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Abstract

Model-based offline reinforcement learning (RL) has made re-
markable progress, offering a promising avenue for improving
generalization with synthetic model rollouts. Existing works
primarily focus on incorporating pessimism for policy opti-
mization, usually via constructing a Pessimistic Markov Deci-
sion Process (P-MDP). However, the P-MDP discourages the
policies from learning in out-of-distribution (OOD) regions
beyond the support of offline datasets, which can under-utilize
the generalization ability of dynamics models. In contrast, we
propose constructing an Optimistic MDP (O-MDP). We ini-
tially observed the potential benefits of optimism brought by
encouraging more OOD rollouts. Motivated by this observa-
tion, we present ORPO, a simple yet effective model-based
offline RL framework. ORPO generates Optimistic model
Rollouts for Pessimistic offline policy Optimization. Specifi-
cally, we train an optimistic rollout policy in the O-MDP to
sample more OOD model rollouts. Then we relabel the sam-
pled state-action pairs with penalized rewards and optimize
the output policy in the P-MDP. Theoretically, we demonstrate
that the performance of policies trained with ORPO can be
lower-bounded in linear MDPs. Experimental results show that
our framework significantly outperforms P-MDP baselines by
a margin of 30%, achieving state-of-the-art performance on the
widely-used benchmark. Moreover, ORPO exhibits notable
advantages in problems that require generalization.

1 Introduction
In scenarios where online trial-and-error are too costly or
prohibited, such as autonomous driving (Yu et al. 2018),
healthcare (Gottesman et al. 2019), and robotics (Mandlekar
et al. 2020), offline RL (Levine et al. 2020) has emerged as
a solution to leverage previously-collected datasets. While
successful, recent research (Wang et al. 2021; Lee et al. 2022)
demonstrates that model-free offline RL methods typically
learn overly conservative policies and lack generalization
beyond the datasets.

Model-based approach, which leverages a learned dynam-
ics model to generate rollouts for policy optimization (Sutton
1990), has been introduced to offline RL, achieving remark-
able progress (Yu et al. 2020; Rigter et al. 2022). In the
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(b) ORPO framework.

Figure 1: (a) Previous model-based offline RL generates
model rollouts and optimizes the policy within the P-MDP.
(b) We decouple the training of optimistic rollout policies
from the pessimistic policy optimization.

context of offline RL, the dynamic models may exhibit in-
accuracies due to limited datasets. To avoid over-estimation
on out-of-distribution (OOD) data, prior methods construct a
Pessimistic Markov Decision Process (P-MDP) based on un-
certainty quantification of dynamics models (Yu et al. 2020;
Kidambi et al. 2020), which lower-bounds the real MDP.

Dynamics models trained in a supervised manner can
exhibit refined generalization capacity for some near-
distribution OOD state-action pairs, which is mainly studied
and utilized in the model-based online RL (Janner et al. 2019;
Moerland et al. 2023). Recent works (An et al. 2021; Bai
et al. 2022) have demonstrated that OOD sampling can ef-
fectively regularize behaviors and enhance generalization for
offline policy optimization. However, P-MDP used in prior
model-based offline RL penalizes OOD state-action pairs
that have high uncertainty (Figure 1(a)), discouraging poli-
cies from sampling in OOD regions. Therefore, utilizing only
pessimistic rollouts may under-utilize the dynamics model,
thereby limiting generalization. We verify this by designing
a toy task in Figure 2.

This paper delves into the efficacy of optimism in the con-
text of model-based offline RL, aiming to take full advantage
of the learned dynamics model. To introduce optimism when
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(d) Evaluation trajectories of
the policy trained with ORPO.

Figure 2: (a) In toy experiments with a 2-dimensional continuous state space and action space, the coordinate origin (0, 0) is
taken as the central point of the square region. The agent starts at the region between lines y = �x� 0.25 and y = �x+ 0.25,
and the goal is to move upper right to obtain high rewards. The offline dataset only contains transitions whose state is in the
initial area. (b) The further the states are from the offline dataset, the higher the estimated uncertainty value by the dynamics
model. (c) The policy trained with MOPO (Yu et al. 2020) with only P-MDP can not reach regions with high reward but high
uncertainty. (d) With more optimistic model rollouts but optimization in the same P-MDP, ORPO agents can learn to reach states
with high rewards and avoid regions with low rewards. Please refer to Appendix C.1 for the detailed experimental setup.

generating model rollouts, we can flip the sign of uncertainty
penalties of the Pessimistic MDP (P-MDP), resulting in an
Optimistic MDP (O-MDP). However, using only O-MDP
in model-based offline RL contrasts the provably efficient
pessimism (Jin, Yang, and Wang 2021) in offline RL, and
may lead policies to risky state-action regions with large dy-
namics model errors. Hence, the central question that this
work is trying to answer is: can we train an offline policy that
exploits the generalization ability of dynamics models while
still adopting provably efficient pessimism?

To this end, we present a novel model-based offline RL
algorithmic framework called ORPO (Figure 1(b)), which
decouples the training of rollout policies from the pessimistic
policy optimization. Specifically, we construct an O-MDP to
train optimistic rollout policies, which have a higher prob-
ability of accessing OOD state-action regions based on the
generalization ability of dynamics models. Subsequently, we
relabel the optimistic model rollouts by assigning them penal-
ized rewards in the P-MDP. The agent trained by the relabeled
optimistic rollouts is more likely to select OOD actions when
their value estimations are high, while avoiding low-value
risky regions, as shown in Figure 2(d). In summary, our main
contributions are:

• We introduce the construction of an O-MDP in the model-
based offline RL framework, highlighting its potential ben-
efits derived from encouraging increased OOD sampling.

• We present ORPO, a novel framework that generates op-
timistic model rollouts for pessimistic offline policy opti-
mization. We theoretically provide the lower bound of the
expected return of policies trained with ORPO.

• Through empirical evaluations, ORPO policies outperform
the P-MDP baseline by a substantial margin of 30%, and
achieve competitive or superior scores compared to base-
line methods in 8 out of 12 datasets from the D4RL bench-
mark (Fu et al. 2020). Furthermore, our method has bet-

ter performance compared to the state-of-the-art in two
datasets requiring policy to generalize.

2 Related Works
Off-policy online RL algorithms (Fujimoto, Hoof, and Meger
2018; Haarnoja et al. 2018) often suffer from inefficiency due
to extrapolation errors (Fujimoto, Meger, and Precup 2019).
These errors arise from overestimating the values of out-
of-distribution (OOD) state-action pairs beyond the support
of offline datasets. Offline RL is proposed to learn effec-
tive policies from a logged dataset without interacting with
the environment (Levine et al. 2020), which can generally
be categorized into two types: model-free and model-based.
Model-free offline RL methods learn conservative value func-
tions (Kumar et al. 2020; Kostrikov, Nair, and Levine 2022)
or directly constrain the policy (Fujimoto, Meger, and Precup
2019; Kumar et al. 2019; Fujimoto and Gu 2021) to preclude
OOD actions. However, policy trained by such methods may
be overly conservative (Lee et al. 2022), lacking generaliza-
tion ability beyond the offline dataset (Wang et al. 2021).

Model-based Offline RL. Model-based offline RL algo-
rithms first train a dynamics model using supervised learning
with the logged dataset. Then the dynamics model can be
used to optimize policies, in which Dyna-style algorithm (Sut-
ton 1990) is adopted by a number of recent methods (Yu et al.
2020, 2021; Clavera, Fu, and Abbeel 2020; Rafailov et al.
2021). By utilizing the additional synthetic data generated by
the learned dynamics model, model-based offline RL meth-
ods have the potential to exhibit better generalization abilities
compared to model-free (Kumar et al. 2020; Kostrikov, Nair,
and Levine 2022; Fujimoto and Gu 2021).

Since the limitation of the logged dataset, it is essential
to quantify how trustable the model is for specific rollouts.
Both MOPO (Yu et al. 2020) and MOReL (Kidambi et al.
2020) construct the P-MDP to optimize the policy, where



rewards are penalized according to uncertainty quantification.
Many recent works aim to incorporate pessimism into policy
optimization, via backward dynamics model (Wang et al.
2021; Lyu, Li, and Lu 2022), uncertainty-free conservatism
(Yu et al. 2021) or robust MDPs (Guo, Yunfeng, and Geng
2022; Rigter et al. 2022). In contrast, we investigate the
potential benefits of optimism for training rollout policies.
We adopt the P-MDP from MOPO for pessimistic policy
optimization and introduce the O-MDP for generating model
rollouts. Importantly, our proposed framework is not limited
to MOPO and can be easily combined with other model-based
offline RL methods.

Uncertainty Aware Reinforcement Learning. Uncer-
tainty plays a crucial role in RL. Optimism in the Face of
Uncertainty (OFU) (Abbasi-Yadkori, Pál, and Szepesvári
2011) principle is commonly employed in online RL for ac-
tive and efficient environment exploration (Lockwood and Si
2022), which is provably efficient (Abbasi-Yadkori, Pál, and
Szepesvári 2011; Jin et al. 2020). Uncertainty is also widely
used in model-based online RL for controlling the model
usage (Luo et al. 2019; Janner et al. 2019; Pan et al. 2020).

In offline RL, uncertainty is typically utilized for pes-
simism. As aforementioned, certain model-based offline RL
methods (Lu et al. 2022) estimate the uncertainty of the
dynamics model to construct P-MDPs. Additionally, recent
model-free methods (An et al. 2021; Bai et al. 2022; Wu et al.
2021) employ the uncertainty quantification of Q-functions
to penalize OOD state-action pairs. Our proposed framework
is closely related to both the provably efficient designs for
exploration in online RL and pessimism in offline RL.

3 Preliminaries
We define a Markov Decision Process (MDP) as the tuple
M = (S,A, T, r, �), where S and A denote the state and
action space, T (s0|s, a) represents the dynamics or transition
distribution, r(s, a) is the reward function, and � 2 (0, 1)
is the discount factor. Let P⇡

T,t
(s) denote the probability of

being in state s at time step t if actions are sampled ac-
cording to ⇡ and transitions according to T . Let ⇢⇡

T
(s, a)

be the discounted occupancy measure of policy ⇡ under
dynamics T : ⇢⇡

T
(s, a) :=

P1
t=0 �

tP⇡

T,t
(s)⇡(a|s). The goal

is to find a policy ⇡(a|s) that maximizes the expected dis-
counted return ⌘M (⇡) = Ē

(s,a)⇠⇢
⇡
T

[r(s, a)]. The value func-

tion VM (s) := E
⇡,T

[
P1

t=0 �
t
r(st, at)|s0 = s] gives the ex-

pected discounted return when starting from state s.
For offline RL where agents can not interact with the

environment, we have a previously-collected static dataset
D

env = {(sj , aj , rj , sj+1)}Jj=1, which consists of J transi-
tion tuples from trajectories collected by a behavior policy.
Canonical model-based offline RL methods typically train an
ensemble of N probabilistic networks as the dynamics model
bT = { bTi(ŝ0|s, a) = N (µi(s, a),⌃i(s, a))}Ni=1 to predict the
next state s

0 from a state-action pair. Following previous
works (Yu et al. 2020; Kidambi et al. 2020), we assume the
reward function r is known. If r(·) is unknown, it can also be
learned from data. The learned dynamics model bT define a

model MDP cM = (S,A, bT , r, �). Then the goal switches to
find a policy ⇡(a|s) that maximizes the expected discounted
return with respect to ⇢

⇡

bT
, as in ⌘cM (⇡) = Ē

(s,a)⇠⇢
⇡
bT

[r(s, a)].

Model-based offline RL methods often construct a P-MDP
for pessimistic offline policy optimization. Notably, based on
the model error between the true and learned dynamics,

GcM (s, a) := E
s0⇠bT (s,a)

[VM (s0)]� E
s0⇠T (s,a)

[VM (s0)], (1)

MOPO assumes that there is an admissible model uncertainty
u(s, a) that can upper-bound the model error |G⇡

cM
(s, a)|:

u(s, a) � |G
⇡

cM (s, a)|, 8s 2 S, a 2 A. (2)

Penalized by the estimator, pessimistic reward r
p(s, a) =

r(s, a) � �
p
u(s, a) can be used to construct P-MDP as

M
p = (S,A, bT , rp, �), where �

p := �c denotes the de-
gree of pessimism and c is a constant. Define the average
model uncertainty ✏u(⇡) as:

✏u(⇡) := Ē
(s,a)⇠⇢

⇡
bT

u(s, a). (3)

Then the lower bound of performance in the real MDP can
be established by the P-MDP (Yu et al. 2020) as:

⌘M (⇡) = Ē
(s,a)⇠⇢

⇡
bT

h
r(s, a)� �|G

⇡

cM (s, a)|
i

� Ē
(s,a)⇠⇢

⇡
bT

[r(s, a)� �
p
u(s, a)]

=⌘cM (⇡)� �
p
✏u(⇡) = ⌘Mp(⇡). (4)

According to Equation 4, we can optimize policies in the real
MDP by improving their performance in the P-MDP.

4 Proposed Method
In this section, we present the construction of an O-MDP
and discuss its potential benefits in Section 4.1. Next, we
provide an overview of the ORPO framework in Section 4.2.
To establish a solid theoretical foundation for ORPO, we
delve into the theoretical analysis in Section 4.3.

4.1 Optimistic MDP Construction
To introduce optimism when generating model rollouts, we
flip the sign of the uncertainty penalty in the Pessimistic
MDP to construct an Optimistic MDP (O-MDP) M

o =
(S,A, bT , ro, �), where r

o(s, a) = r(s, a) + �
o
u(s, a). Sub-

sequently, we train the rollout policy within the O-MDP,
optimizing the following objective (Equation 5), where �

o

serves as a coefficient to regulate the level of optimism.

⇡
o = argmax

⇡

Ē
(s,a)⇠⇢

⇡
bT

[r(s, a) + �
o
u(s, a)]. (5)

To analyze the impact of the O-MDP, we begin by comparing
the model rollouts generated under the P-MDP and O-MDP
settings. We measure the distance between the rollout actions
and the offline dataset actions using the `2 norm, calculated
as E

(s,a)⇠Denv
[k⇡(·|s)� ak2], where ⇡ represents the rollout

policies. As shown in Figure 3, we observe that optimistic



rollouts exhibit larger distances from the offline dataset com-
pared to pessimistic rollouts, indicating that optimistic roll-
outs involve more OOD sampling. While prior works (Kumar
et al. 2020; Bai et al. 2022) typically sample OOD actions
using random policies, we contend that OOD model roll-
outs generated within the O-MDP framework possess greater
value. On the one hand, optimistic rollout policies guided by
the objective in Equation 5 selectively sample actions with
high uncertainty and high estimated values, as opposed to
random policies. This targeted sampling strategy can lead to
more informative OOD actions. On the other hand, dynam-
ics models with generalization capacity can generate better
characterization for OOD model rollouts.
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Figure 3: A case study of methods using model MDP (MBPO),
P-MDP (MOPO), and O-MDP (OROO) on “Halfcheetah-medium-
v2” datasets over 5 different seeds. Left: Histograms of distances
between actions from different model rollouts and the offline dataset.
Right: Learning curves of different methods.

To showcase the effectiveness of OOD model rollouts, we
introduce a simple baseline called Optimistic model Rollouts
for Optimistic policy Optimization (OROO), which is derived
from MOPO by replacing the P-MDP with the O-MDP. We
make the intriguing observation that OROO utilizing the O-
MDP, surpasses the performance of the model MDP baseline,
MBPO (Janner et al. 2019). Interestingly, our experiments in
Section 5.3 reveal that OROO can even outperform MOPO
on certain offline RL datasets. This finding highlights the
additional benefits brought by O-MDP and the potential of
optimism in model-based offline RL.

However, it is important to acknowledge that optimizing
policies in the O-MDP can result in a larger model error
✏u(⇡o), which in turn reduces the performance lower bound
as depicted in Equation 4. This is consistent with the pre-
vious conclusion that pessimism is provably efficient in the
offline setting (Jin, Yang, and Wang 2021). In fact, the choice
between P-MDP and O-MDP involves a trade-off between
the generalization capacity of the dynamics model and the
introduced model error. Building upon the aforementioned
analysis, our objective is to train optimistic rollout policies
that encourage more OOD sampling while still utilizing the
P-MDP to control the model error within an admissible range.

4.2 Algorithmic Framework
We now present our framework, ORPO, which is designed
to generate optimistic model rollouts for offline policy opti-
mization in a pessimistic manner. In ORPO, we decouple the
training of the rollout policy from the pessimistic optimiza-
tion of the output policy ⇡

p. Instead, we focus on learning a

more optimistic rollout policy denoted as ⇡o, which is opti-
mized under the O-MDP constructed in Section 4.1.

Algorithm 1: Framework for Optimistic Rollout for Pes-
simistic Policy Optimization (ORPO)

1: Require: Offline dataset Denv , initialized rollout policy
⇡
o and output policy ⇡

p.
2: Train the dynamics model bT with uncertainty quantifier

u(s, a).
3: Initialize the replay buffers D

o

⇡o  ?,D
p

⇡o  

?,D
p

⇡p  ?.
4: for epoch 1, 2, . . . do
5: Run any online RL algorithm in M

o to optimize roll-
out policy ⇡

o, and add the rollouts in replay buffer to
D

o

⇡o .
6: Relabel Do

⇡o with penalized rewards according to P-
MDP, obtaining D

p

⇡o .
7: Collect model rollouts by sampling from ⇡

p in M
p

starting from states in D
env, and add the rollouts to

D
p

⇡p .
8: Run any offline RL algorithm on D

env
[D

p

⇡o [D
p

⇡p

to optimize policy ⇡
p.

9: end for
10: Return: Optimized output policy ⇡

p.

The optimistic rollout policy ⇡
o is capable of interacting

with the dynamics model, allowing us to optimize it using on-
line RL algorithms. During the training of ⇡o, we collect and
store the optimistic rollouts (s,⇡o(a|s), ro, ŝ0) in a buffer de-
noted as Do

⇡o . Then we directly relabel the optimistic rollouts
using the penalized reward according to the P-MDP. This rela-
beling process transforms the rollouts into (s,⇡o(a|s), rp, ŝ0).
We then store these relabeled optimistic rollouts into another
buffer Dp

⇡o to be used for pessimistic policy optimization.
Besides, we also store pessimistic rollouts (s,⇡p(a|s), rp, ŝ0)
which are sampled by the output policy in P-MDP, denoted as
D

p

⇡p . Note that previous model-based offline RL methods (Lu
et al. 2022) typically utilize D

p

⇡p and D
env for pessimistic

policy optimization. In our framework, with the inclusion of
the rollout policy ⇡

o, we can leverage the additional dataset
D

p

⇡o to introduce more OOD state-action pairs. Given the
datasets Dp

⇡p , Dp

⇡o , and the offline dataset Denv, our objec-
tive is to derive a policy ⇡

p that maximizes the expected
discounted return in the real MDP, i.e.,

⇡
p = argmax

⇡

[⌘M (⇡)]. (6)

The behavior policy used to collect our synthetic dataset,
which includes D

p

⇡o , Dp

⇡p , and D
env, differs significantly

from the desired output policy ⇡
p. Therefore, we employ of-

fline RL algorithms for pessimistic optimization. The training
of the rollout policy and pessimistic policy optimization is
conducted iteratively in an alternating fashion. The overall
framework of ORPO is outlined in Algorithm 1. For practical
implementation details, please refer to Appendix B.2.

4.3 Theoretical Analysis
Denote the optimal policy in the P-MDP as ⇡̂p. MOPO has
demonstrated that the expected return of ⇡̂p in the real MDP,



Model-free methods Model-based methods

2020
NeurIPS

CQL

2021
NeurIPS
TD3+BC

2022
ICLR
IQL

2022
ICLR
PBRL

2020
NeurIPS
MOPO

2020
NeurIPS
MOReL

2021
NeurIPS
COMBO

2022
NeurIPS
RAMBO

2022
NeurIPS

CABI

(Ours)
ORPO

R
an

do
m HalfCheetah 27.0±0.6 11.3±0.5 7.8±0.3 11.0 20.7±1.8 25.6 38.8 40.0 15.1 40.8±1.6

Hopper 16.2±2.5 12.7±3.9 8.5±0.0 26.8 31.7±0.3 53.6 17.8 21.6 11.9 9.2±1.4
Walker2d 1.2±0.5 2.1±1.2 5.6±0.0 8.1 1.7±0.5 37.3 7.0 11.5 6.4 10.8±9.3

M
ed

iu
m HalfCheetah 52.6±0.3 48.4±0.3 47.7±0.3 57.9 71.1±2.6 42.1 54.2 77.6 45.1 73.4±0.5

Hopper 78.9±6.4 56.4±4.9 54.3±4.3 75.3 20.7±12.9 95.4 94.9 92.8 100.4 30.4±37.4
Walker2d 82.2±2.6 80.8±2.9 76.1±5.1 89.6 16.8±15.0 17.8 77.8 86.9 82.0 55.5±23.4

M
ed

iu
m

R
ep

la
y HalfCheetah 49.5±0.5 44.2±0.5 44.5±0.5 45.1 62.5±10.4 40.2 55.1 68.9 44.4 72.8±0.9

Hopper 99.2±1.6 56.3±20.8 78.1±5.3 88.8 100.8±4.9 93.6 73.1 96.6 31.3 104.6±1.5
Walker2d 80.7±10.7 75.7±7.6 68.6±9.9 77.7 80.0±8.9 49.8 56.0 85.0 29.4 91.1±2.0

M
ed

iu
m

Ex
pe

rt HalfCheetah 64.2±11.5 86.0±6.7 81.2±6.0 92.3 80.8±11.4 53.3 90.0 93.7 105.0 101.5±3.1
Hopper 68.2±25.1 100.0±9.8 5.1±1.6 110.8 21.1±20.0 108.7 111.1 83.3 112.7 111.0±0.6
Walker2d 109.6±0.3 110.3±0.5 107.8±4.0 110.1 102.1±8.5 95.6 96.1 68.3 108.4 108.8±3.2

Table 1: Average normalized score and the standard deviation with the ‘v2’ dataset of D4RL. The highest-performing and
competitive scores of our method are highlighted. We run CQL, TD3+BC, IQL, MOPO, and ORPO over 5 different seeds and
take the average scores. The scores of PBRL, MOReL, COMBO, and CABI are taken from their papers.

denoted as ⌘M (⇡̂p), has a lower bound. However, how to
train optimal policies in the P-MDP has not been thoroughly
investigated. To bridge this gap, we analyze the optimality of
ORPO under the linear-MDPs assumption, which is widely
adopted by previous theoretical works (Melo and Ribeiro
2007; Jin et al. 2020; Jin, Yang, and Wang 2021).

We initially learn a dynamics model and subsequently
employ this model to conduct online RL for generating opti-
mistic rollouts. Based on this point, ORPO aligns closely with
the theoretical investigations in online RL, which explore the
environment through Upper Confidence Bound (UCB) (Au-
dibert, Munos, and Szepesvári 2009). From the theoretical
perspective, appropriate uncertainty quantification is essential
to the provable efficiency in our framework. We utilize the
standard deviation of the dynamics model ensembles for un-
certainty quantification, i.e., u(s, a) := Std

�
{ bTi(s, a)}Ni=1

�
.

Then we can make the following proposition:
Proposition 1. Under the assumption of linear MDPs, the
uncertainty of dynamics models can form a UCB bonus.

We train an optimistic rollout policy for generating model
rollouts in the O-MDP. Since the P-MDP and O-MDP share
the same transition distribution, from the view of P-MDP, the
reward bonus for training optimistic rollout policy is (�p +
�
o)u(s, a), which can be a UCB bonus for an appropriately

selected tuning �
o and �

p. Then we use the samples (model
rollouts) to optimize the output policy ⇡

p in the P-MDP.
Theorem 1. Under linear model MDPs and the same as-
sumptions to MOPO, with at least constant probability, the
output policy of ORPO ⇡

p can be ✏-optimal in the P-MDP,
and satisfies

⌘M (⇡p) � sup
⇡

{⌘M (⇡)� 2�✏u(⇡)� ✏}. (7)

Theorem 1 shows that the performance of ORPO in the
real MDP can be guaranteed. Note that we omit the sample

complexity because within our framework, samples to opti-
mize the policy can be generated by the learned dynamics
model instead of the real environment, which is much cheaper
and easier. We refer to Appendix A for details.

5 Experiments
In our experiment, we aim to investigate three primary re-
search questions (RQs):

RQ1 (Performance): How does ORPO perform on stan-
dard offline RL benchmarks and tasks requiring generaliza-
tion compared to state-of-the-art baselines?

RQ2 (Effectiveness of optimistic rollout policy): How
does the proposed optimistic rollout policy compare to vari-
ous other rollout policies?

RQ3 (Ablation study): How does each design in ORPO
affect performance?

To answer the above questions, we conducted our experi-
ments on the D4RL benchmark suite (Fu et al. 2020) as well
as two datasets that require generalization to related but pre-
viously unseen tasks using the MuJoCo simulator (Todorov,
Erez, and Tassa 2012). For the practical implementation of
the ORPO algorithm, we utilized the SAC (Haarnoja et al.
2018) to train the optimistic rollout policy, and for pessimistic
offline policy optimization, we used TD3+BC (Fujimoto and
Gu 2021). Most of the hyper-parameters were inherited from
the optimized MOPO (Lu et al. 2022).

5.1 Performance (RQ1)
To answer RQ1, we compared ORPO with several state-of-
the-art algorithms, including: 1) CQL (Kumar et al. 2020): A
conservative Q-learning algorithm that minimizes Q-values
of OOD actions. 2) TD3+BC (Fujimoto and Gu 2021):
A model-free algorithm that incorporates an adaptive be-
havior cloning (BC) constraint to regularize the policy. 3)



Environments CQL TD3+BC MOPO COMBO ORPO

Halfcheetah-jump 1287.8±40.4 -4733.3±746.7 4411.8±642.9 4595.2±405.6 5218.0±128.5
Halfcheetah-jump-hard -2989.8±2.0 -2484.4±383.3 -1881.8±1342.2 2782.8±206.7 4867.9±381.6

Table 2: Average returns over 5 random seeds on tasks that require OOD policy.

IQL (Kostrikov, Nair, and Levine 2022), an implicit conser-
vative Q-learning algorithm to avoid using Q-values of OOD
actions. 4) PBRL (Bai et al. 2022): An uncertainty-based al-
gorithm that uses OOD sampling. 5) MOPO (Yu et al. 2020):
A model-based algorithm that penalizes rewards based on
uncertainty. 6) COMBO (Yu et al. 2021): A model-based vari-
ant of CQL. 7) RAMBO (Rigter et al. 2022): A model-based
algorithm using robust adversarial RL. 8) CABI (Lyu, Li, and
Lu 2022): An algorithm that utilizes forward and backward
CVAE rollout policies to generate trustworthy rollouts.

Results on D4RL benchmarks: We summarized the av-
erage normalized scores in Table 1, which includes three
environments (HalfCheetah, Hopper, and Walker2d), each
with four datasets. Our ORPO achieved competitive or better
results compared to state-of-the-art methods in 8 out of 12
datasets. Overall, ORPO demonstrated significant advantages,
particularly when the offline datasets were more diverse, such
as in the “random” and “medium-replay” types. This can be
attributed to the improved generalization abilities of the dy-
namics models trained on such datasets.

We observed that implementing ORPO based on MOPO
resulted in a significant performance boost in 11 out of the 12
datasets, increasing the total average normalized score from
610.0 to 809.9, with an improvement of more than 30%. The
only exception is the “hopper-random-v2” datasets. This may
be because the “halfcheetah” and “walker2d” tasks are more
resilient to OOD actions, while the hopper tasks are more
prone to terminating the episode when encountering OOD
actions, 1 making most OOD model rollouts useless.

Results on tasks requiring generalization: To further
demonstrate the generalization ability of the output policy,
we evaluated on “Halfcheetah-jump” dataset proposed by Yu
et al. (Yu et al. 2020). This dataset was collected by stor-
ing the entire training replay buffer from training SAC for 1
million steps in the HalfCheetah task. The state-action pairs
in the dataset were then assigned new rewards that incen-
tivized the halfcheetah to jump. Based on the “Halfcheetah-
jump” dataset, we constructed a more challenging dataset,
“Halfcheetah-jump-hard”. This dataset consists of trajectories
sampled by a random policy, and the assigned new rewards
are further penalized if the halfcheetah is unhealthy.

We observe that model-based methods show great advan-
tages over model-free. Notably, ORPO outperforms all the
baseline methods by a large margin, highlighting its effective-
ness in terms of generalization ability. In the “Halfcheetah-
jump-hard” dataset, due to the additional unhealthy penal-
ization on rewards, the policy trained by MOPO is too con-
servative to run. ORPO is the only method that achieves
satisfactory performance, which suggests that our method

1https://www.gymlibrary.dev/environments/mujoco/

can not only generalize to OOD regions but also preclude
some of them with low values.

5.2 Effectiveness of optimistic rollout policy
To answer RQ2, we compare rollout policies in our frame-
work with various rollout policies including: 1) Random
rollout policy, which generates actions from the uniform
distribution in the action space. 2) Conditional variational
autoencoder (CVAE) rollout policy (Lyu, Li, and Lu 2022),
which offers diverse actions while staying within the span
of the dataset. 3) Trained optimistic rollout policy, which
uses well-trained fixed optimistic rollout policy to generate
optimistic rollouts for pessimistic policy optimization.

Walker2d-medium-replay-v2Halfcheetah-random-v2
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Figure 4: Learning curves of rollout policies and corresponding
output policies in two datasets over 5 different seeds.

In Figure 4, we report the normalized average scores of the
rollout policies and output policies in two datasets. Except
for ours, all baseline rollout policies have fixed parameters.
So the scores of them are constant. The score of CVAE roll-
out policies is only slightly higher than that of the random
policies. This is because CVAE policies are trained to gen-
erate rollouts within the support of the offline dataset, while
these two datasets conclude many low-value transitions. In
contrast, our optimistic rollout policy can achieve the highest
scores due to more valuable model rollouts.

Considering our goal is to achieve high scores for the out-
put policies, the CVAE rollout policy is more effective than
the random rollout policy in “Walker2d-medium-replay-v2”
dataset and vice verse in “Halfcheetah-random-v2”. This
is because the CVAE rollout policies trained by “medium-
replay” datasets can generate more valuable rollouts with
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Figure 5: Learning curves of OROO, MOPO, and ORPO over 5 different seeds on “Halfcheetah-medium-expert-v2”. We report
the expected discounted returns in the model MDP ⌘cM (⇡) and the real MDP ⌘M (⇡) as well as the average model error ✏u(⇡).

high-value state-action pairs, but not in “random” datasets.
The output policies of ORPO can obtain the highest scores in
both datasets. Though our rollout policy on the “Walker2d-
medium-replay-v2” dataset can not achieve satisfactory per-
formance, it is still beneficial for optimizing the output policy.
While using fixed well-trained rollouts policy can match our
performance, we notice it can be affected by the selected
checkpoint. Therefore, we train optimistic rollout policy and
pessimistic output policy iteratively and alternately.

5.3 Ablation study
Effect of P-MDP and O-MDP: We conducted an analy-
sis comparing the expected discounted returns (⌘M (⇡) and
⌘cM (⇡)) and the average model uncertainty (✏u(⇡)) of our out-
put policy with the O-MDP and P-MDP baselines, i.e., OROO
and MOPO methods. As shown in Figure 5, we observed that
with more OOD sampling, OROO achieves a higher ⌘cM (⇡)
compared to MOPO. However, when evaluating OROO in the
real environment, we observed a performance significant de-
terioration due to the noticeable increase in ✏u(⇡), indicating
larger model errors. As a result, MOPO remains comparable
to OROO in terms of ⌘M (⇡) on this dataset.

ORPO effectively prevents the agent from accessing risky
or potentially dangerous areas. This explains why ORPO
achieves higher ⌘cM (⇡) and lower ✏u(⇡) than OROO. Con-
sequently, our method achieves better performance in the
real environment (⌘M (⇡)) compared to the baselines that use
either P-MDP or O-MDP. Thus, we conclude that ORPO
achieves a better trade-off between the generalization ability
and estimation errors of the learned dynamics model.

Sensitivity of the hyper-parameter �
o: We also conduct

experiments to evaluate the sensitivity of ORPO to the hyper-
parameter �o, which is used to construct the O-MDPs. As
shown in Table 3, our results indicate that ORPO achieves
satisfactory performance across a wide range of �o values
spanning three orders of magnitude. The values of �p for the
two configurations were 4.56 and 2.48, respectively. Since we
optimize the output policies in the P-MDP, the rollout policy
is optimistic as long as �o

> ��
p. Results show that incor-

porating optimism can bring significant performance gains.
Due to the robustness of ORPO to the choice of �o, there is
no need to finely tune this parameter for each environment-
dataset configuration, and we set �o = 0.015 by default for

9 out of the 12 datasets used in the D4RL benchmarks.

-10 -1 -0.1 -0.01 0.01 0.1 1 10

H-R 27.7 39.1 40.6 38.5 40.2 41.2 41.6 26.0
W-M-R 43.7 85.5 91.1 91.3 91.8 88.6 8.6 0.1

Table 3: Ablation of the different optimism hyper-parameter
�
o for ORPO. “H-R” represents HalfCheetah-Random-v2

and “W-M-R” represents Walker2d-Medium-Replay-v2.

Other ablation studies: We briefly report the results com-
pared to other baselines. 1) We compare to MOPO (TD3+BC)
which replaces SAC in MOPO with TD3+BC for policy op-
timization. The results migrate the effect of different RL
algorithms on performance gain over MOPO and suggest the
effectiveness of optimistic rollouts. 2) We compare ORPO
to ORPO (SAC), which use SAC to optimize both rollout
policies and output policies, and demonstrate the effective-
ness of utilizing offline RL algorithms for pessimistic policy
optimization. 3) We compare to ORPO without pessimism
which replaces the P-MDP used in ORPO with the model
MDP, and demonstrate the necessity of pessimism in ORPO.
Complete results can be found in Appendix D.2.

6 Conclusion and Limitations
In this paper, we started with the observation that incorpo-
rating optimism when generating model rollouts can yield
benefits for model-based offline RL. Building upon this in-
sight, we have introduced ORPO, a novel framework that
leverages optimistic model rollouts for pessimistic policy op-
timization. The theoretical analysis of ORPO demonstrates its
efficiency in addressing the challenges of offline RL. Through
extensive empirical evaluations, we have demonstrated that
ORPO significantly enhances the performance of the P-MDP
baseline and surpasses state-of-the-art methods on both the
D4RL benchmark and tasks demanding generalization.

Our work has limitations. One limitation is the additional
time overhead required for training optimistic rollout poli-
cies. Additionally, in tasks where OOD actions are strictly
prohibited, ORPO may have negative effects compared to
existing P-MDP baselines. Therefore, one future direction is
to explore adaptive degree of optimism when evaluation.
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