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Abstract
Recent research efforts have explored the po-001
tential of leveraging natural language inference002
(NLI) techniques to enhance relation extraction003
(RE). In this vein, we introduce METAENTAIL-004
RE, a novel adaptation method that harnesses005
NLI principles to enhance RE performance.006
Our approach follows past works by verbal-007
izing relation classes into class-indicative hy-008
potheses, aligning a traditionally multi-class009
classification task to one of textual entailment.010
We introduce three key enhancements: (1)011
Meta-class analysis which, instead of labeling012
non-entailed premise-hypothesis pairs with the013
less informative “neutral” entailment label, pro-014
vides additional context by analyzing overar-015
ching meta relationships between classes; (2)016
Feasible hypothesis filtering, which removes017
unlikely hypotheses from consideration based018
on pairs of entity types; and (3) Group-based019
prediction selection, which further improves020
performance by selecting highly confident pre-021
dictions. METAENTAIL-RE is conceptually022
simple and empirically powerful, yielding sig-023
nificant improvements over conventional rela-024
tion extraction techniques and other NLI formu-025
lations. We observe F1 gains of 17.6 points on026
BioRED and 13.4 points on ReTACRED when027
compared to conventional methods, underscor-028
ing the versatility of METAENTAIL-RE across029
both biomedical and general domains.030

1 Introduction031
Relation extraction (RE) is an NLP task that032

distills factual information from text by identify-033

ing relationships between entities in the form of034

fact triplets (e.g.,〈head, relation, tail〉) (Califf and035

Mooney, 1997; Mintz et al., 2009; Soares et al.,036

2019; Wan et al., 2023). RE facilitates various037

downstream applications such as knowledge graph038

construction, question answering, and information039

retrieval (Yuan et al., 2022; He et al., 2023; Ya-040

mada et al., 2023); however, creating datasets for041

training RE models is costly and challenging, re-042

quiring annotators to identify entities and relations043

across large sections of text (Yao et al., 2019; Luo 044

et al., 2022). 045

Recent efforts have explored adapting the RE 046

task into an NLI task, enabling the use of rela- 047

tively large NLI datasets to improve performance 048

on an RE-adapted task (Sainz et al., 2021, 2022; 049

Xu et al., 2023). RE-to-NLI works transform 050

relation instances into premises paired with m 051

class-indicative hypotheses where m is the num- 052

ber of relation classes in a dataset. A language 053

model is trained to label premise-hypothesis pairs 054

as entailed, contradicted, or neutral. We build 055

on this work by introducing METAENTAIL-RE, a 056

novel NLI adaptation method that improves RE per- 057

formance by leveraging three key enhancements: 058

meta-class analysis, automatic feasible hypothesis 059

filtering, and group-based prediction selection. 060

Meta-class analysis: In past RE-to-NLI works, 061

if a premise does not entail a hypothesis, the cor- 062

responding NLI label assigned is “neutral” (Sainz 063

et al., 2021; Xu et al., 2023). However, this misses 064

an implicit training signal we can gain by analyzing 065

the semantics of a dataset’s relation classes. When 066

assigning NLI labels to adapted RE instances, we 067

distinguish between task-based mutual exclusiv- 068

ity and definition-based mutual exclusivity. Task- 069

based mutual exclusivity is an artifact of the single- 070

class classification task inherent to a dataset. Each 071

input instance is annotated with a single relation 072

class, thereby arbitrarily making all classes mutu- 073

ally exclusive. In contrast, definition-based mutual 074

exclusivity is derived from definitions of relation 075

classes. For example, within the BioRED dataset 076

(Luo et al., 2022), the “positive correlation” class 077

is definitionally mutually exclusive and contradic- 078

tory to the “negative correlation” class (Luo et al., 079

2022). We call this method meta-class analysis 080

(MCA) and use it to determine the appropriate NLI 081

labels for each premise-hypothesis pair. We show 082

through ablation experiments that adding MCA 083

leads to significant gains on the RE task. 084
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Feasible hypothesis filter: We introduce a fea-085

sible hypothesis filter that automatically removes086

infeasible hypotheses based on the head and tail en-087

tity types within a relation instance. For instance, in088

the BioRED dataset (Luo et al., 2022), it is impossi-089

ble for a gene to “bind” to a disease (i.e., the “bind”090

label is not applicable to gene-disease entity-type091

pairs). We therefore remove the “bind” hypothesis092

from all instances with gene-disease entity types.093

To develop this filter automatically, we approxi-094

mate valid sets of entity-type pairs corresponding095

to each relation class by aggregating all relations in096

the training data. These approximated sets of valid097

type-pairs are then used to remove hypotheses that098

verbalize infeasible relationships. This filter im-099

proves training efficiency by reducing the number100

of NLI instances.101

Group-based prediction selection: Group-102

based prediction selection exploits the feature of103

RE-to-NLI adaptation in that each relation instance104

is converted into a group of premise-hypothesis105

pairs where each hypothesis verbalizes a relation106

class in the dataset. When evaluating cases where107

the model predicts multiple “entail” labels within a108

single group, we can select the most confident “en-109

tail” prediction and ignore other predictions. Our110

results demonstrate that this group-based predic-111

tion selection method leads to additional gains.112

METAENTAIL-RE as an RE-to-NLI adaptation113

method is technically domain agnostic; however, it114

is particularly well-suited for biomedical RE where115

associations often have opposing classes such as116

“positively correlated” and “negatively correlated”117

(Luo et al., 2022) or “agonist” and “antagonist”118

(Taboureau et al., 2010) enabling a rich MCA. We119

also find that associations in biomedical RE are120

often type-dependent compared to general domain121

RE, making the feasible hypothesis filter more ef-122

fective at trimming infeasible hypotheses. Still, we123

extend our evaluations beyond the biomedical do-124

main to determine how METAENTAIL-RE fares on125

general domain RE datasets. Notably, we observe126

improvements in both domains, reinforcing the ef-127

fectiveness and versatility of METAENTAIL-RE.128

We summarize the main contributions of this work129

as the following:130

• We introduce a novel RE-to-NLI adaptation131

method, METAENTAIL-RE, and showcase its132

robustness and versatility in RE datasets from133

general and biomedical domains.134

• Through ablation experiments, we illustrate the135

effectiveness of components of METAENTAIL- 136

RE. 137

• We openly provide all code, experimental set- 138

tings, and datasets used to substantiate the claims 139

made in this paper.1 140

2 Related Work 141

Traditionally, RE has been approached as a clas- 142

sification task, where input instances are classi- 143

fied as belonging to a relational class (Califf and 144

Mooney, 1997; Mintz et al., 2009; Soares et al., 145

2019; Wan et al., 2023). These methods have sev- 146

eral drawbacks: they tend to generalize poorly 147

(Peng et al., 2020; Xu et al., 2023), and they 148

heavily rely on relatively small and disjoint RE 149

datasets. To account for these drawbacks, recent 150

works have proposed clever adaptation methods 151

to recast RE into adjacent NLP tasks, such as a 152

question-answering (Levy et al., 2017) and NLI 153

(Obamuyide and Vlachos, 2018; Sainz et al., 2021, 154

2022; Xu et al., 2023). Task adaptation presents an 155

opportunity to leverage the relatively large datasets 156

available for other tasks (e.g., SQuAD (Rajpurkar 157

et al., 2016), MultiNLI (Williams et al., 2018), 158

SNLI (Bowman et al., 2015a), etc.), which can be 159

particularly advantageous in the context of biomed- 160

ical RE where datasets are often limited. 161

Levy et al. (2017) recast RE into a question- 162

answering task by associating relation instances 163

with one or more natural-language questions, re- 164

sulting in predicted spans denoting class indicative 165

text. Obamuyide and Vlachos (2018) adapts gen- 166

eral domain RE into an NLI task by using relation 167

instances as premises where each premise is paired 168

with a hypothesis generated by verbalizing a re- 169

lation class. In doing so, they formulate a binary 170

entailment task where they predict whether or not 171

a premise entails the corresponding hypothesis. 172

Sainz et al. (2021) expands on Obamuyide and 173

Vlachos (2018) by incorporating a three-label clas- 174

sification objective where a model can predict 175

entail, contradict, and neutral depending on the 176

premise-hypothesis pair, bringing the task in line 177

with a standard NLI formulation (Dagan et al., 178

2005). They manually generate hypothesis tem- 179

plates corresponding to each relation class in a 180

dataset, and NLI labels are assigned based on the 181

alignment of the premise-hypothesis pair. If the 182

corresponding hypothesis is the verbalized version 183

of the ground truth relation label, then “entail” is 184

1https://anonymous.4open.science/r/
metaentail-re
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Figure 1: Data flow used for METAENTAIL-RE. The original RE input instance (A) is converted into a premise
where surface forms are masked with corresponding entity types (B). Each relation class is verbalized into a
hypothesis (C), and a feasible hypothesis filter (D) removes infeasible hypotheses based on the pair of entity types.
NLI labels are generated via meta-class analysis (E), which are the labels used to fine-tune an LLM via cross-entropy
(F). Finally, we use softmax probabilities as a proxy for the model’s confidence and select the most confident “entail”
prediction among the group of predictions (G). Note that the model makes three predictions in this example—one
for each feasible hypothesis. The second “entail” prediction is incorrect but the group-based prediction module
selects the first and correct “entail” prediction by assessing the model’s confidence.

assigned as the NLI label for the instance. The185

“neutral” label is applied to positive class hypothe-186

ses which do not align with a given premise. The187

“contradict” label is applied in two cases: (1) if the188

premise is a positive relation instance (e.g., any189

class other than “no relation”), the “no-relation”190

hypothesis is labeled as “contradict,” and (2) if191

the premise is a negative instance (e.g., “no rela-192

tion”), then all other positive class hypotheses are193

labeled as “contradict.” Sainz et al. (2021) fine-194

tune a language model pre-trained on the MultiNLI195

(Williams et al., 2018) dataset to predict generated196

NLI labels. They observe impressive results in197

zero- and few-shot scenarios on TACRED (Zhang198

et al., 2017), a general domain, sentence-level RE199

dataset.200

Xu et al. (2023) explores cross-domain trans-201

fer learning, leveraging indirect supervision from202

general domain NLI datasets to improve biomed-203

ical RE-to-NLI adapted methods. Our work can204

be considered an extension of their proposed NBR205

method. However, we introduce a few key improve-206

ments: meta-class analysis, a feasible hypothesis207

filter, and group-based prediction selection. We208

also expand evaluations beyond sentence-level RE209

to include more challenging document-level RE (Li210

et al., 2016; Luo et al., 2022).211

3 Problem Statement212

Our problem is a hybridization of RE and NLI;213

as such, we describe both tasks, as well as the214

adapted RE-to-NLI task.215

Relation Extraction (RE): RE takes inputs216

{x1, x2, . . . , xn} ∈ XRE where XRE is a corpus of217

sentences, paragraphs, or documents of size n and218

xi is a singular instance containing an entity pair ei1 219

and ei2 . Each input xi has a corresponding label yi. 220

Labels {y1, y2, . . . , yn} = YRE belong to a set of 221

m relation classes R = {r1, r2, . . . , rm}. RE seeks 222

to identify which class links the co-mentioned enti- 223

ties to form a fact triplet ⟨ei1 , yi, ei2⟩, or, semanti- 224

cally, 〈head, relation, tail〉. 225

Natural Language Inference (NLI): NLI takes 226

a premise pi ∈ P and a hypothesis hi ∈ H , 227

where P and H are the set of premises and hy- 228

potheses in a corpus, respectively, and seeks to 229

determine whether the premise entails, contradicts, 230

or is neutral to the respective hypothesis (Dagan 231

et al., 2005; Bowman et al., 2015b). Using ŷi to 232

represent an NLI label applied to the ith instance, 233

ŷi ∈ {entail, contradict, neutral}, and a single 234

NLI example can be expressed as ⟨pi, ŷi, hi⟩. 235

RE-to-NLI Adaptation: RE-to-NLI adapta- 236

tion converts RE inputs and labels into premise- 237

hypothesis pairs such that each input instance 238

maps to |R| premise-hypotheses pairs: (xi, yi) → 239

{(pi, ŷj , hj)}|R|
j=1. We decompose RE-to-NLI adap- 240

tation into the following sub-steps: 241

(a) Premise generation, xi → pi: Input in- 242

stances xi ∈ XRE directly become premises 243

pi ∈ P |XRE| where P is the collection of all 244

premises generated from XRE. 245

(b) Hypothesis generation, Hi = {hj}|R|
j=1: In the 246

hypothesis generation step, a set of hypothe- 247

ses Hi paired with each premise pi. This is 248

achieved by first verbalizing relation classes 249

in R into a set of m hypothesis templates 250

T = {t1, t2, . . . , tm}. Each hypothesis tem- 251

plate contains head and tail entity placehold- 252
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ers, which are replaced by the head and tail253

entities found in the corresponding premise254

pi. The verbalizer function fverbalizer(·) takes255

each hypothesis template and entity pair in256

premise pi to produce the set of hypotheses257

Hi = {fverbalizer(tj , ei1 , ei2)}
|R|
j=1.258

(c) NLI label generation, Ŷ = {ŷi}|XRE|×|R|
i=1 :259

The set of NLI labels Ŷ is generated via a260

function which takes the original instance261

label yi and the premise-hypothesis pair262

ftarget(yi, pi, hj) → ŷj where NLI label ŷj =263

entail iff verbalized class-indicative hypoth-264

esis hj aligns with the ground truth label yi,265

and, depending on the adaptation method, ŷj266

is assigned neutral or contradict for non-267

aligned hypotheses.268

The RE-to-NLI task is to correctly predict en-269

tailed premise-hypothesis pairs where each entailed270

pair has a 1-to-1 mapping to the original RE label.271

4 Methods272

This section sequentially discusses the modules273

used in METAENTAIL-RE (see Figure 1).274

Premise Construction: Following Xu et al.275

(2023), a relation instance xi is transformed into a276

premise by replacing surface forms of the subject277

and object entities, e1 and e2, respectively, with278

their corresponding entity types, e1type and e2type .279

Abstracting entity surface forms into entity types280

helps alleviate the long-tail nature of biomedical281

entities and encourages language models to learn282

from context instead of shallow heuristics (Peng283

et al., 2020). The start and end spans of entity types284

are denoted with “@” and “$,” respectively.285

Hypothesis Verbalizer: Past works have manu-286

ally generated hypothesis templates for each rela-287

tion class in a dataset which are then used, in turn,288

to generate hypotheses to pair with a given premise.289

A secondary contribution of METAENTAIL-RE is290

that we reduce this human effort by leveraging291

LLMs to automatically generate the set of hypoth-292

esis templates {t1, t2, . . . , tm} ∈ T , where m cor-293

responds to the number of relation classes in a294

dataset. We prompt an LLM2 to verbalize each295

relation class using natural language and placehold-296

ers for subject and object entities (see Appendix297

A.1 for more details). The placeholders within298

the hypothesis templates are replaced by the entity299

types, e1type and e2type , found in the corresponding300

premise.301

2We use ChatGPT (GPT 3.5) via OpenAI’s web interface.

Feasible Hypothesis Filter: There is an implicit 302

multiplicative effect of adapting RE into an NLI 303

task where each relationship instance produces m 304

class-indicative hypotheses resulting in |XRE| ×m 305

premise-hypothesis pairs. To mitigate this effect, 306

we develop a feasible hypothesis filter which au- 307

tomatically filters out improbable hypotheses by 308

aggregating valid sets of entity-type pairs by rela- 309

tionship classes across all training data: Evalid = 310

{r1 7→ S1, r2 7→ S2, . . . , rm 7→ Sm} where rj ∈ 311

R for j = 1, 2, . . . ,m and each Sj is the set of 312

tuples of entity-type pairs associated with all in- 313

stances of relationship class rj . 314

Using this filter, we assess the feasibility of 315

hypotheses given a pair of entity types: Ĥi = 316

{hj |(e1type , e2type) ∈ Evalid(rj)}
|R|
j=1 where Ĥi is 317

a set of feasible hypotheses given the entity-type 318

pair found in instance i, and Ĥi ⊂ H where H is 319

the set of all possible hypotheses. 320

Since sets of feasible hypotheses are approxi- 321

mated using the training data’s relationships and 322

entity-type pairs, the filter may remove valid hy- 323

potheses based on an entity-type pair and corre- 324

sponding relation that exists only in the test set. For 325

these instances, the entailed premise-hypothesis 326

pair will not be presented to the model, leading to 327

false negatives. However, in practice, we observe 328

that this does not occur with the datasets we use for 329

evaluation and should not occur as long as training 330

data is sufficiently representative of the test data 331

(i.e., the training data contains at least one rela- 332

tionship with a specific entity-type pair for every 333

relation and entity-type pair found in the test set). 334

Meta-class Analysis (MCA): After apply- 335

ing the aforementioned feasible hypothesis filter, 336

we leverage MCA to assign NLI labels, namely 337

entail, neutral, and contradict, to the resultant 338

premise-hypothesis pairs. To do this, we first con- 339

struct definition-based mutually exclusive meta- 340

relationships between relation classes. For exam- 341

ple, in the ChemProt dataset, the “up regulator” 342

class is, by definition, mutually exclusive to the 343

“down regulator” class. For datasets with a nega- 344

tive class (e.g., “no relation”), the negative class is 345

mutually exclusive to all positive classes and vice- 346

versa. With this analysis, we construct NLI labels 347

in the following way: 348

(a) Entail: Premise-hypothesis pairs are labeled 349

“entail” when the hypothesis hj aligns with the 350

verbalized ground truth label yi. 351

(b) Neutral: If the original instance expresses a 352
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positive class (i.e., any class other than the “no353

relation” class), then all non-exclusive class354

hypotheses are labeled as “neutral.”355

(c) Contradict: The “contradict” label is assigned356

to hypotheses that verbalize definitionally ex-357

clusive classes.358

See Appendix A.4 for tables showing how original359

relation labels map to NLI labels using MCA for360

each dataset.361

LLM Fine-tuning: With generated premise-362

hypothesis pairs, we train a discriminative lan-363

guage model, namely BioLinkBERTlarge (Yasunaga364

et al., 2022), to predict NLI labels. We concatenate365

premise-hypothesis pairs as the input to the lan-366

guage model and send the resultant representation367

of the special [CLS] token through a fully connected368

layer, which is trained using cross-entropy loss:369

LCE = −
m∑
i=1

yo,i · log (p (yo,i)) (1)370

where y is a binary indicator that is 1 if and only371

if i is the correct classification for observation o,372

p(yo,i) is the softmax probability that observation373

o is of class i, and m is the number of classes.374

Group-based Prediction Selection: Given the375

multiplicative effect of adapting RE-to-NLI where376

one relation instance results in a group of up to377

m premise-hypothesis pairs, we can employ a378

group selection method to select the most confi-379

dent entail prediction. If the model predicts two or380

more entailed instances within a group of premise-381

hypothesis pairs, we use the softmax probabil-382

ity from Equation 1 as a proxy for model confi-383

dence (Hendrycks and Gimpel, 2017) and select384

the prediction with the highest confidence. We al-385

low the model to naturally abstain from making a386

prediction by predicting “neutral” for all premise-387

hypothesis pairs in a group.388

5 Experiments389

5.1 Datasets390

We include a spread of experiments on various391

biomedical RE datasets. BioRED is a document-392

level RE dataset featuring eight relation classes393

(Luo et al., 2022). BioRED also provides an or-394

thogonal and binary “Novel” class, which anno-395

tates whether an instance expresses a novel find-396

ing. BC5CDR is a document-level RE dataset397

featuring binary relations between chemical and398

disease entities (Li et al., 2016). DDI13 is a399

drug-drug interaction dataset with four relation400

classes (Herrero-Zazo et al., 2013), and ChemProt401

is a chemical-protein dataset featuring five rela- 402

tion classes (Taboureau et al., 2010). GAD is a 403

gene-disease dataset with binary relations (Bravo 404

et al., 2014). We only include GAD in our main 405

experiment for comparative purposes to past works. 406

We believe that the GAD dataset should be retired 407

from future works due to significant label accuracy 408

issues, which the authors acknowledge.3 409

As mentioned in Section 1, our method is de- 410

signed to leverage features of biomedical domain 411

RE, namely the prevalence of definitionally ex- 412

clusive classes and the importance of entity types 413

vis-à-vis feasible relationships. However, we also 414

seek to assess our method beyond the biomedi- 415

cal domain and extend our experiments to gen- 416

eral domain datasets ReTACRED (Stoica et al., 417

2021) and SemEval-2010 Task 8 (Hendrickx et al., 418

2010). ReTACRED is a re-annotated version of TA- 419

CRED (Zhang et al., 2017) and features 40 relation 420

classes—significantly more classes than any of the 421

biomedical datasets we tested. SemEval-2010 is a 422

sentence-level RE dataset with ten relation classes. 423

5.2 Baselines 424

5.2.1 Traditional Multi-Class Classification 425

We select leading biomedical language models 426

and train them using a traditional RE multi-class 427

approach where models directly predict relation 428

classes. BioM-ALBERTxxlarge, BioM-BERTlarge, 429

and BioM-ELECTRAlarge (Alrowili and Shanker, 430

2021) are transformer architectures adapted into 431

the biomedical domain by using a custom biomed- 432

ical vocabulary and pre-training on PubMed ab- 433

stracts (National Library of Medicine (US), 1946) 434

and PubMed Central articles (National Library of 435

Medicine (US), National Center for Biotechnology 436

Information, 2000). BioMed RoBERTabase (Guru- 437

rangan et al., 2020) features the RoBERTa architec- 438

ture (Liu et al., 2019) adapted to the biomedical do- 439

main via continued pre-training on papers from the 440

S2OR Corpus (Lo et al., 2020). PubMedBERTbase 441

(Gu et al., 2020) and BioLinkBERTlarge (Yasunaga 442

et al., 2022) are BERT (Devlin et al., 2019) variants. 443

The former is trained on PubMed abstracts with a 444

custom biomedical vocabulary. The latter is trained 445

with two self-supervised objectives: masked lan- 446

guage modeling and document relation prediction. 447

5.2.2 NLI Adapted Models 448

NBR is a biomedical domain RE-to-NLI method 449

that leverages BioLinkBERTlarge as a backbone 450

3https://github.com/dmis-lab/biobert/issues/
162
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language model. Like our method, NBR con-451

verts relation instances and labels into premise-452

hypothesis pairs. Key differences between NBR453

and our method are that NBR does not use MCA454

or feasible hypothesis filtering, and they leverage455

a ranking loss training objective to rank entailed456

premise-hypothesis pairs over non-entailed pairs.457

The RE-to-NLI adaptation method used in458

METAENTAIL-RE is architecture-agnostic, so we459

also experiment with auto-regressive architectures.460

We conduct the following experiment using identi-461

cal data and methods to those discussed in Section462

4; the only difference is the final training step.463

We fine-tune Phi-2 (2.7B) and Phi-3 (3.8B).4464

For Phi-2 and Phi-3, we construct a seq-to-seq task465

and fine-tune the models to generate an NLI la-466

bel for each premise-hypothesis pair. For more467

information about training Phi-2 and Phi-3, see468

Appendix A.2.2.469

We also seek to assess the performance of large,470

frontier auto-regressive language models, GPT 3.5471

(OpenAI, 2024) and GPT 4 (OpenAI et al., 2024),5472

leveraging few-shot, in-context learning. For more473

on the prompts we use to solicit predictions from474

GPT 3.5 and GPT 4, see Appendix A.2.3.475

For all NLI-adapted models, only entailed476

premise-hypothesis pairs map directly to the origi-477

nal RE training instance. Thus, we only keep NLI478

instances labeled or predicted as entailed when479

mapping instances back into the original RE la-480

bels for evaluation. This ensures a fair comparison481

across adapted and non-adapted methods.482

5.3 General Domain Experiments483

For our general domain experiments, we use484

DeBERTaV3large (He et al., 2021) and RoBERTa-485

MNLIlarge (Liu et al., 2019). DeBERTaV3486

is an improved version of BERT that uses re-487

placed token detection, a more sample-efficient488

pre-training objective. RoBERTa-MNLIlarge is the489

RoBERTa architecture fine-tuned on the MNLI cor-490

pus (Williams et al., 2018).6491

We make slight modifications to the general492

domain version of METAENTAIL-RE. We use493

RoBERTa-MNLIlarge as the backbone language494

model, and we do not leverage surface-form ab-495

straction for entity types (i.e., we leave the original496

4We use the microsoft/phi-2 and microsoft/Phi-3-mini-4k-
instruct checkpoints from Hugging Face.

5Specifically, we use gpt-3.5-turbo-0125 and gpt-4-turbo-
2024-04-09 via OpenAI’s API.

6We use the FacebookAI/roberta-large-mnli checkpoint
from Hugging Face.

entities as they appear in the text and do not replace 497

them with their corresponding types). Entity sur- 498

face form abstraction is a method developed for the 499

long-tail nature of biomedical entities (Peng et al., 500

2020). Also, some general domain RE datasets, 501

such as SemEval-2010 Task 8, do not provide an- 502

notated entity type information. 503

6 Results 504

We observe an interesting comparison between 505

the BioLinkBERTlarge model and METAENTAIL- 506

RE. Both experiments share the same backbone 507

language model, yet the performance of our 508

METAENTAIL-RE method is significantly higher 509

providing evidence of the effectiveness of adapt- 510

ing the RE task into one of textual entailment. We 511

hypothesize that the boost in performance primar- 512

ily comes from the additional data abstraction RE- 513

to-NLI introduces by training the model to recog- 514

nize entailed premise-hypothesis pairs instead of di- 515

rectly predicting suppositional classes. By combin- 516

ing RE-to-NLI adaptation with surface-form entity 517

abstraction, the model is less prone to memorizing 518

entities and shallow heuristics of relation classes; 519

instead, it must understand the context and the nat- 520

ural language interplay between a premise and hy- 521

pothesis. Furthermore, the boost in performance 522

between the NBR model and METAENTAIL-RE 523

highlights the effectiveness of leveraging MCA, 524

feasible hypothesis filtering, and group-based pre- 525

diction selection. 526

Within the biomedical domain experiments, the 527

NLI-adapted auto-regressive models generally un- 528

derperform compared to the discriminative models. 529

Predictably, the larger Phi-3 outperforms Phi-2 and 530

fine-tuning smaller auto-regressive models outper- 531

forms larger models, GPT 3.5 and GPT 4, lever- 532

aging few-shot in-context learning. This aligns 533

with findings from Peng et al. (2024) that LLMs 534

using in-context learning underperform relative to 535

smaller, fine-tuned language models on informa- 536

tion extraction tasks. 537

In the general domain, we observe better over- 538

all performance from auto-regressive architec- 539

tures. The performance from Phi-3 approaches 540

that of METAENTAIL-RE on both ReTACRED and 541

SemEval-2010 Task 8 datasets. These results are 542

promising for auto-regressive models, in general. 543

We leave fine-tuning larger auto-regressive models 544

to future work but expect additional gains to be 545

made, potentially overtaking the smaller discrimi- 546

native models. 547
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Model BC5CDR BioRED BioRED (novel) ChemProt DDI13 GAD
TRADITIONAL MULTI-CLASS CLASSIFICATION

BioM-ALBERTxxlarge (Alrowili and Shanker, 2021) 0.679 0.668 0.863 0.940 0.911 0.815
BioM-BERTlarge (Alrowili and Shanker, 2021) 0.681 0.709 0.904 0.934 0.917 0.795
BioM-ELECTRAlarge (Alrowili and Shanker, 2021) 0.687 0.657 0.903 0.925 0.885 0.830
BioMed RoBERTabase (Gururangan et al., 2020) 0.664 0.714 0.897 0.919 0.911 0.803
PubMedBERTbase (Gu et al., 2020) 0.651 0.715 0.891 0.923 0.916 0.803
BioLinkBERTlarge (Yasunaga et al., 2022) 0.682 0.699 0.899 0.931 0.917 0.806

NLI ADAPTED MODELS

NBR (Xu et al., 2023) 0.679 0.543 0.664 0.883 0.846 0.831
Phi-2 (Li et al., 2023) 0.653 0.715 0.824 0.852 0.873 0.729
Phi-3 (Abdin et al., 2024) 0.749 0.688 0.840 0.930 0.915 0.721
GPT 3.5† (OpenAI, 2024) 0.282 0.470 0.594 0.494 0.386 0.548
GPT 4† (OpenAI et al., 2024) 0.418 0.532 0.680 0.626 0.492 0.660
METAENTAIL-RE 0.757 0.891 0.917 0.968 0.957 0.878

Table 1: Micro F1 scores for traditional RE and NLI adapted methods. †Results from GPT 3.5 and GPT 4 are via
in-context learning (see Appendix A.2.3 for details), whereas other models were fine-tuned directly on the task from
our own implementations. Results show averages over five runs.

Model ReTACRED SemEval
TRADITIONAL MULTI-CLASS CLASSIFICATION

DeBERTaV3large (He et al., 2021) 0.809 0.807
RoBERTa-MNLIlarge (Liu et al., 2019) 0.800 0.828

NLI ADAPTED MODELS

NBR (Xu et al., 2023) 0.875 0.826
Phi-2 (Li et al., 2023) 0.862 0.855
Phi-3 (Abdin et al., 2024) 0.880 0.871
GPT 3.5† (OpenAI, 2024) 0.306 0.340
GPT 4† (OpenAI et al., 2024) 0.565 0.616
METAENTAIL-RE 0.943 0.902

Table 2: Micro F1 scores from general domain RE ex-
periments.

Model BioRED ChemProt ReTACRED
METAENTAIL-RE 0.891 0.968 0.943

(w/o Feasible Hypothesis Filter) 0.876 N/A DNC
(w/o Meta-class Analysis) 0.853 0.911 0.916
(w/o Grouped Selection) 0.805 0.950 0.875

Table 3: Micro F1 scores from ablation experi-
ments which remove each proposed module within
METAENTAIL-RE. Each module has a significant im-
pact on performance. ChemProt is monolithic in its
entity types (chemicals and diseases), which prevents
the use of the feasible hypothesis filter. On ReTACRED,
we observe that without applying the feasible hypothesis
filter, the model does not converge (DNC).

6.1 Ablation Experiments548

We conduct ablation experiments to better under-549

stand METAENTAIL-RE’s performance gains by550

removing modules and reporting the performance.551

Note that the performance of BioLinkBERTlarge552

in Table 1 can be considered a type of abla-553

tion of METAENTAIL-RE that does not leverage554

NLI adaptation or any additional modules since555

METAENTAIL-RE uses BioLinkBERTlarge as its556

backbone language model. For our ablations, we557

choose to examine the BioRED, ChemProt, and558

ReTACRED datasets because they feature more559

than two relation classes and contain one or more 560

definition-based mutually exclusive relations as de- 561

termined by MCA. 562

(a) w/o Feasible Hypothesis Filter: We remove 563

the feasible hypothesis filter, and, in doing 564

so, each original relation instance is converted 565

into m premise-hypothesis pairs, with m be- 566

ing the number of classes in a dataset. Re- 567

moving the feasible hypothesis filter produced 568

a moderate drop in performance on BioRED 569

(m = 8). Since the feasible hypothesis filter 570

is based on entity type pairs, it is not available 571

(N/A) for datasets such as ChemProt, which 572

only feature a single entity type pair (namely, 573

chemical and gene) associated with every re- 574

lation class. However, the feasible hypothesis 575

filter is essential in model convergence when a 576

dataset consists of many relation classes, such 577

as ReTACRED (m = 40). In our experiments 578

on ReTACRED without the feasible hypothe- 579

sis filter, the model did not converge (DNC), 580

likely due to the overwhelming number of 581

non-informative “neutral” premise-hypothesis 582

pairs used in training. 583

(b) w/o Meta-class Analysis: Removing MCA and 584

using “neutral” as the NLI label for all non- 585

entailed premise-hypothesis pairs led to a con- 586

siderable drop in performance, indicating the 587

benefit of training the model with the addi- 588

tional training signal obtained via MCA. Note 589

that in this ablation experiment, we maintain 590

mutual exclusive NLI labels between positive 591

and negative (i.e., “no relation”) classes. 592

(c) w/o Group Prediction Selection: To remove 593

this module, we select all entailed predictions 594
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Figure 2: ∆F1 per relation class when leveraging meta-class analysis to assign NLI labels.

regardless of how many entail predictions are595

made within a group of premise-hypothesis596

pairs. Doing this removes the constraint im-597

posed by the single-class classification task598

and allows the model to freely predict multi-599

ple classes for a single relation instance. This600

ablation experiment led to a drop in perfor-601

mance across all datasets but most signifi-602

cantly on BioRED, which we suspect results603

from the closeness in BioRED’s “positively604

correlated” and “associated” relation classes.605

These classes were typically confused since606

“associated” can sometimes be considered a607

hypernym of “positively correlated,” leading608

the model to predict entail for both of the cor-609

responding hypotheses.610

6.2 Meta-class Analysis Case Study611

To further explore the impacts of leveraging612

MCA, we decompose results from ReTACRED,613

BioRED, and ChemProt by evaluating the change614

in Micro F1 scores (∆F1) for each class. We iso-615

late the effect of MCA by training identical models616

with and without MCA-informed NLI labels and617

report the results in Figure 2.618

MCA results in a net benefit in performance619

across classes and datasets, but the specific nature620

of these benefits varies. In ReTACRED, we ob-621

serve notable improvements in the “member of”622

and “members” classes, which are definitionally623

exclusive. Conversely, some classes experience mi-624

nor decreases in performance. For BioRED, we ob-625

serve a slight drop in predictive performance for the626

“negative correlation” class, while all other classes627

get a significant boost. The largest performance628

gains are seen in classes that are not mutually exclu-629

sive, suggesting that the additional training signal630

from MCA aids the model in disentangling adja- 631

cent relation class representations. In ChemProt, 632

we observe near-uniform, albeit relatively small, 633

boosts in performance across all classes. 634

6.3 Additional Experiments 635

Given that RE-to-NLI adaptation leads to models 636

predicting the same entail, neutral, contradict la- 637

bels across disparate datasets, we naturally sought 638

to investigate the potential of combining the rela- 639

tively small and disjoint biomedical RE datasets 640

into a single, unified task. Unfortunately, these ex- 641

periments failed to produce significant performance 642

gains, indicating that these biomedical datasets 643

have limited synergistic effects when adapted to 644

the NLI task. We present experiment details and 645

results in Appendix A.3. 646

7 Conclusion 647

The exploration of NLI techniques to enhance 648

relation extraction has opened new avenues in 649

natural language processing, and our study in- 650

troduces METAENTAIL-RE as an advancement 651

in this area. By adapting the RE task into an 652

NLI framework and incorporating innovative strate- 653

gies such as meta-class analysis, feasible hypothe- 654

sis filtering, and group-based prediction selection, 655

METAENTAIL-RE demonstrates remarkable im- 656

provements in RE performance. Our experiments, 657

conducted across biomedical and general domain 658

datasets, highlight the robustness and versatility of 659

METAENTAIL-RE. By openly sharing our code, 660

experimental settings, and datasets, we aim to fa- 661

cilitate further research and development in this 662

promising intersection of NLI and RE, paving the 663

way for more sophisticated and accurate informa- 664

tion extraction systems in diverse domains. 665
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Limitations666

METAENTAIL-RE is not without its limitations.667

By verbalizing a hypothesis for each relation class,668

the training data is multiplied by the number of669

relation classes in the dataset, necessitating addi-670

tional training resources. Our introduced module,671

the feasible hypothesis filter, relies heavily on ac-672

curate entity-type information. This information673

is crucial for the success of the adaptation process.674

However, the filtering process becomes ineffective675

if this information is unavailable or if numerous676

feasible hypotheses (e.g., 40+) exist for a given re-677

lation class and entity type pair. In these scenarios,678

the “entail” class becomes a minority class in a sea679

of “neutral” NLI instances, potentially causing the680

model to collapse to a trivial state of simply pre-681

dicting “neutral” for every premise-hypothesis pair.682

Such a scenario would require the design of manu-683

ally tuned sampling strategies or bespoke learning684

objectives to handle the overwhelming number of685

“neutral” premise-hypothesis pairs. We defer the686

exploration of such challenging settings to future687

research.688

Additionally, in our study, meta-class analysis689

is performed manually, which introduces an extra690

layer of human effort. This manual effort involves691

reading annotation guidelines for a specific dataset692

to determine which relation classes are mutually693

exclusive based on their definitions. While this694

task is relatively quick and straightforward, it does695

require additional human involvement.696

Ethics Statement697

We do not anticipate any major ethical concerns;698

relation extraction is a fundamental problem in nat-699

ural language processing. A minor consideration is700

the potential for introducing certain hidden biases701

into our results (i.e., performance regressions for702

some subset of the data despite overall performance703

gains). However, we did not observe any such704

issues in our experiments, and indeed these con-705

siderations seem low-risk for the specific datasets706

studied here because they are all published.707
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A Appendix1039

A.1 Automatic Generation of Hypothesis1040

Templates1041
To reduce human effort in our methods, we turn1042

to LLMs, specifically GPT 3.5 (OpenAI, 2024), to1043

automatically generate hypothesis templates. Some1044

datasets, such as BC5CDR, GAD, and BioRED1045

Novel, feature two classes, making the template1046

generation process relatively trivial. The benefits1047

of automating the generation of hypothesis tem-1048

plates are more significant for datasets such as Re-1049

TACRED, which feature 40 relation classes.1050

We use the following prompt where the ellipsis1051

is replaced with the list of natural language rela-1052

tion classes (e.g., relation classes with underscores1053

removed and spaces inserted) used in each dataset:1054

Verbalize the following relation classes in
the form “subj [verbalized relation] obj":
[. . . ].

1055

A special case arose for the DDI13 dataset where 1056

each relation instance describes a relation between 1057

two drugs. We referenced the verbalized hypothe- 1058

ses proposed by Xu et al. (2023) and included in- 1059

structions about describing two drug entities: 1060

Verbalize the following relation classes us-
ing the form "[verbalized relation] two drugs
is described": [. . . ].

1061

Table 4 contains the generated hypothesis tem- 1062

plates for each dataset. 1063

A.2 Baselines 1064

A.2.1 GPU Resources 1065

All baselines were trained on a single NVIDIA 1066

A100, and training times ranged from 1 to 12 hours, 1067

changing based on the size of the dataset and the 1068

number of parameters in the model. 1069

A.2.2 Phi-2 and Phi-3 1070

Since responses from auto-regressive models 1071

may sometimes include additional text, all re- 1072

sponses are aligned to ground truth labels using 1073

partial string matching. We do this by searching for 1074

the matches of the first three letters in each NLI la- 1075

bel (e.g., “ent” → entail, “con” → contradict, “neu” 1076

→ neutral). When a class cannot be matched, we 1077

assign “none,” which, during evaluation, is equiva- 1078

lent to the NLI label neutral. 1079

For Phi-2, we use the following prompt to fine- 1080

tune the model on our task: 1081

[INST]You are given a premise and a
hypothesis below. If the premise entails
the hypothesis, return “entail.” If the
premise contradicts the hypothesis, return
“contradict.” Otherwise, if the premise does
neither, return “neutral.”[/INST]

### Premise: [premise]
### Hypothesis: [hypothesis]
### Label: [nli_target]

1082

Phi-3 uses a similar prompt that differs only in 1083

format: 1084

<|system|>
You are given a premise and a hypothesis
below. If the premise entails the hypothesis,
return “entail.” If the premise contradicts the
hypothesis, return “contradict.” Otherwise,
if the premise does neither, return “neutral.”
<|end|>

1085
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<|user|>
Premise: [premise]
Hypothesis: [hypothesis]
Label:
<|end|>

<|assistant|>
[nli_target]
<|end|>

1086

Both Phi-2 and Phi-3 were fine-tuned using the1087

hyperparameters in Table 5.1088

A.2.3 GPT 3.5 and GPT 41089

GPT 3.5 and GPT 4 often perform better on tasks1090

with the help of in-context learning (Wei et al.,1091

2023; Wang et al., 2023). We construct a prompt1092

that lists the NLI labels and offers four examples1093

of premise-hypothesis pairs expressing each NLI1094

label.1095

The following is the prompt we used for solicit-1096

ing predictions for our tests:1097

You are given a premise and a hypothesis
below. If the premise entails the hypothesis,
return “entail.” If the premise contradicts the
hypothesis, return “contradict.” Otherwise,
if the premise does neither, return “neutral.”
The following are some examples:

### Premise: [premise]
### Hypothesis: [hypothesis]
### Label: [nli_target]
...
{4x examples of each NLI class are pro-
vided}
...

1098

For responses from GPT 3.5 and GPT 4, we use1099

the same partial string matching used for Phi-2 and1100

Phi-3 (Appendix A.2.2) for evaluation.1101

A.2.4 Hyperparameters for1102

METAENTAIL-RE1103

Table 6 contains the hyperparameters used to1104

train METAENTAIL-RE.1105

A.3 Task Unification Results1106

We explore unifying biomedical relation extrac-1107

tion datasets in hopes of boosting performance on a1108

target dataset. We investigate two task-unification1109

training methodologies: single-stage training and1110

double-stage training. Single-stage training can1111

be viewed as multi-task learning, where the model 1112

is trained simultaneously on multiple datasets and 1113

tested on a target dataset. Double-stage training can 1114

be viewed as an initial pre-training stage on all data 1115

except the target dataset, followed by fine-tuning 1116

and evaluation on the target dataset. 1117

Unfortunately, we did not observe a significant 1118

performance boost across our task-unification ex- 1119

periments (see Table 7), potentially indicating that 1120

these biomedical datasets do not provide comple- 1121

mentary information when adapted into an NLI 1122

task. Generally, the two-stage training is more 1123

effective than the single-stage training, but both 1124

fail to realize significant performance gains on the 1125

target datasets. We leave investigating other task- 1126

unification methods for future works. 1127

A.4 Meta-class analysis 1128

We conduct a meta-class analysis for each 1129

dataset used in Section 5. We leverage class def- 1130

initions to determine sets of mutually exclusive 1131

classes. The following tables show how meta-class 1132

analysis converts original RE labels (row headers) 1133

into NLI labels. The h(class) column headers de- 1134

note verbalized hypotheses using the corresponding 1135

class. For each table, we use the following denote 1136

NLI labels: 1137

• 0 → contradict 1138

• 1 → neutral 1139

• 2 → entail 1140
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Dataset Relation Classes Hypothesis Templates
BC5CDR Associated “subj is associated with obj.”

Not Associated “subj is not associated with obj.”
BioRED Positive Correlation “subj positively correlates with obj.”

Negative Correlation “subj negatively correlates with obj.”
Association “subj is associated with obj.”
Comparison “subj is compared with obj.”
Conversion “subj converts to obj.”
Cotreatment “subj is co-treated with obj.”
Drug Interaction “subj interacts with obj (as drugs).”
Bind “subj binds to obj.”

BioRED Novel Novel “subj introduces a novel relationship to obj.”
Not novel “subj does not introduce a novel relation to obj.”

ChemProt Upregulator “subj upregulates obj.”
Downregulator “subj downregulates obj.”
Agonist “subj acts as an agonist for obj.”
Antagonist “subj acts as an antagonist for obj.”
Substrate “subj is a substrate for obj.”

DDI13 Advise "Advice regarding two drugs is described.”
Effect "An effect between two drugs is described.”
Interaction "An interaction between two drugs is described.”
Mechanism "The mechanism involving two drugs is described.”

GAD Associated “subj is associated with obj.”
Not Associated “subj is not associated with obj.”

ReTACRED No relation “subj has no relation with obj.”
Org:alternate names “subj has alternate names as obj.”
Org:city of branch “subj’s branch is located in the city of obj.”
Org:country of branch “subj’s branch is located in the country of obj.”
Org:dissolved “subj has been dissolved.”
Org:founded “subj was founded on the date obj.”
Org:founded by “subj was founded by obj.”
Org:member of “subj is a member of obj.”
Org:members “subj has members including obj.”
Org:number of employees/members “subj has obj number of employees/members.”
Org:political/religious affiliation “subj has political/religious affiliation with obj.”
Org:shareholders “subj has shareholders including obj.”
Org:state or province of branch “subj’s branch is located in the state or province of obj.”
Org:top members/employees “subj’s top members/employees include obj.”
Org:website “subj’s website is obj.”
Per:age “subj’s age is obj.”
Per:cause of death “subj’s cause of death is obj.”
Per:charges “subj is charged with obj.”
Per:children “subj has obj as children.”
Per:cities of residence “subj resides in cities including obj.”
Per:city of birth “subj was born in the city of obj.”
Per:city of death “subj died in the city of obj.”
Per:countries of residence “subj resides in countries including obj.”
Per:country of birth “subj was born in the country of obj.”
Per:country of death “subj died in the country of obj.”
Per:date of birth “subj was born on the date obj.”
Per:date of death “subj died on the date obj.”
Per:employee of “subj is an employee of obj.”
Per:identity “subj’s identity is obj.”
Per:origin “subj’s origin is obj.”
Per:other family “subj has obj as other family members.”
Per:parents “subj’s parents include obj.”
Per:religion “subj’s religion is obj.”
Per:schools attended “subj attended schools including obj.”
Per:siblings “subj’s siblings include obj.”
Per:spouse “subj’s spouse is obj.”
Per:state or province of birth “subj was born in the state or province of obj.”
Per:state or province of death “subj died in the state or province of obj.”
Per:state or provinces of residence “subj resides in states or provinces including obj.”
Per:title “subj’s title is obj.”

SemEval 2010 Other “subj and obj are related in some other way.”
Component-Whole “subj is a component of obj.”
Instrument-Agency “subj is used by obj.”
Member-Collection “subj is a member of obj.”
Cause-Effect “subj causes obj.”
Entity-Destination “subj is taken to obj.”
Message-Topic “subj is about obj.”
Entity-Origin “subj comes from obj.”
Product-Producer “subj is produced by obj.”
Content-Container “subj contains obj.”

Table 4: Auto-generated hypothesis templates for each relation class in each dataset. Hypotheses are generated
using GPT 3.5 and the prompt described in Appendix A.1.

14



Parameter Value
Epochs 3
Max seq. length 1,024
Batch size 3
Grad. accumulation steps 2
Max gradient norm 0.3
Learning rate 2e-4
Lr scheduler type cosine
Weight decay 0.001
Warm-up ratio 0.03

Table 5: Hyperparameters used to fine-tune Phi-2 and
Phi-3.

Parameter Value
Epochs 3
Batch size 32
Grad. accumulation steps 1
Max seq. length 1,024
Learning rate 2e-5
Seeds {41, 42, 43, 44, 45}
Optimizer AdamW
LR Scheduler warm-up steps 0
LR Scheduler training steps 1,000

Table 6: Hyperparameters used to fine-tune
BioLinkBERTlarge for the METAENTAIL-RE method.
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MULTI-TASK LEARNING (SINGLE-STAGE)
ENSEMBLE TRAINING DATA → TEST SET ∆ F1
BC5CDR + BioRED + ChemProt + DDI13 BC5CDR -0.049
BioRED + ChemProt + DDI13 + BC5CDR BioRED -0.031
ChemProt + BioRED + DDI13 + BC5CDR ChemProt +0.012
DDI13 + BioRED + ChemProt + BC5CDR DDI13 -0.007

CONTINUED PRE-TRAINING WITH SUPERVISED FINE-TUNING (DOUBLE-STAGE)
PRE-TRAINING CORPUS → FINE-TUNING → TEST SET ∆F1
BioRED + ChemProt + DDI13 BC5CDR BC5CDR -0.005
ChemProt + DDI13 + BC5CDR BioRED BioRED -0.014
BioRED + DDI13 + BC5CDR ChemProt ChemProt -0.008
BioRED + ChemProt + BC5CDR DDI13 DDI13 -0.011

Table 7: Results from single-stage and double-stage task unification experiments. ∆F1 scores are relative to
METAENTAIL-RE scores from Table 1. We do not observe signification performance improvements from our task
unification experiments and leave further experimentation to future work.

h(Associated) h(Not Associated)
Associated 2 0
Not Associated 0 2

Table 8: Meta-class analysis for BC5CDR. The “Asso-
ciated” class is definitionally mutually exclusive to the
“Not Associated” class.
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Positive Correlation 2 0 1 1 1 1 1 1
Negative Correlation 0 2 1 1 1 1 1 1
Association 1 1 2 1 1 1 1 1
Comparison 1 1 1 2 1 1 1 1
Conversion 1 1 1 1 2 1 1 1
Co-treatment 1 1 1 1 1 2 1 1
Drug Interaction 1 1 1 1 1 1 2 1
Bind 1 1 1 1 1 1 1 2

Table 9: Meta-class analysis for BioRED. The “Positive
Correlation” class is mutually exclusive to the “Negative
Correlation” class.

h(Novel) h(Not Novel)
Novel 2 0
Not Novel 0 2

Table 10: Meta-class analysis for BioRED Novel. The
“Novel” class is mutually exclusive to the “Not Novel”
class.
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Up regulator 2 0 1 1 1
Down regulator 0 2 1 1 1
Agonist 1 1 2 0 1
Antagonist 1 1 0 2 1
Substrate 1 1 1 1 2

Table 11: Meta-class analysis for ChemProt. “Up reg-
ulator” is mutually exclusive to “down regulator” and
“agonist” is mutually exclusive to “antagonist.”
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Advise 2 1 1 1
Effect 1 2 1 1
Interact 1 1 2 1
Mechanism 1 1 1 2

Table 12: Meta-class analysis for DDI13. No classes in
DDI13 are mutually exclusive based on class definitions.
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No relation 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
org:alternate names 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:city of branch 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:country of branch 0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:dissolved 0 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:founded 0 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:founded by 0 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:member of 0 1 1 1 1 1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:members 0 1 1 1 1 1 1 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:number of employees/members 0 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:political/religious affiliation 0 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:shareholders 0 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:state or province of branch 0 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:top members/employees 0 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
org:website 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:age 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:cause of death 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:charges 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:children 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1
per:cities of residence 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:city of birth 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:city of death 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:countries of residence 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:country of birth 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:country of death 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:date of birth 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
per:date of death 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
per:employee of 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
per:identity 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 2 1 0 0 1 1 0 0 1 1 1 1
per:origin 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
per:other family 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 2 0 1 1 0 0 1 1 1 1
per:parents 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 2 1 1 0 0 1 1 1 1
per:religion 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
per:schools attended 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1
per:siblings 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 2 0 1 1 1 1
per:spouse 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 2 1 1 1 1
per:state or province of birth 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
per:state or province of death 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
per:state or provinces of residence 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
per:title 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

Table 13: Meta-class analysis for ReTACRED. Classes involving familial relations are all mutually exclusive to each
other (e.g., “per:spouse,” “per:parents,” “per:other family,” “per:siblings,” “per:identity,” “per:children”). Classes
“org:members” and “org:member of” are mutually exclusive since each denotes an opposing directional relationship
between a subject and an object.
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Other 2 1 1 1 1 1 1 1 1 1
Component-Whole 1 2 1 1 1 1 1 1 1 1
Instrument-Agency 1 1 2 1 1 1 1 1 1 1
Member-Collection 1 1 1 2 1 1 1 1 1 1
Cause-Effect 1 1 1 1 2 1 1 1 1 1
Entity-Destination 1 1 1 1 1 2 1 1 1 1
Message-Topic 1 1 1 1 1 1 2 1 1 1
Entity-Origin 1 1 1 1 1 1 1 2 1 1
Product-Producer 1 1 1 1 1 1 1 1 2 1
Content-Container 1 1 1 1 1 1 1 1 1 2

Table 14: Meta-class analysis for SemEval-2010 Task
8. No classes in SemEval-2010 Task 8 are mutually
exclusive based on class definitions.

h(Associated) h(Not Associated)
Associated 2 0
Not Associated 0 2

Table 15: Meta-class analysis for GAD. The “Associ-
ated” class is definitionally mutually exclusive to the
“Not Associated” class.
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