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ABSTRACT
To design effective vaccine policies, policymakers need detailed
data about who has been vaccinated, who is holding out, and why.
However, existing data in the US are insufficient: reported vacci-
nation rates are often delayed or missing, and surveys of vaccine
hesitancy are limited by high-level questions and self-report biases.
Here, we show how large-scale search engine logs and machine
learning can be leveraged to fill these gaps and provide novel in-
sights about vaccine intentions and behaviors. First, we develop
a vaccine intent classifier that can accurately detect when a user
is seeking the COVID-19 vaccine on search. Our classifier demon-
strates strong agreement with CDC vaccination rates, with corre-
lations above 0.86, and estimates vaccine intent rates to the level
of ZIP codes in real time, allowing us to pinpoint more granular
trends in vaccine seeking across regions, demographics, and time.
To investigate vaccine hesitancy, we use our classifier to identify
two groups, vaccine early adopters and vaccine holdouts. We find
that holdouts, compared to early adopters matched on covariates,
are 69% more likely to click on untrusted news sites. Furthermore,
we organize 25,000 vaccine-related URLs into a hierarchical ontol-
ogy of vaccine concerns, and we find that holdouts are far more
concerned about vaccine requirements, vaccine development and
approval, and vaccine myths, and even within holdouts, concerns
vary significantly across demographic groups. Finally, we explore
the temporal dynamics of vaccine concerns and vaccine seeking,
and find that key indicators emerge when individuals convert from
holding out to preparing to accept the vaccine.
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1 INTRODUCTION
COVID-19 vaccines provide significant protection against severe
cases of SARS-CoV-2 [46, 59], yet a large portion of the United
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States remains unvaccinated. Effective vaccine policies—for exam-
ple, where to place vaccine sites [49, 74], how to communicate
about the vaccine [18, 72], and how to design campaigns to reach
unvaccinated populations [5, 22, 60]—rely on detailed data about
who is seeking vaccination, who is holding out, and why. However,
existing data are insufficient [43]. Reported vaccination rates are fre-
quently delayed [2], missing at the county-level and below [70], and
missing essential demographic data [33, 42]. Surveys provide a start-
ing point for understanding vaccine hesitancy but are often limited
by high-level questions [16], small or biased samples [13, 71], and
self-reporting biases (e.g., recall or social desirability bias) [3, 66]
especially in sensitive contexts such as vaccination [36].

Here, we demonstrate how large-scale search logs from Bing
and machine learning (ML) can be leveraged to fill these gaps, en-
abling fine-grained estimation of vaccine rates and discovering the
concerns of vaccine holdouts from their search interests. While
search logs are powerful, with widespread coverage, real-time sig-
nals, and access to personal interests, the vast amounts of data they
provide are unlabeled and unstructured, consisting of billions of
natural language queries and clicks on search results. To derive
meaning from these queries and clicks, we first impose structure by
constructing query-click graphs, which encode aggregated query-
click patterns as bipartite networks. Second, using a combination
of semi-supervised graph ML techniques and manual annotation,
we develop two computational resources that enable us to extract
vaccine behaviors from large unlabeled search logs.

First, we develop a vaccine intent classifier that can accurately
detect when a user is seeking the COVID-19 vaccine on search. Our
classifier achieves areas under the receiver operating characteristic
curve (AUCs) above 0.90 on held-out vaccine intent labels in all
states, and demonstrates strong agreement with CDC vaccination
rates across states (𝑟 = 0.86) and over time (𝑟 = 0.89). Using our
classifier, we can estimate vaccine intent rates to the level of ZIP
code tabulation areas (ZCTAs), approximately 10x the granularity
of counties and preceding lags in reporting. We carefully correct for
bias in our estimates from non-uniform Bing coverage, and demon-
strate minimal additional bias from our classifier, as it achieves
equivalent true and false positive rates across regions.

Second, we construct a novel ontology of COVID-19 vaccine con-
cerns on search. Our ontology consists of 25,000 vaccine-related
URLs, clicked on by Bing users, that we organize into a hierarchy of
vaccine concerns from eight top categories to 36 subcategories to
156 low-level URL clusters. Unlike surveys, our ontology discovers
these concerns directly from users’ expressed interests and explores
them at multiple scales. Furthermore, by measuring individuals’
interest in each concern from their clicks, we capture revealed pref-
erences, side-stepping potential biases in self-reporting [24, 66].
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Combining our ontology with the vaccine intent classifier al-
lows us to conduct a thorough analysis of how individuals’ vaccine
concerns relate to whether they decide to seek the vaccine. We
use our classifier to identify two groups of users—vaccine early
adopters and vaccine holdouts—and compare their search behav-
iors. We identify significant differences in their vaccine concerns
and news consumption; for example, compared to early adopters
matched on covariates, vaccine holdouts are 69%more likely to click
on untrusted news sites. We find that vaccine concerns also differ
significantly even within holdouts, varying across demographic
groups. Finally, we analyze the temporal dynamics of vaccine con-
cerns and vaccine seeking, and discover that individuals exhibit
telltale shifts in vaccine concerns when they eventually convert
from holding out to preparing to accept the vaccine.

Our contributions can be summarized as follows:
(1) A novel vaccine intent classifier, developed with graph ML

and human annotation, that achieves AUCs above 0.9 on all
states and strong agreement with CDC vaccination rates;

(2) Bias-corrected estimates of vaccine intent rates from our
classifier, including estimates for over 20,000 ZCTAs;

(3) A hierarchical ontology of COVID-19 vaccine concerns, in-
cluding 25,000 URLs clicked on by Bing users, 156 URL clus-
ters, 36 subcategories, and eight top categories;

(4) Analyses of vaccine holdouts’ search concerns and news
consumption, comparing to early adopters and studying
dynamics over time.

We are publicly releasing our code, vaccine estimates, and ontol-
ogy.1 We hope that our resources, methods, and analyses can pro-
vide researchers and public health agencies with valuable insights
about vaccine behaviors, helping to guide more effective, data-
driven interventions.

2 DATA
Our work uses a variety of datasets, including Bing search logs,
CDC vaccination rates, US Census data, and Newsguard labels
(Figure 1). Bing is the second largest search engine worldwide and
in the US, with a US market share of around 6% on all platforms and
around 11% on desktop [65]. Despite having non-uniform coverage
across the US, Bing has enough penetration in the US that we can
estimate representative samples after applying inverse proportional
weighting (Section 4). The Bing data we use consist of individual
queries made by users, where for each query, we have information
including the text of the query, an anonymized ID of the user, the
timestamp, the estimated geolocation (ZIP code, county, and state),
and the set of URLs clicked on, if any. Since our work is motivated
by insufficient vaccine data and vaccine concerns in the US, we limit
our study to search logs in the USmarket. However, the methods we
introduce could be extended to study vaccination rates and vaccine
concerns in other languages and countries. We apply our vaccine
intent classifier (Section 3) to all Bing search logs in the US from
February 1 to August 31, 2021.2

1https://github.com/microsoft/vaccine_search_study.
2February 2021 was the earliest that we could study following data protection guide-
lines, which allow us to store and analyze search logs up to 18 months in the past.
We end in August 2021, since the FDA approved booster shots in September and our
method is not designed to disambiguate between vaccine seeking for the primary
series versus boosters.
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Figure 1: Our work integrates a variety of datasets and meth-
ods to analyze vaccine behaviors from search logs.

To evaluate our vaccine intent classifier, we compare it to vacci-
nation rates reported by the CDC (Section 4). The CDC provides
daily vaccination rates at the levels of states [27] and counties [26].
CDC data are essential but limited, with a substantial portion of
county-level data missing. These limitations serve as one of the
motivations of our work, since we hope that our vaccine intent clas-
sifier can serve as a complementary resource to monitor vaccination
rates, especially in smaller regions. To characterize demographic
trends in vaccine intent, we use data from the US Census’ 2020
5-year American Community Survey [15]. To capture political lean,
we use county-level data from the 2020 US presidential election [53].
To quantify the trustworthiness of different news sites, we use labels
from Newsguard [52]. Finally, to evaluate the representativeness
of Bing search trends, we compare them to Google search trends,
which are publicly available online [34].

Data ethics. Our work was approved by the Microsoft IRB office
and by an internal privacy review process which included officers
from both Microsoft Research and the Bing product team. When we
use search logs, we are mindful of the need to balance privacy and
social benefits when using potentially sensitive user data. While
we study individual search logs, since we need to be able to link in-
dividual vaccine outcomes (as predicted by our classifier) to search
interests, those sessions are assembled using only anonymous user
identifiers, which are disassociated from any specific user accounts
or user profiles, and cannot be linked to any other Microsoft prod-
ucts. Likewise, in this anonymous view of the logs, location and
demographic data were limited to ZIP code-level accuracy. Finally,
we are careful to only report results aggregated over thousands of
individuals. Aside from Bing search logs, all of the data sources we
use are publicly available and aggregated over many individuals.

3 VACCINE INTENT CLASSIFIER
Our first goal is to develop a classifier that can accurately detect
when a search user is expressing vaccine intent, i.e., trying to get
the COVID-19 vaccine (e.g., book an appointment or find a loca-
tion). Detecting vaccine intent requires precision: for example, if

2
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Figure 2: Our pipeline of methods to identify a large, high-
precision set of vaccine intent URLs.

a user issues the query [covid vaccine], they may be trying to get
the vaccine, but they could also be generally curious about vaccine
information or eligibility. Thus, we begin by defining a set of regu-
lar expressions that allow us to identify vaccine intent queries, i.e.,
queries that unambiguously express vaccine intent. To be included,
the query must include both a COVID-19 term (“covid” or “coro-
navirus”) and a vaccine term (“vaccin”, “vax”, “johnson”, etc.). In
addition, the query must satisfy at least one of the following criteria:
(1) matching some variant of “find me a COVID-19 vaccine”, (2)
containing appointment-related words or location-seeking words,
(3) containing a pharmacy name.

However, in addition to maintaining high precision, we seek to
detect as many users as possible who have expressed vaccine intent,
so that we have sufficient statistical power for our downstream
analyses. Since our search logs contain both queries and clicks, we
lose the opportunity to detect many more users if we only detect
vaccine intent based on queries. For example, a user may issue the
ambiguous query [covid vaccine], but then click on the URL for
the CVS COVID-19 vaccine registration page, thus clarifying their
intent through their clicks [61]. The challenge with URLs is that
they are less formulaic than queries, so we cannot easily define
regular expressions to identify URLs expressing vaccine intent.

Our key insight is that, while we cannot use regular expressions
to identify URLs, we can use them to identify vaccine intent queries
and then use those queries to identify URLs, based on common
query-click patterns. For example, vaccine intent queries such as
[cvs covid vaccine] or [covid vaccine near me] may result in clicks
on the CVS COVID-19 vaccine registration page. To capture these
patterns, we construct query-click graphs [20, 45], which are bipar-
tite networks between queries and URLs where an edge from a
query to a URL indicates how often this query is followed by a click
on this URL. Specifically, we construct a query-click graph per US
state, aggregating over queries and clicks from two representative
months in our study period (April and August 2021). Then, our
pipeline proceeds in three steps (Figure 2): first, we use personal-
ized PageRank to propagate labels from queries to URLs, so that we
can generate a set of URL candidates (Section 3.1); next, we present
the URL candidates to annotators on Amazon Mechanical Turk to
label as vaccine intent or not (Section 3.2); finally, we use those
labels to train graph neural networks (GNNs) so that we can further
expand our set of vaccine intent URLs (Section 3.3).

State URL
CA https://myturn.ca.gov/

https://www.cvs.com/immunizations/covid-19-vaccine
https://www.goodrx.com/covid-19/walgreens
https://www.costco.com/covid-vaccine.html

https://www.walgreens.com/topic/promotion/covid-vaccine.jsp
NY https://covid19vaccine.health.ny.gov/

https://www.cvs.com/immunizations/covid-19-vaccine
https://www.walgreens.com/topic/promotion/covid-vaccine.jsp

https://vaccinefinder.nyc.gov/
https://www.goodrx.com/covid-19/walgreens

TX https://www.cvs.com/immunizations/covid-19-vaccine
https://vaccine.heb.com/

https://www.walgreens.com/topic/promotion/covid-vaccine.jsp
https://corporate.walmart.com/covid-vaccine

https://dshs.texas.gov/covidvaccine/
FL https://www.publix.com/covid-vaccine

https://www.cvs.com/immunizations/covid-19-vaccine
https://www.walgreens.com/topic/promotion/covid-vaccine.jsp

https://floridahealthcovid19.gov/vaccines/
https://www.goodrx.com/covid-19/walgreens

Table 1: Top 5 URLs from Personalized PageRank (S-PPR) for
the four largest states in the US.

3.1 Personalized PageRank for URL candidates
Personalized PageRank [14] is a common technique for seed expan-
sion, where a set of seed nodes in a graph are identified as members
of a community, and one wishes to expand from that set to identify
more community members [40]. In our case, the vaccine intent
queries act as our seed set, and our goal is to spread the influence
from the seed set over the rest of the query-click graph. Given a
seed set 𝑆 , personalized PageRank derives a score for each node in
the graph that represents the probability of landing on that node
when running random walks from 𝑆 .

We run personalized PageRank from the seed set of vaccine
intent queries (S-PRR) to derive scores for all URLs in each query-
click graph. Then, we order the URLs from each state according to
their S-PPR ranking and keep the union over states of their top 100
URLs as our set of URL candidates, resulting in 2,483 candidates.
The number of URLs we have in the union is much lower than the
number of states multiplied by 100, since there is overlap between
states. However, there is also substantial heterogeneity in top URLs
across states, reflecting state-specific vaccine programs and policies
(Table 1). By constructing separate graphs and running S-PPR per
state, our approach is uniquely able to capture this state-specific
heterogeneity. In supplementary experiments, we show that an al-
ternative approach that uses a combined graph over states severely
hurts performance for small states (Section A2.2).

S-PPR also provides scores for all queries in the graph, but we
found that the seed set was comprehensive in identifying vaccine
intent queries. The top-ranked queries that were not in the seed set
tended to be location-specific, such as [covid vaccine new york],
which is suggestive of vaccine intent but not unambiguous enough.
Thus, in the subsequent steps of annotation and GNN expansion,
we only seek to add URLs, and consider regular expressions suffi-
cient for identifying queries. However, we also selected a sample
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of regular expression-detected queries to present to annotators, to
validate whether they were truly vaccine intent. To capture a di-
verse sample, we use the union over the top 5 and bottom 5 queries
per state (ranked by S-PPR), after filtering out queries that were
issued by fewer than 50 users, resulting in 227 queries to label.

3.2 Annotation on Amazon Mechanical Turk
In this step, we present our URL candidates (and sampled queries)
to annotators on AMT. For each URL, we first present it to three
annotators. If all three give it a positive label (i.e., Highly Likely or
Likely), then we label this URL as vaccine intent. If two give it a
positive label and one does not, we assign it to one more annotator,
and label it as vaccine intent if that annotator gives a positive label.
In other words, we require vaccine intent URLs to receive three
positive annotations. With this relatively strict bar, we still find that
a large majority (86%) of our URL candidates are labeled as vaccine
intent. Furthermore, we observe a clear relationship between S-PPR
rank and the percentage labeled as vaccine intent: for example,
around 90% of URLs from ranks 0 to 20, around 81% of URLs from
ranks 40-60, and around 71% of URLs from ranks 80 to 100 (Figure
A2). We also find a very high positive rate (96%) among the queries
that we tested, thus validating our regular expressions.

3.3 Graph neural networks for expansion
Since manual annotation is expensive, we wish to augment our
efforts by training ML models on the AMT labels, then use the
models to expand our set of vaccine intent URLs. We formulate this
problem as semi-supervised node classification on a graph, since
the URLs are nodes in the query-click graph and we are trying to
predict whether a URL indicates vaccine intent or not, given labels
for a subset of URLs. In this section, we provide an overview of our
modeling procedure, with details in Section A1.

GNN architecture and training. To solve this problem, we design
a GNN [39] that consists of character-level convolutions (CNN)
and graph convolutions. We use the CNNs to capture textual infor-
mation in the queries and URLs, since text can be informative for
this problem (e.g., the appearance of “vaccine”). The graph convo-
lutions allow us to learn representations of URLs that draw from
the representations of their neighboring queries, which draw from
the representations of their neighboring URLs, and so on. In this
way, we can capture “similar” URLs in embedding space (similar in
terms of both text and graph structure).

To train and test our model, we randomly split the URL labels
into a train set (60%), validation set (15%), and test set (25%). How-
ever, some states have much smaller graphs, and therefore, fewer
positive and negative labels. For example, for Wyoming, we only
have 245 positive and 276 negative URLs. We find that with such
few labels, the model cannot adequately learn how to predict vac-
cine intent, with AUCs far below those of large states (Table A1). To
address this issue, we pre-train the model on S-PPR rankings, which
requires no additional supervision. Our intuition is that S-PPR al-
ready performed remarkably well at predicting vaccine intent, as
we discussed in the prior section. Furthermore, S-PPR rankings do
not require any manual labels; we derive them entirely from our
initial vaccine intent queries, which were automatically labeled
using regular expressions. This pre-training encourages the model

to learn URL representations that are predictive of S-PPR rankings,
which we find help substantially with predicting vaccine intent.

Evaluating GNN performance. We evaluate model performance
by computing its AUC on the held-out test set. Furthermore, to
account for randomness from model training and data splitting,
we run 10 random trials for every model/state, where in each trial,
we re-split the URL labels, retrain the model on the train set, and
re-evaluate the model’s performance on the test set. First, we find
that pre-training significantly improves performance for the smaller
states; for example, the mean AUC forWyoming increases from 0.74
to 0.95 (Figure 3a, Table A1). We find that pre-training seems un-
necessary for the larger states, such as Connecticut and Tennesssee,
where we are already achieving high AUCs above 0.98. After in-
corporating pre-training for smaller states (fewer than 5,000,000
nodes), we are able to achieve AUCs above 0.90 for all 50 states and
above 0.95 for 45 states (Figure 3b).

Discovering new vaccine intent URLs. Finally, we use our trained
GNNs to identify new vaccine intent URLs. In order to decide which
new URLs to include, we need a score threshold. Our goal is to set
the threshold such that any URL that scores above it is very likely
to truly be vaccine intent (i.e., we want to maintain high precision).
Borrowing the idea of “spies” from positive-unlabeled learning [8],
our idea is to use the held-out positive URLs in the test set to
determine where to set the threshold. We consider two thresholds:
(1) 𝑡med, the median score of the held-out positive URLs, and (2)
𝑡prec, the minimum threshold required to achieve precision of at
least 0.9 on the held-out test set. Then, we only include URLs that
pass both thresholds in at least 6 out of the 10 random trials. Even
with this strict threshold, we discover around 11,400 new URLs
(Table A2), increasing our number of vaccine intent URLs by 10x. In
the following section, we also evaluate the impact of adding these
URLs on our ability to estimate regional vaccine intent rates. We
find that the new URLs not only increase our coverage of vaccine
intent users by 1.5x but also further improve our agreement with
reported vaccination rates from the CDC (Table 2).

4 ESTIMATING VACCINE INTENT RATES
Using our classifier, we can estimate regional rates of vaccine intent.
In this section, we discuss how we correct for bias in our estimates,
validate against CDC vaccination rates, and use our estimates to
derive insights about fine-grained vaccination trends.

Bias evaluation. In Section A2, we decompose potential bias in
our approach into two key sources: first, bias from non-uniform
Bing coverage, and second, bias from non-uniform true positive
rates (TPR) and false positive rates (FPR) of our classifier. We show
that, if we can correct for non-uniform Bing coverage and show
that our classifier’s TPRs and FPRs do not significantly differ across
regions, our vaccine intent estimates should, theoretically, form
unbiased estimates of true vaccination rates. We evaluate our clas-
sifier’s TPRs and FPRs on held-out vaccine intent labels, using the
same score threshold we used for discovering new vaccine intent
URLs. We find that our classifier does indeed achieve statistically
equivalent TPRs and FPRs across states (Figure 3b), suggesting that
our classifier contributes minimal additional bias. We discuss below
how we correct for non-uniform Bing coverage. Additionally, to
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Figure 3: (a) GNN results with and without pre-training for Wyoming, one of the smallest states. Each line represents one of 10
random trials. (b) Final GNN results for all 50 states, with pre-training for smaller states. Each dot represents a state, with its
y-coordinate representing the mean metric over 10 trials and grey bars indicating standard deviation.

Pipeline step CDC corr. # vaccine intent users
Only queries 0.62 3.18M
+manual URLs 0.80 4.95M

+manual and GNN URLs 0.86 7.45M
Table 2: Each step of our classification pipeline (Section 3)
improves both our correlation with CDC vaccination rates
and our coverage of vaccine intent users.

evaluate the representativeness of Bing data, we compare search
trends for vaccine intent queries between Google and Bing and find
that, even before applying corrections to Bing data, the trends are
highly correlated (Figure A4).

Estimating coverage-corrected rates. Whenwe apply our classifier
to Bing search logs from Feburary 1 to August 31, 2021, we find 7.45
million “active” Bing users who expressed vaccine intent through
their queries or clicks. We focus on active Bing users, i.e., those
who issued at least 30 queries in a month, since we can reliably
assign them to a location based on their mode ZIP code (or county
or state) from those queries. Given a ZCTA 𝑧, we compute 𝑁 (𝑣, 𝑧),
the number of active Bing users from 𝑧 for whom we detect vaccine
intent. Furthermore, we estimate the ZCTA’s Bing coverage as
𝑁 (𝑏,𝑧 )
𝑁 (𝑧 ) , where 𝑁 (𝑏, 𝑧) is its average number of active Bing users
over the months in our study period and 𝑁 (𝑧) is its population size
from the 2020 5-year American Community Survey [15]. Then, our
coverage-corrected vaccine intent estimate 𝑝 (𝑣, 𝑧) for ZCTA 𝑧 is

𝑝 (𝑣, 𝑧) =
𝑁 (𝑣,𝑧 )
𝑁 (𝑧 )
𝑁 (𝑏,𝑧 )
𝑁 (𝑧 )

=
𝑁 (𝑣, 𝑧)
𝑁 (𝑏, 𝑧) .

To estimate the vaccine intent rate for a set 𝑍 of ZCTAs, e.g., a state
or county, we simply take the population-weighted average.

Comparison to CDC vaccination data. When we compare our
vaccine intent estimates to state-level vaccination rates from the
CDC, we observe strong correlation (𝑟 = 0.86) on cumulative rates
at the end of August 2021 (Figure 4). Notably, we find that the cor-
relation drops to 𝑟 = 0.79 if we do not correct for Bing coverage
in our estimates. Furthermore, we find that each step of our clas-
sification pipeline—only using queries from regular expressions,
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Figure 4: Comparing CDC state vaccination rates vs. esti-
mated vaccine intent rates from Bing search logs.
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dose from CDC (bottom) for the four largest states in the US.

incorporating manually annotated URLs from personalized PageR-
ank and AMT, incorporating URLs found by GNNs—improves both
our correlation with CDC rates and the number of users we are able
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Figure 6: (a) Using our classifier, we can estimate vaccine intent rates per ZCTA, approximately 10x the granularity of counties.
(b) Zooming in on New York City shows that estimated vaccine intent rates vary substantially across ZCTAs, even within the
same city or county. (c) Correlations between ZCTA vaccine intent rates and demographic variables.

to identify (Table 2). Notably, if we only use queries, the correlation
drops to 𝑟 = 0.62 and we lose 57% of the users we identified with
our full classifier, demonstrating the value of adding vaccine intent
URLs through our graph ML framework.

Additionally, we compare our vaccine intent estimates to the
CDC’s vaccination rates over time. We observe strong correlations
here as well, especially if we allow the CDC time series to lag behind
the vaccine intent time series (Figure 5). With lags of 7-15 days
(IQR), the median correlation over states reaches 𝑟 = 0.89; without
a lag, the median correlation drops to 𝑟 = 0.78. The CDC’s lag
demonstrates an advantage of our classifier, as it can detect vaccine
seeking in real time without delays from reporting.

Granular trends in vaccine seeking. Our vaccine intent classifier
allows us to pinpoint who was seeking the COVID-19 vaccine,
where, and when. We estimate cumulative vaccine intent rates up
to the end of August 2021 at the level of ZCTAs (Figure 6a), approx-
imately 10x the granularity of counties, which is the finest-grained
vaccination data the CDC provides and, still, with many counties
missing or having incomplete data [70]. We observe substantial
heterogeneity in vaccine intent at the ZCTA-level, even within the
same states and counties. For example, when we focus on New York
City, we see that Manhattan and Queens have higher vaccine intent
rates, and within Queens, ZCTAs in the northern half have higher
rates (Figure 6b), aligning with reported local vaccination rates in
New York City [11].

We can also use our estimates to characterize demographic trends
in vaccination. When we measure correlations between ZCTA vac-
cine intent rate and different demographic variables, we find that
overall demographic trends from our estimates align closely with
prior literature [37, 41, 71, 76]. For example, we observe strong
positive correlations with education, income, and population den-
sity, and a strong negative correlation with percent Republican
(Figure 6c). However, we discover more nuanced trends when we
look closer. Demographic trends vary significantly across states
(Figure A5), especially for race and ethnicity, and trends change
over time. For example, we estimate that older ZCTAs were much
likelier to seek the vaccine early in 2021 but this trend fell over time

(Figure A6a), reflecting how the US vaccine rollout initially priori-
tized seniors [38], and we see an increase in vaccine intent from
more Republican ZCTAs in summer 2021 (Figure A6b). Thus, our
classifier both confirms existing findings and enables new analyses
with finer granularity across regions, demographics, and time.

5 SEARCH CONCERNS OF HOLDOUTS
We use our vaccine intent classifier to identify two groups: vaccine
early adopters, who expressed their first vaccine intent before May
2021, and vaccine holdouts, who waited until July 2021 to show their
first vaccine intent, despite becoming eligible by April.3 Comparing
the search interests of these two groups allows us to discover rela-
tionships between expressed vaccine concerns, news consumption,
and vaccine decision-making. To reduce potential confounding, we
match each holdout with a unique early adopter from the same
county and with a similar average query count, since we know
that the populations seeking vaccination changed over time and
we do not want our comparisons to be overpowered by regional or
demographic differences. In our following analyses, we compare
the search interests of the matched sets, with over 200,000 pairs.

Vaccine holdouts are more likely to consume untrusted news. First,
we analyze the trustworthiness of news sites clicked on by vaccine
holdouts versus early adopters. We use ratings from Newsguard,
which assigns trust scores to news sites based on criteria such
as how often the site publishes false content and how it handles
the difference between news and opinion [52]. We find that, in
the period while vaccine holdouts were eligible but still holding
out (April to June 2021), holdouts were 69% (95% CI, 67%-70%)
likelier than their matched early adopters to click on untrusted
news, defined by Newsguard as domains with trust scores below
60. Furthermore, we see that as the trust score from Newsguard
degrades, the likelier it was that holdouts clicked on the site, relative
to early adopters (Figure 7a). For example, sites that are known for
spreading COVID-19 misinformation, such as Infowars [25], RT [6],
and Mercola [31], were much likelier to be clicked on by holdouts.
3We did not consider as holdouts those who never showed vaccine intent during our
study period, since those users may have gotten their vaccine in ways that are not
visible via search data. In comparison, individuals who did not show their first vaccine
intent until July 2021 likely did not receive the vaccine before.
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Figure 7: In all subfigures, news/categories are colored from yellow to dark purple to represent most holdout-leaning to most
early adopter-leaning. (a) The lower the trust rating from Newsguard, the likelier it is that vaccine holdouts click on the news
site, relative to early adopters. (b) Holdouts’ top category concerns include Vaccine Safety, Requirements, and Information, with
varying proportions over time. (c) Comparing holdouts vs. early adopters’ relative probabilities of clicking on each subcategory
(from April to June 2021) reveals each group’s distinctive concerns. (d) Near when holdouts express vaccine intent (±3 days) in
July and August 2021, their concerns become much more like the concerns of early adopters, with a few important differences.

Ontology of vaccine concerns on search. To characterize vaccine-
related search interests in far more detail, we construct a hier-
archical ontology of vaccine concerns, defined in terms of 25,000
vaccine-related URLs that were clicked on by early adopters or hold-
outs. We construct our ontology from the bottom-up: first, we seek
to automatically partition the URLs into clusters. Leveraging graph
ML again, we formulate this as a community detection problem
on graphs, and apply the Louvain algorithm [12] to the collapsed
URL-URL graph (collapsing the bipartite query-click graph over
queries). We find that this approach results in remarkably coher-
ent clusters (Table A3), due to the strength of the signal contained
in query-click graphs, and outperforms standard topic modeling
approaches such as LDA [10]. Based on these clusters, we design
a comprehensive set of subcategories and top categories, and sort
the clusters accordingly. For example, we identify one cluster of
news stories announcing vaccine passport requirements in cities,
which we sort under the proof of vaccination subcategory and Vac-
cine Requirements top category. This bottom-up approach allows
us to discover and measure vaccine concerns directly from users’
search interests and analyze them at multiple scales, providing
complementary insights to more traditional surveys.

In Figure A1, we summarize our resulting ontology, which con-
sists of 8 top categories and 36 subcategories. Some top categories
encompass a number of distinct subcategories: for example, under

Vaccine Safety, we include normal side effects, severe side effects,
concerns about reproductive health, vaccine history and develop-
ment, FDA approval, fear of vaccine-caused deaths, and “eerie” fears
(e.g., myths about vaccine shedding or becoming magnetic [28]).
At the top category-level, we find that vaccine holdouts are, by far,
the most concerned about Vaccine Safety, which accounts for 23%
of their vaccine-related clicks, followed by Vaccine Information
(10%) and Vaccine Requirements (9%). We also observe changes
in interests over time (Figure 7b): for example, interest in Vaccine
Incentives increased in May 2021, and interest in Vaccine Effective-
ness grew in June 2021, following the spread of the Delta variant.

Distinctive concerns of holdouts vs. early adopters. Our ontology
allows us to compare the vaccine concerns of holdouts and their
matched early adopters. First, during the period from April to June
2021, we find that holdouts were 48% less likely than early adopters
to click on any vaccine-related URL. Furthermore, their distribution
of concerns within their vaccine-related clicks differed significantly
(Figure 7c). Using the subcategories from our ontology, we find
that holdouts were far more interested in religious concerns about
the vaccine; anti-vaccine messages from experts and high-profile
figures; avoiding vaccine requirements by seeking exemptions, ban-
ning mandates, or obtaining fake proof of vaccination; eerie fears
and vaccine-caused deaths; and FDA approval and vaccine develop-
ment. In comparison, early adopters were much more concerned
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about normal side effects, vaccine efficacy, comparing different
types of vaccines, and information about each vaccine (Moderna,
Pfizer, and Johnson & Johnson). These differences reveal the impor-
tance of a fine-grained ontology; for example, at the top category
level, we would see that both groups were interested in Vaccine
Safety but miss that early adopters were more concerned about nor-
mal and severe side effects, while holdouts were more concerned
about eerie fears and vaccine-caused deaths. Our approach also
allows us to study who is expressing these concerns in greater gran-
ularity. Even within holdouts, we observe significant variability
in concerns across demographic groups (Figure A7). For example,
holdouts from more Democrat-leaning ZCTAs were particularly
concerned about FDA approval and vaccine requirements, while
holdouts from more Republican-leaning ZCTAs were more con-
cerned about eerie fears and vaccine incentives.

Holdouts appear like early adopters when seeking the vaccine.
In our final analysis, we exploit the fact that all of our vaccine
holdouts eventually expressed vaccine intent to explore how vac-
cine concerns change as an individual converts from holdout to
adopter. From July to August 2021, we analyze how holdouts’ vac-
cine concerns change in the small window (±3 days) surrounding
their expressed vaccine intent, compared to their typical concerns
outside of that window. We find that in those windows, holdouts’
vaccine concerns nearly reverse, such that they look much more
like early adopters than their typical selves (Figure 7d nearly re-
verses 7c). During this time, holdouts become far more interested
in the Johnson & Johnson vaccine, comparing different vaccines,
and vaccine incentives, and less interested in anti-vaccine messages
and vaccine fears. Notably, not all early adopter-leaning concerns
reverse as dramatically; for example, even while expressing vaccine
intent, holdouts remain less interested in the Pfizer and Moderna
vaccines, which may reflect how vaccine hesitant individuals were
quicker to accept the one-shot Johnson & Johnson vaccine, instead
of the two-shot mRNA vaccines [21, 73]. Furthermore, there are
some early adopter-leaning concerns that holdouts do not pick up
on during this time, such as interest in vaccine rates. We hypoth-
esize that these concerns are more reflective of an early adopter
“persona” rather than of concerns that would become relevant when
seeking the vaccine, such as comparing different vaccines.

6 RELATEDWORK
Our work centers Bing search logs, which have been used to study
other health issues such as shifts in needs and disparities in infor-
mation access during the pandemic [67, 68], health information
needs in developing nations [1], experiences around cancer diag-
noses [55, 56], concerns rising during pregnancy [29], and medical
anxieties associated with online search [75]. Our efforts build on
prior work that extracts insights about the COVID-19 vaccine from
digital traces, such as social media [50, 57, 58] and aggregated search
trends [7, 23, 48]. Our work is also related to other efforts to detect
health conditions online, such as predicting depression from social
media [19] and monitoring influenza from search queries [32].

Our work seeks to address the challenges of working with digital
traces [24, 54] and limitations of prior work [32, 44] by developing
ML and human-in-the-loop methods to precisely label search logs

and evaluate bias. Furthermore, as one of the first works to use indi-
vidual search logs to study the COVID-19 vaccine, we have the rare
opportunity to link vaccine outcomes (predicted by our classifier)
to the same individual’s search interests. Our graph ML pipeline is
also similar to other “big data” approaches that, due to the scale of
unlabeled data, manually annotate a subset of data, train machine
learning models to accurately predict those labels, then use those
models to label the rest of the data [17, 30, 35, 47]. We extend this
approach in several ways, such as by using personalized PageRank
to select URLs for more efficient annotation and by setting a strict
classification threshold based on “spies” to ensure high precision.

7 DISCUSSION
We have demonstrated how large-scale search logs and machine
learning can be leveraged for fine-grained, real-time monitoring
of vaccine intent rates and identification of individuals’ concerns
about vaccines. There are limitations to our approach: for example,
while we can achieve finer granularity than existing data, we still
miss within-ZCTA heterogeneity in vaccine intent. Furthermore,
our efforts to minimize bias in our estimates are substantial but
imperfect (e.g., we can only approximate TPRs and FPRs of our
classifier). We also assume in this work that vaccine intent can be
detected through single queries or clicks, but more sophisticated
models could incorporate entire search sessions or browsing data
beyond search. However, in favor of simplicity and considerations
of privacy, we label vaccine intent at the query and click-level.

Despite these limitations, our resources demonstrate strong
agreementwith existing data and enable analyses that have not been
available before. For example, our fine-grained vaccine intent esti-
mates can help public health officials to identify under-vaccinated
communities, informing where to place vaccine sites or whom to
prioritize in online or real-world outreach programs. Furthermore,
our novel ontology and analyses of individuals’ vaccine concerns
inform how to intervene, guiding messaging strategies for different
holdout populations. Lastly, our observation that holdouts resemble
early adopters when they eventually seek vaccination indicates that
individuals might follow similar paths towards vaccine acceptance.
Future work could model these trajectories, try to identify key in-
fluences (e.g., vaccine mandates), and use these models to ideally
allocate limited resources for interventions.

To facilitate policy impact and future research, we are releasing
our vaccine intent estimates and our ontology of vaccine concerns.
We hope that these resources will be useful for conducting detailed
analyses of COVID-19 vaccine behaviors and vaccination rates. The
ontology can also be employed widely in web and social media
research; for example, to study how certain classes of URLs (e.g.,
eerie fears) are disseminated on social media or surfaced by search
engines. Finally, we note that our graph ML techniques for intent
detection are applicable beyond vaccines, and could be applied to
precisely detect other intents of interest, such as seeking stimulus
checks or COVID-19 tests. More broadly, we hope that our work
can serve as a roadmap for researchers of how to derive rigorous
behavioral and health insights from search logs, including how to
precisely detect user intents and interests, evaluate and correct
for bias, validate against external data, and release resources to
promote reproducibility, transparency, and future work.

8



Accurate Measures of Vaccination and Concerns of Vaccine Holdouts from Web Search Logs epiDAMIK @ KDD’23, August 7 2023, Long Beach, CA

REFERENCES
[1] Rediet Abebe, Shawndra Hill, Jennifer Wortman Vaughan, Peter M. Small, and

H. Andrew Schwartz. 2019. Using Search Queries to Understand Health In-
formation Needs in Africa. In Proceedings of the Thirteenth International AAAI
Conference on Web and Social Media (ICWSM ’19).

[2] Yasmeen Abutaleb and Lena H. Sun. 2021. How CDC data problems put the
U.S. behind on the delta variant. The Washington Post (2021). https://www.
washingtonpost.com/health/2021/08/18/cdc-data-delay-delta-variant/.

[3] Alaa Althubaiti. 2016. Information bias in health research: definition, pitfalls, and
adjustment methods. Journal of Multidisciplinary Healthcare 9 (2016), 211–217.

[4] Emily Anthes, Madeleine Ngo, and Eileen Sullivan. 2021. Adults in all U.S. states
are now eligible for vaccination, hitting Biden’s target. Half have had at least
one dose. The New York Times (2021). https://www.nytimes.com/2021/04/19/
world/adults-eligible-covid-vaccine.html.

[5] Susan Athey, Kristen Grabarz, Michael Luca, and Nils Wernerfelt. 2023. Digital
public health interventions at scale: The impact of social media advertising on
beliefs and outcomes related to COVID vaccines. Proceedings of the National
Academy of Science (PNAS) 120, 5 (2023).

[6] Julian E. Barnes. 2021. Russian Disinformation Targets Vaccines and the Biden
Administration. The New York Times (2021). https://www.nytimes.com/2021/08/
05/us/politics/covid-vaccines-russian-disinformation.html.

[7] Shailesh Bavadekar, Adam Boulanger, John Davis, Damien Desfontaines, Ev-
geniy Gabrilovich, Krishna Gadepalli, Badih Ghazi, Tague Griffith, Jai Gupta,
Chaitanya Kamath, et al. 2021. Google COVID-19 Vaccination Search Insights:
Anonymization Process Description. arXiv (2021).

[8] Jessa Bekker and Jesse Davis. 2020. Learning from positive and unlabeled data: a
survey. Machine Learning 109 (2020), 719–760.

[9] Alexis Benveniste. 2021. New York City will require vaccines for entry to restau-
rants and gyms. CNN Business (2021). https://www.cnn.com/2021/08/03/business/
new-york-city-vaccine-requirements/index.html.

[10] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. Journal of Machine Learning Research (2003), 993–1022.

[11] Matthew Bloch, Larry Buchanan, and Josh Holder. 2021. SeeWho Has Been Vacci-
nated So Far in New York City. The New York Times (2021). https://www.nytimes.
com/interactive/2021/03/26/nyregion/nyc-vaccination-rates-map.html.

[12] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment (2008).

[13] Valerie C. Bradley, Shiro Kuriwaki, Michael Isakov, Dino Sejdinovic, Xiao-LiMeng,
and Seth Flaxman. 2021. Unrepresentative big surveys significantly overestimated
US vaccine uptake. Nature 600 (2021), 695–700.

[14] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine. Computer Networks and ISDN Systems (1998).

[15] United States Census Bureau. 2020. American Community Survey Data. https:
//www.census.gov/programs-surveys/acs/data.html.

[16] United States Census Bureau. 2021. Household Pulse Survey COVID-19 Vac-
cination Tracker. https://www.census.gov/library/visualizations/interactive/
household-pulse-survey-covid-19-vaccination-tracker.html.

[17] Dallas Card, Serina Chang, Chris Becker, Julia Mendelsohn, Rob Voigt, Leah
Boustan, Ran Abramitzky, and Dan Jurafsky. 2022. Computational analysis of 140
years of US political speeches reveals more positive but increasingly polarized
framing of immigration. Proceedings of the National Academy of Science (PNAS)
119, 31 (2022).

[18] Wen-Ying Sylvia Chou and Alexandra Budenz. 2020. Considering Emotion in
COVID-19 Vaccine Communication: Addressing Vaccine Hesitancy and Fostering
Vaccine Confidence. Health Communication 35, 14 (2020), 1718–1722.

[19] Munmun De Choudhury, Michael Gamon, Scott Counts, and Eric Horvitz. 2013.
Predicting Depression via Social Media. In Proceedings of the 7th International
AAAI Conference on Web and Social Media (ICWSM’13).

[20] Nick Craswell and Martin Szummer. 2007. Random walks on the click graph. In
Proceedings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval (SIGIR ’07).

[21] Bob Curley. 2021. Why Some People Still Prefer the Johnson & Johnson COVID-
19 Vaccine. Healthline (2021). https://www.healthline.com/health-news/why-
some-people-still-prefer-the-johnson-johnson-covid-19-vaccine.

[22] Hengchen Dai, Silvia Saccardo, Maria A. Han, Lily Roh, Naveen Raja, Sitaram
Vangala, Hardikkumar Modi, Shital Pandya, Michael Sloyan, and Daniel M. Croy-
mans. 2021. Behavioural nudges increase COVID-19 vaccinations. Nature 597
(2021), 404–409.

[23] Parris Diaz, Pritika Reddy, Reshna Ramasahayam, Manish Kuchakulla, and Ran-
jith Ramasamy. 2021. COVID-19 vaccine hesitancy linked to increased internet
search queries for side effects on fertility potential in the initial rollout phase
following Emergency Use Authorization. Andrologia 53, 9 (2021).

[24] Susan Dumais, Robin Jeffries, Daniel M. Russell, Diane Tang, and Jaime Teevan.
2014. Understanding User Behavior Through Log Data and Analysis. In Ways of
Knowing in HCI. Springer New York, New York, NY, 349–372.

[25] Luis Ferré-Sadurní and Jesse McKinley. 2020. Alex Jones Is Told to Stop Selling
Sham Anti-Coronavirus Toothpaste. The New York Times (2020). https://www.
nytimes.com/2020/03/13/nyregion/alex-jones-coronavirus-cure.html.

[26] Centers for Disease Control and Prevention. 2023. COVID-19 Vaccinations
in the United States,County. https://data.cdc.gov/Vaccinations/COVID-19-
Vaccinations-in-the-United-States-County/8xkx-amqh.

[27] Centers for Disease Control and Prevention. 2023. COVID-19 Vaccinations in
the United States,Jurisdiction. https://data.cdc.gov/Vaccinations/COVID-19-
Vaccinations-in-the-United-States-Jurisdi/unsk-b7fc.

[28] Centers for Disease Control and Prevention. 2023. Myths and Facts about COVID-
19 Vaccines. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/facts.html.

[29] Adam Fourney, Ryen W. White, and Eric Horvitz. 2015. Exploring Time-
Dependent Concerns about Pregnancy and Childbirth from Search Logs. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI’15). 737–746.

[30] Matt Franchi, J.D. Zamfirescu-Pereira, Wendy Ju, and Emma Pierson. 2023. De-
tecting disparities in police deployments using dashcam data. In Proceedings
of the 6th ACM Conference on Fairness, Accountability, and Transparency 2023
(FAccT’23).

[31] Sheera Frenkel. 2021. The Most Influential Spreader of Coronavirus Misinforma-
tion Online. The New York Times (2021). https://www.nytimes.com/2021/07/24/
technology/joseph-mercola-coronavirus-misinformation-online.html.

[32] JeremyGinsberg, MatthewH.Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S.
Smolinski, and Larry Brilliant. 2009. Detecting influenza epidemics using search
engine query data. Nature 457 (2009), 1012–1014.

[33] Alice Goldfarb and Kara W. Schechtman. 2021. State-Level Vaccine Demographic
Data is Messy and Incomplete—We Need Federal Data, Now. The COVID Tracking
Project (2021). https://covidtracking.com/analysis-updates/state-level-vaccine-
demographic-data-is-messy-and-incomplete.

[34] Google. 2023. Google Trends. https://trends.google.com/trends/?geo=US.
[35] Justin Grimmer, Margaret E. Roberts, and Brandon M. Stewart. 2021. Machine

Learning for Social Science: An Agnostic Approach. Annual Review of Political
Science 24 (2021), 395–419.

[36] Rodrigo Jiménez-García, Valentín Hernandez-Barrera, Cristina Rodríguez-Rieiro,
Pilar Carrasco Garrido, Ana López de Andres, Isabel Jimenez-Trujillo, María D
Esteban-Vasallo, Maria Felicitas Domínguez-Berjón, Javier de Miguel-Diez, and
Jenaro Astray-Mochales. 2014. Comparison of self-report influenza vaccination
coverage with data from a population based computerized vaccination registry
and factors associated with discordance. Vaccine 32, 35 (2014), 4386–4392.

[37] Ashish Joshi, Mahima Kaur, Ritika Kaur, Ashoo Grover, Denis Nash, and Ayman
El-Mohandes. 2021. Predictors of COVID-19 Vaccine Acceptance, Intention, and
Hesitancy: A Scoping Review. Frontiers in Public Health 9 (2021).

[38] Berkeley Lovelace Jr. 2021. CDC expands Covid vaccination guidelines to every-
one 65 and older. CNBC (2021). https://www.cnbc.com/2021/01/12/covid-vaccine-
trump-administration-to-expand-eligibility-to-everyone-65-and-older.html.

[39] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the 5th International Conference
on Learning Representations (ICLR ’17).

[40] Isabel M. Kloumann and Jon M. Kleinberg. 2014. Community Membership
Identification from Small Seed Sets. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’14).
1366–1375.

[41] Sarah Kreps, Sandip Prasad, John S. Brownstein, Yulin Hswen, Brian T. Garibaldi,
Baobao Zhang, and Douglas L. Kriner. 2020. Factors Associated With US Adults’
Likelihood of Accepting COVID-19 Vaccination. JAMA Network Open 3, 10 (2020),
e2025594–e2025594.

[42] Nancy Krieger, Pamela DWaterman, Jarvis T Chen, Christian Testa, andWilliam P
Hanage. 2021. Missing again: US racial and ethnic data for COVID-19 vaccination.
The Lancet 397, 10281 (2021), 1259–1260.

[43] Sharon LaFraniere. 2022. ‘Very Harmful’ Lack of Data Blunts U.S. Response to
Outbreaks. The New York Times (2022). https://www.nytimes.com/2022/09/20/
us/politics/covid-data-outbreaks.html.

[44] David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014. The
Parable of Google Flu: Traps in Big Data Analysis. Science 343 (2014), 1203–1205.

[45] Xiao Li, Ye-YiWang, andAlex Acero. 2008. Learning query intent from regularized
click graphs. In Proceedings of the 31st annual international ACM SIGIR conference
on Research and development in information retrieval (SIGIR ’08).

[46] Jamie Lopez Bernal, Nick Andrews, Charlotte Gower, Eileen Gallagher, Ruth
Simmons, Simon Thelwall, Julia Stowe, Elise Tessier, Natalie Groves, Gavin
Dabrera, et al. 2021. Effectiveness of Covid-19 Vaccines against the B.1.617.2
(Delta) Variant. New England Journal of Medicine 385, 7 (2021), 585–594.

[47] Ian Lundberg, Jennie E. Brand, and Nanum Jeon. 2022. Researcher reasoning
meets computational capacity: Machine learning for social science. Social Science
Research 108 (2022), 102807.

[48] Sean Malahy, Mimi Sun, Keith Spangler, Jessica Leibler, Kevin Lane, Shailesh
Bavadekar, Chaitanya Kamath, Akim Kumok, Yuantong Sun, Jai Gupta, et al.
2021. Vaccine Search Patterns Provide Insights into Vaccination Intent. arXiv
(2021).

9

https://www.washingtonpost.com/health/2021/08/18/cdc-data-delay-delta-variant/
https://www.washingtonpost.com/health/2021/08/18/cdc-data-delay-delta-variant/
https://www.nytimes.com/2021/04/19/world/adults-eligible-covid-vaccine.html
https://www.nytimes.com/2021/04/19/world/adults-eligible-covid-vaccine.html
https://www.nytimes.com/2021/08/05/us/politics/covid-vaccines-russian-disinformation.html
https://www.nytimes.com/2021/08/05/us/politics/covid-vaccines-russian-disinformation.html
https://www.cnn.com/2021/08/03/business/new-york-city-vaccine-requirements/index.html
https://www.cnn.com/2021/08/03/business/new-york-city-vaccine-requirements/index.html
https://www.nytimes.com/interactive/2021/03/26/nyregion/nyc-vaccination-rates-map.html
https://www.nytimes.com/interactive/2021/03/26/nyregion/nyc-vaccination-rates-map.html
https://www.census.gov/programs-surveys/acs/data.html
https://www.census.gov/programs-surveys/acs/data.html
https://www.census.gov/library/visualizations/interactive/household-pulse-survey-covid-19-vaccination-tracker.html
https://www.census.gov/library/visualizations/interactive/household-pulse-survey-covid-19-vaccination-tracker.html
https://www.healthline.com/health-news/why-some-people-still-prefer-the-johnson-johnson-covid-19-vaccine
https://www.healthline.com/health-news/why-some-people-still-prefer-the-johnson-johnson-covid-19-vaccine
https://www.nytimes.com/2020/03/13/nyregion/alex-jones-coronavirus-cure.html
https://www.nytimes.com/2020/03/13/nyregion/alex-jones-coronavirus-cure.html
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkx-amqh
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkx-amqh
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-Jurisdi/unsk-b7fc
https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-Jurisdi/unsk-b7fc
https://www.cdc.gov/coronavirus/2019-ncov/vaccines/facts.html
https://www.nytimes.com/2021/07/24/technology/joseph-mercola-coronavirus-misinformation-online.html
https://www.nytimes.com/2021/07/24/technology/joseph-mercola-coronavirus-misinformation-online.html
https://covidtracking.com/analysis-updates/state-level-vaccine-demographic-data-is-messy-and-incomplete
https://covidtracking.com/analysis-updates/state-level-vaccine-demographic-data-is-messy-and-incomplete
https://trends.google.com/trends/?geo=US
https://www.cnbc.com/2021/01/12/covid-vaccine-trump-administration-to-expand-eligibility-to-everyone-65-and-older.html
https://www.cnbc.com/2021/01/12/covid-vaccine-trump-administration-to-expand-eligibility-to-everyone-65-and-older.html
https://www.nytimes.com/2022/09/20/us/politics/covid-data-outbreaks.html
https://www.nytimes.com/2022/09/20/us/politics/covid-data-outbreaks.html


epiDAMIK @ KDD’23, August 7 2023, Long Beach, CA S. Chang, A. Fourney, and E. Horvitz

[49] Zakaria Mehrab, Mandy L. Wilson, Serina Chang, Galen Harrison, Bryan Lewis,
Alex Telionis, Justin Crow, Dennis Kim, Scott Spillmann, Kate Peters, Jure
Leskovec, and Madhav Marathe. 2022. Data-Driven Real-Time Strategic Place-
ment of Mobile Vaccine Distribution Sites. In Proceedings of the 36th AAAI Con-
ference on Artificial Intelligence (IAAI’22).

[50] GoranMuric, YusongWu, and Emilio Ferrara. 2021. COVID-19 Vaccine Hesitancy
on Social Media: Building a Public Twitter Data Set of Antivaccine Content,
Vaccine Misinformation, and Conspiracies. JMIR Public Health and Surveillance
7, 11 (2021).

[51] Nambi Ndugga, Latoya Hill, Samantha Artiga, and Sweta Haldar. 2021.
Latest data on COVID-19 vaccinations by race/ethnicity. Kaiser Fam-
ily Found (KFF) (2021). https://covid-19archive.org/files/original/
f90f767bdd1cd10911587853d70a6320f29bf9b7.pdf.

[52] Newsguard. 2022. Rating Process and Criteria. https://www.newsguardtech.
com/ratings/rating-process-criteria/.

[53] Dave Leip’s Atlas of U.S. Elections. 2022. Store - Election Data. https://
uselectionatlas.org/BOTTOM/store_data.php.

[54] Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Emre Kıcıman. 2019.
Social Data: Biases, Methodological Pitfalls, and Ethical Boundaries. Frontiers in
Big Data 2 (2019).

[55] Michael J. Paul, Ryen W. White, and Eric Horvitz. 2015. Diagnoses, decisions,
and outcomes: Web search as decision support for cancer. In Proceedings of the
24th international conference on World Wide Web (WWW’15).

[56] Michael J. Paul, RyenW.White, and Eric Horvitz. 2016. Search and Breast Cancer:
On Episodic Shifts of Attention over Life Histories of an Illness. ACM Transactions
on the Web 10, 2 (2016).

[57] Francesco Pierri, Brea L. Perry, Matthew R. DeVerna, Kai-Cheng Yang, Alessandro
Flammini, Filippo Menczer, and John Bryden. 2022. Online misinformation is
linked to early COVID-19 vaccination hesitancy and refusal. Scientific Reports 12,
5955 (2022).

[58] Soham Poddar, Mainack Mondal, Janardan Misra, Niloy Ganguly, and Saptarshi
Ghosh. 2022. Winds of Change: Impact of COVID-19 on Vaccine-Related Opinions
of Twitter Users. In Proceedings of the 16th International AAAI Conference on Web
and Social Media (ICWSM’22).

[59] Fernando P. Polack, Stephen J. Thomas, Nicholas Kitchin, Judith Absalon, Ale-
jandra Gurtman, Stephen Lockhart, John L. Perez, Gonzalo Pérez Marc, Edson D.
Moreira, Cristiano Zerbini, et al. 2020. Safety and Efficacy of the BNT162b2mRNA
Covid-19 Vaccine. New England Journal of Medicine 383, 27 (2020), 2603–2615.

[60] Nathaniel Rabb, Megan Swindal, David Glick, Jake Bowers, Anna Tomasulo,
Zayid Oyelami, Kevin H. Wilson, and David Yokum. 2022. Evidence from a
statewide vaccination RCT shows the limits of nudges. Nature 604 (2022), E1–E7.

[61] Filip Radlinski, Martin Szummer, and Nick Craswell. 2010. Inferring Query
Intent from Reformulations and Clicks. In Proceedings of the 19th International
Conference on World Wide Web (WWW’10).

[62] Lydia Saad. 2021. More in U.S. Vaccinated After Delta Surge, FDA Decision.
Gallup (2021). https://news.gallup.com/poll/355073/vaccinated-delta-surge-fda-
decision.aspx.

[63] Michael Siegel, Isabella Critchfield-Jain, Matthew Boykin, Alicia Owens, Re-
beckah Muratore, Taiylor Nunn, and Joanne Oh. 2022. Racial/Ethnic Disparities
in State-Level COVID-19 Vaccination Rates and Their Association with Structural
Racism. Journal of Racial and Ethnic Health Disparities 9, 6 (2022), 2361–2374.

[64] Marianna Sotomayor, Jacqueline Alemany, and Mike DeBonis. 2021. Growing
number of Republicans urge vaccinations amid delta surge. The New York
Times (2021). https://www.washingtonpost.com/politics/growing-number-of-
republicans-urge-vaccinations-amid-delta-surge/2021/07/20/52a06e9c-e999-
11eb-8950-d73b3e93ff7f_story.html.

[65] StatCounter. 2023. Desktop Search EngineMarket Share United States Of America,
Jan - Dec 2021. https://gs.statcounter.com/search-engine-market-share/desktop/
united-states-of-america/2021.

[66] Seth Stephens-Davidowitz. 2014. The cost of racial animus on a black candidate:
Evidence using Google search data. Journal of Public Economics 118 (2014), 26–40.

[67] Jina Suh, Eric Horvitz, Ryen W. White, and Tim Althoff. 2021. Population-
Scale Study of Human Needs During the COVID-19 Pandemic: Analysis and
Implications. In Proceedings of the 14th ACM International Conference on Web
Search and Data Mining (WSDM’21). 4–12.

[68] Jina Suh, Eric Horvitz, Ryen W. White, and Tim Althoff. 2022. Disparate impacts
on online information access during the Covid-19 pandemic. Nature Communi-
cations 13, 7094 (2022).

[69] Tom Tapp. 2021. Los Angeles City Council Votes 13-0 To Create Vaccination
Requirement For Indoor Public Spaces Such As Restaurants, Movie Theaters,
Concert Venues. Deadline (2021). https://deadline.com/2021/08/los-angeles-city-
requires-vaccination-vaccine-indoors-1234813086/.

[70] Jennifer Tolbert, Kendal Orgera, Rachel Garfield, Jennifer Kates, , and
Samantha Artiga. 2021. Vaccination is Local: COVID-19 Vaccination Rates
Vary by County and Key Characteristics. Kaiser Family Foundation (KFF)
(2021). https://www.kff.org/coronavirus-covid-19/issue-brief/vaccination-is-
local-covid-19-vaccination-rates-vary-by-county-and-key-characteristics/.

[71] Gianmarco Troiano and Alessandra Nardi. 2021. Vaccine hesitancy in the era of
COVID-19. Public Health 194 (2021), 245–251.

[72] Raymond John D Vergara, Philip Joseph D Sarmiento, and James Darwin N
Lagman. 2021. Building public trust: a response to COVID-19 vaccine hesitancy
predicament. Journal of Public Health 43, 2 (2021), e291–e292.

[73] Noah Weiland. 2021. One and Done: Why People Are Eager for Johnson &
Johnson’s Vaccine. The New York Times (2021). https://www.nytimes.com/2021/
03/04/health/covid-vaccine-johnson-and-johnson-rollout.html.

[74] Rebecca L. Weintraub, Kate Miller, Benjamin Rader, Julie Rosenberg, Shreyas
Srinath, Samuel R.Woodbury,Marinanicole D. Schultheiss, Mansi Kansal, Swapnil
Vispute, Stylianos Serghiou, et al. 2023. Identifying COVID-19 Vaccine Deserts
and Ways to Reduce Them: A Digital Tool to Support Public Health Decision-
Making. American Journal of Public Health 113, 4 (2023), 363–367.

[75] Ryen W. White and Eric Horvitz. 2009. Cyberchondria: Studies of the Escalation
of Medical Concerns in Web Search. ACM Transactions on Information Systems
27, 4 (2009).

[76] Farah Yasmin, Hala Najeeb, Abdul Moeed, Unaiza Naeem, Muhammad Sohaib
Asghar, Najeeb Ullah Chughtai, Zohaib Yousaf, BinyamTariku Seboka, Irfan Ullah,
Chung-Ying Lin, and Amir H. Pakpour. 2021. COVID-19 Vaccine Hesitancy in
the United States: A Systematic Review. Frontiers in Public Health 9 (2021).

10

https://covid-19archive.org/files/original/f90f767bdd1cd10911587853d70a6320f29bf9b7.pdf
https://covid-19archive.org/files/original/f90f767bdd1cd10911587853d70a6320f29bf9b7.pdf
https://www.newsguardtech.com/ratings/rating-process-criteria/
https://www.newsguardtech.com/ratings/rating-process-criteria/
https://uselectionatlas.org/BOTTOM/store_data.php
https://uselectionatlas.org/BOTTOM/store_data.php
https://news.gallup.com/poll/355073/vaccinated-delta-surge-fda-decision.aspx
https://news.gallup.com/poll/355073/vaccinated-delta-surge-fda-decision.aspx
https://www.washingtonpost.com/politics/growing-number-of-republicans-urge-vaccinations-amid-delta-surge/2021/07/20/52a06e9c-e999-11eb-8950-d73b3e93ff7f_story.html
https://www.washingtonpost.com/politics/growing-number-of-republicans-urge-vaccinations-amid-delta-surge/2021/07/20/52a06e9c-e999-11eb-8950-d73b3e93ff7f_story.html
https://www.washingtonpost.com/politics/growing-number-of-republicans-urge-vaccinations-amid-delta-surge/2021/07/20/52a06e9c-e999-11eb-8950-d73b3e93ff7f_story.html
https://gs.statcounter.com/search-engine-market-share/desktop/united-states-of-america/2021
https://gs.statcounter.com/search-engine-market-share/desktop/united-states-of-america/2021
https://deadline.com/2021/08/los-angeles-city-requires-vaccination-vaccine-indoors-1234813086/
https://deadline.com/2021/08/los-angeles-city-requires-vaccination-vaccine-indoors-1234813086/
https://www.kff.org/coronavirus-covid-19/issue-brief/vaccination-is-local-covid-19-vaccination-rates-vary-by-county-and-key-characteristics/
https://www.kff.org/coronavirus-covid-19/issue-brief/vaccination-is-local-covid-19-vaccination-rates-vary-by-county-and-key-characteristics/
https://www.nytimes.com/2021/03/04/health/covid-vaccine-johnson-and-johnson-rollout.html
https://www.nytimes.com/2021/03/04/health/covid-vaccine-johnson-and-johnson-rollout.html


Accurate Measures of Vaccination and Concerns of Vaccine Holdouts from Web Search Logs epiDAMIK @ KDD’23, August 7 2023, Long Beach, CA

APPENDIX
The Appendix provides additional results and experiments, includ-
ing detailed descriptions of our ontology (Figure A1), results from
developing our vaccine intent classifier (Section A1), our decompo-
sition and evaluations of bias (Section A2), and additional analyses
of vaccine intent trends and vaccine concerns (Section A3).

A1 VACCINE INTENT CLASSIFIER:
ADDITIONAL RESULTS

Annotation results. As discussed in the main text, in the second
step of our classification pipeline, we present URLs to annotators
on Amazon Mechanical Turk. We find that a large majority (86%) of
our URL candidates are labeled as vaccine intent, when we require
at least three positive annotations to qualify a URL as vaccine intent.
Furthermore, we observe a clear relationship between S-PPR rank
and the percentage labeled as vaccine intent, whether we set the
threshold at two or three annotations (Figure A2). For example,
when we require three positive annotations, around 90% of URLs
from ranks 0 to 20 qualify, around 81% of URLs from ranks 40-60
qualify, and around 71% of URLs from ranks 80 to 100 qualify. Thus,
we find that S-PPR predicts vaccine intent remarkably well, with
a high rate among its top URLs and agreement with a decreasing
rate as the ranking drops.

Details from GNN experiments. In the final step of our classifi-
cation pipeline, we train GNNs to learn vaccine intent labels and
discover new URLs. Since there are not enough URL labels from
AMT for smaller states, we experiment with pre-training the GNN
on S-PPR rankings. In practice, before training the model on the
URL labels from AMT, we train the model to predict the URLs’ S-
PPR rankings that we derived in the first step of our pipeline. Since
S-PPR rankings become less meaningful in the long tail of URLs, we
focus on predicting the top 𝐾 = max(1000, 𝑞max) S-PPR rankings,
where 𝑞max is the maximum rank (where lower rank corresponds
to higher S-PPR score) of the last seed set query.

To test the effect of pre-training on S-PPR rankings, we select
six representative states that vary in graph size and US region. We
find that pre-training significantly improves performance for the
smaller states. For example, the mean AUC for Wyoming increases
from 0.74 to 0.95 (Table A1). Specifically, due to the low number
of URL labels for smaller states, we observe great variance in the
model’s performance if we do not pre-train the model, leading to
some trials that perform well and some that perform poorly (Figure
3a). Performance becomes far more stable for smaller states after
we incorporate the pre-training objective. We find that pre-training
seems unnecessary for the larger states, such as Connecticut and
Tennesssee, where we are already achieving high AUCs above 0.98.
So, we set a generous cutoff of 5,000,000 nodes (still larger than
the graph size for Connecticut) and we pre-train all states with
fewer than 5,000,000 nodes in our data, of which there are 26. After
incorporating pre-training for these smaller states, we are able to
achieve AUCs above 0.90 for all 50 states and above 0.95 for 45
states (Figure 3b).

As a supplementary analysis, we can also use AUC to evaluate
the predictive performance of S-PPR alone and GNN-PPR, i.e., the
GNN pre-trained on S-PPR rankings before it is also trained on AMT

State # nodes AUC w/o pre-train AUC w/ pre-train
WY 752865 0.741 (0.146) 0.951 (0.014)
AK 909357 0.796 (0.187) 0.921 (0.074)
DE 1269327 0.864 (0.134) 0.968 (0.007)
MT 1533071 0.857 (0.139) 0.978 (0.011)
CT 4407722 0.987 (0.005) 0.984 (0.008)
TN 7712443 0.991 (0.003) 0.990 (0.003)

Table A1: Effects of pre-training on S-PPR rankings for six
selected states. We report the mean and standard deviation
of AUC on the test set over 10 random trials.

labels. Here, we evaluate on all AMT labels, since none of themwere
used in constructing S-PPR or GNN-PPR scores. In fact, evaluating
on AMT labels is particularly challenging, since we chose to label
only the top-ranked URLs according to S-PPR, so we are asking
S-PPR to distinguish between URLs that it already considers similar.
We conduct this experiment on the 26 smaller states for which we
pre-trained our GNNs.

First, we find across these states that S-PPR still performs better
than random, with a mean AUC of 0.569, which complements our
annotation results showing that even within its top-ranked URLs,
S-PPR rankings still correlate with true rates of vaccine intent
labels (Figure A2). Second, we find that GNN-PPR consistently
outperforms S-PPR by 10-15 points, with a mean AUC of 0.675. This
is somewhat surprising, since GNN-PPR was only trained to predict
S-PPR rankings, without any additional labels. We hypothesize
that GNN-PPR outperforms S-PPR because, unlike S-PPR, the GNN
can incorporate textual information from URLs and queries, in
addition to graph structure. So, while S-PPR incorrectly upweights
high-traffic URLs such as facebook.com that are often reached on
random walks starting from the vaccine intent queries, GNN-PPR
recognizes that these URLs do not look like the rest of high-ranking
URLs and correctly excludes them. However, in order to achieve
this difference between S-PPR and GNN-PPR, it is important not to
overfit on S-PPR. So, we employ early stopping during pre-training;
that is, we train the GNN on S-PPR rankings until they achieve a
correlation of 0.8 and then we stop pre-training.

Our evaluation results demonstrate that our GNNs are able to
accurately predict vaccine intent labels in all 50 states, which is
essential as we use our GNNs to discover new vaccine intent URLs.
In Table A2, we provide a uniform random sample of the URLs
that our GNNs discovered. The majority of them seem to express
vaccine intent, with several news stories about new vaccine clinics
and information about vaccine appointments. Furthermore, the
supplemental analysis of S-PPR and GNN-PPR shows that due to
the expressive power of the GNN (with character-level CNN) and
the predictive power of S-PPR from a well-designed seed set, we
can achieve decent performance without any labels at all. These
methods, which should be explored more deeply in future work,
may be useful in a zero-shot context, allowing lightweight, effective
prediction before acquiring any labels.
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Safety

Normal side effects
Severe side effects
Reproductive health

Vaccine-caused deaths
Eerie fears

Vaccine development
FDA approval

Expected side effects: sore arm, shoulder, fever, etc

Rare but plausible side effects, severe, potentially long-term: blood clots, myocarditis, etc

Concerns about fertility, breast feeding, menstruation

Fear of deaths caused by COVID vaccine

Eerie and debunked fears: shedding, magnets, microchips, etc

History of vaccine development, fear of mRNA technology, ingredients in COVID vaccine

FDA approval of COVID vaccines

Effectiveness

Efficacy from studies
Efficacy against variants

Breakthrough cases
Natural immunity

How effective the vaccine is, how long immunity lasts, how long for vaccine to take effect

How well does vaccine work against variants (mostly Delta)

Breakthrough COVID cases, symptoms when vaccinated

Is natural immunity better than vaccine, do I still need vaccine

Top category Subcategory Description

Requirements

Travel
Employment
Vaccine proof

Exemption
Fake vaccine proof

Anti-mandate

Vaccine requirements to travel: for cruises, other countries, etc

Employer vaccine mandates: healthcare, government, educators, etc

Required proof of vaccination to enter places: restaurants, gyms, concert venues, etc

Seeking exemption on vaccine requirements, religious or medical

Seeking fake proof of vaccination

States banning mandates, lawsuits against employer mandates

Incentives Vaccine incentives Vaccine incentives: lotteries, gift cards, free groceries, giveaways, etc

Other
New / non-US vaccines
Non-COVID vaccines

Pet vaccines

Other COVID vaccines: Novavax, Astrazeneca, Sinovax

Non-COVID vaccines: flu, MMR, varicella, meningitis, etc

Vaccines for pets, mostly dogs and cats

Information

Decision-making
Comparison

Moderna
Pfizer

Johnson & Johnson

Post-vax guidelines

Pros and cons of COVID vaccine, should I get the vaccine?

Comparing Moderna vs Pfizer vs J&J, side effects, efficacy

General news on Moderna vaccine, rollout, side effects, efficacy

General news on Pfizer vaccine, rollout, side effects, efficacy

General news on J&J vaccine, emphasis on blood clots and efficacy

Guidelines after vaccination: masking, testing, quarantine

Special populations COVID-19 vaccine for special populations: autoimmune disease, rheumatoid arthritis, etc

Community

Vaccine rates
News on hesitancy

High-profile anti-vax
Religious concerns

Vaccine trackers, rates of vaccination over time: by state, by country, etc

Reporting on vaccine hesitancy and anti-vaxxers, how to talk to vaccine hesitant

Anti-vaccine messages from high-profile figures: politicians, celebrities, etc

Religious concerns about the vaccine, seeking advice from religious leaders

Expert anti-vax Anti-vaccine messages from scientists and doctors

Availability
Locations
Children
Boosters

Where to get COVID vaccine (some missed vaccine intent URLs): CVS, Walgreens, etc

Are COVID vaccines for children available / recommended

Are boosters available / recommended

Figure A1: Our ontology of vaccine concerns consists of 8 top categories and 36 subcategories.
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URL 𝑡med 𝑡prec
https://www.chesco.org/4836/61876/COVID-Authorized-Vax 7 10
https://patch.com/new-jersey/princeton/all-information-princeton-area-covid-vaccine-sites 9 10
https://dph.georgia.gov/locations/spalding-county-health-department-covid-vaccine 9 10
https://www.abc12.com/2021/04/22/whitmer-says-covid-19-vaccine-clinics-like-flint-church-are-key-to-meeting-goals/ 7 10
https://www.delta.edu/coronavirus/covid-vaccine.html 10 10
https://www.lewistownsentinel.com/news/local-news/2021/01/scheduling-a-virus-vaccine-appointment/ 9 10
https://www.laconiadailysun.com/news/local/covid-vaccine-clinics-at-lrgh-franklin-now-open-to-public/article_aa4b67e0-601a-
11eb-a889-1bd4e6c83de1.html

6 10

https://www.insidenova.com/headlines/inside-woodbridges-new-mass-covid-19-vaccination-site-the-lines-keep-moving/article_
eca45b88-8db0-11eb-a649-4bbeccd82cc3.html

9 10

https://www.keloland.com/news/healthbeat/coronavirus/avera-opens-covid-19-vaccine-clinic/ 10 9
https://bangordailynews.com/2021/04/06/news/maine-to-kick-off-statewide-mobile-covid-19-vaccine-clinics-in-oxford-next-
week-sk6sr8zcdk/

8 9

https://morgancounty.in.gov/covid-19-vaccinations/ 9 10
https://www.firsthealth.org/specialties/more-services/covid-19-vaccine 10 10
https://healthonecares.com/covid-19/physician-practices/covid-19-vaccine-information.dot 9 10
https://patch.com/florida/stpete/drive-thru-covid-19-vaccine-sites-open-florida 9 10
https://vaccinate.iowa.gov/eligibility/ 7 10
https://www.baynews9.com/fl/tampa/news/2021/03/17/new-walk-in-vaccine-site-at-tpepin-hospitality-centre-opens-today 10 10
https://www.doh.wa.gov/Emergencies/COVID19/VaccineInformation/FrequentlyAskedQuestions 10 10
https://www.emissourian.com/covid19/vaccine-registration-open-for-franklin-county/article_3638f7a0-5769-11eb-9bba-
3f2611173784.html

10 10

https://www.fema.gov/press-release/20210223/maryland-open-covid-19-vaccination-center-waldorf-fema-support 10 10
https://kingcounty.gov/depts/health/covid-19/vaccine/forms.aspx 10 10

Table A2: A random sample (random_state=0) of 20 URLs from GNN. 𝑡med and 𝑡prec indicate how often the URL passed the
median cutoff and precision cutoff, respectively, out of the 10 trials.
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Figure A2: Comparison of S-PPR rank vs. proportion of URLs
around that rank that are labeled as vaccine intent. 𝑡 = 3 and
𝑡 = 2 indicate how many positive annotations were required
to qualify for vaccine intent.

A2 BIAS DECOMPOSITION AND
EVALUATIONS

A2.1 Decomposition of bias
For a given individual, let 𝑣 ∈ {0, 1} indicate whether they actually
had vaccine intent (up to a certain time) and 𝑣 ∈ {0, 1} indicate
whether our classifier labels them as having vaccine intent. Fur-
thermore, let 𝑟 represent the individual’s home region, such as their

state or county. We would like to estimate the regional vaccine
intent rate, Pr(𝑣 |𝑟 ), but we do not have access to 𝑣 , only to 𝑣 . To
understand how using 𝑣 in place of 𝑣 may bias our estimates, let
us relate Pr(𝑣 |𝑟 ) to Pr(𝑣 |𝑟 ). First, we introduce another variable
𝑏, which represents whether the individual is a Bing user. Note
that 𝑣 = 1 implies that 𝑏 = 1, since our classifier can only identify
vaccine intent from users who appear in Bing search logs.

With these variables, we have

Pr(𝑣 = 1|𝑟 ) = Pr(𝑏 = 1|𝑟 )︸       ︷︷       ︸
Bing coverage of 𝑟

[ Pr(𝑣 = 1|𝑟 ) Pr(𝑣 = 1|𝑏 = 1, 𝑣 = 1, 𝑟 )︸                        ︷︷                        ︸
Classifier TPR for 𝑟

(1)
+ Pr(𝑣 = 0|𝑟 ) Pr(𝑣 = 1|𝑏 = 1, 𝑣 = 0, 𝑟 )︸                        ︷︷                        ︸

Classifier FPR for 𝑟

] .

Pr(𝑏 = 1|𝑟 ) represents the probability that an individual from region
𝑟 is a Bing user, i.e., the Bing coverage of 𝑟 . Incorporating 𝑏, 𝑣 , and
𝑟 into Pr(𝑣 |𝑏, 𝑣, 𝑟 ) reflects all of the factors that affect whether the
classifier predicts vaccine intent. As discussed, if the user is not
a Bing user (𝑏 = 0), then the probability is 0, so we only consider
the 𝑏 = 1 case. If 𝑣 = 1, predicting 𝑣 = 1 would be a true positive;
if 𝑣 = 0, it would be a false positive. Conditioning 𝑣 on region 𝑟
reflects the possibility that individuals from different regions may
express vaccine intent differently and the classifier may be more
prone to true or false positives for different regions. Finally, we
make the assumption here that 𝑏 ⊥ 𝑣 |𝑟 ; that is, conditioned on the
individual’s region, being a Bing user and having vaccine intent are
independent. This misses potential within-region heterogeneity,
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but to mitigate this in practice, we use ZCTAs as our regions, which
are relatively fine-grained.

Based on this decomposition, we can see that if Bing coverage,
TPR, and FPR are uniform across regions, then Pr(𝑣 |𝑟 ) will simply
be a linear function of Pr(𝑣 |𝑟 ). Unfortunately, we know that Bing
coverage is not uniform. However, we observe 𝑏 = 1 and can assign
users to regions, so we can estimate Bing coverage per region
and correct by inverse coverage. Thus, our estimate corresponds
to a coverage-corrected predicted vaccine intent rate, 𝑝 (𝑣, 𝑟 ) =
Pr(𝑣=1 |𝑟 )
Pr(𝑏=1 |𝑟 ) . If we refer to the true vaccine intent rate as 𝑝 (𝑣, 𝑟 ), then
we can see that 𝑝 (𝑣, 𝑟 ) is a linear function of 𝑝 (𝑣, 𝑟 ) when TPR and
FPR are uniform:

Pr(𝑣 = 1|𝑟 )
Pr(𝑏 = 1|𝑟 ) = Pr(𝑣 = 1|𝑟 )TPR + (1 − Pr(𝑣 = 1|𝑟 ))FPR (2)

𝑝 (𝑣, 𝑟 ) = FPR + (TPR − FPR)𝑝 (𝑣, 𝑟 ).
Furthermore, if FPR is low, then 𝑝 (𝑣, 𝑟 ) is approximately propor-
tional to 𝑝 (𝑣, 𝑟 ). Thus, our first two strategies for addressing bias
in our estimates are:

(1) Estimate Bing coverage per region and weight by inverse
coverage, which we discussed in Section 4,

(2) Evaluate whether our classifier has similar TPRs and FPRs
across regions and whether FPRs are close to 0, which we
discuss below.

These efforts are our first two lines of defense against bias. After this,
we furthermore compare our results to established data sources,
such as the CDC’s reported vaccination rates and Google search
trends, where we find strong correlations for both.

A2.2 Evaluating bias in vaccine intent classifier
Our primary source of bias is uneven Bing coverage, which we
found can vary by more than 2x across ZCTAs. However, after
correcting for Bing coverage, we also want to know that our classi-
fier does not significantly contribute to additional bias. To do this,
we must establish that our classifier’s TPRs and FPRs do not vary
significantly or systematically across regions. The challenge is that
we cannot perfectly evaluate these rates, because we do not know
all true positives or true negatives. However, we can approximate
these metrics based on the labeled URLs that we do have and fur-
thermore make methodological decisions that encourage similar
performance across groups.

Evaluating bias in generating URL candidates. Recall that in the
first step of our pipeline, we generate URL candidates for annota-
tion by propagating labels from vaccine intent queries to unlabeled
URLs via personalized PageRank on query-click graphs. Since all
URL candidates then go through manual inspection in the second
step, we do not have to worry about the false positive rate at this
stage. However, we do need to worry about the true positive rate
(i.e., recall). For example, if we only kept COVID-19 vaccine reg-
istration pages for pharmacies that are predominantly in certain
regions, then we could be significantly likelier to detect true vaccine
intent for certain states over others. So, through the design and
evaluation of our label propagation techniques, we aim to ensure
representativeness in vaccine intent across the US.

The most important design decision is that we construct query-
click graphs per state, then we run S-PPR per graph and take the
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Figure A3: Comparing our union-over-states (left) to a com-
bined graph approach (right) for generating URL candidates.

union over states of top URLs as our set of URL candidates. Run-
ning this process separately for each state allows us to capture
how vaccine intent varies regionally, with state-specific programs
and websites for scheduling the vaccine (Table 1). To demonstrate
the risks of not using a state-specific approach, we try an alterna-
tive approach where we construct a joint graph that combines the
queries and clicks for 6 states (the same 6 states as those used in
the pre-training experiments of Table A1).

To represent our union approach, we take the union over these 6
states of the top 200 URLs per state, which results in 935 URLs. We
compare this to a joint approach, where we take the top 935 URLs
from running S-PPR on the joint graph. To evaluate each approach,
we compute the proportion of each state’s top 𝑁 URLs that are kept
across different values of 𝑁 . While we cannot be sure that every
URL in the state’s top 𝑁 is truly vaccine intent, from our annotation
results, we saw high positive rates for top-ranking URLs (Figure
A2), so we would like to see similar recall at these ranks.

By design, our union-over-states approach ensures equivalent,
100% recall up to 𝑁 = 200 for all states (Figure A3, left). In compari-
son, we find that the joint approach yields different recalls as early
as 𝑁 = 30, with much higher recall for large states than small states
(Figure A3, right). For example, it keeps less than 80% of Wyoming’s
URLs around rank 50 and less than 60% around rank 100, while
keeping 100% of Tennessee’s throughout. Furthermore, even past
𝑁 = 200, where our union-over-states approach no longer has guar-
antees, we find that it still achieves far more similar recalls between
states than the joint approach. Thus, our design decisions enable
similar recalls between states, which helps to reduce downstream
model bias. We also cast a wide net when constructing query-click
graphs (taking all queries and clicks that co-occur in a session
with any query that includes a COVID-19 or vaccine-related word),
which may also improve recall and reduce bias, in case our choice
of initial keywords was not representative of all vaccine intent
searches across the US.

Evaluating bias in URL expansion from GNN.. In the third step of
our pipeline, we use GNNs to expand our set of vaccine intent URLs
beyond the manually labeled ones. We would like to see that the
performance of GNNs is similarly strong across states, to ensure
that the GNN is not creating additional bias when expanding the
URL set. We discussed in Section A1 that, after incorporating pre-
training on S-PPR rankings for smaller states, GNNs could achieve
AUCs above 0.90 for all 50 states. The main metrics of interest
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when considering bias, however, are TPRs and FPRs. Unlike AUC,
which is evaluated across decision thresholds, TPR and FPR depend
on the chosen threshold 𝑡 above which data points are predicted
to be positive. In our setting, we set 𝑡 = max(𝑡med, 𝑡prec), since
we required new vaccine intent URLs to score above these two
thresholds (in at least 6 out of 10 trials): (1) 𝑡med, the median score
of positive URLs in the test set and (2) 𝑡prec, the minimum threshold
required to achieve precision of at least 0.9 on the test set. Then,
we estimate TPR as the proportion of positive URLs in the test set
that score above 𝑡 and FPR as the proportion of negative URLs in
the test set that score above 𝑡 .

We find that TPR is highly similar across states and hovers
around 0.5 for all states (Figure 3b, middle). This is because in
almost all cases, 𝑡med is the higher of the two thresholds and thus
the value of 𝑡 , so the true positive rate lands around 0.5 since 𝑡med
is the median score of the true positives. FPR is also highly similar
across states and very low (around 0.01; Figure 3b, right), which
suggests that the quantity we estimate, 𝑝 (𝑣, 𝑟 ), is not only a linear
function of the true vaccine intent rate, 𝑝 (𝑣, 𝑟 ), but also approxi-
mately proportional to it (Eq. 2). The low FPR is encouraged but
not guaranteed by our second threshold, 𝑡prec. This threshold en-
sures that precision is over 0.9, which is equivalent to the false
positive rate among the predicted positives being below 0.1, which
typically corresponds to low false positive rates over all true neg-
atives (which is what FPR measures). The GNN’s similar AUCs,
TPRs, and FPRs across states, as well as the equivalent recalls in
our label propagation stage, increase confidence that our classifier
is not adding significant bias to our estimates.

A2.3 Comparison to Google search trends
Following prior work using Bing data [68], we compare Bing and
Google queries to evaluate the representativeness of Bing data.

Search trends over time. First, we compare daily search interest
in the US over our studied time period from February 1 to August
31, 2021. Google Trends provides normalized search interest over
time on Google, such that 100 represents the peak popularity for
that time period, 50 means the term is half as popular, and 0 means
“there was not enough data for this term.” To match this, for a given
query, we compute the total number of times it was searched on
Bing in the US per day, then we divide by the maximum number
and multiply by 100. Again, we apply 1-week smoothing to both
the Bing and Google time series. We do not correct the Bing time
series with Bing coverage here, since we cannot correct the Google
time series with Google coverage, and we want the time series to
be constructed as similarly as possible.

We evaluate 30 of the most common vaccine intent queries, in-
cluding [cvs covid vaccine] and [covid vaccine finder].4 We observe
strong Pearson correlations, with a median correlation of 𝑟 = 0.95
(90% CI, 0.88-0.99) (Figure A4a). These correlations are similar to
those reported by Suh et al. [68], who conduct an analogous lon-
gitudinal analysis comparing Bing and Google search trends on
COVID-related queries and report correlations from 𝑟 = 0.86 to

4We identify 30 representative vaccine intent queries from the top 100 vaccine intent
queries, where we choose one standard query for each pharmacy that appears (e.g.,
[cvs covid vaccine]) and one for each location-seeking query (e.g., [covid vaccine near
me]), and drop variants such as [cvs covid vaccines] and [covid 19 vaccine near me].

0.98. Remaining discrepancies between Bing and Google are likely
due to differences in the populations using these search engines, as
well as potential unreported details on how Google normalizes their
search interest trends (e.g., Google may be normalizing differently
for [covid vaccine near me], which shows unusual peaks in Google
trends and is the the only query for which we do not observe a
strong correlation).

Search trends across states. Google also provides normalized
search interest across US states, where search interest is defined as
the fraction of searches from that state that match the query and
search interest is normalized across regions such that 100 represents
maximum popularity. To imitate this process, we first assign each
vaccine intent query to a state based on where the query originated.
Then, we approximate the total number of queries (all queries, not
just vaccine intent) from each state by summing over the query
counts of the active users assigned to each state. We compute the
fraction of queries from each state that match the query, then we
divide by the maximum fraction and multiply by 100 to normalize
across states.

We observe strong Pearson correlations in this analysis too, with
a median correlation of 𝑟 = 0.95 (90% CI, 0.57-0.99) across the same
30 vaccine intent queries (Figure A4b). The correlations tend to be
stronger on the pharmacy-specific queries, where certain regions
dominate, compared to general location-seeking queries such as
[covid vaccine near me], which are trickier since they follow less
obvious geographical patterns. For the pharmacy-specific queries,
we also observe substantial heterogeneity in terms of which region
dominates. For example, [publix covid vaccine] is more popular in
southern states, with Florida exhibiting the maximum normalized
search interest on Google (100), followed by Georgia (26) and South
Carolina (20). Meanwhile, [cvs covid vaccine] is more popular in the
Northeast, with the top states beingMassachusetts (100), New Jersey
(96), Rhode Island (90), and Connecticut (65). These differences,
reflected in the Bing search trends too, once again highlight the need
for regional awareness and representativeness when developing
our vaccine intent classifier.

A3 ADDITIONAL ANALYSES
State-level demographic trends in vaccine intent. To investigate

more granular demographic trends, we measure correlations per
state (only including the ZCTAs in the state) for the 10 largest
states in the US. For this finer-grained analysis, we drop percent
Republican, since we only have vote share at the county-level, but
we keep all other demographic variables, which we have per ZCTA.
We find that correlations are mostly consistent in sign across states,
but the magnitude differs significantly (Figure A5). For example, the
positive correlation with percent 65 and over is around 2x as high in
Florida as it is in the second highest states, reflecting the large senior
population in Florida and the push for seniors to get vaccinated.
In most states, we also see positive correlations for percent Asian
and percent White, and negative correlations for percent Black
and percent Hispanic, aligning with prior research on racial and
ethnic disparities in COVID-19 vaccination rates [51, 63]. Positive
and negative correlations for race are particularly strong in certain
states, including New York and Florida for percent White/Black,
and California and New York for percent Hispanic.
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Figure A4: Comparing search trends on Google vs. Bing for 30 of the most common vaccine intent queries.
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Changes in demographic trends over time. To evaluate changes
in demographic trends over time, we separate ZCTAs into top
and bottom quartiles, e.g., based on ZCTA median income, and
compute each quartile’s daily proportion of users showing their first
vaccine intent. Then, computing the ratio of the top quartile’s over
bottom quartile’s time series reveals changes in demographic trends
over time. For example, we estimate that older ZCTAs were much
likelier to seek the vaccine early in 2021 but this trend fell over time
(Figure A6a), reflecting how the US vaccine rollout first prioritized
seniors then expanded to general eligibility [4, 38]. We also see an
increase in vaccine intent from more Republican ZCTAs in summer
2021 (Figure A6b), reflecting new calls from Republican leaders
to get vaccinated [64] and a self-reported uptick in vaccinations
among Republicans [62].

Examples of URL clusters. To construct our ontology of vaccine
concerns, we begin by automatically partitioning URLs into clus-
ters, using the Louvain community detection algorithm [12] on the
collapsed URL-URL graph. We find that our automatic approach
produces remarkably coherent clusters, with each cluster covering
a distinct topic. The cluster annotations are provided in the ontol-
ogy that we release, with URLs mapped to 156 unique clusters. We
provide a sample of the clusters in Table A3, listing each cluster’s
most frequently clicked URLs and top query, which we obtain by
summing over all queries that led to clicks on URLs in the cluster.
From the top query and URLs, we observe distinct topics covered
in each cluster: one on CDC masking guidelines after vaccination,
one on the Vaccine Adverse Event Reporting System (VAERS), one
about religious exemptions for COVID-19 vaccine requirements,
and one about side effects of the Johnson & Johnson vaccine.

Holdout concerns across demographic groups. We conduct an ad-
ditional analysis to analyze variation in holdout concerns across
demographic groups. For a given demographic variable, we com-
pute its median value across all ZCTAs, split holdouts into those
from ZCTAs above the median versus those from ZCTAs below the

median, then compare the vaccine concerns of those two groups of
holdouts (by measuring their click ratios). We find significant vari-
ability across demographic groups in terms of holdout concerns (Fig-
ure A7). Compared to holdouts from more Republican-leaning ZC-
TAs, holdouts from more Democrat-leaning ZCTAs were far more
interested in requirements around employee mandates and vac-
cine proof, which may be because jurisdictions run by Democrats
were likelier to have vaccine requirements [9, 69] while several Re-
publican governors in fact banned such requirements. Meanwhile,
holdouts from more Republican-leaning ZCTAs were more inter-
ested in eerie vaccine fears, fears of vaccine-caused deaths, and
vaccine incentives. We also find that, compared to holdouts from
lower-income ZCTAs, holdouts from higher-income ZCTAs were
significantly more interested in vaccine requirements, vaccine rates,
and anti-vaccine messages from experts and high-profile figures,
while holdouts from lower-income ZCTAs were more interested in
vaccine incentives and religious concerns about the vaccine.

17



epiDAMIK @ KDD’23, August 7 2023, Long Beach, CA S. Chang, A. Fourney, and E. Horvitz

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Pr
op

. u
se

rs
 sh

ow
in

g
fir

st
 v

ac
cin

e 
in

te
nt

Comparing quartiles: % 65 and over
top quartile
bottom quartile

02 03 04 05 06 07 08 09
Month

50

0

50

Pe
rc

en
t d

iff
er

en
ce

,
to

p 
vs

 b
ot

to
m

(a) Top and bottom quartiles for percent 65 and over.
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(b) Top and bottom quartiles of percent Republican.

Figure A6: We quantify changes over time in demographic trends by estimating average vaccine intent rates per quartile over
time (top) and computing their percent difference (bottom).

#
URLs

Top query Top URLs %
Clicks

206 [cdc mask guide-
lines]

https://www.cbsnews.com/news/cdc-mask-guidelines-covid-vaccine 8.0

https://www.cdc.gov/media/releases/2021/p0308-vaccinated-guidelines.html 6.9
https://www.usatoday.com/story/news/health/2021/05/13/covid-vaccine-cdc-variant-fda-clots-
world-health-organization/5066504001

4.5

https://www.nytimes.com/2021/05/13/us/cdc-mask-guidelines-vaccinated.html 4.4
139 [vaers database https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/vaers/index.html 17.0

covid-19] https://rightsfreedoms.wordpress.com/2021/07/22/vaers-whistleblower-45000-dead-from-covid-
19-vaccines-within-3-days-of-vaccination-sparks-lawsuit-against-federal-government

6.8

https://www.theburningplatform.com/2021/07/03/latest-cdc-vaers-data-show-reported-
injuries-surpass-400000-following-covid-vaccines

5.7

https://vaersanalysis.info/2021/08/20/vaers-summary-for-covid-19-vaccines-through-8-13-
2021

4.9

137 [religious exemp-
tion

https://www.verywellfamily.com/religious-exemptions-to-vaccines-2633702 16.5

for covid-19 vacci-
nation]

https://www.fisherphillips.com/news-insights/religious-objections-to-mandated-covid-19-
vaccines-considerations-for-employers.html

5.1

https://www.law360.com/articles/1312230/employers-should-plan-for-vaccine-religious-
exemptions

3.9

https://www.kxly.com/who-qualifies-for-a-religious-exemption-from-the-covid-19-vaccine 3.3
113 [johnson and

johnson
https://www.openaccessgovernment.org/side-effects-johnson-johnson-vaccine/109505 20.3

side effects] https://www.healthline.com/health/vaccinations/immunization-complications 8.1
https://www.msn.com/en-us/health/medical/these-are-the-side-effects-from-the-johnson-and-
johnson-covid-19-vaccine/ar-bb1f03fq

4.3

https://www.healthline.com/health-news/mild-vs-severe-side-effects-from-the-johnson-and-
johnson-covid-19-vaccine-what-to-know

4.3

Table A3: The 4 highest-modularity clusters with at least 100 URLs. For each cluster, we provide its number of URLs, its most
frequent query, its top 4 URLs (by click frequency), and percentage of clicks over all clicks on URLs in the cluster that the URL
accounts for.
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https://www.cbsnews.com/news/cdc-mask-guidelines-covid-vaccine
https://www.cdc.gov/media/releases/2021/p0308-vaccinated-guidelines.html
https://www.usatoday.com/story/news/health/2021/05/13/covid-vaccine-cdc-variant-fda-clots-world-health-organization/5066504001
https://www.usatoday.com/story/news/health/2021/05/13/covid-vaccine-cdc-variant-fda-clots-world-health-organization/5066504001
https://www.nytimes.com/2021/05/13/us/cdc-mask-guidelines-vaccinated.html
https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/vaers/index.html
https://rightsfreedoms.wordpress.com/2021/07/22/vaers-whistleblower-45000-dead-from-covid-19-vaccines-within-3-days-of-vaccination-sparks-lawsuit-against-federal-government
https://rightsfreedoms.wordpress.com/2021/07/22/vaers-whistleblower-45000-dead-from-covid-19-vaccines-within-3-days-of-vaccination-sparks-lawsuit-against-federal-government
https://www.theburningplatform.com/2021/07/03/latest-cdc-vaers-data-show-reported-injuries-surpass-400000-following-covid-vaccines
https://www.theburningplatform.com/2021/07/03/latest-cdc-vaers-data-show-reported-injuries-surpass-400000-following-covid-vaccines
https://vaersanalysis.info/2021/08/20/vaers-summary-for-covid-19-vaccines-through-8-13-2021
https://vaersanalysis.info/2021/08/20/vaers-summary-for-covid-19-vaccines-through-8-13-2021
https://www.verywellfamily.com/religious-exemptions-to-vaccines-2633702
https://www.fisherphillips.com/news-insights/religious-objections-to-mandated-covid-19-vaccines-considerations-for-employers.html
https://www.fisherphillips.com/news-insights/religious-objections-to-mandated-covid-19-vaccines-considerations-for-employers.html
https://www.law360.com/articles/1312230/employers-should-plan-for-vaccine-religious-exemptions
https://www.law360.com/articles/1312230/employers-should-plan-for-vaccine-religious-exemptions
https://www.kxly.com/who-qualifies-for-a-religious-exemption-from-the-covid-19-vaccine
https://www.openaccessgovernment.org/side-effects-johnson-johnson-vaccine/109505
https://www.healthline.com/health/vaccinations/immunization-complications
https://www.msn.com/en-us/health/medical/these-are-the-side-effects-from-the-johnson-and-johnson-covid-19-vaccine/ar-bb1f03fq
https://www.msn.com/en-us/health/medical/these-are-the-side-effects-from-the-johnson-and-johnson-covid-19-vaccine/ar-bb1f03fq
https://www.healthline.com/health-news/mild-vs-severe-side-effects-from-the-johnson-and-johnson-covid-19-vaccine-what-to-know
https://www.healthline.com/health-news/mild-vs-severe-side-effects-from-the-johnson-and-johnson-covid-19-vaccine-what-to-know
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Figure A7: Variability in holdout concerns across demographic groups. For each demographic variable (e.g., percent Republican),
we compare the concerns of holdouts from ZCTAs above the variable’s median versus holdouts from ZCTAs below the median.
Subcategories are ordered from most holdout-leaning to most early adopter-leaning, following Figure 7c. Error bars indicate
bootstrapped 95% CIs.
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