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ABSTRACT

We observe that entropy in reinforcement learning functions analogously to the
learning rate in LLMs. Maintaining stable entropy, as demonstrated in DAPO (Yu
et al., 2025), helps stabilize RL training, while rapid entropy annealing (i.e., so-
called entropy collapse) accelerates local performance improvement and enables
faster convergence. We argue that these two processes are not antithetical, but
can be effectively controlled and scheduled within a single training run, similar to
learning rate scheduling. We propose Entropy Schduling (ES), which optimizes
different pre-set goals (e.g. k in optimizing Pass@k) by controlling and schedul-
ing entropy at each step of the RL process. We find that maintaining stable entropy
early in training followed by entropy annealing achieves superior performance.
Moreover, since stable-state entropy and annealed entropy exhibit distinctly differ-
ent learning dynamics, curriculum learning can be seamlessly integrated to maxi-
mize model performance based on different entropy phases. We show that entropy
scheduling is straightforward to implement and intuitive in design. Extensive ex-
periments suggest that it delivers consistent and stable performance improvements
across diverse models and algorithms.

1 INTRODUCTION
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Figure 1: We train the DAPO-32B (Yu et al.,
2025) with a lower clip value and the same
dataset to achieve entropy annealing, and im-
prove AIME2024 from 50.9 to 54.9 within
40 training steps.

The field of reinforcement learning with verifiable
rewards (RLVR) for large language models (LLMs)
has witnessed rapid advancements, as illustrated
by strong reasoning models such as DeepSeek-
R1(DeepSeek-AI et al., 2025), Kimi-K1.5(Team
et al., 2025), and the OpenAI o-series (OpenAI,
2024; 2025), which demonstrate significant im-
provements in reasoning capabilities. A critical as-
pect of RLVR is the policy entropy, which quanti-
fies the unpredictability of the policy distribution.
High entropy denotes that the policy model samples
actions more uniformly with greater randomness,
while low entropy suggests the policy is concentrat-
ing on a narrower set of actions. Entropy collapse (or
entropy annealing), a phenomenon commonly ob-
served during RL for LLMs, occurs when the policy
entropy diminishes too rapidly, limiting exploration.
For example, vanilla GRPO (Shao et al., 2024), a
widely used RL algorithm for large reasoning mod-
els, has been shown to cause entropy collapse during
RLVR training (Yu et al., 2025). To mitigate this, several strategies have been proposed (Yu et al.,
2025; Cui et al., 2025) to maintain entropy at relatively high levels (referred to as stable entropy).
Elevated and stable entropy levels are known to encourage extensive exploration, enabling the model
to generate diverse reasoning outputs and stabilizing the training process.

In contrast to traditional perspectives, very recent studies demonstrate that unsupervised learning in
RLVR, driven solely by entropy minimization, can significantly enhance model performance within
a short, localized training step (Wang et al., 2025c; Agarwal et al., 2025; Gao et al., 2025). As a pilot
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study, we continually train and anneal the entropy of DAPO-Qwen-32B 1, which is a well trained
model ending with high entropy (Yu et al., 2025). As illustrated in Fig. 1, this approach achieved a
4.0% absolute performance improvement in merely 40 training steps.

We reconcile these two seemingly opposing perspectives and optimization methods. We find that
entropy resembles the learning rate in LLM training. Maintaining stable entropy contributes to the
long-term sustained development of RL training, while subsequent entropy decay or annealing helps
the model rapidly improve performance and converge in the short term. As a summary, entropy that
stabilizes first and then decays, compared to entropy that decays first and then stabilizes, exhibits
weaker performance initially but stronger performance in the end. We refer to this empirical law as
the Parallelogram Law of Entropy.

On the other hand, we also find that what makes entropy more compelling than the learning rate is
that many important hyperparameters in RL (e.g., clip-higher coefficient (Yu et al., 2025), entropy
loss coefficient, and KL penalty coefficient) ultimately control the model’s performance by man-
aging entropy. In other words, entropy is the (almost only) fundamental factor in altering model
performance (like exploration and explanation).

Inspired by learning rate schedule (LRS) techniques, we propose Entropy Scheduling (ES) to com-
bine entropy stable stage and entropy annealing stage. Specifically, as a demonstration, we control
the entropy with constant, cosine and the stable-annealing schedules. Moreover, we train the model
with different stable constant values and different annealing ratios in stable-annealing schedule. We
find that there exists an optimal entropy settings (e.g., constant entropy value, annealing ratio, etc.)
for different pre-set goals (e.g. k in optimizing Pass@k).

A major challenge in implementing ES is controlling entropy within expected and predefined ranges
at each training step. Essentially, entropy is merely an indicator of the model’s computation on
the current batch of data and cannot be directly regulated. It can only be controlled indirectly by
adjusting hyper-parameters (e.g., clip-higher, entropy loss coefficient) several steps to hundreds of
steps in advance to keep entropy within a preset range at each training step. As such, we proposed a
simple PID (Proportional-Integral-Derivative)-based delay control algorithm (Ang et al., 2005) as a
baseline, which effectively achieves our entropy scheduling objectives.

Furthermore, due to the different learning dynamics between the entropy stable and entropy anneal-
ing, curriculum learning can be seamlessly integrated to maximize model performance during the
entropy annealing phase. We can integrate all factors that contribute to performance improvement
into the annealing phase. Specifically, high-quality data can be concentrated in the entropy anneal-
ing phase to amplify its advantages. Additionally, increasing the rollout number and extending the
maximum response length during the annealing phase proves to be an effective method for boosting
model performance.

2 PRELIMINARY

The LLMs act as the policy model πθ and autoregressively generate output sequence y =
{y1, · · · , yt, · · · , yT } given the prompt x. Proximal Policy Optimization (PPO) (Schulman et al.,
2017) is a widely utilized algorithm in RL, known for its stability and efficiency. It employs a
clipped surrogate objective function to constrain policy updates within a proximal region relative to
the previous policy.

J (θ) = E
[
min

(
πθ (yt | y<t)

πθold (yt | y<t)
Ât, clip

(
πθ (yt | y<t)

πθold (yt | y<t)
, 1− ε, 1 + ε

)
Ât

)]
(1)

where Ât is the advantage at time step t. In this work, we primarily focus on GRPO (Shao et al.,
2024), a variation of PPO. GRPO estimates the advantage in a group-relative manner. For each
prompt, the policy model samples a group of n responses and estimate the advantage as follows:

Âi,t =
ri −mean ({Ri}ni=1)

std ({Ri}ni=1)
(2)

where {Ri}ni=1 is the reward of each generated response.

1https://huggingface.co/BytedTsinghua-SIA/DAPO-Qwen-32B
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(a) Entropy, reward and MATH500 avg@256 of stable and scheduled entropy using clip-higher.
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(b) Entropy, reward and MATH500 avg@256 of stable and scheduled entropy using entropy bonus.
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(c) Entropy, reward and MATH500 avg@256 of stable and scheduled entropy using KL penalty.

Figure 2: We leverage the clip-higher, entropy bonus and KL penalty method to control different
stable and scheduled entropy. All these methods or hyperparameters enable control model’s reward
and performance by managing entropy. The scheduled entropy that stabilizes first and then decays
(orange lines) exhibits higher reward and benchmark performance compared with other scheduled
entropy, which is referred as the parallelogram law of entropy.

KL penalty is used to penalize the divergence between the online policy and the reference pol-
icy (Abdolmaleki et al., 2018; Kappen et al., 2012). The objective function with KL is:

J (θ) = E
[
min

(
πθ (yt | y<t)

πθold (yt | y<t)
Ât, clip

(
πθ (yt | y<t)

πθold (yt | y<t)
, 1− ε, 1 + ε

)
Ât

)
− βDKL (πθ∥πref)

]
(3)

The entropy bonus term is used to encourage stochasticity in the optimal policy model and could be
incorporated into the objective function:

J (θ) = E
[
min

(
πθ (yt | y<t)

πθold (yt | y<t)
Ât, clip

(
πθ (yt | y<t)

πθold (yt | y<t)
, 1− ε, 1 + ε

)
Ât

)
+ αH (πθ,D)

]
(4)

where
H (πθ,D) = −ED,πθ

[log πθ (yt | y<t)] (5)

Several factors influence the entropy dynamics of policy models during training. DAPO (Yu et al.,
2025) claims that clip-higher is an effective method to enhance the policy model entropy and gener-
ate more diverse samples. Similarly, entropy bonus directly encourages the policy model to maintain
a high entropy value, making it one of the most straightforward methods to promote exploration.
Meanwhile, the KL penalty is also an effective method to avoid the entropy collapse which is equiv-

3
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alent to the entropy bonus to some extent (Jaques et al., 2019).

J (θ) =E

[
min

(
πθ (yt | y<t)

πθold (yt | y<t)
Ât, clip

(
πθ (yt | y<t)

πθold (yt | y<t)
, 1− ε, 1 + ε

)
Ât

)

+ αH (πθ,D)− βDKL (πθ∥πref)

]
, (6)

3 PILOT STUDY: THE PARALLELOGRAM LAW OF ENTROPY

3.1 EXPERIMENT SETUP

We train the models with three kinds of scheduled entropy: (1) entropy annealing from the beginning
of training, (2) maintaining entropy stable throughout the entire training process, and (3) introducing
entropy annealing only during the final phase of training. For entropy annealing from scratch, we
adopt the GRPO method without applying any KL penalty. To achieve entropy stable, we separately
employ techniques such as clip-higher, entropy bonus, and KL penalty to maintain the entropy at
a relatively high and stable value. Following the stable phase, we revert to the lower clip value or
remove the entropy bonus and KL penalty, allowing entropy to anneal naturally from this stable
state. We utilize the Qwen-2.5-7B-Base(Qwen et al., 2025) as the initial model and train it on
the DAPO-17k(Yu et al., 2025) dataset. For the clip-higher method, we set the clip value to 0.28,
consistent with the configuration reported in DAPO. Additionally, we use coefficients of 0.0015
and 0.005 for entropy bonus and KL penalty, respectively. We test the model performance in the
MATH500 (Lightman et al., 2023), AIME2024 and AIME2025.

3.2 PARALLELOGRAM LAW OF ENTROPY

DAPO (Yu et al., 2025) shows that entropy collapse induces performance degrade in the end of
training. However, as shown in their paper and our experiments, the entropy collapse also leads
to a better performance in the initial training steps, though much worse in the end. As illustrated
in Fig. 2, entropy annealing from the beginning of training (blue line) achieves higher rewards and
better performance than maintaining entropy stable (orange line) during the initial training steps. It
seems to show that, lower entropy exchanges for better performance within limited training steps.

However, as entropy drops to a very low level, the model’s performance eventually saturates, with
only few improvements observed in later training stages. In contrast, maintaining entropy stable pre-
vents saturation, allowing for steady improvements over time. Consequently, entropy stabilization
gradually surpasses entropy annealing from scratch at longer training steps.

Now, it comes with a natural question, if we put the entropy reduction into the last stage of training,
would it be beneficial to the final performance? We actually make this experiment that introduc-
ing further entropy annealing (green line) from an entropy stable phase in the final training stage.
As shown in Fig. 2, this entropy annealing yields rapid improvement in both rewards and accu-
racy, outperforming models trained with stable entropy in same training steps. This finding aligns
with concepts in learning rate annealing, where results in the rapid validation loss drop in the final
learning rate annealing training stage.

Therefore, synthesizing these phenomena, here comes a conclusion: the same entropy reduction,
is far more effective near the end of training than in the early stages. Figuratively speaking, the
entropy annealing from the beginning line (blue line), stable entropy line (orange line) and entropy
annealing in the final phase line (green line) form a parallelogram. The performance at the top line
of parallelogram is initially worse but ultimately better than the performance of the bottom line of
parallelogram. It is worth noting that, we not only adopt the clip-higher strategy to control entropy
but also use a more direct entropy bonus and KL penalty term to control entropy, achieving quite
similar effects.

3.3 WHAT HAPPENS IN ENTROPY ANNEALING

The trade-off between exploration and exploitation is a fundamental concept in reinforcement learn-
ing, where entropy serves as a key mechanism to regulate the transition between these two stages.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

20 21 22 23 24 25 26 27 28

k
0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

M
AT

H5
00

 P
as

s@
k

Stable Entropy at 200step
Stable Entropy at 260step
Scheduled Entropy at 260step

(a) Pass@k curve of MATH500.
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(b) Pass@k curve of AIME2024.
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(c) Pass@k curve of AIME2025.

Figure 3: The Pass@k curves reveal a distinct trade-off between annealing entropy and stable en-
tropy. Specifically, by comparing the stable entropy (orange line) and annealing entropy (green line)
with same training steps, we find that entropy annealing sacrifices the Pass@k values for larger k
(exploration) to improve the Pass@k values for smaller k (exploitation).
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(a) Entropy annealing across train-
ing steps in MATH500.

50 100 150 200 250 300
Step

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
AT

H5
00

 A
vg

@
25

6

3B Stable Entropy
3B Scheduled Entropy
7B Stable Entropy
7B Scheduled Entropy
32B Stable Entropy
32B Scheduled Entropy

(b) Entropy annealing across model
sizes in MATH500.
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(c) Entropy annealing across model
sizes in AIME2024.

Figure 4: The benchmark metric of scheduled entropy across longer training steps and larger model
sizes. We show that all training steps and model sizes could benefit from entropy annealing.

We evaluate the Pass@k curve to quantitatively describe the exploration and exploitation of the
policy models. Firstly, as depicted in Fig. 3, the RLVR process will gradually reduce the model’s
Pass@k score of large k (referred to exploration ability) but increase the model’s Pass@k score of
small k (referred to exploitation ability) by comparing the stable entropy at different training steps
(blue and orange lines). Secondly, we compare the Pass@k curves for entropy stable and entropy
annealing under identical training steps and datasets. The entropy annealing achieves higher Pass@k
values compared to entropy stable for smaller values of k, but stable entropy exhibits higher Pass@k
values for larger values of k. This phenomenon suggests that entropy annealing sacrifices perfor-
mance on larger k (exploration) to enhance performance on smaller k (exploitation), which explains
that the annealing entropy phase achieve a higher reward or Pass@1 score.

3.4 ENTROPY ANNEALING FROM DAPO-32B

DAPO-32B (Yu et al., 2025) model is trained using the clip-higher method, maintaining a high
entropy value throughout the entire training process. To further investigate the impact of entropy
annealing, we introduce an entropy annealing phase for DAPO-32B by reducing the clipping value
from 0.28 to 0.2. As depicted in Fig. 1, applying entropy annealing to DAPO-32B results in a rapid
performance improvement on the AIME2024 benchmark, with performance increasing from 50.9
to 54.9 within just 40 training steps using the same training dataset. This result also highlights the
effectiveness of putting the entropy reduction or annealing into the last stage of training to achieve
a rapid performance improvement over relatively short training durations.

3.5 SCALING ON TRAINING STEPS AND MODEL SIZES

We validate the effectiveness of entropy annealing across extended training steps and varying model
sizes. Specifically, we apply entropy annealing over longer training durations and observe consistent
performance improvements as shown in Fig. 4a. Furthermore, we evaluate the impact of entropy

5
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Figure 5: The entropy, reward and performance of different models trained with different constant
entropy values. There exist an optimal constant entropy value for different Pass@k objective.

annealing on models of different sizes (3B, 7B, and 32B), maintaining consistent training steps and
using the same training dataset across experiments. As illustrated in Fig. 4b and Fig. 4c, all model
sizes benefit from entropy annealing, achieving performance improvement. Even larger models,
which typically exhibit higher baseline performance, demonstrate a certain degree of improvement,
highlighting the generalization of entropy annealing.

4 ENTROPY SCHEDULING

Similar to learning rate scheduling, balancing between the entropy stable phase and the annealing
phase is essential for achieving optimal performance (Tissue et al., 2024; Wang et al., 2025b). En-
tropy stable facilitates steady reward improvements, analogous to the behavior of a constant learn-
ing rate, while entropy annealing enables rapid performance improvement, akin to learning rate
annealing. Based on this analogy, we propose Entropy Scheduling (ES) to strategically plan the en-
tropy dynamics in the training. However, there is actually a significant difference between learning
rate and entropy. Essentially, different with learning rate as a hyper-parameter, entropy is merely
an indicator of the model’s computation on the current batch of data and cannot be directly regu-
lated. It can only be controlled indirectly by adjusting hyper-parameters (e.g., clip-higher, entropy
loss coefficient), and this impact on entropy does not really take effect immediately until the actor
model is considerably changed after some training steps. Inspired by the PID (Proportional-Integral-
Derivative) algorithm (Ang et al., 2005) in the field of automatic control, we propose an adaptive
clip-higher method as a simple PID algorithm to control the entropy at preset scheduling values.
We further conduct experiments using various ES methods, including constant ES, cosine ES, stable
with annealing ES and cyclic ES which are all common in the LRS.

4.1 ADAPTIVE CLIP-HIGHER

As shown in Fig. 2, although these there methods (clip-higher, entropy bonus and KL penalty) could
effectively control the policy entropy, the entropy bonus and KL penalty are extremely sensitive to
the value of the coefficients. Clip-higher is a more proper method to control the policy entropy.
However, existing implementations of clip typically apply a fixed clip value throughout the entire
training process. During the stable entropy phase, a fixed higher clip value may fail to consistently
maintain entropy at a stable level and cannot precisely determine the specific constant entropy value.
Similarly, during the entropy annealing phase, using a fixed lower clip will lead to entropy decrease
at a fixed rate, limiting flexibility and adaptability.

We propose the adaptive clip-higher approach, which is adjusted real-time in order to control en-
tropy as scheduled value at each step. The details of the adaptive clip-higher are provided in Al-
gorithm 1. Our method is a simple PID controller that adjusts the control variable (clip value) by
computing the target entropy error. Firstly, the policy entropy for each training step is pre-specified
according to the different ES strategy similar with LRS. Then, a sliding window is employed to
compute the average actual entropy over recent training steps, which is then compared with the av-
eraged pre-specified entropy. Based on the deviation between the actual and pre-specified entropy
values, the clip value is adjusted dynamically by adding or subtracting a fixed clip offset.

6
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Algorithm 1 Adaptive Clip-Higher Algorithm

Require: Warm-up steps T ∈ N, sliding window size w ∈ N, adjustment step δ ∈ R+, initial clip
value c0 ∈ R+, feasible range [cmin, cmax] ⊂ R+

1: Initialize ct ← c0, t← 0
2: while training continues do
3: t← t+ 1
4: if t ≤ T then
5: ct ← c0 ▷ Warm-up phase
6: else
7: Wt ← {t− w + 1, t− w + 2, . . . , t} ▷ Sliding window
8: Hsched(t)← EntropyScheduler(Wt)
9: Hcurr(t)← 1

w

∑
τ∈Wt

H(τ)

10: ∆c←


+δ if Hsched(t) > Hcurr(t)

−δ if Hsched(t) < Hcurr(t)

0 otherwise
11: ct ← clamp(ct +∆c, cmin, cmax)
12: end if
13: Execute training step with clip parameter ct
14: end while

4.2 DIFFERENT ENTROPY SCHEDULING

After we have figured out how to control entropy, the next step is find the most appropriate schedul-
ing. We conduct some ES experiments, like constant, cosine, and first stable then annealing sched-
ules which are all most popular LRS in LLM training.

Constant Entropy Scheduling We train the models using constant ES with varying constant en-
tropy values. As shown in Fig. 5a, the adaptive clip-higher method efficiently controls entropy to
oscillate around the pre-specified constant values. We observe that different constant entropy values
lead to varying levels of performance under the same training steps. Moreover, there exists an op-
timal constant entropy value for for different pre-set goals (e.g. k in optimizing Pass@k) as shown
in Fig. 5c. For the optimization objective of Pass@k with a smaller k, the optimal constant value
is small. For the Pass@k with larger k, the optimal constant value gradually increases. Higher
constant entropy value encourage the LLMs to generate more diverse actions. This may lead to a
lower reward or Pass@1 score, but increases the probability of generating correct answers when
more samples are generated. This phenomenon is analogous to the concept of the optimal maximum
learning rate encountered in the pre-training of LLMs (Bjorck et al., 2024).

Cosine Entropy Scheduling Cosine LRS (Loshchilov & Hutter, 2016) is one of the most widely
used strategies in the pre-training of LLMs. This scheduling approach effectively balances the stable
and annealing phases, thereby enhancing overall model performance. Inspired by this, we extend the
cosine scheduling concept to ES and evaluate its effectiveness, as shown in Fig. 6. Our results show
that the reward and MATH500 avg@256 (both are Pass@1 metric) of cosine ES is initially lower
than that of constant ES during the early stages of training. However, in the later training stages,
cosine ES surpasses constant ES. This behavior can be attributed to the entropy annealing component
inherent in the cosine scheduling approach. Notably, this behavior is similar to relationship between
cosine and constant LRS in terms of their impact on validation loss.

Stable and Annealing Scheduling WSD (Hu et al., 2024) is an effective LRS strategy that sta-
bilizes training by maintaining a constant learning rate and then accelerates convergence through
a final learning rate annealing phase. We control the entropy similar with WSD, that the entropy
remain a stable during most of the training phase and then annealing in the final stage.

As shown in Fig. 6d, our method effectively maintains a high constant entropy during the stable
phase and subsequently anneals with varying annealing steps or ratios. By comparing the final
performance across different annealing ratios, we observe that there also exists an optimal annealing
ratio for different Pass@k optimization objective. As shown in Fig. 6f, the Pass@k for large k tends
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Figure 6: The model entropy, reward and MATH500 avg@256 using cosine ES, stable with anneal-
ing ES and cyclic ES. Different ES have different training dynamics in reward and performance.

to adapt a smaller annealing ratio. The smaller annealing ratio means maintaining the high entropy
for a longer training process to make the model in a state of generating diversity responses, and
fewer training steps to trade high Pass@k performance for low Pass@k performance.

Cyclic Scheduling We also train the model using cyclic ES, which involves an initial entropy
annealing phase followed by an increase phase. This cyclic approach aims to capture the training
dynamics by alternating between low and high entropy levels.

As illustrated in Fig. 6h and Fig. 6i, during the entropy increase phase, model reward or perfor-
mance improvement slows down and may even experience a decline. This behavior occurs because
restoring a high-entropy state increases the model’s generation diversity at the expense of exploita-
tion ability. This is consistent with the scenario where an increasing learning rate leads to a rise in
validation loss. Finally, the subsequent decrease in entropy resumes model exploitation ability and
gets a nearly same performance with constant ES in the end.

5 ENTROPY STAGED LEARNING

The entropy stable and entropy annealing exhibit the different learning dynamics. The entropy an-
nealing phase could solidify the model’s potential for diverse reasoning generation into more stable
correct reasoning generation, marking a phase of rapid performance improvement. We could max-
imize the advantage of entropy annealing through integrating curriculum learning, like introducing
more high-quality training data and other useful RL training settings in the annealing phase.
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Figure 7: The model performance of introducing the high-quality data and other useful RL training
settings in entropy annealing phase. The entropy annealing could further maximize the advantages
of high-quality data, large rollout numbers and long context length.

5.1 HIGH-QUALITY TRAINING DATA

In pre-training and continual pre-training of LLMs, some methods attempt to allocate high-quality
data to the learning rate annealing phase to achieve better performance (Grattafiori et al., 2024;
Parmar et al., 2024). This strategy is particularly effective because the quantity of high-quality data
is often limited and cannot fully support the entire training process. Concentrating such data in the
annealing phase can maximize its impact on model performance.

Similarly, we explore leveraging high-quality data more effectively during the entropy annealing
phase to amplify its advantages. Specifically, we use AIEM1983-2023 and BigMATH (Albalak
et al., 2025) datasets with difficulty levels 0-2 as the high-quality training data. As shown in Fig. 7,
we compare the performance of training with high-quality data both with and without entropy an-
nealing. Our results demonstrate that high-quality data alone (without entropy annealing) could
lead to better performance compared to the baseline dataset DAPO-17k. Furthermore, incorporating
entropy annealing amplifies the effect of the high-quality data, resulting in even higher accuracy.

5.2 INCREASING THE ROLLOUT NUMBER AND CONTEXT LENGTH

The sample number of per prompt in GRPO and maximum response length are also the important
factors in RLVR training to affect the model performance. However, under limited computational
resources, consistently maintaining a large rollout samples and long response length is challenging.
In the continual pre-training in LLMs, the model will enlarge context length after adequate pre-
training with short context. Meanwhile, gradually increasing response length is also a common
method in the RL training (Luo et al., 2025).

Inspired by the better learning dynamics of entropy annealing, we could only adapt larger rollout
samples and long response length in the short annealing stage. We enlarge the rollout samples from
8 to 32 and response length from 4k to 16k. As shown in Fig. 7c, we compare the original and
larger rollout samples and response length in the entropy annealing stage and observe the further
performance improvement.

6 CONCLUSION

In this work, we discovered the parallelogram law of entropy, revealing that entropy reduction is
more effective at the end of RL training than in early stages, leading us to propose entropy schedul-
ing (ES) as a simple yet powerful technique analogous to learning rate scheduling. By drawing
parallels between entropy and learning rate—where high entropy/learning rate encourages global
exploration while low entropy/learning rate promotes local convergence—we developed adaptive
control mechanisms to maintain scheduled entropy throughout training. Our experiments demon-
strate that strategic entropy scheduling, particularly with late-stage entropy reduction, can signif-
icantly improve model performance (e.g., from 50.9% to 54.9% on AIME2024 in just 40 steps),
and different entropy schedules can be tailored for specific optimization goals like Pass@k, estab-
lishing entropy scheduling as an intuitive and effective approach for enhancing RL training in large
language models.
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REPRODUCIBILITY STATEMENT

Our experiments are conducted using publicly available datasets and open-source models. We pro-
vide detailed experimental setups, including hyperparameter configurations, training framework,
and implementation details, in Appendix A.
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A EXPERIMENTAL SETUP

We use the Qwen-2.5-Base (Qwen et al., 2025) as the initial model and use DAPO-17k (Yu et al.,
2025) as training data. The training batch size is 512 and we samples 8 responses per prompt with
a temperature 1. The mini batch size is 32 and we performance 16 policy updates in each training
batch size. The max response length in the training is 4096. We use verl RL framework (Sheng et al.,
2024) for all the training. We use the rule-based reward same with the DAPO (Yu et al., 2025):

R(ŷ, y) =

{
1, equivalent(ŷ, y)
−1, otherwise

(7)

where y is the ground-truth answer and ŷ is the predicted answer.

In the evaluation, we also use temperature of 1 to evaluate the test accuracy. Specifically, for each
problem xi, we generate n = 256 samples and count the number of correct samples as ci. We
compute low-variance and unbiased Pass@k estimation:

Pass@k := Exi∼D

[
1−

(
n−ci
k

)(
n
k

) ]
(8)

B RELATED WORK

Reinforcement Learning for LLM Reinforcement learning with verifiable rewards (RLVR) has
emerged as a powerful paradigm for enhancing the reasoning capabilities of large language models
(Chen et al., 2025; Hu et al., 2025; He et al., 2025). DeepSeek directly uses GRPO with verifiable
rewards to obtain the DeepSeek-R1 (DeepSeek-AI et al., 2025). Some recent works point out the
shortcomings in the PPO(Schulman et al., 2017) or GRPO (Shao et al., 2024) algorithms, like train-
ing instability (Yu et al., 2025), reward noise (Liu et al.) and model collapse in Mixture-of-Experts
(MoE) RL training (Zheng et al., 2025). We mainly focus on the entropy collapse in the RLVR
training and propose the entropy scheduling to combine the stable entropy and annealing entropy to
achieve better performance.

Entropy in Reinforcement Learning Policy entropy is an important metric in the RLVR which
could quantify the unpredictability of the policy distribution. DAPO (Yu et al., 2025) points out
that the entropy collapse happened in the GRPO (Shao et al., 2024) and proposes to use a higher
clip value to avoid the collapse. Some recent works (Cui et al., 2025; Wang et al., 2025a) also
explain the mechanism behind entropy dynamics and propose some token-level methods to avoid
the entropy collapse. Cheng et al. (2025) proposes the correlations between entropy and exploration
and introduces a novel entropy related advantage function. We also uncover that entropy could
control the exploration and explanation of policy models through measuring Pass@k metric. What’s
more, we point out that the best entropy dynamics should combine stable and annealing entropy and
propose the entropy scheduling which is similar with learning rate scheduling in the RL training
process.

C RESPONSE LENGTH

We also compare the response length of stable entropy and annealing entropy phase. As shown in
Fig. 8, the response length will also increase in the entropy annealing phase, which explains the
performance improvement to a certain extent. What’s more, the different constant ES corresponds
to different response length.

D ADDITIONAL EXPERIMENTS

We also use other training datasets and other training features to validate the generality of ES. We
use the OpenR1-Math 2 as the training dataset and leverage all other training settings or features

2https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
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in the DAPO (Yu et al., 2025) including token-level loss, dynamic samples and overlong reward to
train the model. As shown in Fig. 9, the ES could effectively apply to other training dataset and
training features.
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(b) Response length of annealing from different
training steps.
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(c) Entropy of different constant ES.
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(d) Response length of different constant ES.

0 100 200 300 400 500 600
Step

0.0

0.2

0.4

0.6

0.8

En
tro

py

0.3 Stable Entropy
0.7 Stable Entropy
Scheduled Entropy

(e) Entropy of annealing from large constant to
small constant.

0 100 200 300 400 500 600
Step

600

800

1000

1200

1400

1600

Re
sp

on
se

 L
en

gt
h

0.3 Stable Entropy
0.7 Stable Entropy
Entropy Annealing

(f) Response length of annealing from large con-
stant to small constant.
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(g) Entropy of constant and cosine ES.
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Figure 8: The dynamics of response length in the entropy annealing and different ES.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350 400
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

En
tro

py

Constant ES
Entropy Annealing

(a) Entropy of training with
OpenR1-Math.

0 50 100 150 200 250 300 350 400
Step

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Re
wa

rd

Constant ES
Entropy Annealing

(b) Reward of training with
OpenR1-Math.

200 220 240 260 280 300 320 340 360
Step

0.740

0.745

0.750

0.755

0.760

0.765

0.770

M
AT

H5
00

 A
vg

@
25

6

Constant ES
Entropy Annealing

(c) MATH500 avg@256 of training
with OpenR1-Math.
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(d) Entropy of training with DAPO
features.
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(f) MATH500 avg@256 of training
with DAPO features.

Figure 9: The entropy, reward and math500 avg@256 of entropy scheduling training with OpenR1-
Math dataset and other DAPO RL training features except for clip-higher.
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