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Abstract

Learning diverse dexterous manipulation behaviors with assorted objects remains
an open grand challenge. While policy learning methods offer a powerful avenue
to attack this problem, they require extensive per-task engineering and algorithmic
tuning. This paper seeks to escape these constraints, by developing a Pre-Grasp
informed Dexterous Manipulation (PGDM) framework that generates diverse
dexterous manipulation behaviors, without any task-specific reasoning or hyper-
parameter tuning. At the core of PGDM is a well known robotics construct, pre-
grasps (i.e. the hand-pose preparing for object interaction). This simple primitive
is enough to induce efficient exploration strategies for acquiring complex dexterous
manipulation behaviors. To exhaustively verify these claims, we introduce TCDM,
a benchmark of 50 diverse manipulation tasks defined over multiple objects and
dexterous manipulators. Tasks for TCDM are defined automatically using exem-
plar object trajectories from various sources (animators, human behaviors, etc.),
without any per-task engineering and/or supervision. Our experiments validate that
PGDM’s exploration strategy, induced by a surprisingly simple ingredient (single
pre-grasp pose), matches the performance of prior methods, which require expen-
sive per-task feature/reward engineering, expert supervision, and hyper-parameter
tuning. For animated visualizations, trained policies, and project code, please refer
to https://pregrasps.github.io/.

1 Introduction

Dexterous manipulation tasks – loosely defined as controlling a robot hand to effectively re-arrange
its own environment [34] – were often solved by designing controllers to realize a sequence of
stable object transitions. These approaches were limited to narrowly-scoped scenarios, as they
required experts to carefully reason about hand-object contact behavior on a per-task basis: e.g.
in terms of geometry [36, 37, 46], and/or force closures [15, 6, 30, 48]. As a result, the field has
trended towards robot learning paradigms [27, 4, 17], which seek to leverage data-driven exploration
to automatically acquire dexterous behaviors [25, 24, 39]. However, learning algorithms rely on
naive search strategies [33] that struggle with dexterous manipulation, due to high-dimensional
search spaces (e.g. ShadowHand [23] has 30-DoF) and small error-margins. In practice, this “deep
exploration challenge” is addressed using a wealth of task-specific supervision and engineering.
While effective, this approach takes us back to square one (heavy reliance on expert knowledge).

This paper seeks to find a general strategy that can overcome the aforementioned exploration challenge
with minimal assumptions. Instead of viewing this issue from a purely algorithmic perspective, we
demonstrate that “pre-grasp” states – i.e. a classical robotics construct [18] that denotes states where
the robot is poised to initiate object interaction – can act as a general supervisory structure to relax
exploration challenges in learning dexterous manipulation behaviors. Specifically, pre-grasps act as a
“pre-condition” that can enable robots to efficiently and safely explore object contacts and intermittent
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Figure 1: Dexterous behaviors learned by PGDM. Our experiments span diverse objects and tasks.

interaction dynamics, without requiring exquisite optimization techniques. In addition, pre-grasps
are practical: they are easy to specify (e.g. via human annotation), realize (movement in free space),
and unlike grasps (see A.2 for details), do not involve hard to sense object surface or inertial details.
Thus, we propose a Pre-Grasp informed Dexterous Manipulation (PGDM) framework that embeds
pre-grasp poses (as exploration primitives) into existing learning pipelines, to synthesize behaviors
without requiring task engineering or hyper-parameter tuning. While the connection between pre-
grasps and manipulation has been studied before [19, 20, 5], to the best of our knowledge, we are the
first to analyze pre-grasp’s effectiveness in learning based paradigms.

To demonstrate PGDM’s versatility, it is important to test across as many scenarios as possible.
However, existing dexterous manipulation benchmarks are shallow and packed with expert knowledge
(e.g. favourable tasks with heavily engineered details – initialization, input, reward, etc.). Thus,
we developed a Trajectory Conditioned Dexterous Manipulation benchmark, TCDM. As the name
suggests, TCDM tasks are automatically constructed from diverse exemplar object trajectories
(sourced from human behaviors, animations, etc.), which prevents expert designers from injecting
task-specific supervision. Indeed, every part of the task setup (e.g. formulation, reward/termination
functions, hyper-parameters, etc.) is kept constant across TCDM, except for the exemplar trajectory
itself. TCDM’s diverse tasks span: 3 robotic hands, 30+ standardized objects [7, 9], and behaviors
ranging from fixed goal-reaching (e.g. relocation [45, 43]) to cyclic, dynamic skills (e.g. hammering,
bottle shaking, etc.).

This work develops PGDM, a simple exploration framework for dexterous manipulation, and validates
it across the diverse tasks in TCDM. Our contributions include: (1) identifying pre-grasps as a key
ingredient to guide successful exploration in dexterous manipulation, and embedding them into
existing behavior synthesis pipelines. (2) Next, our PGDM framework achieves SOTA results on a
diverse suite of dexterous manipulation tasks, while using significantly less supervision (e.g. single
frame vs full hand trajectory) than representative baseline methods. (3) In addition, we find which
pre-grasp properties (e.g. proximity, finger pose) are important for successful behavior learning. (4)
Finally, we commit to open-sourcing the TCDM benchmark, PGDM’s code-base, and all experimental
artifacts (e.g. trained policies) for the community’s benefit.

2 Related Work

Prior robot learning approaches achieved impressive results on various dexterous tasks [11, 16, 13,
45, 43, 32, 39, 2, 3]. But while learning approaches strive to be automatic, prior work requires a
wealth of expertise for successful deployment. We now classify these approaches (and others), by the
supervision strategies required to make them work in practice.

Task-engineering A popular solution is to carefully design environments, tasks, and learning
curriculums that structure the robot’s exploration. This can be accomplished by: extensive reward
shaping [39, 3] to reduce noise in optimization; action space constraints [45] to prevent degenerate
solutions; decomposing tasks into sub-skills [22, 42]; changing environment physics so the policy can
develop its skill over the course of training [11, 3]; and cleverly initializing the policy so it can learn
to pass through challenging bottlenecks in the state space [41, 12]. These strategies require weeks
of expert trial and error to make a single-task solution, and often rely on unrealistic assumptions
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Figure 2: Our method uses simple ingredients to learn dexterous behaviors in diverse scenarios.
The PGDM framework leverages pre-grasp states as general exploration primitives, to solve tasks
automatically defined using object trajectories, without any per-task tuning. Both of these ingredients
can be easily mined (e.g. from MoCap data) or hand-annotated (e.g. by human animators).

(e.g. changing gravity, reset robot in mid-air, etc.). In contrast, PGDM avoids these issues by using a
simple pre-grasp based exploration primitive to accelerate learning, and needs no task knowledge.

Expert Data Another common strategy is to initialize exploration strategies with expert data – rang-
ing from trajectories collected by human demonstrators [45, 14, 43] to affordances [32] mined from
human contact data [7, 52]. However, this data rarely generalizes between settings (i.e. trajectories are
robot and task specific), and collecting it is expensive, since it requires special purpose experimental
setups [14, 7]. More fundamentally, it is unclear if/when adding additional data can yield performance
benefits. Our investigation addresses these issues, by outlining how simple data sources (pre-grasps
and object trajectories) can accelerate policy learning, while being easy to acquire [47, 56, 10, 29].

3 Methods

How can a single method learn a diverse range of dexterous manipulation behaviors? We argue that
a simple, data-driven solution with minimal hyper-parameters offers the best chance. In this spirit,
Sec. 3.1 presents a general task formulation, which parameterizes diverse dexterous behaviors using
exemplar object trajectories, and Sec. 3.2 introduces PGDM, a framework for accelerating policy
learning using pre-grasp states. An overview of our approach is shown in Fig. 2.

3.1 Task Formulation

Let’s begin by formalizing the definitions for robotic tasks and environments. We adopt the finite
Markov Decision Process (MDP) formulation [51]. At each time-step the agent observes states
(st 2 S) and goals (gt 2 S), and executes an action (at 2 A). The next state evolves according
to stochastic dynamics (st+1 ⇠ P (·|st, at)). The agent collects trajectory rollouts within the MDP
(⌧ = [s0, a0, s1, . . . , sn]), starting from an initial state s0 ⇠ P (s0). Desired behavior is specified
by adding time-varying goal variables (G = [g1, . . . , gT ]) that are used to condition both the reward
function R(st, at, gt) (optimized by agent) and the termination condition T (st, gt) (early-stops failed
episodes). To preserve the Markov property, the current time-step t must be appended to st, since
gt = G(t). Note that this is a super-set of the more standard static-goal conditioned MDP: it allows us
to specify time-varying behaviors, and we can recover the standard formulation by setting gt = g 8 t.
Given a discount factor �, the learning objective is to find a policy at ⇠ ⇡(·|st) that maximizes:
max⇡ J(⇡) = E⌧⇠⇡[⌃1

t=0 �
t
R(st, at, gt)].

Parameterizing Task MDPs We now describe how to create task MDPs from exemplar object
trajectories – i.e. X = [x1, . . . , xT ], where each xi = [x(p)

i , x
(o)
i ] is an object pose (position and

orientation). Object trajectories are used as goal variables (i.e. G = X), which in turn parameterize a
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pre-defined reward function R and termination condition T . Specifically: (1) goal variables are set to
match the desired object pose at each time-step gt = xt; (2) the reward function encourages matching
the exemplar trajectory – R(x̂t, xt) := �1exp{�↵||x(p)

t �x̂
(p)
t ||2��|\(x(o)

t , x̂
(o)
t )|}+�2 {lifted},

where x̂t = x̂(st) is the real object pose in state st, \ is the Quaternion angle between the two
orientations, and {lifted} = x

(z)
t > ⇣ and x̂

(z)
t > ⇣ encourages stable object lifting; (3) episodes

are terminated when the object is too far from the goal T (xt, x̂t) := ||xt � x̂t||2 > !. All hyper-
parameters for these function are reported in App. B.1. This formulation encourages the robot to
produce behaviors that match the given template object trajectory. In practice, it allows us to specify
diverse tasks – including dynamic, cyclic behaviors that eluded past work (e.g. hammering) – simply
by supplying an appropriate object trajectory. One can even recover standard static-goal conditioned
behaviors (e.g. lifting), by setting a fixed goal pose for the whole trajectory. Note that all this is
possible without any per-task engineering (e.g. knob-turning bonus [45], etc.).

3.2 PGDM: Accelerating Exploration w/ Pre-Grasps

Our attention turns to creating a general exploration primitive that can accelerate learning across a
wide range of tasks. Note that all dexterous tasks begin with the hand gaining proximity to the target
object, before transitioning into general manipulation. Thus, it’s natural to decompose dexterous tasks
into a “reaching stage” and a “manipulation stage,” and use different strategies to solve each. But in
the first stage, what state should the robot reach for? We argue that pre-grasp states (i.e. hand pose
directly preceding contact) provide the answer. Pre-grasps favourably position the robot relative to a
target object, so that it can quickly learn the intermittent contacts behaviors required for dexterous
manipulation. For example, the pre-grasps shown in Fig. 2 position the robot hand near the target
object and around functional parts (e.g. fingers wrapped around handle), which allows the robot to
easily gain control. As an added bonus pre-grasps require minimal assumptions: they can be cheaply
annotated by human labellers or mined from human behavior data [56, 10], and can be easily reached
by robots (e.g. w/ free-space planner [21]). The key insight of PGDM is to exploit these favorable
properties, by moving robot hands to the pre-grasp state before beginning the learning process. From
the learning agent’s (i.e. ⇡) perspective, this is equivalent to modifying P0 to maximally reduce
exploration complexity, while still making minimal assumptions in practice. For additional pre-grasp
examples and a more extensive definition, please refer to App. A.

4 Experimental Setup

The following sections describe how our task formulation is used to create TCDM (see Sec. 4.1),
alongside our implementation of PGDM (see Sec. 4.2). We stress that these decisions were made for
the sake of consistent experiments, and are not inherent to our framework.

4.1 Introducing TCDM

Our task formulation (see Sec. 3.1) acts as a recipe for converting exemplar object trajectories into
dexterous manipulation tasks. We use this to define a set of 50 tasks, which span: 34 different objects;
3 distinct robotic hand platforms; and unique object trajectories mined from three sources – motion
capture data-sets, human animated trajectories, and expert policy behaviors (see Figs. 1, 2). The pre-
grasps for each task come from one of four sources: (1) human MoCap recordings [52] transferred to
robot via IK, (2) expert pre-grasps extracted from Tele-Op data [45], (3) manually labeled pre-grasps,
and (4) learned pre-grasps generated by an object mesh conditioned grasp predictor [52]. Further
details on the task creation process and a full table of all tasks are presented in App. B.2.

To make an investigation of this scale reproducible, the tasks are simulated (using MuJoCo [53]) and
compiled into a benchmark, named TCDM-50. Note that a subset of 30 tasks (named TCDM-30)
contain additional supervision, in the form of expert hand trajectories and grasping data. While not
useful for our formulation, this data is required for the baselines. Thus, some of our experiments are
run on the abridged TCDM-30 for fair comparison. More details are provided in App. B.3.

Success Metrics: Before continuing, let’s discuss quantitative metrics for judging performance
on TCDM tasks. Put simply, a “good” policy is one that stably controls the object and matches
the exemplar trajectory. We define (using the constants from Sec. 3.1) three simple metrics that
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capture both these properties. The COM Error metric – E(X̂) = 1
T ⌃

T
t=0||x

(p)
t � x̂

(p)
t ||2 – calculates

Euclidean error (in meters) between the object’s COM position, and the desired position from the
exemplar trajectory. Similarly, the Ori Error metric – E(X̂) = 1

T ⌃
T
t=0\(x

(o)
t � x̂

(o)
t ) – is defined as

the angle (in radians) between the achieved object orientation and desired orientation. In addition,
the success metric – S(X̂) = 1

T ⌃
T
t=0 {||x(p)

t � x̂
(p)
t ||2 < ✏} reports the fraction of time-steps where

COM error is below a ✏ = 1cm threshold. In practice, we’ve noticed that that humans easily perceive
roll-outs that score from 60� 80% as “successful.”

4.2 Implementing PGDM

Finally, let’s discuss our implementation for the two stage task decomposition proposed by PGDM
(see Sec. 3.2). Given a task’s initial state distribution P (s0) (e.g. hand at reset position and object
on table), we load an appropriate pre-grasp state spg, and solve for a policy (using a scene-agnostic
trajectory optimizer [31]) that moves the robot to spg . At this point, our system transitions to learning
an agent within the MDP (i.e. maximize J) as normal. Specifically, we utilize the PPO [50] algorithm,
to learn the dexterous behavior. Note that (except for pre-grasp) the entire system remains fixed
across different tasks. All relevant hyper-parameters and pseudo-code are presented in App. B.4.

5 Experiments

These experiments seek to validate both our trajectory centric task formulation (i.e. TCDM) and our
pre-grasp based exploration primitive (i.e. PGDM). Specifically, we pose the following questions:
(Q1) Can our methodology learn a broad and diverse range of dexterous manipulation skills? (Q2)
Are we able to match the performance of baselines methods that leverage task specific reasoning
(demonstrations, curriculum, etc.)? (Q3) What attributes of pre-grasps make them useful exploration
primitive? (Q4) And finally, how accurately do our simulated results match real world behavior?

5.1 Learning Behaviors w/ Pre-Grasps and PGDM Tasks

All Trials MoCap Tele-Op Labeled Learned

Success 74.5% 75.0% 84.5% 69.2% 90.4%
COM Error (m) 5.23e-3 4.45e-3 1.12e-3 7.76e-3 1.55e-3
Ori Error (rad) 0.33 0.32 0.059 0.42 0.18
# of Tasks 50 37 3 7 3

Table 1: Error and success metrics (averaged across all tasks
w/ 3 seeds per-task) at the end of RL training (50M samples),
and broken down by pre-grasp source. Note how PGDM
achieves high performance using diverse pre-grasp sources.

To verify our methods’ viability, we
deploy the PGDM policy learning
scheme on the entire TCDM bench-
mark. Recall, no task specific tuning
is allowed for any component in our
setup. Since RL algorithms often dis-
play significant run-to-run variance,
we run this experiment using 3 ran-
dom seeds. Error and success metrics
at the end of training (broken down by
pre-grasp source and averaged across tasks) are shown in Table 1. The behavior policies learned
with PGDM achieve a tracking error of 5.23e-3, success rate of 74.5%, and low run-to-run variance,
despite the breadth and diversity of TCDM tasks. Note that PGDM can learn effective policies using
any of our 4 pre-grasp sources (MoCap, Expert Tele-Op, Human Labeled, and Learned). In particular,
the successful experiments w/ learned pre-grasps suggest further avenues for scaling our results.
Even though PGDM uses no hand supervision outside of pre-grasps, we note that the final policies
often produce smooth motions and realistic finger behavior. This defies conventional wisdom in the
field that suggests human supervision is critical for “normal” behaviors [45, 32, 43]. That being
said, multiple imperfections (e.g. large forces) remain in our policies, which leaves room for further
improvement. Readers are encouraged to view the supplementary video2, to understand the learned
qualitative behaviors. For additional visualizations, learning curves, and a more thorough breakdown
of individual tasks please refer to App. C.

5.2 Baselines: Is Additional Supervision Needed for Exploration?

Our prior experiment demonstrated that PGDM can solve a wide range of manipulation tasks. We
now seek to understand if PGDM can compete with baselines, which rely on significantly more expert

2https://pregrasps.github.io/
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Figure 3: Average Success and Error metrics at the end of training for both the PGDM-only method
and 6 baselines (3 methods, w/ and w/out PGDM). Note how methods using PGDM strongly
outperform those that don’t, and how adding additional supervision does not improve performance.

Figure 4: Learning curves (of Success/Error metric) comparing PGDM-only against baselines
initialized w/ PGDM. Note how adding supervision to pre-grasps does not improve performance at
any stage of learning.

supervision and tuning for stable exploration. Specifically, we consider three baselines (listed below)
that broadly exemplify prior work in this area:

• DeepMimic [41]: DeepMimic requires full hand and object trajectory supervision: it
optimizes the robot to imitate expert fingertip poses in addition to the object trajectory.
Thus, this baseline receives the maximum possible expert supervision at every time-step.
DeepMimic is easily implemented by adding rewards and termination conditions for the
fingertips to our existing task formulation.

• GRAFF⇤ [32]: GRAFF encourages the robot to make functional contacts with the objects
using “object affordances” – i.e. parts of the object where a human expert would grasp
to accomplish a task. In practice, it rewards the robot for making contact at ground truth
grasping points. While the original paper operated on visual observations, we re-implement
it with simulator state information for fair comparison.

• Task Curriculum [22]: This baseline uses an expert designed curriculum to accelerate
policy learning, in the hope that learning easy tasks will accelerate learning harder tasks
later on. First, the robot must learn how to stably pick (i.e. lift) objects. To learn the rest
of the task, our full tracking objective (e.g. �1 from Sec. 3.1) is linearly activated over the
course of 4M timesteps (i.e. average time to learn lifting).

A major benefit of using PGDM is that it shortens the task exploration horizon, since it positions
the robot near the object. To control for this factor, we implement each baseline twice – with and
without PGDM. Additional implementation details are presented in App. D. All six baselines (3
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(a) Pre-Grasp (b) Open Hand (c) Mean Hand (d) Distance Ablation
Figure 5: Our ablations are implemented by sub-optimally adjusting the pre-grasp pose. We show
visualizations of this process with the “Frying Pan” object.

Pre-Grasps Ablate Pose Ablate Distance
Open Mean 15 cm 25 cm

Success Metric 75.5% 23.1% 59.5% 28.6% 19.7%
Error Metric 4.82e-3 1.55e-2 5.90e-3 1.17e-2 1.92e-2

Table 2: PGDM is run on TCDM-30, using default and ablated pre-grasps. Error and success
metrics at the end of training, are presented above. Destroying key pre-grasp attributes (i.e. pose and
proximity) significantly harms performance. The best ablation (Mean Hand), represents the least
deviation from the default pre-grasp.

methods, w/ and w/out PGDM) are evaluated against a PGDM-only method on TCDM-303 tasks.
Their performance at 50M steps are presented in Fig. 3. We observe that the baseline methods
(which require dense supervision beyond pre-grasps) provide no appreciable performance boost
(even when using PGDM), and are completely ineffective w/out PGDM. This is true even during the
early stages of training: the PGDM-only method remains competitive against all baseline w/ PGDM
implementations at every optimization step (see Fig. 4).

These experiments offer strong evidence that pre-grasps act as crucial supervision for dexterous
manipulation, since the baselines could only remain competitive when implemented w/ PGDM.
Simply put, behavior synthesis frameworks that leverage pre-grasps can more easily acquire diverse
dexterous manipulation behaviors, thus making further supervision far less valuable. Indeed, this
observation is also reflected (though unacknowledged) in past learning work [11, 16, 3] – we find
that removing pre-grasps from their setups causes them to collapse entirely (see App. A.3).

5.3 Ablations: What Makes a Pre-Grasp Useful?

Our investigation has established that pre-grasps are a key source of supervision that enable scaling
to the diverse tasks in TCDM. We now run an ablation study to understand what pre-grasp properties
(e.g. hand pose, proximity to object, etc.) make them useful during learning.

The following ablation classes are considered (visualized in Fig. 5):

• Ablate Pose: This ablation tests if finger pose information (i.e. finger joint positions) is
required for PGDM to work. Specifically, we replace the pre-grasp finger pose with both an
“Open Hand” (see Fig. 5b) and a “Mean Hand” (see Fig. 5c), calculated by averaging all the
pre-grasps used in our investigation.

• Ablate Distance: The previous ablation does not address the importance of the object
proximity. To test this factor, we shift the wrist away from the pre-grasp (towards default
robot’s reset pose) by two fixed offsets (see Fig. 5d), while keeping the finger pose fixed.

These ablations4 (see Table. 2) reveal that object proximity matters significantly – moving the hand
away from the object dramatically reduces PGDM’s performance. Finger pose information is critical
as well. The “Open Hand” experiment demonstrates how removing the pre-grasp’s finger pose causes
a drastic decrease in performance. Furthermore, the “Mean Hand” experiments show that some of the
fine-grained aspects of the pre-grasp pose matter, since replacing it with a generic hand pose resulted
in a 20% performance hit. However, the Mean Hand does perform significantly better than the Open

3TCDM-30 is used, since the baselines need added supervision.
4Also run on TCDM-30 for consistency w/ baselines.
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Hand setting (59.5% vs 23.1% respectively), which indicates that pre-grasps need not be perfect for
control. This error tolerance suggests that one could use predicted pre-grasp states in policy learning.

5.4 Real World Validation

Cracker-Box Lifting Robotic Setup

Figure 6: Picture of our real world task setup.
The D’Manus robotic hand is controlled to lift the
“Cheez-Itz” cracker-box from YCB [9].

Since PGDM does not use extensive supervi-
sion to shape learning, it is possible that the
learnt policies will not be viable on real hard-
ware (e.g. actions are too aggressive). Our final
experiment seeks to dispel this fear, by execut-
ing actions from a trained (using PGDM) policy
(in open-loop fashion) on an actual D’Manus
robot. Specifically, a simple “Cracker-box Lift-
ing” task is defined using PGDM, alongside a
matching real-world environment replica (see
Fig. 6, details in App. E). We find that simulated
actions can be replayed on the robot – i.e. the
robot grasps and lifts the cracker-box using the
learned behavior. This provides initial evidence
that our simulated results could fully transfer to
hardware. However, a more thorough real world
investigation of our ideas (i.e. robot policy de-
ployment for all tasks) is outside the scope of
this paper.

6 Discussion
This paper demonstrated that simple ingredients can enable learning dexterous behaviors in diverse
scenarios. Specifically, we use exemplar object trajectories as generic task specifiers, and pre-grasps
as supervisory signals for exploration. Our primary contributions are (1) the PGDM framework,
which functions as a simple exploration prior for dexterous policy learning, and (2) the TCDM
benchmark which fills an important gap – the lack of diverse dexterous manipulation benchmarks
(50 tasks, 20+ objects, 3 robots). Our system was able to achieve diverse control results with no
per-task expert engineering, while using the minimal possible supervision (i.e. a single pre-grasp
frame). Indeed, our learned behaviors match the performance of baselines that make significantly
more assumptions. Finally, we characterize the pre-grasp properties required for stable exploration,
as well as demonstrate that our learned behaviors are physically plausible.

7 Limitations and Future Work
While our investigation was expansive, there are multiple vectors of improvement that should be
addressed in future work. First, our investigation was primarily conducted in simulation, which is
quite common in this space due to the lack of affordable dexterous hands (ShadowHand is $100K+).
However, a few affordable solutions are in development [13, 2], which we are starting to investigate.
We hope to eventually deploy a fully trained PGDM policy in the real world using a combination of:
domain randomization [3]; real world training [2, 39]; and/or adaptation [35]. In addition, the pre-
grasps used in this investigation were curated, but this approach would not work “in-the-wild” where
objects are innumerable. Inspired by recent work in the vision community [56, 10, 29, 38], we plan
to replace curated pre-grasps with pre-grasps predicted from visual inputs using minimal assumptions
(e.g. unknown object mesh). Next, while our trajectory centric task formulation can encode a wide
range of behaviors, extensions are needed to further increase task diversity. For example, additional
constraints will be needed for tasks with precise force requirements (e.g. hammering a nail with
15N force). In addition, we only consider single-object tasks without distractor objects or clutter.
Handling these situations will require changes to our task formulation, and a more flexible (i.e.
clutter-aware [26]) reaching policy in PGDM. Finally, we hope to swap our policies from state to
visual observations, in order to handle a wider range of (e.g. deformable) objects and enable inter-task
generalization.
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