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ABSTRACT
Unpaired point cloud completion involves filling in missing parts of
a point cloud without requiring partial-complete correspondence.
Meanwhile, since point cloud completion is an ill-posed problem,
there are multiple ways to generate the missing parts. Existing un-
paired completion methods usually leverage generative adversarial
training by transforming partial shape encoding into a complete
one in the low-dimensional latent feature space. However, “mode
collapse” often occurs, where only a subset of the shapes is repre-
sented in the low-dimensional space, reducing the diversity of the
generated shapes. In this paper, we propose a novel unpaired mul-
timodal shape completion approach that directly operates on point
coordinate space. We achieve unpaired completion via a single diffu-
sion model trained on complete data by “hijacking” the generative
process. We further augment the diffusion model by introducing
two guidance mechanisms to facilitate mapping the partial point
cloud to the complete one while preserving its original structure.
We conduct extensive evaluations of our approach, which show
that our method generates shapes that are more diverse and better
preserve the original structures compared to alternative methods.
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1 INTRODUCTION
The increasing accessibility of affordable sensors, such as LIDAR
and depth cameras, has led to a surge of interest in 3D data within
both the vision and robotics communities. Nevertheless, such scanned
data cannot always be directly applied in real-world scenarios due
to incompleteness caused by limited resolution and viewpoint oc-
clusion in 3D scans[33, 34]. Hence, it is crucial to recover complete
3D shapes from partial ones which are immensely valuable for
various vision-related applications[4, 5, 18, 30, 80, 81, 83].

Pioneered by PCN [76], learning-based point cloud completion
methods [20, 23, 24, 31, 43, 45, 51, 52, 56, 57, 59, 63, 65, 66, 68, 75,
84, 87] have achieved impressive completion results. However, they
depend on datasets containing both partial and corresponding com-
plete shapes, which are challenging to obtain. To overcome this
challenge, unsupervised point cloud completion has been proposed
[2, 9, 58, 77]. In the unsupervised scenario, only unpaired samples
from the partial point clouds and the complete shapes are available.
Meanwhile, shape completion is an ill-posed problem because there
can be multiple ways to generate missing parts for a given partial
shape, particularly when the input is excessively incomplete. To
address this issue, MPC [60] was first developed to handle unpaired
multimodal shape completion, aiming to produce various complete
shapes for a single partial shape to enhance output diversity. How-
ever, this is hard to achieve because the training data only includes
one true complete shape for each partial shape. In MPC [60], a con-
ditional GAN-based model was proposed to learn a one-to-many
mapping from partial shapes to complete shapes. Following MPC
[60], ShapeInversion[2] produces multiple completion results via
GAN inversion by adjusting the sampled latent vector.

While MPC [60] and ShapeInversion [2] have made progress in
unpaired multimodal shape completion, the diversity of generated
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Figure 1: The incomplete point cloud and its corresponding
complete point cloud will gradually become more similar in
shape as noise is added during the forward diffusion process.
Based on this observation, we propose to “hijack” the for-
ward diffusion process of the partial point cloud through a
diffusion model trained on complete data to “reverse” to the
complete shape by guided denoising process.

shapes remains limited. Both approaches utilize GANs to model
multimodality in high-dimensional shape space and map it to a
low-dimensional latent space. However, a common issue that arises
is “mode collapse”, where only a subset of modes is represented in
the low-dimensional space. Specifically, given a partial point cloud,
the generated shapes tend to share similar structures, limiting the
diversity of the results.

To address the issue of mode collapse, we propose a novel un-
paired multimodal completion method that employs an uncondi-
tional diffusion model to perform point cloud completion in the
point coordinate space, instead of mapping the partial data to com-
plete ones in the latent space. The key idea behind our method is
illustrated in Fig. 1. Our observation is that an incomplete and its
corresponding complete point clouds will gradually become more
similar in shape as noise is added during the forward diffusion
process. Therefore, we can “hijack” the forward diffusion process
of the partial point cloud through a diffusion model trained on com-
plete data to generate the complete shape by the reverse denoising
process. Specifically, in the forward diffusion process, we add an
appropriate amount of noise to the partial point cloud to smooth
out high-frequency signals while retaining the overall shape. We
then gradually remove the noise via a single unconditional diffu-
sion model trained on complete data during the reverse diffusion
process. Finally, we obtain a denoised output that is similar to the
partial input, but follows the distribution of the complete data.

During the reverse denoising process, we introduce two guidance
mechanisms to facilitate the transformation from incomplete to
complete point clouds. Firstly, we introduce a structure preservation
guidance that promotes the denoised point cloud to retain most
of the original shape of the partial input. Secondly, we propose
a classifier guidance that encourages the denoised point cloud to
conform more closely to the complete point cloud distribution.

Different from previous methods, MPC[60] and ShapeInversion
[2], which achieve multimodal completion by sampling different
latent vectors in the latent space as guidance, our approach incor-
porates diverse information directly into the partial input shape.

Specifically, we sample a reference shape from the pretrained dif-
fusion model, and introduce a combination strategy to mix the
partial input with the reference shape in the point coordinate. This
mixed point cloud is then used as the diffusion input, which not
only maintains the original shape information but also incorporates
referenced shape structure.

Though recent studies on point cloud completion like [88] and
[37] have used conditional diffusion with paired supervision to per-
form point cloud completion in a straightforward manner, which
regards the partial input as the condition and the complete point
as the target, it is still non-trivial and challenging to perform the
diffusion processes for point cloud completion without paired su-
pervision. To the best of our knowledge, our method is the first
diffusion-based method for the task of completing point clouds
without paired data. Comprehensive evaluations of our approach
demonstrate that our method generates more diverse shapes than
alternative methods while still preserving the input shape.

In summary, our contributions are as follows:

• We propose a novel unpaired multimodal point cloud com-
pletion method, which performs incomplete-to-complete
mapping in coordinate space via an unconditional diffusion
model, and further introduce a novel multimodal comple-
tion strategy, allowing our method to be guided by specified
reference shapes.
• We propose two guidance mechanisms including classifier
guidance and structure preservation guidance, to effectively
direct the diffusion process towards producing more com-
plete and faithful results.
• Our experimental results demonstrate that ourmethod achieves
state-of-the-art performance on unpaired multimodal com-
pletion with both synthetic and real-world datasets, and
is capable of generating structurally diverse results while
preserving the original shape.

2 RELATEDWORK
Supervised point cloud completion. In the early years, researchers
developed several effective descriptors, such as [25, 41, 50], which
leverage geometric cues to fill in missing parts on a surface. Point
cloud completion can also be achieved by utilizing a symmetry
prior [40, 44, 53]. In addition, researchers have proposed data-driven
methods, such as [26, 28, 47], which involve retrieving the most
similar model based on partial input from a large 3D shape database.

In recent years, learning-based methods have often utilized a
deep neural network with an encoder-decoder architecture to di-
rectly map partial input to a complete shape. Some pioneering
works [14, 19, 27, 62, 70] rely on volumetric representations, al-
lowing for direct application of convolution operations. In con-
trast, PCN [76] directly generates complete shapes from partial
point clouds by decoding the global latent features. More recent
works[3, 8, 20, 23, 24, 31, 38, 42, 45, 46, 51, 52, 54, 56, 63, 64, 66–
68, 78, 79, 82, 84, 86, 88, 90] have focused on preserving observed
geometric details from local features in incomplete inputs. Snowflak-
enet [65] introduces a snowflake point deconvolution for point
cloud completion. More recently, there have been transformer-
based completion methods. PoinTR [75] uses a geometry trans-
former to predict missing shapes, while SeedFormer [87] introduces
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a new shape representation named Patch Seeds for shape comple-
tion. FBNet [69] refines the output by rerouting high-level informa-
tion from the coarse output via a graph-based network. Proxyformer
proposed a proxy alignment assisting strategy for point comple-
tion. Anchorformer utilized the anchor nodes for generating more
discriminative results. SVDFormer[89] propose a self-view fusion
network to enhance the completion results. These works perform
completion in a supervised manner using both partial point clouds
and their corresponding complete shapes. FSC [61] proposes a new
setting to conduct completion when points are extremely sparse.
Unsupervised point cloud completion. While supervised meth-
ods have produced impressive completion results, they typically
require large-scale datasets that include both incomplete and com-
plete point clouds, which can be difficult to collect. As a pioneering
work for unsupervised point cloud completion, Pcl2Pcl [9] pro-
poses an adversarial learning-based approach to transform latent
code of the incomplete shape into that of the complete shape. Cy-
cle4Completion [58] introduces two cycle transformations for dual-
direction completion. Himanshu et al. [1] proposes a multimodal
point cloud completion method via conditional Implicit Maximum
Likelihood Estimation (IMLE). Cai et al. [2] encode a series of re-
lated partial point clouds into a unified latent space that represents
a complete shape code and multiple occlusion codes. Cui et al. [12]
proposes an energy-based latent transport module aiming to model
the distribution gap between the partial and the complete shape
codes. MPC [60] handles unpairedmultimodal shape completion via
a variational autoencoder combined with GAN. Inspired by GAN
inversion, ShapeInversion [77] searches for a latent code in the la-
tent space of a pre-trained GAN to perform multimodal completion.
KTNet[6] tries to solve this task from the new perspective of knowl-
edge transfer. All these unpaired completion methods perform the
incomplete-to-complete transformation in latent space.
DiffusionModels for PointCloud.Diffusionmodels have emerged
as an effective method for learning a data distribution[29, 71–74]
that can be easily sampled from. Sohl-Dickstein et al. [48] intro-
duced the diffusion model for generating images, and since then,
several works [21, 49] have simplified and accelerated the approach.
Diffusion models have also been applied to various tasks, such
as image synthesis [16, 39, 85], 3D Gaussian[15, 35]point cloud
generation [36, 88] and point cloud completion [10, 37, 88].

In the domain of point cloud completion, prior diffusion-based
works [37, 88] have typically used conditional diffusion models
under paired supervision to achieve point cloud completion in a
straightforward way, where the incomplete point cloud serves as
the input condition and the complete point cloud as the target.
However, how to employ the diffusion model for unparied point
cloud completion is non-trivial and remains underexplored. In this
paper, we propose a novel approach that performs unpaired multi-
modal point completion via unconditional diffusion with delicately
designed gradient guidances.

3 PRELIMINARY
Given a clean point cloud sampled from the real point cloud distri-
bution x0 ∼ 𝑞 (x0), a fixedMarkov chain is established by following
the forward process of the diffusion model. This process gradually
introduces Gaussian noise to the initial point cloud x0 through a

series of 𝑇 time steps, yielding a sequence of noisy point clouds
x1, x2, · · · , x𝑇 . Noise is added to the coordinates of points within
point clouds, similar to how noise is added to individual pixels in
images. The forward process can be mathematically denoted as:

𝑞 (x1:𝑇 | x0) :=
𝑇∏
𝑡=1

𝑞 (x𝑡 | x𝑡−1) , (1)

𝑞 (x𝑡 | x𝑡−1) := N
(
x𝑡 ;

√︁
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I

)
, (2)

where the sequence 𝛽1, . . . , 𝛽𝑇 is a fixed variance schedule to control
the noise’s step sizes. In contrast, the reverse process constructs
a Markov chain with Gaussian transitions, whose parameters are
parameterized to iteratively eliminate the noise from the initial
point cloud x𝑇 , which is sampled from a Gaussian distribution with
zero mean and an identity covariance matrix. This process takes
place over 𝑇 time steps and produces a clean point cloud:

𝑝 (x0:𝑇 ) := 𝑝 (x𝑇 )
𝑇∏
𝑡=1

𝑝 (x𝑡−1 | x𝑡 ) , (3)

𝑝𝜃 (x𝑡−1 | x𝑡 ) := N
(
x𝑡−1; 𝜇𝜃 (x𝑡 , 𝑡) , 𝜎2𝑡 (x𝑡 , 𝑡) I

)
. (4)

The denoising diffusion probabilistic models (DDPM) [21] utilize
time-dependent constants by setting 𝜎𝑡 (x𝑡 , 𝑡) = 𝜎𝑡 I. The parame-
terization of 𝜇𝜃 consists of a linear combination of x𝑡 and 𝜖𝜃 (x𝑡 , 𝑡),
where 𝜖𝜃 (x𝑡 , 𝑡) predicts the noise component in the noisy sample
x𝑡 . By optimizing the variational bound of negative log-likelihood
E [− log𝑝𝜃 (x0)], the parameters of 𝜇𝜃 (x𝑡 , 𝑡) are learned. Follow-
ingDDPM, the training objectiveLsimple reduces to amean-squared
error loss between the predicted and actual noise 𝜖 ∼ N(0, I) in x𝑡 :

Lsimple := ∥𝜖𝜃 (x𝑡 , 𝑡) − 𝜖 ∥2 . (5)

By deriving the training objective from the variational bound on
the negative log-likelihood E [− log𝑝𝜃 (x0)] of the data, the diffu-
sion model is able to generate data that follows the source data
distribution via a denoising process.

4 METHOD
The pipeline of our proposed model is illustrated in Figure 2. During
the training stage, we train a single unconditional diffusion model
𝐷 on a set of complete point clouds using the same training setting
as in PVD [88]. Additionally, we train a time-dependent binary
classifier C(p, 𝑡) to guide the diffusion process.

During the testing stage, our method follows these steps: First,
we propose an input combination strategy that incorporates the
multimodal information into the partial input, enabling the gen-
eration of different results guided by a reference shape (Sec. 4.1).
Next, we add noise to the input point cloud denoted as x0 for 𝑁
time steps to generate a noisy point cloud denoted as x𝑁 following
Eq. 2. Then, we apply the diffusion model 𝐷 , trained on complete
data, to denoise x𝑁 following Eq. 4, and obtain the final complete
results y0 (Sec. 4.2). During the denoising process, we utilize the
structure preservation guidance (Sec. 4.3.1) to preserve the original
shape of the input, as well as the classifier guidance (Sec. 4.3.2) to
enhance the completeness of the resulting point cloud.
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Figure 2: Method overview. In training, we train a diffusion model on complete points, and a time-dependent binary classifier.
For testing, we sample a reference shape from diffusion model, and mix it with the partial input as x0. We map x0 to the
complete shape by running the forward process followed by the reverse process of the diffusion model train on complete point
clouds. Structure preservation guidance and classifier guidance are proposed to facilitate the completion process.

4.1 Multimodal Completion
As the aim of our method is to generate diverse completion results,
we first introduce the procedure we utilize to generate multiple
results. Specifically, as shown in Fig. 2, we first sample a reference
point cloud r from the pre-trained diffusion model 𝐷 by denoising
random gaussian noise. We then utilize a combination strategy to
mix the partial input x with the reference shape, resulting in the
input x0 used for instructing the generation. Our goal is to maintain
the shape of the partial input while incorporating generation cues
provided by the reference shape.

We denote the number of points in the complete point cloud as
𝑛. To reduce redundancy, we first remove repeated points from x,
and downsample it to 3

4𝑛 points if the point number is greater than
3
4𝑛, resulting in a new point cloud denoted as x′. We then replace
the 3

4𝑛 points in r that are nearest to x′ with x′ to form the mixed
model input x0. This strategy retains most of the points in x while
also incorporating shape information from r. It is worth noting that
the reference r can also be a specific shape provided by the user.

4.2 Progressive Completion Mapping
After obtaining the mixed input x0, we perform a progressive map-
ping from the partial input to the complete point cloud. As shown in
Fig. 2, the forward process (Eq. 2) of the diffusion model perturbs x0
with noise. We denote the point cloud sequence derived by 𝑁 itera-
tive forward steps as x0, x1, · · · , x𝑁 , where 𝑁 is a hyper-parameter
controlling the amount of noise added to the input image. Then
the reverse process (Eq. 4) iteratively removes noise for 𝑁 steps to
generate the denoised point cloud sequence y𝑁−1, y𝑁−2, · · · , y0.
Our motivation is that since the diffusion model is trained on com-
plete point clouds, the generated point cloud y0 should be biased
towards the distribution of complete point clouds.

While this mapping can transfer the incomplete point cloud to
complete distribution, a trade-off arises when choosing the diffusion
step 𝑁 . Too little diffusion, when 𝑁 is small, fails to map outside

of the partial data into the complete distribution. However, too
much diffusion, when 𝑁 is large, fails to preserve the original input
shape and structure, resulting in an output that is totally different
from the original partial input. Our ultimate objective is to transfer
the partial point cloud to the complete one while preserving its
discriminative structure.

To better achieve this objective, we introduce two guidancemech-
anisms operating at each time step during the denoising process to
further facilitate the incomplete-to-complete mapping.

4.3 Guided Denoising
4.3.1 Structure Preservation Guidance. We introduce a structure
preservation guidance which regularizes the diffusion process to
better preserve the points in the partial input. Specifically, we pre-
serve the points in the partial input by “adjusting" the points in
y𝑡 during denoising. We illustrate the adjustment process in Fig. 3
We first select 𝐾 key points in x0 by farthest point sampling. Key
points are only selected within the points that belong to x′ in x0
as described in Sec. 4.1. As the point order is fixed in the diffusion
process, when we select the key points in x0, we could simply use
the corresponding indices to find the corresponding points in x𝑡 or
y𝑡 . We denote the selected key point indices as a set S.

We try to “push" the selected points in y𝑡 to be close to those
in x𝑡 . It means that the trajectories of the selected points will be
similar in both the forward and backward pass, so that the original
points can be maintained in y0.

We denote the 𝑖-th point in y𝑡 as y
{𝑖 }
𝑡 , and the 𝑖-th point in x𝑡 as

x{𝑖 }𝑡 . We compute the difference between the coordinates of x𝑡 and
y𝑡 , and apply an interpolation function 𝑓 (·) to the selected points
in y𝑡 . The interpolation function is defined as follows:

𝑓 (y{𝑖 }𝑡 ) =
{
y{𝑖 }𝑡 + 𝜆 (x{𝑖 }𝑡 − y{𝑖 }𝑡 ), 𝑖 ∈ S
y{𝑖 }𝑡 , 𝑖 ∉ S

, (6)
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Key point

𝐱t 𝐲t
Figure 3: Illustration of structure preservation guidance. The
blue points denote the key points, and the red points denote
the other points in a point cloud. Structure preservation
guidance encourages the key points in y𝑡 to move towards
the corresponding points in x𝑡 .

where 𝜆 is a weight factor. When 𝜆 is equal to 1, it indicates that
we directly substitute the key point in y𝑡 with the corresponding
point in x𝑡 . In our experiments, we observe that higher values of 𝜆
result in low-quality generated point cloud y0. This is because if
the interpolation function 𝑓 (·) alters y𝑡 excessively, it may disrupt
the learned reverse process of the pre-trained diffusion model.

4.3.2 Classifier Guidance. We introduce another guidance mech-
anism named classifier guidance, which aims to promote the de-
noised point cloud during the reverse process to be closer to the
distribution of complete point clouds. Specifically, we introduce a
time-dependent binary classifier C(p, 𝑡) : R3×𝑁 × R→ R ∈ {0, 1},
which predicts whether a noisy point cloud p is from the complete
set or incomplete set. In particular, the time-dependent classifier
C(·, ·) is trained on both the partial and complete point clouds
with the noisy point cloud sequences (x0, · · · , x𝑡 , y0, · · · , y𝑡 ) gen-
erated from the forward diffusion process. The classification loss is
denoted as L𝑐𝑙𝑠 (p, 𝑡).

Building upon it, we regard the current point cloud y𝑡 as learn-
able parameters, and optimize it by backpropagating the gradients
according to L𝑐𝑙𝑠 , where y𝑡 is labeled as complete data. We then
update y𝑡 according to the gradients:

y𝑡 ← y𝑡 − 𝜂∇y𝑡L𝑐𝑙𝑠 (y𝑡 , 𝑡), (7)

where 𝜂 is the updating rate. In our implementation, we utilize
Point-Voxel CNN [32] as the backbone of our binary classifier. The
architecture details are provided in the supplementary materials.

Overall, at each reverse time step 𝑡 , we denote the refined y𝑡 as
y𝑔𝑡 , which can be expressed as:

y𝑔𝑡 = 𝑓 (y𝑡 − 𝜆𝑐𝑙𝑠∇y𝑡𝜂 (y𝑡 , 𝑡)), (8)
where the classifier guidance is performed before structure preser-
vation guidance.

Note that training the classifier with the full range of 𝑡 can be
time-consuming. Since the range of 𝑁 in our experiments is limited
from 0 to 100, we opt to train the classifier only using 𝑡 values
within that range.

4.4 Implementation Details
We follow the existing unsupervised point cloud methods [2, 9, 58,
60, 77] and train our model separately on each category for better

quality. The number of points of the predicted complete shapes is
2048 for all datasets. For the unconditional diffusion model, we use
Point-Voxel CNN [32] as the prediction backbone with the same
setting in PVD [88]. The total time step of the diffusion model is
103. We set the incomplete-to-complete mapping step 𝑁 to 25 in all
experiments. We set 𝜆 = 0.25, 𝜂 = 0.2, 𝐾 = 512. Four A5000 GPUs
are used for training the diffusion model. More details of the model
and classifier architecture are provided in supplementary materials.

5 EXPEIMENTS
Datasets. To conduct a comprehensive evaluation, we perform
experiments on both synthetic and real-world partial shapes. For
synthetic datasets, we evaluate our method on 3D-EPN [14] and
CRN [55] using the same training and testing splits as in ShapeIn-
version [77]. For 3D-EPN [14] and CRN [55] datasets, we follow the
setting in MPC [60], which evaluates the multimodal completion
ability on chair, plane, and table categories. For real-world datasets,
we test our method on MatterPort3D [7], ScanNet [13] and KITTI
[17] using the same settings as in MPC [60]. As there is no complete
ground truth available in real-world datasets, we utilize the trained
model on CRN [55] for testing rather than retraining our model.
Evaluation Metrics. We adopt the same metrics used in MPC [60]
for multimodal completion quantitative evaluation. For each partial
shape in the test set, we generate 𝑘 = 10 completion results and use
the following measures for quantitative evaluation: 1) The quality
of the completed shape can be evaluated using the Minimal Match-
ing Distance (MMD), which involves computing the 𝐿1 Chamfer
Distance (CD) between the set of completion shapes and the set of
test shapes. 2) To measure the diversity of completion shapes for a
partial input shape, we use the Total Mutual Difference (TMD). This
involves summing up the differences in Chamfer distance among
the𝑘 completion shapes for the same partial input. 3)Unidirectional
Hausdorff Distance (UHD) is used to evaluate the fidelity of the
completion to the input partial shape. This is done by calculating
the average Hausdorff distance between the input partial shape and
each of the 𝑘 completion results.
Comparison baselines.We present qualitative and quantitative
comparisons against baseline methods. For multi-modal unparied
completion methods, we compare our method with the MPC [60]
and ShapeInversion [77] both qualitatively and quantitatively. Single-
modal unpaired completion methods pcl2pcl [9], C4C [58], Cai [2],
P2C [11] are included for quantitative comparison reference.

5.1 Results on synthetic datasets
We first present the qualitative comparison of our method with
other baselines on multimodal shape completion in Fig. 4 on 3DEPN
and CRN datasets. We randomly sample the referenced point clouds
from our unconditional diffusion model and perform our comple-
tion process. The results show that our method can generate diverse
results while preserving the original shape as much as possible. Al-
though MPC and ShapeInv can generate smooth and reasonable
shapes, but their diversity is limited.

Quantitative comparison results on 3DEPN and CRN datasets
are presented in Table 1. Our approach demonstrates superior per-
formance compared to other methods, as evidenced by its highest
TMD score for diversity, lowest MMD-CD score for completion
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Figure 4: Qualititive comparison of multimodal shape completion results.

Methods
3DEPN Dataset CRN Dataset

MMD-CD ↓ TMD ↑ UHD ↓ MMD-CD ↓ TMD ↑ UHD ↓
ChairPlaneTableAvg.ChairPlaneTableAvg.ChairPlaneTableAvg.ChairPlaneTableAvg.ChairPlaneTableAvg.ChairPlaneTableAvg.

Single-
modal

pcl2pcl [9] 1.81 1.01 3.12 1.98 0.00 0.00 0.00 0.00 5.31 9.71 9.03 8.02 3.51 1.56 2.71 2.59 0.00 0.00 0.00 0.00 7.37 8.12 8.63 8.04
C4C [58] 1.46 0.37 2.25 1.36 0.00 0.00 0.00 0.00 - - - - 1.81 0.52 1.89 1.41 0.00 0.00 0.00 0.00 - - - -
Cai [2] 1.21 0.35 1.98 1.18 0.00 0.00 0.00 0.00 - - - - 1.39 0.39 1.71 1.17 0.00 0.00 0.00 0.00 - - - -
KT-Net [6] 1.24 0.27 1.58 1.03 0.00 0.00 0.00 0.00 - - - - 0.90 0.38 1.17 0.82 0.00 0.00 0.00 0.00 - - - -
P2C [56] 1.13 0.37 1.52 1.01 0.00 0.00 0.00 0.00 4.82 8.11 6.52 6.48 - - - - - - - - - - - -

Multi-
modal

MPC [60] 1.61 0.82 2.57 1.67 2.56 2.03 4.49 3.03 8.33 9.59 9.03 8.98 3.10 1.41 2.31 2.27 2.50 2.77 4.12 3.13 10.2 8.2 8.51 8.97
ShapeInv [77] 1.57 0.85 2.32 1.58 2.03 2.11 4.21 2.78 7.91 9.26 8.31 8.49 2.01 1.32 1.96 1.76 2.12 2.27 4.32 2.90 8.66 7.67 8.12 8.15
Ours 1.40 0.45 1.25 1.09 3.76 1.69 4.51 3.32 7.51 6.49 6.88 6.96 1.75 0.47 1.88 1.36 5.48 1.57 4.90 3.98 9.54 5.21 8.52 7.75

Table 1: Quantitative comparison results on 3DEPN. Top two methods on each measure are bolded and underlined, respectively.
MMD-CD (quality), TMD (diversity) and UHD (fidelity) presented are multiplied by 103, 102 and 102, respectively.

Methods
ScanNet Matterport KITTI

TMD ↑ UHD ↓ TMD ↑ UHD ↓ TMD ↑ UHD ↓
Chair Table Avg. Chair Table Avg. Chair Table Avg. Chair Table Avg. Car Car

pcl2pcl [9] 0.00 0.00 0.00 10.1 11.8 10.9 0.00 0.00 0.00 10.5 11.8 11.1 0.00 14.1
MPC[60] 1.70 2.40 2.02 12.1 10.7 11.4 1.81 2.81 2.31 12.1 10.9 11.5 - -

ShapeInv[77] 1.67 2.13 1.90 9.3 11.0 10.1 2.13 2.99 2.56 9.50 10.7 10.1 3.11 12.5
Ours 2.51 1.57 2.04 8.87 8.21 8.54 3.17 3.34 3.25 10.5 8.28 9.39 3.34 11.2

Table 2: Quantitative comparison results on ScanNet.

quality, and lowest TMD score for faithfulness to the partial input.
However, MPC and ShapeInv generate diverse results, but they sig-
nificantly modify the original shape with a high UHD score. While
Pcl2pcl can achieve good fidelity, it lacks diversity in its generated
results. Furthermore, our method exhibits relatively lower diver-
sity (TMD) when applied to the plane category, as shown in the
last row of Fig. 4. This is due to our approach’s ability to preserve
the original shape of planes while producing plausible results. In

contrast, other methods generate diverse shapes, but many of them
are implausible.

5.2 Results on real-scanned data.
Our pre-trained model on synthetic dataset can be directly applied
on real scanned data. To evaluate the performance of our approach
on real scanned data, we utilize the pre-trained model on CRN
dataset. As shown in Fig. 5, our approach generates reasonable
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Figure 5: Visual comparison of multimodal shape completion methods on ScanNet, Matterport3D, and KITTI datasets.

complete shapes from the partial scans with better diversity than
other methods. Table 2 presents the quantitative results on ScanNet,
Matterport3D, and KITTI datasets. Our approach outperforms other
baselines in terms of fidelity (lowest average UHD) and diversity
(highest average TMD). There are no reported results of MPC [60]
on KITTI dataset because MPC did not release a pre-trained model
on car category. Also, due to the higher noise level in real-scanned
data compared to synthetic data, the UHD scores are generally
higher than those on synthetic datasets.

5.3 Referenced completion results
We show the referenced point cloud with generated completion
results in Fig. 6, which enables us to complete the partial shape
under a specific shape given by users. Results show that our method
can generate diverse results guided by reference shape with faithful
structure preservation.
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Figure 6: Completion results guided with reference shapes.

Method MMD-CD ↓ TMD↑ UHD↓
w/o both guidances 2.26 3.76 9.91

w/o structure preservation 1.72 3.51 8.70
w/o classifier 1.61 3.31 6.89

with full guidance 1.09 3.32 6.69
Table 3: Effectiveness of two guidances on 3DEPN.

5.4 Ablation Study
Effectiveness of proposed two guidances. We first provide a
comprehensive evaluation of the two guidance mechanisms on
3DEPN in Tab. 3. We evaluate the impact of each guidance mecha-
nism.We could observe that it achieves the best MMD-CD and UHD
when two guidances are used. Though the results are more diverse
without any guidance (i.e., w/o both guidances), they reach much
higher MMD-CD and UHD indicating poor quality and fidelity.

We further conduct experiments to evaluate the proposed guid-
ance mechanisms by varying the weight factor 𝜆 for the structure
preservation guidance and the updating rate 𝜂 for the classifier guid-
ance. Results are presented in Fig. 7 and 8. During the evaluation,
we fixed the sampled reference shapes.

Fig. 7 shows the evaluation results for structure preservation
guidance. We observe that the results become more faithful to the
partial input (lower UHD) when 𝜆 become larger, but the diversity
is decreased (lower TMD). The completion quality (MMD-CD) does
not show obvious changes when 𝜆 is smaller than 0.5, but it sig-
nificantly decreases when 𝜆 becomes larger, indicating that it will
disrupt the reverse trajectory when we excessively alter y𝑡 . If we
do not involve structure preservation guidance (𝜆=0), it could still
generate reasonable results but with less fidelity.

In Fig. 8, we present the evaluation results for classifier guidance,
along with the computed average classification lossL𝑐𝑙𝑠 of the final
results after applying classifier guidance. The results indicate that
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Figure 7: Evaluation of the proposed structure preservation
guidance, where the x-axis is the hyper-parameter 𝜆.
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Figure 8: Evaluation of the proposed classifier guidance,
where the x-axis is the hyper-parameter 𝜂.

setting the value of 𝜂 from 0.1 to 0.3 yields lower MMD-CD scores
with better quality, and classifier guidance has a minimal impact
on the diversity and fidelity of the generated shapes. The results
deteriorate significantly when 𝜂 exceeds 0.5, while L𝑐𝑙𝑠 remains at
a low level. We believe that this is due to the dominance of classifier
guidance in the generation process, which obstructs the denoising
effect of the diffusion model.

Besides, we visualize the binary classifier output distribution in
Fig. 9 with a chair example. Interestingly, we could observe that as
the noises are added to the incomplete chair, the classifier tends to
classify it as complete. This is because noises are randomly added
which may have filled the missing parts to some extent. During the
denoising process using the classifier guidance, the classifier could
finally regard the denoised sample as complete.
Evaluation of the diffusion step 𝑁 . An important consideration
for our method is selecting an appropriate value for 𝑁 that balances
completeness and fidelity. We evaluate the impact of varying 𝑁
on our results, as shown in Fig. 10 (a). We can observe that the
generation quality cannot be guaranteed when 𝑁 is set to 5 or
10, even though the UHD is low. This is because the results are
still very similar to the original input. Both the quality and fidelity
improve when we set 𝑁 to 25. However, when 𝑁 becomes larger,
particularly larger than 40, it generates shapes with good diversity,
but both MMD-CD and UHD become high, indicating that the
generated shapes are significantly different from the input. As
our implementation follows that of DDPM [22], the results often
converge to noise in the early time steps. Therefore, we set 𝑁 to a
small value (e.g., 25).
Impacts of the value of 𝐾 . We investigate the impact of the
value of 𝐾 used in the structure preservation guidance. As the total
number of points in x′ is 3

4𝑛, which equals 1532 (0.75 x 2048), we set

adding noise
denoising

incomplete complete Output distribution of the classifier

Figure 9: Visulization of the classifier output during both the
forward and backward process of the diffusion model.

Figure 10: Evaulation on 3DEPN dataset with different 𝑁 and
𝐾 in proposed two guidances.

𝐾 to [256, 512, 1024, 1532] to evaluate the performance on 3DEPN.
The value of 𝜆 is set to the default value of 0.2. The quantitative
results are presented in Fig. 10 (b). We can see that high UHD scores
are achieved when 𝐾 is set to 256, indicating that less structure is
preserved. However, when 𝐾 exceeds 1024 (half of the total point
number), it results in low completion quality with less diversity.
This suggests that selecting too many points for original structure
preservation can disrupt the transformation process of the diffusion.

6 CONCLUSION
In this paper, we introduce a novel unpaired multimodal shape com-
pletion approach. By employing an unconditional diffusion model
that was trained on a complete point cloud dataset, we execute the
forward and reverse processes to map the partial point cloud test
data to the complete point cloud. Unlike previous methods that use
a latent feature space to transform partial shape encoding into a
complete one, our approach ensures a smoother completion trans-
formation in the coordinate space. Furthermore, we have improved
the diffusion model by incorporating two guidance mechanisms
that assist in transferring the partial point cloud to the complete one
and maintaining its original structure. Experimental results show
our method produces shapes that maintain their original structure
while also exhibiting better diversity compared to other methods.
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