Thus our loss satisfies assumption (4) in 4.2 as well, with γ1 = 1/4. For multi-class logistic
regression, one can adapt the “one-versus-all other-classes” strategy which leads to the same result.

A.6 ALGORITHMIC DETAILS

The pseudo-codes for training removal-enabled models and the removal procedure for the case of
binary classification are presented below. Note that this procedure is the same for all three types of
removal requests (node feature unlearning, edge unlearning and node unlearning). During training,
we add a random linear term to the training loss by sampling a Gaussian noise vector b. The choice
of standard deviation α determines the “privacy budget” αϵ/

√
2 log(1.5/δ) as shown in Section 5.
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Algorithm 1 Training procedure
1: input: Training data Z ∈ Rm×d, training labels Y ∈ Rm, loss ℓ, parameters α, λ > 0.
2: Sample the noise vector b ∼ N (0, α2)d.
3: w⋆ = argminw∈Rd

∑m
i=1

(
ℓ(zTi w, yi) +

λ
2 ∥w∥2

)
+ bTw.

4: return w⋆.

Algorithm 2 Unlearning procedure
1: input: Feature matrix X ∈ Rn×d, labels Y ∈ Rn, one-step propagation matrix P, loss ℓ, train-

ing set indices Tr = {i1, i2, . . .}, sequence of removal requests Rm = {j1, j2, . . .}, parameters
K, ϵ, δ, γ2, α, λ > 0.

2: Compute node embedding after propagation Z = PKX.
3: Training set D = {zi, yi}i∈Tr

.
4: Compute w using Algorithm 1 (D, ℓ, α, λ).
5: Accumulated gradient residual norm β = 0.
6: for j ∈ Rm do
7: Update the feature matrix X′ and propagation matrix P′ based on the removal.
8: Compute new node embedding after propagation Z′ = P′KX′.
9: if j ∈ Tr then

10: Remove j from the training indices Tr = Tr \ {j}.
11: end if
12: Update the training set D′ = {z′i, yi}i∈Tr .
13: Compute ∆ = ∇L (w,D)−∇L (w,D′).
14: Compute H = ∇2L (w;D′).
15: Update accumulated gradient residual norm β = β + γ2∥Z′∥op∥H−1∆∥∥Z′H−1∆∥.
16: if β > αϵ/

√
2 log(1.5/δ) then

17: Recompute w using Algorithm 1 (D′, ℓ, α, λ), β = 0.
18: else
19: w = w +H−1∆.
20: end if
21: end for
22: return w.

15



Published as a conference paper at ICLR 2023

A.7 PROOF OF THEOREM 4.3

Theorem. Under the node feature unlearning scenario, D = (X,YTr
,A) and D = (X′,Y′

Tr
,A).

Suppose Assumption 4.2 holds. For Z = PKX and P = D̃−1Ã, we have

∥∇L(w−,D′)∥ = ∥(Hwη
−Hw⋆)H−1

w⋆∆∥ ≤ γ2(2cλ+ (cγ1 + λc1)D̃mm)2

λ4(m− 1)
. (7)

We need to ensure that the norm of each row of Z is bounded by 1. We state the following lemma in
support of this claim.
Lemma A.1. Assume that ∥eTi S∥ ≤ 1, ∀i ∈ [n]. Then, ∀i ∈ [n],K ≥ 0, ∥eTi PKS∥ ≤ 1, where
P = D̃−1Ã.

Proof. Our proof is a nontrivial generalization and extension of the proof in Guo et al. (2020). For
completeness, we outline every step of the proof. We also emphasize novel approaches used to
accommodate out approximate graph unlearning scenario.

Let G(w) = ∇L(w,D′). By the Taylor theorem, ∃η ∈ [0, 1] such that

G(w−) = G(w⋆ +H−1
w⋆∆) = G(w⋆) +∇G(w⋆ + ηH−1

w⋆∆)H−1
w⋆∆

(a)
= G(w⋆) +HwηH

−1
w⋆∆

= G(w⋆) + ∆ +Hwη
H−1

w⋆∆−∆

(b)
= 0 +Hwη

H−1
w⋆∆−∆

= HwηH
−1
w⋆∆−Hw⋆H−1

w⋆∆

= (Hwη
−Hw⋆)H−1

w⋆∆. (8)

In (a), we wrote Hwη ≜ ∇G(w⋆+ηH−1
w⋆∆), corresponding to the Hessian at wη ≜ w⋆+ηH−1

w⋆∆.
Equality (b) is due to our choice of ∆ = ∇L(w⋆,D) − ∇L(w⋆,D′) and the fact that w⋆ is the
minimizer of L(·,D). We would like to point out that our choice of ∆ is more general then that Guo
et al. (2020): Since unlearning one node may affect the entire node embedding Z, a generalization
of ∆ is crucial. When K = 0 (i.e., when no graph topology is included), one recovers ∆ from Guo
et al. (2020) as a special case of our model. In the latter part of the proof, we will see how the graph
setting makes the analysis more intricate and complex.

By the Cauchy-Schwartz inequality, we have
∥G(w−)∥ ≤ ∥Hwη

−Hw⋆∥∥H−1
w⋆∆∥. (9)

Below we bound both norms on the right hand side separately. We start with the term ∥Hwη
−Hw⋆∥.

Note that
∥∇2ℓ(eTi Z

′wη, e
T
i Y

′
Tr
)−∇2ℓ(eTi Z

′w⋆, e
T
i Y

′
Tr
)∥

= ∥
[
ℓ′′(eTi Z

′wη, e
T
i Y

′
Tr
)− ℓ′′(eTi Z

′w⋆, e
T
i Y

′
Tr
)
]
(eTi Z

′)TeTi Z
′∥

(a)

≤ γ2∥eTi Z′wη − eTi Z
′w⋆∥∥eTi Z′∥2

≤ γ2∥wη −w⋆∥∥eTi Z′∥3 = γ2∥ηH−1
w⋆∆∥∥eTi Z′∥3 ≤ γ2∥H−1

w⋆∆∥∥eTi Z′∥3. (10)
Here, (a) follows from the Cauchy-Schwartz inequality and the Lipschitz condition on ℓ′′ in As-
sumption 4.2. Unlike the analysis in Guo et al. (2020), we are faced with the problem of bounding
the term ∥eTi Z′∥. In Guo et al. (2020) (where Z = X), a simple bound equals 1, which may be
ontained via (3) in Assumption 4.2. However, in our case, due to graph propagation this norm needs
more careful examination and a simple application of the Cauchy-Schwartz inequality does not suf-
fice, as it would lead to a term ∥X∥op, where ∥ · ∥op denotes the operator norm. The simple worst
case (i.e., when all rows of X are identical) leads to a meaningless bound O(n).

By leveraging Lemma A.1, we can further upper bound equation 10 according to

∥∇2ℓ(eTi Z
′wη, e

T
i Y

′
Tr
)−∇2ℓ(eTi Z

′w⋆, e
T
i Y

′
Tr
)∥ ≤ γ2∥H−1

w⋆∆∥∥eTi Z′∥3

(a)

≤ γ2∥H−1
w⋆∆∥, (11)
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where (a) follows from Lemma A.1.

As a result, we arrive at a bound for ∥Hwη
−Hw⋆∥ of the form

∥Hwη
−Hw⋆∥ ≤

m−1∑
i=1

∥∇2ℓ(eTi Z
′wη, e

T
i Y

′
Tr
)−∇2ℓ(eTi Z

′w⋆, e
T
i Y

′
Tr
)∥

≤ γ2(m− 1)∥H−1
w⋆∆∥. (12)

Next, we bound ∥H−1
w⋆∆∥. Since L(·,D′) is λ(m−1)-strongly convex, we have ∥H−1

w⋆∥ ≤ 1
λ(m−1) .

For the norm ∥∆∥, we have

∆ = ∇L(w⋆,D)−∇L(w⋆,D′)

= λw⋆ +∇ℓ(eTmZw⋆, eTmYTr
) +

m−1∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr
)−∇ℓ(eTi Z

′w⋆, eTi YTr
)
]
. (13)

The third term does not appear in Guo et al. (2020), since when K = 0, Z = X and Z′ = X′

are identical except for the mth row. In the approximate graph unlearning scenario, even removing
one node feature can make the entire node embedding matrix Z change in every row, which creates
new analytical challenges. For example, consider the case X = [x1, x2, x3]

T , where we have a
graph with three nodes, each with a 1-dimensional feature. Consider the fully connected graph (i.e.,
all entries in P set to 1/3). Then, unlearning node 1 results in Z′ = [0, x2, x3]

T for unstructured
unlearning. However, Z′ = [(x2 + x3)/3, (x2 + x3)/3, (x2 + x3)/3]

T for the case of L = 1, which
is completely different from Z = [(x1+x2+x3)/3, (x1+x2+x3)/3, (x1+x2+x3)/3]

T . Hence,
the analysis in Guo et al. (2020) cannot be directly applied to graphs, as Z′ changes in more than
just one row compared to Z while unlearning a node feature.

By Minkowski’s triangle inequality, we only need to bound the norm of the three individual terms
in order to bound the norm of ∆. For ∥w⋆∥, since w⋆ is the global optimum of L(·;D), we have

0 = ∇L(w⋆;D) =

m∑
i=1

∇ℓ(eTi Zw
⋆, eTi YTr

) + λmw⋆. (14)

By (1) in Assumption 4.2, we have

∥w⋆∥ =
∥
∑m

i=1 ∇ℓ(eTi Zw
⋆, eTi YTr

)∥
λm

≤ c

λ
. (15)

Once again, by (1) in Assumption 4.2, we have

∥∇ℓ(eTmZw⋆, eTmYTr )∥ ≤ c. (16)

A bound for the last term is established in the last step, as described below.

∥
m−1∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr
)−∇ℓ(eTi Z

′w⋆, eTi YTr
)
]
∥

≤
m−1∑
i=1

∥∇ℓ(eTi Zw
⋆, eTi YTr )−∇ℓ(eTi Z

′w⋆, eTi YTr
)∥

=

m−1∑
i=1

∥ℓ′(eTi Zw⋆, eTi YTr )(e
T
i Z)

T − ℓ′(eTi Z
′w⋆, eTi YTr )(e

T
i Z

′)T ∥. (17)

Observe that

∥ℓ′(eTi Zw⋆, eTi YTr )(e
T
i Z)

T − ℓ′(eTi Z
′w⋆, eTi YTr )(e

T
i Z

′)T ∥
≤ ∥ℓ′(eTi Zw⋆, eTi YTr )(e

T
i Z)

T − ℓ′(eTi Z
′w⋆, eTi YTr )(e

T
i Z)

T ∥
+ ∥ℓ′(eTi Z′w⋆, eTi YTr

)(eTi Z)
T − ℓ′(eTi Z

′w⋆, eTi YTr
)(eTi Z

′)T ∥ (18)
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The first term can be bounded as

∥ℓ′(eTi Zw⋆, eTi YTr
)(eTi Z)

T − ℓ′(eTi Z
′w⋆, eTi YTr

)(eTi Z)
T ∥

≤
∣∣ℓ′(eTi Zw⋆, eTi YTr

)− ℓ′(eTi Z
′w⋆, eTi YTr

)
∣∣ ∥(eTi Z)T ∥

(a)

≤ γ1∥eTi Zw⋆ − eTi Z
′w⋆∥∥(eTi Z)T ∥

(b)

≤ γ1∥(eTi Z− eTi Z
′)T ∥∥w⋆∥

(c)

≤ cγ1
λ

∥(eTi Z− eTi Z
′)T ∥. (19)

Here, (a) is due to (4) in Assumption 4.2, while (b) follows from Lemma A.1 and the Cauchy-
Schwartz inequality. Inequality (c) is a consequence of the bound for ∥w∥ that we previously de-
rived.

The second term can be bounded as

∥ℓ′(eTi Z′w⋆, eTi YTr
)(eTi Z)

T − ℓ′(eTi Z
′w⋆, eTi YTr

)(eTi Z
′)T ∥

≤
∣∣ℓ′(eTi Z′w⋆, eTi YTr )

∣∣ ∥(eTi Z)T − (eTi Z
′)T ∥

(a)

≤ c1∥(eTi Z)T − (eTi Z
′)T ∥. (20)

For the inequality in (a), we used (5) from Assumption 4.2. Put together, we have

∥
m−1∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr
)−∇ℓ(eTi Z

′w⋆, eTi YTr
)
]
∥

≤
m−1∑
i=1

[(cγ1
λ

+ c1

)
∥(eTi Z)T − (eTi Z

′)T ∥
]
=
(cγ1

λ
+ c1

)m−1∑
i=1

∥eTi (Z− Z′)∥

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥(eTi PK(X−X′))∥

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥(eTi PKD̃−1D̃(X−X′))∥

(a)
=
(cγ1

λ
+ c1

)m−1∑
i=1

∥(eTi PKD̃−1D̃emeTmX)∥

(b)

≤
(cγ1

λ
+ c1

)m−1∑
i=1

∥eTi PKD̃−1D̃em∥∥eTmX∥

(c)

≤
(cγ1

λ
+ c1

)m−1∑
i=1

∥eTi PKD̃−1D̃em∥

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥eTi PKD̃−1emD̃mm∥

(d)
=
(cγ1

λ
+ c1

)m−1∑
i=1

eTi P
KD̃−1emD̃mm

(e)

≤
(cγ1

λ
+ c1

)
1TPKD̃−1emD̃mm

(f)
=
(cγ1

λ
+ c1

)
1T D̃−1pD̃mm

(g)

≤
(cγ1

λ
+ c1

)
D̃mm. (21)
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Inequality (a) follows from the fact that X′ is identical to X except for the last row and column,
which are set to all-zeros. Thus, X − X′ is a matrix with rows equal to zero-vectors, except for
the mth which equals the mth row of X. Inequality (b) follows from the Cauchy-Schwartz inequal-
ity. Inequality (c) is a result of (3) in Assumption 4.2, while (d) is a consequence of the fact that
eTi P

KD̃−1em is the value in the ith row and mth column of the matrix PKD̃−1. Also, it is obvious
that this matrix is entry-wise nonnegative. Inequality (e) is due to the fact that PKD̃−1 is entry-wise
nonnegative. In (f), p stands for a probability vector and (f) holds since

PKD̃−1 =
(
D̃−1Ã

)K
D̃−1 = D̃−1(ÃD̃−1)K , (22)

and ÃD̃−1 is a left stochastic matrix. Inequality (g) is a consequence of the observation that the
maximum entry in D̃−1 is at most 1 and that the latter is a diagonal matrix. Hence, 1T D̃−1p ≤ 1Tp.
Also, 1Tp = 1 by the definition of the probability vector.

Combining the bounds, we obtain

∥∆∥ ≤ c+ c+
(cγ1

λ
+ c1

)
D̃mm =

2cλ+ (cγ1 + λc1)D̃mm

λ
. (23)

Including the bound on ∥H−1
w⋆∥ and equation 12, we then obtain

∥G(w−)∥ ≤ γ2(m− 1)∥H−1
w⋆∆∥2 ≤ γ2(m− 1)

(
2cλ+(cγ1+λc1)D̃mm

λ

λ(m− 1)

)2

=
γ2(2cλ+ (cγ1 + λc1)D̃mm)2

λ4(m− 1)
. (24)

This completes the proof.

A.8 PROOF OF THEOREM 4.4

Theorem. For the edge unlearning case, we have D = (X,YTr ,P) and D′ = (X,YTr ,P
′). If

P = D̃−1Ã and Z = PKX, then we have

∥∇L(w−,D′)∥ = ∥(Hwη −Hw⋆)H−1
w⋆∆∥ ≤ 16γ2K

2 (cγ1 + c1λ)
2

λ4m
. (25)

Similar to what holds for the node feature unlearning case, Theorem 4.4 still holds when neither
of the two end nodes of the removed edge belongs to Tr. Since P ′ is a right stochastic matrix,
Lemma A.1 still applies. Thus, we only need to describe how to bound ∥∆∥. Following an ap-
proach similar to the previously described one, we have ∥∆∥ ≤

(
cγ1

λ + c1
)∑m

i=1

∑n
j=1 ∥eTi (PK −

P′K)ej∥. We also need the following technical lemmas.

Lemma A.2. For both edge and node unlearning, we have |eTi
[
PK − (P′)K

]
ej | ≤∑K

k=1 e
T
i (P

′)k−1 |P−P′|PK−kej , ∀i, j ∈ [n], K ≥ 1.

Lemma A.3. For edge unlearning, we have 1TP′k−1|P−P′|PK−k1 ≤ 4, ∀k ∈ [K].

Combining the two lemmas and after some algebraic manipulation, we arrive at the desired result. It
is not hard to see that |P−P′| has only two nonzero rows, which correspond to the unlearned edge.
One can again construct a left stochastic matrix Ã′D̃′−1

and a right stochastic matrix P which lead
to the result of Lemma A.3.

Proof. The theorem can be proved as follows. From previous proof we have

∥G(w−)∥ ≤ ∥Hwη
−Hw⋆∥∥H−1

w⋆∥∥∆∥ ≤ γ2
∥∆∥2

λ2m
. (26)

Since the first term ∥Hwη
−Hw⋆∥ only involved the updated dataset, the upper bound for this term

proved for node feature unlearning still holds. The term ∥H−1
w⋆∥ can again be bounded using the fact
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that L(·,D′) is λm-strongly convex. The main difference between node feature and edge unlearning
lies in the bound for ∆. By definition,

∆ =∇L(w⋆,D)−∇L(w⋆,D′)

=

m∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr
)−∇ℓ(eTi Z

′w⋆, eTi YTr
)
]
, and

∥∆∥ ≤
(cγ1

λ
+ c1

) m∑
i=1

∥(Z− Z′)Tei∥

=
(cγ1

λ
+ c1

) m∑
i=1

∥(PKX−P′KX)Tei∥

=
(cγ1

λ
+ c1

) m∑
i=1

∥eTi (PK −P′K)X∥

=
(cγ1

λ
+ c1

) m∑
i=1

∥eTi (PK −P′K)

n∑
j=1

eje
T
j X∥

≤
(cγ1

λ
+ c1

) m∑
i=1

n∑
j=1

∥eTi (PK −P′K)eje
T
j X∥

≤
(cγ1

λ
+ c1

) m∑
i=1

n∑
j=1

∥eTi (PK −P′K)ej∥∥eTj X∥

≤
(cγ1

λ
+ c1

) m∑
i=1

n∑
j=1

∥eTi (PK −P′K)ej∥ (27)

By Lemma A.2 we have(cγ1
λ

+ c1

) m∑
i=1

n∑
j=1

∥eTi (PK −P′K)ej∥

≤
(cγ1

λ
+ c1

) m∑
i=1

n∑
j=1

K∑
k=1

eTi P
′k−1|P−P′|PK−kej

≤
(cγ1

λ
+ c1

) K∑
k=1

1TP′k−1|P−P′|PK−k1. (28)

Using Lemma A.3 we arrive at ∥∆∥ ≤
(
cγ1

λ + c1
)
4K. Plugging this expression into equation 26

completes the proof.

A.9 PROOF OF THEOREM 4.5

Theorem. Under the node unlearning scenario, we have D = (X,YTr
,P) and D =

(X′,Y′
Tr
,P′). Suppose also that Assumption 4.2 holds. For Z = PKX and P = D̃−1Ã, we

have

∥∇L(w−,D′)∥ = ∥(Hwη
−Hw⋆)H−1

w⋆∆∥ ≤
γ2

(
2cλ+K (cγ1 + c1λ)

(
2D̃mm − 1

))2
λ4(m− 1)

. (29)

Again, the main challenge is to bound ∆. First we observe that (P′)KX′ = (P′)KX.
This holds because node m is removed from the graph in D′, and thus its correspond-
ing node features do not affect Z′. Similarly to the proof Lemma A.2, we first derive
the bound

∑K
k=1 1

T (P′)k−1 |P−P′|PK−k1. For each term, 1T (P′)k−1 |P−P′|PK−k1 =∑n
l=1 1

T (P′)k−1ele
T
l |P−P′|PK−k1. To proceed, we need the following two lemmas.
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Lemma A.4. For node unlearning and ∀k ∈ [K] and ∀l ∈ [n], 1T (P′)k−1(D̃′)−1el ≤ 1.

Lemma A.5. For node unlearning and ∀k ∈ [K],
∑n

l=1 e
T
l D̃

′ |P−P′|PK−k1 ≤ 2D̃mm − 1.

These two lemmas give rise to the term K(2D̃mm − 1) in the bound of Theorem 4.5 and the rest of
the analysis is similar to that of the previous cases. Lemma A.5 is rather technical, and relies on the
following proposition that exploits the structure of |P−P′|.

Proposition A.6. For node unlearning and ∀i, j ̸= m, eTi |P−P′| ej = eTi (P′ −P) ej . For i =
m or j = m, eTi |P−P′| ej = eTi Pej .

Proof. The proof is similar to the proof of Theorem 4.3, although several parts need modifications.

First, the result of Lemma A.1 needs to be replaced by the following claim.

Lemma A.7. Assume that ∥eTi S∥ ≤ 1, ∀i ̸= m and that eTmS = 0T . Then ∀i ∈ [n], K ≥ 0, we
have ∥eTi (P′)KS∥ ≤ 1, where P = D̃−1Ã and P′ = (D̃′)−1Ã′.

Next we have to modify the proof regarding the bound of ∥∆∥. Following a proof similar to that of
Theorem 4.3, we have

∥∆∥ ≤ 2c+
(cγ1

λ
+ c1

)m−1∑
i=1

∥(Z− Z′)Tei∥. (30)

Plugging in the expressions for Z and Z′ leads to

m−1∑
i=1

∥(Z− Z′)Tei∥ =

m−1∑
i=1

∥(PKX− (P′)KX′)Tei∥

(a)
=

m−1∑
i=1

∥(PKX− (P′)KX)Tei∥ =

m−1∑
i=1

∥(
[
PK − (P′)K

]
X)Tei∥

(b)
=

m−1∑
i=1

∥eTi
[
PK − (P′)K

] n∑
j=1

eje
T
j X∥

(c)

≤
m−1∑
i=1

n∑
j=1

∥eTi
[
PK − (P′)K

]
eje

T
j X∥

(d)

≤
m−1∑
i=1

n∑
j=1

∥eTi
[
PK − (P′)K

]
ej∥∥eTj X∥

(e)

≤
m−1∑
i=1

n∑
j=1

∥eTi
[
PK − (P′)K

]
ej∥. (31)

The equality (a) is due to the fact that (P′)KX′ = (P′)KX, as the mth row and column of (P′)K

are all-zeros. Thus, changing the last row of X′ makes no difference of (P′)KX′. Equation (b) is
a consequence of the fact that I =

∑n
j=1 eje

T
j . Inequality (c) follows from Minkowski’s inequal-

ity, while (d) follows from the Cauchy-Schwartz inequality. Inequality (e) holds based on (3) in
Assumption 4.2.
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By Lemma A.2, we can proceed with our analysis as follows:

m−1∑
i=1

∥(Z− Z′)Tei∥

≤
m−1∑
i=1

n∑
j=1

∥eTi
[
PK − (P′)K

]
ej∥

(a)

≤
m−1∑
i=1

n∑
j=1

K∑
k=1

eTi (P
′)k−1 |P−P′|PK−kej

≤
K∑

k=1

1T (P′)k−1 |P−P′|PK−k1, (32)

where (a) is due to Lemma A.2 and the fact that eTi Pej is a scalar, equal to the ith row jth column
of the matrix P.

Next, we bound each term 1T (P′)k−1 |P−P′|PK−k1 separately. For k ∈ [K], we have

1T (P′)k−1 |P−P′|PK−k1

= 1T (P′)k−1(D̃′)−1D̃′ |P−P′|PK−k1

= 1T (P′)k−1(D̃′)−1
n∑

l=1

ele
T
l D̃

′ |P−P′|PK−k1

=

n∑
l=1

(
1T (P′)k−1(D̃′)−1el

)(
eTl D̃

′ |P−P′|PK−k1
)
. (33)

Note that for each index l, the corresponding term in the sum is just a product of two scalars. Let
first analyze 1T (P′)k−1(D̃′)−1el. This term can be bounded as

1T (P′)k−1 |P−P′|PK−k1

=

n∑
j=1

(
1T (P′)k−1(D̃′)−1ej

)(
eTj D̃

′ |P−P′|PK−k1
)

(a)

≤
n∑

j=1

eTj D̃
′ |P−P′|PK−k1. (34)

where (a) follows from Lemma A.4.

We now turn our attention to the term eTl D̃
′ |P−P′|PK−k1, which can be bounded according to

Lemma A.5 as follows

1T (P′)k−1 |P−P′|PK−k1

≤
n∑

l=1

eTl D̃
′ |P−P′|PK−k1

≤ 2D̃mm − 1. (35)
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Using these two bounds in equation 32 gives

m−1∑
i=1

∥(Z− Z′)Tei∥

≤
m−1∑
i=1

n∑
j=1

∥eTi
[
PK − (P′)K

]
ej∥

≤
K∑

k=1

1T (P′)k−1 |P−P′|PK−k1

≤
K∑

k=1

(2D̃mm + 1) = K(2D̃mm − 1). (36)

Using this bound in the expression for ∥∆∥ we obtain

∥∆∥ ≤ 2c+
(cγ1

λ
+ c1

)m−1∑
i=1

∥(Z− Z′)Tei∥

≤ 2c+
(cγ1

λ
+ c1

)
K
(
2D̃mm − 1

)
⇒ ∥G(w−)∥ ≤ ∥Hwη −Hw⋆∥∥H−1

w⋆∆∥
≤ γ2(m− 1)∥H−1

w⋆∆∥2

≤ γ2(m− 1)

2c+
(
cγ1

λ + c1
)
K
(
2D̃mm − 1

)
λ(m− 1)

2

=
γ2

(
2cλ+K (cγ1 + c1λ)

(
2D̃mm − 1

))2
λ4(m− 1)

. (37)

This completes the proof.

A.10 PROOF OF THEOREM 4.6

Theorem. In the node feature unlearning scenario, we are given D = (X,YTr
,A) and D =

(X′,Y′
Tr
,A). Suppose that Assumption 4.2 holds. For Z = 1

K+1

[
X,PX,P2X, · · · ,PKX

]
and

P = D̃−1Ã, we have

∥∇L(w−,D′)∥ = ∥(Hwη
−Hw⋆)H−1

w⋆∆∥ ≤ γ2(2cλ+ (cγ1 + λc1)D̃mm)2

λ4(m− 1)
. (38)

Proof. The proof is almost identical to the proof of Theorem 4.3. We only need to bound the norms
of the terms in Z. We start by modifying Lemma A.1 for the GPR case.

Lemma A.8. Assume that ∥eTi S∥ ≤ 1, ∀i ∈ [n]. Then ∀i ∈ [n], K ≥ 0, we have
∥ 1√

K+1
eTi
[
S,PS,P2S, · · · ,PKS

]
∥ ≤ 1, where P = D̃−1Ã.

Another part of the proof that needs to be changed is to establish a bound on

m−1∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr
)−∇ℓ(eTi Z

′w⋆, eTi YTr
)
]
. (39)
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Following a proof similar to that of Theorem 4.3, we have

∥
m−1∑
i=1

[
∇ℓ(eTi Zw

⋆, eTi YTr
)−∇ℓ(eTi Z

′w⋆, eTi YTr
)
]
∥

≤
m−1∑
i=1

[(cγ1
λ

+ c1

)
∥(eTi Z)T − (eTi Z

′)T ∥
]

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥(Z− Z′)Tei∥

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥( 1

K + 1

[
X−X′,P(X−X′), · · · ,PK(X−X′)

]
)Tei∥

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥( 1

K + 1

[
emeTmX,PemeTmX, · · · ,PKemeTmX

]
)Tei∥

=
(cγ1

λ
+ c1

)m−1∑
i=1

∥ 1

K + 1

[
eTi emeTmX, eTi PemeTmX, · · · , eTi PKemeTmX

]T ∥

≤
(cγ1

λ
+ c1

)m−1∑
i=1

∥ 1

K + 1

[
eTi em, eTi Pem, · · · , eTi PKem

]T ∥∥(eTmX)T ∥

≤
(cγ1

λ
+ c1

)m−1∑
i=1

∥ 1

K + 1

[
eTi em, eTi Pem, · · · , eTi PKem

]T ∥

(a)

≤
(cγ1

λ
+ c1

)m−1∑
i=1

1

K + 1

K∑
k=1

eTi P
kem

≤
cγ1

λ + c1

K + 1

K∑
k=1

1TPkem =
cγ1

λ + c1

K + 1

K∑
k=1

1TPkD̃−1D̃em =
cγ1

λ + c1

K + 1

K∑
k=1

1TPkD̃−1emD̃mm

(b)
=

cγ1

λ + c1

K + 1

K∑
k=1

1T D̃−1p(k)D̃mm

≤
cγ1

λ + c1

K + 1

K∑
k=1

1Tp(k) ˜Dmm =
cγ1

λ + c1

K + 1
×KD̃mm

≤ (
cγ1
λ

+ c1)D̃mm, (40)

where (a) is due to the fact that the ℓ1 norm is an upper bound for the ℓ2 norm. Also note that
eTi em = 0,∀i ̸= m. In (b), ∀k ∈ [K], p(k) are probability vectors. This completes the proof.

Remark. Note that the GPR extension for the edge and node unlearning cases can be derived through
a similar analysis. One can also see that the key step is inequality (a), which still holds for the edge
and node unlearning cases. The results are similar to Theorem 4.4 and Theorem 4.5, except that the
definition of Z is replaced by one corresponding to the GPR case, as in Theorem 4.6.

A.11 PROOF OF LEMMA A.1

Lemma. Assume that ∥eTi S∥ ≤ 1, ∀i ∈ [n]. Then ∀i ∈ [n], K ≥ 0, we have ∥eTi PKS∥ ≤ 1,
where P = D̃−1Ã.

Proof. We prove this lemma by induction. Let Z(k) = PkS. For the base case k = 0 it is true by
assumption that ∥eTi S∥ ≤ 1 ∀i ∈ [n]. Assume next that the claim is true for the case k = K − 1.
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Then we have

∥eTi PKS∥ = ∥eTi PZ(K−1)∥ = ∥ 1

D̃ii

∑
j:Ãij=1

eTj Z
(K−1)∥ ≤ 1

D̃ii

∑
j:Ãij=1

∥eTj Z(K−1)∥

(a)

≤ 1

D̃ii

∑
j:Ãij=1

1 =
1

D̃ii

× D̃ii = 1, (41)

where (a) is based on the induction hypothesis for k = K − 1.

Remark: Note that if we choose another propagation matrix P compared to the one used in the SGC
analysis, the above expression for K = 1 becomes

∥eTi PS∥ = ∥ 1√
D̃ii

∑
j:Ãij=1

eTj S√
D̃jj

∥ ≤ 1√
D̃ii

∑
j:Ãij=1

∥eTj S∥√
D̃jj

≤ 1√
D̃ii

∑
j:Ãij=1

1√
D̃jj

. (42)

We cannot easily simplify the sum
∑

j:Ãij=1
1√
D̃jj

. One way to approach the problem is to simply

use the fact that the degree of a node is at least 1 and can thusbe further upper bounded by D̃ii. This
leads to the bound

∥eTi PS∥ ≤
√

Dii. (43)
Obviously, this bound is worse than the one in Lemma A.1 even when K = 1. For general K, there
will be an additional exponent K/2 for the maximal degree, which is undesirable. Nevertheless, our
bound is tight since for the worst case of a star graph with a center at node i, so that Djj = 2 for
all j ̸= i. The same argument applies for other degree normalizations. Thus it is critical to choose
P = D̃−1Ã to obtained the desired bound in Lemma A.1.

A.12 PROOF OF LEMMA A.2

Lemma. For either the edge or node unlearning case, and ∀i, j ∈ [n], K ≥ 1, we have

|eTi
[
PK − (P′)K

]
ej | ≤

K∑
k=1

eTi (P
′)k−1 |P−P′|PK−kej . (44)

Proof. The proof consist of two parts. We first show that

PK − (P′)K =

K∑
k=1

(P′)k−1 (P−P′)PK−k.

Then we proceed to analyze the absolute values of all terms in the sum.

The proof of the first part follows from a telescoping property for the sum,
K∑

k=1

(P′)k−1 (P−P′)PK−k =

K∑
k=1

(P′)k−1PK−k+1 − (P′)kPK−k

= (P′)0PK − (P′)1PK−1 + (P′)1PK−1 − (P′)2PK−2 + · · ·+ (P′)K−1P1 − (P′)KP0

= PK − (P′)K . (45)
Next, note that both P′ and P are nonnegative matrices, and the same is true of their kth powers,
k ≥ 2. Thus, ∣∣eTi [PK − (P′)K

]
ej
∣∣ = ∣∣∣∣∣

K∑
k=1

eTi (P
′)k−1 (P−P′)PK−kej

∣∣∣∣∣
≤

K∑
k=1

eTi (P
′)k−1 |P−P′|PK−kej . (46)

This completes the proof.
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A.13 PROOF OF LEMMA A.3

Lemma. For the edge unlearning scenario, and ∀k ∈ [K], we have

1TP′k−1|P−P′|PK−k1 ≤ 4. (47)

Proof. Let us start by analyzing the matrix |P − P′| = |D̃−1Ã − D̃′−1
Ã′|. Note that all its rows

are zeros except for the 1st and mth row. The first row of the matrix equals

eT1 |P−P′|

=

[(
1

d1 − 1
− 1

d1

)
Ã11, . . . ,

(
1

d1 − 1
− 1

d1

)
Ã1(m−1),

1

d1
,

(
1

d1 − 1
− 1

d1

)
Ã1(m+1), . . .

]
=

[(
1

d1(d1 − 1)

)
Ã11, . . . ,

(
1

d1(d1 − 1)

)
Ã1(m−1),

1

d1
,

(
1

d1(d1 − 1)

)
Ã1(m+1), . . .

]
=

[(
1

d1(d1 − 1)

)
Ã11, . . . ,

(
1

d1(d1 − 1)

)
Ã1(m−1),

1

d1(d1 − 1)
,

(
1

d1(d1 − 1)

)
Ã1(m+1), . . .

]
+

d1 − 2

d1(d1 − 1)
eTm = eT1 D̃

′−1
D̃−1Ã+

d1 − 2

d1(d1 − 1)
eTm, (48)

where the last equality holds since Ã1m = 1. Similar arguments apply for the mth row, for which
we have

eTm|P−P′| = eTmD̃′−1
D̃−1Ã+

dm − 2

dm(dm − 1)
eT1 . (49)

For a fixed k ∈ [K],

1TP′k−1|P−P′|PK−k1 = 1TP′k−1
e1e

T
1 D̃

′−1
D̃−1ÃPK−k1

+ 1TP′k−1 d1 − 2

d1(d1 − 1)
e1e

T
mPK−k1

+ 1TP′k−1
emeTmD̃′−1

D̃−1ÃPK−k1

+ 1TP′k−1 dm − 2

dm(dm − 1)
emeT1 P

K−k1. (50)

We analyze these four terms separately. For the first term, we have

1TP′k−1
e1e

T
1 D̃

′−1
D̃−1ÃPK−k1

= 1TP′k−1
D̃′−1

e1e
T
1 D̃

−1ÃPK−k1

= 1TP′k−1
D̃′−1

e1e
T
1 P

K−k+11 (51)

By the same argument as used in the proof for node feature unlearning, 1TP′k−1
D̃′−1

e1 =

1T D̃′−1
p ≤ 1, for some probability vector p. Also, eT1 P

K−k+11 ≤ 1, which holds due to the
fact that P is a right-stochastic matrix. We have hence shown that the first term in equation 51 is
bounded by 1. For the second term, note that d1−2

d1(d1−1) ≤
1

(d1−1) . Hence,

1TP′k−1 d1 − 2

d1(d1 − 1)
e1e

T
mPK−k1

≤ 1TP′k−1 1

d1 − 1
e1e

T
mPK−k1

= 1TP′k−1
D̃′−1

e1e
T
mPK−k1 ≤ 1, (52)

where the final inequality follows the same argument as the one used for bounding the first term.
For the third and fourth term, the analysis is similar to these two cases and both terms can be shown
to be bounded by 1. Hence, we have

1TP′k−1|P−P′|PK−k1 ≤ 4. (53)

This completes the proof.
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A.14 PROOF OF LEMMA A.4

Lemma. For all k ∈ [K] and l ∈ [n],

1T (P′)k−1(D̃′)−1el ≤ 1. (54)

Proof. For k = 1, the claim is obviously true for all l ∈ [n], as the largest entry in D̃−1 is upper
bounded by 1. For k ≥ 2 and l ̸= m we have

1T (P′)k−1(D̃′)−1el = 1T ((D̃′)−1Ã′)k−1(D̃′)−1el

= 1T (D̃′)−1(Ã′(D̃′)−1)k−1el
(a)
= 1T (D̃′)−1p ≤ 1. (55)

In (a), p stands for a probability vector and the result follows since Ã′(D̃′)−1 is a left-stochastic
matrix if one ignores the node m. For l = m, it is easy to see that Ã′D̃′em = 0 by the fact that the
mth row and column of Ã′ are all-zeros. This completes the proof.

A.15 PROOF OF LEMMA A.5

Lemma. For node unlearning, and ∀k ∈ [K],
∑n

l=1 e
T
l D̃

′ |P−P′|PK−k1 ≤ 2D̃mm − 1.

Proof. First, note that
n∑

l=1

eTl D̃
′ |P−P′| =

n∑
l=1

eTl D̃
′ |P−P′|

n∑
r=1

ere
T
r =

n∑
r=1

n∑
l=1

eTl D̃
′ |P−P′| ereTr . (56)

Then for i, j ̸= m, by Proposition A.6, we have

eTl D̃
′ |P−P′| ereTr

(a)
= eTl D̃

′ (P′ −P) ere
T
r

= eTl

(
Ã′ − D̃′D̃−1Ã

)
ere

T
r

=

(
Ã′

lr −
D̃′

ll

D̃ll

Ãlr

)
eTr

(b)
=

(
Ãlr −

D̃′
ll

D̃ll

Ãlr

)
eTr (57)

We used Proposition A.6 in (a) since eTl D̃
′ = D̃′

lle
T
l . The equality (b) is due to the fact that for

i, j ̸= m, Ã′
lr = Ãlr. Recall that Ã′ and Ã only differ in the mth row and column.

We consider next the only two possible scenarios, (1) l is a neighbor of m; (2) l is not a neighbor of
m. For (1), we know that D̃′

ll = D̃ll − 1 ≥ 1. This leads to

Ãlr −
D̃′

ll

D̃ll

Ãlr = Ãlr

(
1− D̃′

ll

D̃ll

)
= Ãlr

(
1− D̃ll − 1

D̃ll

)
=

Ãlr

D̃ll

. (58)

For (2), we know that D̃′
rr = D̃rr. Thus, Ãlr − D̃′

ll

D̃ll
Ãlr = 0.

Next, we consider the case l ̸= m, r = m. Again, by Proposition A.6, we have

eTl D̃
′ |P−P′| emeTm = eTl D̃

′PemeTm =
D̃′

ll

D̃ll

ÃlmeTm. (59)

Now, for case (1), we have Ãlm = 1 and D̃′
ll = D̃ll − 1 ≥ 1. This leads to

eTl D̃
′ |P−P′| emeTm =

D̃′
ll

D̃ll

ÃlmeTm =
D̃ll − 1

D̃ll

eTm. (60)
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For case (2), we clearly have eTl D̃
′ |P−P′| emeTm = 0 as Ãlm = 0.

Hence, for each j ̸= m and under the setting in case (1), eTl D̃
′ |P−P′| equals the row vector[

Ãl1

D̃ll

,
Ãl2

D̃ll

, · · · ,
Ãl(m−1)

D̃ll

, 0,
Ãl(m+1)

D̃ll

, · · ·

]
+

[
0, · · · , 0, D̃ll − 1

D̃ll

, 0, · · ·

]
, (61)

where the mth entry of the first row vector equals 0 and the second row vector is all-zeros except for
the mth entry. Note that the first row vector times D̃ll

D̃ll−1
> 1 is a probability vector. Hence, by the

property of PK−k being a right-stochastic matrix, we have[
Ãl1

D̃ll

,
Ãl2

D̃ll

, · · · ,
Ãl(m−1)

D̃ll

, 0,
Ãl(m+1)

D̃ll

, · · ·

]
PK−k1 ≤ 1. (62)

Since D̃ll−1

D̃ll
< 1, we also have[

0, · · · , 0, D̃jj − 1

D̃jj

, 0, · · ·

]
PK−k1 ≤ 1. (63)

Together, this shows that for each j ̸= m and for the case (1), one has

eTl D̃
′ |P−P′|PK−k1 ≤ 2. (64)

For case (2), note that eTl D̃
′ |P−P′| is an all-zero row vector. Note also that, excluding self-loops,

there are at most D̃mm − 1 neighbors l of m (case (1)). Thus,∑
l ̸=m

eTl D̃
′ |P−P′|PK−k1 ≤ 2D̃mm − 2. (65)

To conclude the proof, we analyze the term l = m. For any i ∈ [n], by Proposition A.6 we have

eTmD̃′ |P−P′| ereTr

= eTmD̃′Pere
T
r =

D̃′
mm

D̃mm

Ãmre
T
r

(a)
=

Ãmr

D̃mm

eTr = eTmD̃−1Ãere
T
r = eTmPere

T
r (66)

where (a) holds by definition, and since D̃′
mm = 1. Thus,

eTmD̃′ |P−P′|PK−k1 = eTmPPK−k1 = pT1 = 1, (67)

for some probability vector p. We have hence shown that for any k ∈ [K],

n∑
j=1

eTj D̃
′ |P−P′|PK−k1 ≤ 2D̃mm − 2 + 1 = 2D̃mm − 1. (68)

This completes the proof.

A.16 PROOF OF LEMMA A.7

Lemma. Assume that ∥eTi S∥ ≤ 1, ∀i ̸= m and that eTmS = 0T . Then ∀i ∈ [n], K ≥ 0, we have
∥eTi (P′)KS∥ ≤ 1, where P = D̃−1Ã and P′ = (D̃′)−1Ã′.

Proof. The proof is similar to the proof of Lemma A.1, and based on induction. The base case
k = 0 is obviously true by assumption. Now, assume that the claim is true for k = K − 1 and let

28



Published as a conference paper at ICLR 2023

Z(K−1) = (P′)(K−1)S. Then, ∀i ̸= m,

∥eTi (P′)KS∥ = ∥eTi P′Z(K−1)∥ = ∥ 1

D̃ii
′

∑
j:Ã′

ij=1

eTj Z
(K−1)∥

≤ 1

D̃ii
′

∑
j:Ã′

ij=1

∥eTj Z(K−1)∥

(a)

≤ 1

D̃ii
′

∑
j:Ã′

ij=1

1

≤ 1

D̃ii
′

∑
j:Ã′

ij=1

1 =
1

D̃ii
′ D̃ii

′
= 1. (69)

Here, (a) is due to our hypothesis for k = K − 1. For i = m, note that Ã′
mj = 0, ∀j ∈ [n]. Thus,

∥eTn (P′)KS∥ = 0 ≤ 1. This completes the proof.

A.17 PROOF OF LEMMA A.8

Lemma. Assume that ∥eTi S∥ ≤ 1, ∀i ∈ [n]. Then, ∀i ∈ [n], K ≥ 0, we have
∥ 1√

K+1
eTi
[
S,PS,P2S, · · · ,PKS

]
∥ ≤ 1, where P = D̃−1Ã.

Proof. By Lemma A.1, we have ∥eTi PkS∥ ≤ 1, ∀k ∈ [K]. Thus,

∥ 1√
K + 1

eTi
[
S,PS,P2S, · · · ,PKS

]
∥2 =

1

K + 1

(
K∑

k=0

∥eTi PkS∥2
)

≤ 1, (70)

which complete the proof.

Remark. Using the normalization 1
K+1 also leads to a norm bounded by 1. Hence, the norm of

each row of Z is bounded by 1. We need the normalization 1
K+1 instead of 1√

K+1
to accommodate

another claim in the proof.

A.18 PROOF OF PROPOSITION A.6

Proposition. We have eTi |P−P′| ej = eTi (P′ −P) ej , ∀i, j ̸= m. For i = m or j = m,
eTi |P−P′| ej = eTi Pej .

Proof. For the first case when ∀i, j ̸= m,

eTi (P−P′) ej =
Ãij

D̃ii

−
Ã′

ij

D̃′
ii

. (71)

Recall that by definition, in this case we have Ãij = Ã′
ij . Now, there are two cases to consider: (1)

i is a neighbor of m; (2) i is not a neighbor of m. For (1), we know that D̃′
ii = D̃ii − 1 ≥ 1. As a

result,

Ãij

D̃ii

−
Ã′

ij

D̃′
ii

=
Ãij

D̃ii

− Ãij

D̃ii − 1
< 0. (72)

This directly implies eTi |P−P′| ej = eTi (P′ −P) ej . For (2), we know that D̃′
ii = D̃ii and thus

eTi |P−P′| ej = 0 = eTi (P′ −P) ej . These claims complete the proof for the first part. For the
case that i = m or j = m, note that since both the mth row and column are all-zeros for P′, we
simply have eTi |P−P′| ej = eTi Pej . Note that in establishing the claim we also used the fact that
P is nonnegative. This completes the proof.
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Table 1: Properties of benchmarking datasets.

Name #nodes #edges #features #classes train/val/test
Cora 2,708 10,556 1,433 7 1,208/500/1,000

Citeseer 3,327 9,104 3,703 6 1,827/500/1,000
PubMed 19,717 88,648 500 3 18,217/500/1,000

Computers 13,752 491,722 767 10 12,252/500/1,000
Photo 7,650 238,162 745 8 6,150/500/1,000

ogbn-arxiv 169,343 1,166,243 128 40 90,941/29,799/48,603

A.19 ADDITIONAL EXPERIMENTAL DETAILS

All our experiments were executed on a Linux machine with 48 cores, 376GB of system memory,
and two NVIDIA Tesla P100 GPUs with 12GB of GPU memory each. Information about all datasets
can be found in Table 1. The data split is public and obtained from PyTorch Geometric Fey &
Lenssen (2019). We used the “full” split option for Cora, Citeseer and Pubmed. Since there is no
public split for Computers and Photo, we adopted a similar setting as for the citation networks via
random splits (i.e., 500 nodes in the validation set and 1, 000 nodes in the test set). The data split for
ogbn-arxiv is the public split provided by the Open Graph Benchmark Hu et al. (2020).

Dependency on the node degree. We verified our Theorem 4.5 and Theorem 4.6 for node degree
dependencies on Photo, Cora, Citeseer and Pubmed. The results are presented in Figure 5.

Figure 5: Additional examination of the degree dependency result from Theorem 4.5 (top) and
Theorem 4.6 (bottom).

Nonaccumulative time for each of the unlearning procedures. Figure 6 shows the average time
complexity for each unlearning step on the Cora dataset. The spikes for approximate graph un-
learning methods and Unstructured Unlearning (Guo et al., 2020) corresponds to retraining after a
removal.

Membership inference attacks for unlearned models. We performed experiments for node un-
learning tasks and applied the membership inference attack for GNNs reported in Olatunji et al.
(2021b) to our obtained updated models. For simplicity, we used the Cora dataset and removed up
to 100 nodes. After each removal, we applied an MI attack on the updated model. We compare the
results of our SGC node unlearning approach with that of the original SGC model without updates,
which is the model trained on the full dataset, and with SGC retraining, which corresponds to the
model obtained after retraining upon each removal request. We repeated the experiments with 10
different trails and random splits and averaged the results. As shown in Figure 7, even for full SGC
retraining the attack model can still identify parts of the removed nodes in the training set, and the
result of SGC node unlearning is slightly worse (w.r.t privacy) than retraining since our method is
concerned with approximate unlearning. Note that the performance of the MI attack on the original
model is consistent with the results from Olatunji et al. (2021b) and significantly worse than both our
unlearning as well as the complete retraining method. This, from the experimental side, shows that
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Figure 6: Nonaccumulative time for each removal step on the Cora dataset. The setting is the same
as in Figure 2.

our method offers similar privacy-preserving performance as full retraining, and better performance
when compared to the original model without unlearning. Nevertheless, the results also motivate the
search for alternatives to MI attacks for unlearning schemes.

Figure 7: The number of data points predicted by the attack model to lie in the training set. The
setting is the same as in Figure 2.

Additional experiments. The performance of our proposed approximate graph unlearning methods
on three datasets, including Citeseer, Pubmed and Amazon Photo, is shown in Figure 8. It is worth
pointing out that our bound on the gradient residual norm in Section 4 does not guarantee the gen-
eralization ability of the updated model. Therefore, It could happen that the test accuracy increases
as we remove information from the training set, as shown in the second row of Figure 8, or that the
performance is not very stable, as seen in the third row of Figure 8.

We also performed additional experiments on the Cora dataset, with results shown in Figure 9.
The first row shows the average performance over 10 repeated trails with random splitting, and the
conclusion is the same as the one stated in Section 6. The second row shows the performance on
GPR-based models. Note that when the number of removal requests becomes large, the performance
of GPR-based models degrades much faster than that of SGC-based models. This observation is
consistent with our discussion of GPR-based models. None of the retraining methods involves
noise.
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Figure 8: Performance of approximate graph unlearning methods on different datasets. First Row:
We removed up to 55% of the training data in Citeseer. Second Row: We removed up to 50% of
the training data in Pubmed. Third Row: We set α = 10, λ = 10−4, and removed up to 30% of the
training data in Amazon Photo.
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Figure 9: Performance of approximate graph unlearning methods on Cora. First Row: The reported
statistics are based on averaging over 10 repeated trails with random splitting. Second Row: GPR-
based models are used to obtain node embedding. All other settings are the same as in Figure 2.
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