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Abstract

In class-incremental learning (CIL), effective in-
cremental learning strategies are essential to mit-
igate task confusion and catastrophic forgetting,
especially as the number of tasks ¢ increases.
Current exemplar replay strategies impose O(t)
memory/compute complexities. We propose an
autoencoder-based hybrid replay (AHR) strategy
that leverages our new hybrid autoencoder (HAE)
to function as a compressor to alleviate the re-
quirement for large memory, achieving O(0.1¢)
at the worst case with the computing complex-
ity of O(¢) while accomplishing state-of-the-art
performance. The decoder later recovers the ex-
emplar data stored in the latent space, rather than
in raw format. Additionally, HAE is designed
for both discriminative and generative modeling,
enabling classification and replay capabilities, re-
spectively. HAE adopts the charged particle sys-
tem energy minimization equations and repulsive
force algorithm for the incremental embedding
and distribution of new class centroids in its la-
tent space. Our results demonstrate that AHR
consistently outperforms recent baselines across
multiple benchmarks while operating with the
same memory/compute budgets. The source code
is included in the supplementary material and will
be open-sourced upon publication.

1. Introduction

Incremental learning addresses the challenge of learning
from an upcoming stream of data with a changing distribu-
tion (Parisi et al.,2019;|De Lange et al., 2021} Hadsell et al.|
2020). To study incremental learning, two common scenar-
ios are often considered: task-incremental learning (TIL)
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Table 1: Hybrid replay strategy versus baseline strategies.

CIL Strategies Memory Compute Performance
Generative Replay O(cte) o) non-SOTA
Generative Classifier o(t) O(cte) non-SOTA
Exemplar Replay O(t) o(t) SOTA
Hybrid Replay (ours) O(0.1t) O(t) SOTA

and class-incremental learning (CIL). CIL at the test phase
requires jointly discriminating among all classes seen in all
previous tasks without knowing task-IDs. Given task-IDs to
the model during the test phase, CIL reduces to TIL (van de
\Ven & Tolias|, |2019). The issue with CIL is that it not only
suffers from catastrophic forgetting (CF) but also task con-
fusion (TC), which happens when the model struggles to
distinguish among different tasks observed so far while still
being able to identify classes within a given task (Rebuffi
et al.l 2017; [Belouadah et al.| 2021; Masana et al., [2020;
Cormerais et al., [2021)).

Various strategies have been proposed for incremental learn-
ing such as regularization (Kirkpatrick et al.,[2017; Zenke
et al., 2017; |[L1 & Hoiem, 2017b), bias-correction (Zeno
et al} 2021), replay (Shin et al 2017; [Ven et al. [2020),
and generative classifier (Ven et al.|[2021} |Pang et al., | 2005}
Zajac et al.| [2023). However, in the context of CIL, only
the latter two strategies have been proven effective in over-
coming TC: replay and generative classifier (Masana et al.,
2020; |(Cormerais et al.,[2021;|Ven et al., [2021)). Nevertheless,
current realizations of the generative classifier strategy (Ven
et al.| 2021} [Pang et al., |2005}; [Zajac et al.l|[2023)) demand
an expanding architecture, leading to a linear increase of
memory O(t) with respect to the number of learned tasks .
Furthermore, such expanding architectures fail to consoli-
date features of different tasks within a single model.

To develop a scalable incremental learning algorithm suit-
able for CIL, we capitalize on replay strategies (Shin et al.,
2017;|Ven et al., 2020). However, the current exemplar re-
play strategies (Rebuffi et al.,[2017) are not scalable due to
their reliance on large memory sizes. Specifically, the mem-
ory requirements for exemplar replay increase linearly with
the number of tasks, resulting in O(¢) memory complexity
(Hou et al., [2019; |Wu et al., 2019; Hayes et al., 2020a).

To address this issue, generative replay strategies (Shin
et al., |2017; Ven et al., 2020), instead of storing the exact
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data samples of the previous tasks, train a generative model
to generate the pseudo-data pertaining to the previous tasks
for replay to the discriminative model, achieving O(cte)
memory complexity. Since the quality of the generated
pseudo-data is not satisfactory, these strategies also undergo
significant CF unless a very cumbersome generative model
is trained which is inefficient. Also, generative replay diverts
the problem of training a discriminative model incrementally
to training a generative model incrementally which can be
equally challenging, if not more (Ven et al., [2020).

The complexity of O(t) for either memory or compute is in-
dispensable. Because in principle every time an IL strategy
learns task t, there have to be mechanisms at play to watch
fort — 1 conditions imposed by prior tasks on the weights
of the neural networks lest those knowledge are overwritten.
That requires either O(t) memory or O(t) compute com-
plexity. In Table[] either case can be seen: while generative
replay achieves O(cte) for memory, it nevertheless needs
O(t) for computation. Conversely, the generative classifier
is exactly the opposite: it achieves O(cte) for computation
but requires O(t) for memory to accommodate the new
tasks. Neither of these strategies is optimal. The performant
strategy is exemplar replay which requires O(t) for both
memory and compute.

We demonstrate that it is feasible to combine the strengths
of both the exemplar (Rebuffi et al., 2017)) and generative
replay (Shin et al.l 2017} Ven et al., 2020) in a hybrid replay
strategy and consistently achieve state-of-the-art (SOTA)
performance while significantly reducing the memory foot-
print of the exemplar replay strategy from O(t) to O(0.1t)
at the worst case, using a new hybrid autoencoder based on
hybrid replay. Our main contributions are as follows:

* We propose a novel autoencoder named hybrid autoen-
coder (HAE): the term hybrid autoencoder’ indicates
that HAE is capable of both discriminative and gen-
erative modeling (Goodfellow et al., 2016)), for classi-
fication and replay, respectively. Furthermore, HAE
employs the charged particle system energy minimiza-
tion (CPSEM) equations and repulsive force algorithm
(RFA) (Nazmitdinov et al.,[2017) for the incremental
embedding and distribution of new classes in its latent
space. HAE uses RFA (Nazmitdinov et al.,2017) in
its latent space to repel samples of different classes
away from each other such that in the test phase the
Euclidean distance can be used to measure the distance
of a sample from centroids of different classes in the
latent space to know to which class the test sample
belongs to (see Figs. [T[a) and[I[b)).

* We propose a new strategy called autoencoder-based
hybrid replay (AHR): the term hybrid replay’ refers
to the fact that AHR utilizes a combination of exem-
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Figure 1: (a) Usage of RFA for the latent space. (b) Adop-
tion of Euclidean distance during test. (c) HAE for compres-
sion and decompression of the dataset for replay.

[DDH
[DD <> o }f

Figure 2: Task-based and task-free.

plar replay and generative replay. Specifically, AHR
does not store the exemplars in the input space like
exemplar replay which would require a large memory
O(t); it rather stores the data samples in the latent
space after they are encoded (0(0.1¢). Hence, AHR
has characteristics that leverage the advantages of both
exemplar and generative replay. AHR can decode data
samples when they are needed for replay with neg-
ligible loss of fidelity because the decoder has been
designed to memorize the training data as opposed to
being designed to generalize and produce novel data
samples. Fig. [T[c) shows how the data generation for
replay is performed. As a result, AHR does not suffer
from hazy pseudo-data during replay like other gen-
erative replay strategies but has access to the original
data. Table[T|contrasts the memory/compute complex-
ities of ours and three baseline strategies. A detailed
description of how we derived Table[T} along with rel-
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evant discussions, can be found in Appendix A in the
supplementary material.

* We provide comprehensive experiments to demonstrate
the strong performance of AHR: we conduct our ex-
periments across five benchmarks and ten baselines
to showcase the effectiveness of AHR utilizing HAE
and RFA while operating with the same memory and
compute budgets.

We present our new strategy AHR in the following section.
In Section 3, we contextualize AHR in the incremental learn-
ing literature. Section 4 details our evaluation methodology,
including the baselines and benchmarks used, as well as the
results of our experiments. Finally, Section 5 concludes this
paper and provides future works for CIL.

2. Autoencoder-Based Hybrid Replay (AHR)

In this section, we present our strategy AHR in a task-
based CIL system model for simplicity and comparability
with most of the works in the literature (Parisi et al., [2019}
De Lange et al.| 2021} jvan de Ven & Tolias,|[2019; Masanal
et al.| [2020; |Zajac et al.||2023). Nevertheless, our approach
AHR is not restricted to the task-based CIL setting and can
operate within the task-free setting as well (see Fig. [2) (Ven
et al.,[2021} |Aljundi et al., |2019b). According to the task-
based CIL system model, AHR visits a series of distinct
non-repeating tasks 71,75, ..., T7. During each task 7T;, a

dataset D; := (mzk, yfk)}jkfi is presented where i, j,
and k index task, class, and sample, bounded by I, J;, and
K f In the test phase, AHR must decide to which class a
given input a:f ok belongs among all possible classes Ule J;.
Task-ID i is not given during the test phase of CIL, indicat-
ing that AHR has to distinguish not only between classes
that have been seen together in a given task but also between
different tasks visited at different times.

HAE. AHR utilizes HAE consisting of an encoder and a
decoder that can be formulated as follows: the encoder func-
tion ¢(x7*) : R" — R™ maps the input data 27"* € R"
to the low-dimensional latent representation sz c R™,
The decoder function (z7"*) : R™ — R reconstructs the
input data from the latent representation. Note that AHR
intentionally refuses to use the most popular autoencoders,
Variational Autoencoders (VAE) (Kingma & Welling, 2013),
since the goal here is not generalization or generating new
images. Indeed, the goal of AHR is precisely the oppo-
site: to have the decoder deterministically memorize pairs
of (22", 27"). Compared to traditional autoencoders, HAE
not only minimizes the reconstruction error between the
input and the reconstructed data L, (x, &) but also ensures
that samples from the same class are clustered closely to-

gether in the latent space L, (z, p):

L(x,2,z) = Ly(x,z) + \L.(z,p)

g K]
=SS e — @ 4+ A= -l
i=1 j=1k=1
ey
where || - ||? denotes the L? norm, p{ is the ith task and jth

class centroid embedding (CCE), and A is a hyperparameter.
While the given loss function helps in clustering samples of
the same class together, another crucial aspect is separating
different classes. This separation, and in general, the incre-
mental placement of CCEs in the latent space is addressed
through CPSEM equations and RFA, where p;’s are akin to
charged particles.

To model the energy dynamics within our system akin to
charged particles, AHR employs the formulation based
on Coulomb interaction energy. Consider a fixed set of
I x 3", J; particles representing CCEs, with charges ¢; at
positions p{ . The potential energy of this system is given
by

U=y (q;)Q O — )

— — .
i’ §' #ij ||pf/ _ng

Each particle also possesses kinetic energy K] =

%mf ||v?]|2, where m? and v/ represent the mass and speed
of particle 75 (CCE of task 7 and class ), respectively. In

our optimization framework, AHR aims to minimize the
_ _ LJi 1, J(.,d12
total energy £ = U + K, where K = 373%0 - smj[|vj[|*.

K3
This can be achieved through the calculus of variations,

leveraging the Lagrangian:

T SE 1 D )y
k=i.j k=i.j i i 1Py = Pil

3

The equations of motion for the particles, derived via the
Euler-Lagrange equation

d (0L oL
=== @)
dt \ov; ) op;
enable us to determine the optimal positions of the particles,
effectively minimizing the total energy of our system. The

above equation helps HAE to efficiently distribute CCEs
within the latent space.

AHR. Algorithm 1 outlines the steps of the AHR
strategy in the context of task-based CIL: Whenever
a new task T, arrives AHR invokes three main rou-
tines of CCE_PLACEMENT, HAE_TRAIN, and MEM-
ORY_POPULATION: (i) in CCE_PLACEMENT, AHR de-
termines the positions of the new CCEs for D, and returns
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Algorithm 1 Autoencoder-Based Hybrid Replay

Algorithm 3 HAE Training

1: Input: Tasks {,1_'1,7-'27 e ,T[} with {Dl, Do, ..., D[},
HAE model {¢(wo), 1 (vo)}, memory Mo

2: Output: {¢(w7), ('vz)} {M;}i_1, CCEs {P} }i,

3: fortasksi=1,...,1 d

4. P, = CCE_PLACEMENT(¢(wi,1), YP(vi—1), Ds,

{Pi}ir :11) via RFA in Algorithm 2 solving Eq.

5: (}5('11)1), '(b(’lh) = HAE_TRAIN(¢(wi_1), '¢('vi_1), D;,
{M Y2 {Py Yo —y) via Algorithm 3

6:  M; = MEMORY POPULATION((ﬁ(’wZ) P (vi), p(wi—1),
P(viz1), Di, {My}, |, {Py}ii_}) via Algorithm 4

7:  Delete ¢p(wi—1), w(v, 1)

: end for

o]

Algorithm 2 CCE Placement

1: Input: {P1,P>,...,Pe_1}, Repulsive Constant ¢, Particle
Mass m, Time Step At, Simulation Duration 7

2: Output: P,
3: Initialize positions P~ = ¢(we—1, D;) {initialize P}
4: for timestept =1,...,7do
5: forclassesj=1,...,J,do
6: fortasksi =1,...,¢do
7: for classes j' = 1,...,J; do
8: ifi,7' # £, j then
9: Compute displacement vector df, =p) - pi,
JJ
10: Compute repulsive force f77, = —5 . L
‘ i, 12 1d)7) |
11: Accumulate repulsive force: F% = Fj + fzg/l
12: end if
13: end for
14: end for )
J
15: Update CCE velocity: v, = v[ oAt
16: Update CCE position: p] = p; + vz At
17:  end for
18: end for

P = {pz }j‘;l based on RFA outlined in Algorithm 2 solv-
ing Eq. ] where ¢ denotes the latest arrived task (throughout
this paper, we use the notation ¢ referring to the latest task
index whereas ¢ might refer to any task). Note the distinc-
tion that, unlike the centriods in iCaRL (Rebuffi et al., 2017),
CCEs in AHR do not change over the course of learning.

(ii) After the placement of the CCEs P, = {p}}’ Ay
HAE_TRAIN is invoked by AHR (outlined in Algorithm
3) where the model {¢(wy—1), 1p(ve—1)} is copied as
{G(wy), $(ve)}. While {¢(w,_1), P(ve1)} is kept
frozen, {¢(wy), ¥ (vy)} is trained on the combined train-
ing set featuring the new tasks and the decoded exemplars
D + DyUp(ve_1,{M; f;ll) for F number of epochs
with the loss function in Eq. [T|and a distillation loss (serving
as a data regularization strategy) to obtain {p(wy), P (ve)},

. J
where the memory M, = {eﬁl}ﬂzi}{l’l stores the ex-
emplars of task ¢ — 1 and e{}fl contains exemplar (¢ — 1)jk
coupled with its label. In AHR, the memory M,_; stores

embedded vectors in the latent space, not raw data sam-

- Input: ¢p(we—1), P (ve-1), Do, {Pi}i1, M} 2]
: Output: ¢(w;), v (v;)
D« DoUp(vg—1, Mi_1)
2 Copy @(we—1), P(ve-1) as p(we), P(ve)
: forepochse =1,..., F do
for minibatchb=1,..., B do
Minimize the HAE losses in Eq. [T|and Distillation losses:
L(D, %(ve, p(wy, D)), (wr, D))
Hipwe_1, D) — d(wy, D)
Hiwp(ve-1, (we-1, D)) — (e, p(we, D))
Optimize with an optimizer to obtain ¢(wy} ), ¥ (v})
end for
: end for

SYEIPUE WY

_—
W

ples. In practice, for each iteration of the SGD, besides
1/¢ fraction of the minibatch size that is provided by the
new task 7, (¢ — 1) /¢ fraction of minibatch size is selected
and instantly decoded from memory (v, {M;}{Z})
in a statistically representative fashion with respect to the
previous tasks/classes for training. These vectors require
significantly less memory (0.1 x t) than raw data and can
be decoded at any time by 9 (v,_1, {M;}'Z1).

(ili) AHR populates its memory M, via MEM-
ORY_POPULATION in Algorithm 4 based on Herding as
in (Rebuffi et al.,[2017). Currently, there are two competi-
tive approaches for sampling of exemplars in the literature
(Masana et al.}|2020), Herding and Naive Random, where
the Herding approach on average demonstrates a slight im-
provement over Naive Random sampling when applied to
longer sequences of tasks (Masana et al., [2020). AHR, in
Algorithm 4, computes the losses L (¢(wy, D), {P:}_,)
and ranks them ascendingly via RANK and then selects ¢
number of classes for both the new task ¢ and previous ones.

Finally, at the test stage, it is determined to which task-class
tj a given data sample x belongs via computing the Eu-
clidean distance as follows: argmin, ; [|p(w},x) —pj]. It
is clear that in CIL, not only must the classes within a given
task be discriminated, but the different tasks themselves
must also be distinguished, which is why TC takes place on
top of CF.

3. Literature Review and AHR

Exemplar replay. The most popular exemplar replay strat-
egy, iCaRL (Rebuffi et al., 2017), fuses exemplar replay and
LwF (Li & Hoiem| [2017a)). To mitigate the task-recency
bias, iCaRL separates the classifier from the representation
learning (implicit bias-correction). At inference, iCaRL
classifies via the closest centroid. EEIL (Castro et al., [2018))
introduces balanced training, where at the end of each train-
ing session an equal number of exemplars from all classes
is used for a limited number of iterations. Similar to iCaRL,
EEIL incorporates data regularization (distillation loss) into
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Algorithm 4 Memory Population

1: Input: ¢(we), ¥ (ve), p(we—1), P(ve-1), Do, {Pitii,
Y
2: Output: {M;}{_;
e M/(€x Z§:1 J;) {memory size divided by the number
of classes so far}

(9%}

4: D+ Dy Udp(ve—1, {M:}'2})

5: Calculate the losses L (¢p(we, D), {P;}¢—1) as in Eq.
6: fortasksi =1,...,¢do

7: forclassesj=1,...,J,do

8: for samples k =1,...,cdo

9: Store RANK (L z (¢p(wi, D), {Pi}i—1))?" as el*
10: end for

11:  end for

12: end for

exemplar replay. As discussed in the previous section, our
strategy, AHR, also separates the representation learning
and classification. Furthermore, AHR employs balanced
training (from EEIL) and distillation loss via LwF (similar
to iCaRL).

MIR (Aljundi et al.||2019a)) trains on the exemplar memory
by selecting exemplars that have a larger loss increase after
each training step. GD (Lee et al., 2019)) utilizes external
data to distill knowledge from previous tasks. BiC (Wu et al.|
2019) learns to rectify the bias in predictions by adding an
additional layer while IL2M (Belouadah & Popescul, 2019)
introduces saved certainty statistics for predictions of classes
from previous tasks (explicit bias-correction). LUCIR (Hou
et al., 2019) replaces the standard softmax layer with a
cosine normalization layer. GDumb (Prabhu et al., [2020)
ensures a balanced training set. ER (Chaudhry et al.,[2019)
analyzes the effectiveness of episodic memory.

Generative replay (pseudo-rehearsal). This strategy gen-
erates synthetic examples of previous tasks via a genera-
tive model trained on previous tasks. DGR (Shin et al.|
2017) generates synthetic samples via an unconditional
GAN where an auxiliary classifier classifies synthetic sam-
ples. MeRGAN (Wu et al., 2018)) improves DGR via a label-
conditional GAN and replay alignment. DGM (Ostapenko
et al.||2019) combines the advantages of conditional GANs
and synaptic plasticity using neural masking leveraging dy-
namic network expansion mechanism to increase model
capacity. Lifelong GAN (Zhai et al., 2019) extends im-
age generation without CF from label-conditional to image-
conditional GANs. Other strategies perform feature replay
(Ven et al.l 2020; Xiang et al., 2019, |[Kemker & Kananl
2017) which needs a fixed backbone network to provide
good representations.

Hybrid replay (AHR). Technically, our AHR strategy lies
somewhere between exemplar replay and generative replay:
AHR differs from exemplar replay in that it stores the sam-
ples in the latent space. AHR also differs from generative

replay in that it does not rely on synthetic data or pseudo-
data; instead, it relies on the memorization of the original
data. By encoding and decoding the exemplars into and out
of the latent space, AHR mitigates the memory complexity
of current exemplar replay strategies significantly and can
be readily applied to the exemplar replay strategies. In the
literature, hybrid replay has been studied in several works
(Zhou et al., 2022): (Tong et al.,|2022) utilizes a closed-loop
encoding-decoding framework that stores only the means
and covariances of features rather than the individual fea-
tures themselves. The authors organize the latent space
using a Linear Discriminative Representation, which parti-
tions the latent space into a series of linear subspaces, each
corresponding to a distinct class of objects. (Hayes et al.|
2020bj Wang et al., 2021}, Nori et al., 2025)) do not store raw
exemplars but instead using compressed exemplars derived
from mid-level CNN features (a strategy that is increasingly
recognized as a promising direction in incremental learn-
ing research). In (Hayes et al.l [2020b; Wang et al., [2021]),
classification occurs after the decoding process, employing
a cross-entropy loss function. In contrast, our method per-
forms classification directly within the latent space of the
encoder, similar to (Tong et al., [2022). (Pellegrini et al.|
2020) stores ‘activations volumes’ of intermediate layers
rather than raw data.

4. Experimental Results

Baselines. We consider five categories of baselines: vanilla
strategies, generative classifier, generative replay, exemplar
replay, and hybrid replay. Vanilla strategies include the
naive strategies that serve as the lower or upper bound:
Fine-Tuning (FT) does simple fine-tuning whenever a new
task arrives, FI-E incorporates exemplar replay into fine-
tuning, and Joint trains on all tasks seen so far (Masanal
et al.,[2020). For generative classifiers, we include SLDA
(Hayes & Kanan| 2020), Gen-C (Ven et al., |2021)), and
PEC (Zajac et al.,2023)). For generative replay, DGR (Shin
et al.l 2017), MeRGAN (Wu et al., 2018), and BI-R-SI
(Ven et al.,2020) are considered. For exemplar replay, the
most strong baseline strategy, we include GD (Lee et al.|
2019), GDumb (Prabhu et al.| 2020), iCaRL (Rebuffi et al.,
2017), EEIL (Castro et al., |2018]), BiC (Wu et al.| 2019),
LUCIR (Hou et al.,|2019), and IL2M (Belouadah & Popescu,
2019). Finally, for hybrid replay, we include i-CTRL (Tong
et al.,2022)), REMIND (Hayes et al.,|2020b)), and REMIND+
(Wang et al.l |2021). Note that since regularization and
bias-correction strategies have been often applied to the
aforementioned strategies supplementarily (and they are not
performant for CIL on their own), we do not provide results
for them independently.

Benchmarks. The series of tasks for CIL are constructed
according to (Masana et al.| 2020; Ven et al., 2021} Za]
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Figure 3: The impact of the memory size (first row). The required resources to achieve a target performance (second row).
The achieved performance for a given compute time (third row).

2023), where the popular image classification

datasets are split up such that each task presents data per-
taining to a subset of classes, in a non-overlapping manner.
For naming benchmarks, we follow (Masana et al.} [2020),
where dataset D is divided into 7" tasks with C' classes
for each task. Hence, a benchmark is named as D(T/C).
Accordingly, we have MNIST(5/2) (LeCun et al., [2010),
Balanced SVHN (5/2) (Netzer et al.l 2011), CIFAR-10(5/2)
(Krizhevsky et al.| 2009), CIFAR-100(10/10) (Krizhevsky
et al.,|2009), and minilmageNet(20/5) (Vinyals et al., 2016)
benchmarks. Metrics. Performance is evaluated by the final
test accuracy after training on the series of all tasks.

Network architectures. For MNIST benchmark, as in

2021)), a dense network with 2 hidden layers of 400
ReLU units was used. We utilized its mirror for the decoder.

For larger datasets, as suggested by (Masana et al.,[2020;

2016), ResNet-32 is used. We employed 3 layers
of CNNs for the decoder. Hyperparameters. We adopt

Adam (Kingma & Bal, [2014) as the optimizer. Exemplar

rehearsal. All the strategies always follow the fixed ex-
emplar memory, not growing exemplar memory, implying
that the number of exemplars per class decreases over time
to keep the overall memory size constant
[2020; Rebuffi et al., 2017). The learning rates, batch sizes,

and strategy-dependent hyperparameters are detailed in Ap-
pendix B in the supplementary material.

Table [2]demonstrates that hybrid approaches on average out-
perform alternative baselines on all five benchmarks (for a
fixed compute, matched parameter count, and equal memory
size for exemplar replay to ensure fairness in comparisons).
Although hybrid approaches are given the same memory
size, they can store more exemplars, depending on the com-
pression rate given in Table [2| for each benchmark. The
performance improvement of hybrid approaches, compared
to exemplar rehearsal-based strategies, can be attributed to
exemplar diversity (availability of more exemplars). The
effectiveness of the availability of more exemplars, exem-
plar diversity, is well-documented in the literature (Masana
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Table 2: Empirical evaluation of AHR against a suite of CIL baselines. Accuracies and the SEMs.

Benchmarks BC Reg MNIST BalancedSVHN  CIFAR-10  CIFAR-100 minilmageNet

Tasks Conf. (5/2) (5/2) (5/2) (10/10) (20/5)

#Total Exemplars 200 200 200 2000 2000
Vanilla Strategies (Lower and Upper Bounds)

FT N N 19.93 +o0.03 19.19 +o.04 18.72 +0.30  8.91 +0.12 4.32 +0.06
FT-E 1 N 92.17 +o.16 87.13 +0.37 72.17 +o.8a  48.47 +0.83 39.02 +o.74
Joint N N 98.48 +0.06 95.88 +0.04 92.37 +o0.09  73.87 +0.10 73.45 +o0.15

Generative Classifier Strategies (Dynamically Expanding Architectures)
SLDA N N 87.30 +o0.02 42.32 +0.04 38.34 +0.04  25.83 +o.01 19.03 +o0.02
Gen-C N N 89.19 +0.05 51.92 +0.59 49.38 +0.37  29.69 +0.62 22.57 +0.40
PEC N N 90.81 +o0.06 55.61 +0.21 52.41 +0.33  37.53 +o0.41 28.39 +o.36
Generative Replay Strategies (Rehearsal of Pseudo-Exemplars)
DGR I N 88.50 +0.43 28.17 +1.27 25.43 +1.72 9.20 +1.25 6.59 +1.13
MeRGAN N 89.83 +0.37 33.49 +1.35 27.17 +1.84  11.39 +1.23 7.82 +1.05
BI-R-SI I W - 38.32 +1.43 37.48 +1.96  34.37 +1.20 29.71 +1.03
Exemplar Replay Strategies (Rehearsal of Exemplars)
GD 1 D 92.02 +o0.17 89.11 +o0.56 71.13 +o.72 49.01 +o.86 38.47 +o.62
GDumb I D 91.13 +o.19 88.02 +0.47 72.79 +o0.50 47.29 +o.71 39.64 +o.70
iCaRL 1 D 93.06 +0.33 89.63 +o.61 73.29 +o0.73  49.38 +o0.62 43.51 +o.68
EEIL E D 93.88 +0.39 90.75 +0.53 73.85 +0.84a  51.03 +0.75 41.09 +o.54
BiC E D 94.13 +o.25 91.04 +o0.63 75.01 +o.93 51.41 +o.88 44.80 +o0.57
LUCIR I D 92.62 +0.29 87.01 +0.44 71.52 +o.71 47.08 +0.94 36.95 +o.79
IL2M E \%% 94.07 +o0.21 90.64 +o.57 73.86 +o0.78  50.06 +0.73 43.64 +0.59
Hybrid Exemplar-Generative Strategy (Rehearsal of Decoded Exemplars)
i-CTRL 1 D 94.31 +o.27 91.07 +o.40 74.61 +o.61  51.74 +0.69 44.78 +o.68
REMIND 1 D 93.95 +0.19 91.38 +0.64 75.02 +0.65  50.93 +0.75 43.92 +o.71
REMIND+ 1 D 95.62 +0.33 92.15 +o.72 75.49 +o.70  52.36 +0.77 45.02 +o.65
AHR 1 D 97.53 +o.32 93.02 +o.65 7712 +o.75  54.43 +o0.93 48.09 +o.64
AHR Ablation Study (Impact of Compression and RFA)
AHR-lossy-mini 93.35 +0.32 90.40 +o.58 73.28 +0.47  50.29 +0.90 42.39 +o0.64
AHR-lossless-mini 93.76 +0.26 90.88 +0.50 73.68 £0.41  50.85 +0.81 42.88 +0.59
AHR-lossless 98.12 +0.08 94.21 +o0.23 78.35 +0.37  56.71 +0.57 49.70 +o.32
AHR-contrastive 95.12 +0.29 91.43 +o0.54 74.87 +0.47  51.98 +0.76 44.60 +o.53
AHR-GMM 92.49 +o0.23 88.70 +0.50 72.63 +0.39  49.48 +o.71 42.52 +0.48

et al., [2020). Notably, our AHR approach outperforms other
hybrid replay methods. This superior performance is due
to AHR’s more effective embedding in the latent space us-
ing RFA, in contrast to i-CTRL, which relies on Linear
Discriminative Representation. Additionally, AHR’s archi-
tecture offers an advantage by classifying directly in the
latent space, whereas REMIND and REMIND+ perform
classification only after the decoding process.

Ablating the impact of lossy compression. As shown in
Table[2] in the AHR-lossy-mini and AHR-lossless-mini set-
tings, AHR is given as many exemplars as other exemplar
rehearsal-based baselines, with imperfect and perfect qual-
ity. In the AHR-lossless setting, AHR is given as many
exemplars as AHR, but with perfect quality. The aim of
these three settings is to investigate how much compres-
sion by the encoder, and therefore the opportunity to store
more examples benefit AHR. In the AHR-lossy-mini and
AHR-lossless-mini settings, AHR performs on par with
other exemplar rehearsal-based strategies. Interestingly, the
performance loss in these settings is significantly greater

than the performance gain in the AHR-lossless setting. This
observation supports two key findings: (a) more exemplars,
even decoded exemplars, significantly enhance performance
(Masana et al., [2020); and (b) for mitigating CF, decoded
exemplars are nearly as effective as perfect exemplars (Ven
et al. [2020). Fig. E] shows both the original and decoded
images at different tasks (minilmageNet).

Ablating the approaches for structuring the latent space.
Hybrid approaches such as REMIND and REMIND+ do not
impose any explicit structure on the latent space. As a result,
our discussion here will not cover these methods, focusing
instead on techniques that structure the latent space. Among
these, i-CTRL employs Linear Discriminative Representa-
tion, whereas AHR utilizes RFA. The comparative analysis
presented in the latter rows of Table 2] also considers alter-
native structuring methods, such as contrastive loss (Chal
et al., [2021) and the Gaussian Mixture Model (Ven et al.,
2020). Our findings, as detailed in Table @ indicate that
RFA outperforms these alternatives. This is because RFA
systematically embeds the class centroids of new classes
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Figure 4: Images produced by the decoder at different tasks (for the decoder size of 1.8M).

Table 3: Performances for fixed memory (both the decoder and exemplars) and compute budgets.

Memory

Strategies Benchmarks # Exemplars # Epochs  Wall-Clock Time  Performance
Decoder Exemplar

AHR CIFAR-100(10/10) 150 (latent) 1.4M 4.6M 50 462min 54.43 +o0.93
minilmageNet(20/5) 190 (latent) 1.8M 40.54M 70 842min 48.09 +0.64

BiC CIFAR-100(10/10) 20 (raw) - 6M 60 473min 52.12 0.01
minilmageNet(20/5) 20 (raw) - 42.34M 80 837min 45.23 +0.62

LM CIFAR-100(10/10) 20 (raw) - 6M 60 455min 50.81 to0.74
minilmageNet(20/5) 20 (raw) - 42.34M 80 861min 44.67 +0.63

EEIL CIFAR-100(10/10) 20 (raw) - 6M 60 178min 51.70 0.7
minilmageNet(20/5) 20 (raw) - 42.34M 80 859min 41.83 +0.55

The Impact of Decoder Size (CIFAR-100)
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Figure 5: Performances for various decoder/memory sizes.

into the latent space with minimal amount of shift from their
natural position and minimum changes to the weights of the
neural network achieved by CPSEM. This level of system-
atic embedding, necessary for ensuring the structuredness
of the latent space, is not possible in alternative approaches.

Bias-correction and regularization. Table [2]also outlines
the bias-correction and regularization methods used by dif-
ferent strategies. For bias-correction, “N,” “I,” and “E” rep-
resent none, implicit, and explicit, respectively. Implicit
bias-correction, as seen in (Castro et al. [2018)), relies on
data equalization without directly manipulating the weights,
whereas explicit correction, as in (Belouadah & Popescul,
[2019), involves direct weight adjustment. For regulariza-
tion, “N,” “D,” and “W” denote none, data regularization,
and weight regularization, respectively. Most exemplar
rehearsal-based baselines, along with our AHR strategy,
use implicit bias-correction via data equalization and data
distillation for regularization.

Resource-consumption. Fig. [3assesses the performances

for three benchmarks: CIFAR-10(5/2), CIFAR-100(10/10),
and minilmageNet(20/5). It explores the relationships be-
tween (i) exemplar memory size and performance, (ii) ex-
emplar memory size and compute time (epochs) for a target
performance, and (iii) performance for a range of allocated
compute times (wall-clock time), presented in the first, sec-
ond, and third rows, respectively. In the first row, we observe
that for small exemplar memory sizes, the performance gap
between AHR and the baselines is more significant com-
pared to larger memory sizes across all benchmarks. In the
second row, AHR proves to be the least resource-consuming
in terms of exemplar memory size and compute (epochs)
needed to meet a target performance. In the third row, the
performance is reported for various allocated wall-clock
times.

Decoder impact. Fig. [5] examines decoder sizes of
[0.6,0.8,1,1.2,1.4] and [1,1.2,1.4,1.6,1.8] million pa-
rameters for CIFAR-100(10/10) and minilmageNet(20/5)
benchmarks, respectively. It is surprising how much mem-
ory can be saved—and, conversely, how much performance
can be improved—with a relatively simple decoder con-
sisting of just three layers of CNNs, which incurs minimal
memory and compute overhead. Table [3] shows that the
memory requirement of the decoder is negligible compared
to storing raw exemplars, and that the encoder-decoder ar-
chitecture of AHR makes it possible to store one order of
magnitude more exemplars in the latent space. Overall, Ta-
ble [3|demonstrates that AHR delivers superior results with
the same memory/compute footprints.
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5. Conclusion

Exemplar replay strategies rely on storing raw data, which
can be highly memory-consuming, especially since datasets
usually require orders of magnitude more memory than mod-
els. Meanwhile, generative replay, training a (generative)
model for generating the pseudo-data of past tasks, requires
far less memory but tends to be less effective. We proposed
AHR, a hybrid approach that combines the strengths of
both methods, utilizing HAE with RFA for the incremen-
tal embedding of new tasks in the latent space. Instead of
storing the raw data in the input space, AHR stores them in
the latent space of HAE. Our experiments demonstrate the
effectiveness of AHR.
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A. Complexity Analysis
A.1. Generative Replay

This strategy (Shin et al., 2017) utilizes a generative model denoted by GEN() whose size is not growing with respect to
the total number of tasks . GEN() generates data of the past tasks {1,...,7y — 1} to be interleaved with the new task 7}
to be fed into discriminative model D1S() as well as GEN() lest they are forgotten. Since neither the size of GEN() nor
Dis() is growing with respect to the total number of tasks I, the memory complexity can be said to be O(cte). The compute
complexity, however, depends on the total amount of data to be fed to both GEN() and D1S() which is a function of the
number of tasks seen so far if they are not to be forgotten. Hence, the compute complexity is O(t).

A.2. Generative Classifier

This strategy (Ven et al., 2021) trains a brand new out-of-distribution detector for each new class c (not task) denoted by
OOD.(). Hence, the number of the models grows as new classes arrive indicating that the memory complexity is O(t).
Because this strategy trains a brand new model each time, it does not have to overwrite previous knowledge, and therefore,
does not require replaying of the old data. As a result, the amount of data to be fed into each OOD..() whenever each model
is trained does not grow with the number of classes so far because only the data of class ¢ is fed into OOD..(). Hence, the
compute complexity is O(cte).

A.3. Exemplar Replay

This strategy (Rebuffi et al.,|2017)) uses a memory denoted by MEM that stores dozens of exemplars per class so that each
time a new task arrives a representative minibatch of data consisting of all previous tasks is fed into the discriminative model
denoted by Dis(). In this strategy, both the memory MEM has to grow in proportion to the number of tasks, and, the amount
of data each time the discriminative model D1S() must consume has to increase in proportion to the number of tasks seen so
far, therefore, memory and compute complexities are O(t).

A.4. Hybrid Replay (Ours)

Although learning new tasks requires high-quality data, mitigating forgetting, as it has been reported (Ven et al., [2020),
can be effectively accomplished with tolerably lossy data. Leveraging that, our hybrid replay strategy, a combination of
generative and exemplar replay, proposes to use an autoencoder consisting of an encoder denoted by ENC() and a decoder
denoted by DEC(). ENC() serves two goals: (i) it maps the input data to the latent space making it possible to use Euclidean
distance for classification, and (ii) it compresses down the input data such that they can be stored in the memory MEM
efficiently. Meanwhile, DEC() decompresses the data in MEM each time learning a new task. Since ENC() compresses down
the input data, 10 times at the very least in our experiments, the memory complexity becomes O(0.1t), whereas the compute
complexity is O(t). Note that the introduced overhead by adding DEC() is negligible as discussed in the experimental
results section.

B. Hyperparameters and Implementation Details

We outline the hyperparameters for the 19 CIL strategies including vanilla and joint strategies serving as the lower and upper
bounds for image classification on 5 benchmarks as specified in Table 4]

C. Extended Literature Review

Task-based or task-free. Incremental learning literature features various learning scenarios that present their own unique
challenges, and accordingly, diverse strategies have been developed (Parisi et al.,[2019; |[De Lange et al., 2021} |Yu et al.|
2024; [Elsayed & Mahmood, |[2024). In the first place, there are two learning scenarios of task-based (van de Ven & Tolias|
2019; Masana et al.,|2020) and task-free (Ven et al.| [2021;|Aljundi et al., 2019b). In task-based, the model receives the data
in the form of tasks: The task-based scenario is divided into two popular scenarios: task-incremental learning (TIL) and
class-incremental learning (CIL). Whereas in TIL the model receives the task-IDs during both training and inference, in
CIL the task-IDs are not given during inference and the model must infer them (Zhuang et al., [2024a; Zhou et al.| 2024).
The task-free scenario, meanwhile, totally abandons the notion of tasks altogether (Ven et al.| 2021} |Aljundi et al.|[2019b).
AHR makes no prohibitive assumptions and can operate in all the above scenarios. Nevertheless, for comparability with the
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Table 4: Number of latent exemplars for each benchmark for our AHR strategy.

Dataset MNIST SVHN CIFAR-10 CIFAR-100  minilmageNet
Tasks Configuration (5/2) (5/2) (5/2) (10/10) (20/5)
# Tasks 5 5 5 10 20
# Classes/Task 2 2 2 10 5
# Classes 10 10 10 100 100
Model Dense ResNet32 ResNet32 ResNet32 ResNet32
Learning Rate 0.001 0.001 0.001 0.001 0.001
Momentum 0.9 0.9 0.9 0.9 0.9
# Epochs 40 50 50 50 70
Minibatch Size 128 128 128 256 256
Input Dimensions 28 x 28 x 1 32x32x3 32x32x3 32x32x3 84x81x3
Input Size 784 3072 3072 3072 21168
Latent Size 20 307 307 307 2117
Compression Ratio ~ 40 ~ 10 ~ 10 ~ 10 ~ 10
# Raw Exemplars 200 200 200 2000 2000
# Latent Exemplars 8000 2000 2000 20000 20000

majority of works in IL, this paper examines the performance of AHR in the CIL setting.

Offline or online. Incremental learning can be either offline (Masana et al., 2020) or online (Zajac et al., 2023 Wang et al.,
2024; |Zhuang et al., 2024b; Raghavan et al.,2024), where in the offline learning scenario, the data of each task can be fed to
the model multiple times before moving on to the next task. Conversely, in the online scenario, the model visits the data
only once as they arrive and cannot iterate on them. In the literature, there are more works on the offline scenario (Parisi
et al., 2019;|De Lange et al.,2021;|Masana et al.,|2020). Therefore, this paper examines the performance of AHR in the
offline scenario.

Challenges and strategies. CIL faces many challenges such as CF, weight drift, activation drift, task-recency bias, and TC
(Masana et al.,2020; Cormerais et al., 2021). To tackle the weight drift and activation drift challenges of CIL (Kao et al.|
2020), the most popular category of strategies, regularization, is often adopted (Zenke et al.,[2017). Although regularization
is not alone effective in mitigating the TC challenge of CIL (Ven et al.| |2021), it has been proven productive in tandem with
other strategies like exemplar strategies (Rebutffi et al.,[2017} |[Farquhar & Gall, 2018a; Hsu et al.| 2018 (Castro et al., 2018}
Dhar et al.; 2019; Serra et al., [2018)). Regularization strategies have two branches:

Weight regularization and data regularization. Weight regularization (Hiratani, 2024) mitigates weight drift of the
parameters optimized for the previous tasks by assigning an importance coefficient for each parameter in the network
(assuming the independence of weights) after learning each task (Kirkpatrick et al.l 2017} [Zenke et al., [2017; Nguyen
et al., 2018; [Farquhar & Gall [2018b; /Aljundi et al., |2018; |Chaudhry et al., 2018). When learning new tasks, the importance
coefficients help in minimizing weight drift. EWC (Kirkpatrick et al.,2017) and SI (Zenke et al., 2017) are popular weight
regularization strategies. EWC (Kirkpatrick et al.,|2017) relies on a diagonal approximation of the Fisher matrix to weigh the
contributions from different parameters. SI (Zenke et al.,|2017)) maintains and updates per-parameter importance measures
in an online manner.

Data regularization is the second regularization strategy, aimed at preventing activation drift through knowledge distillation
(Buciluundefined et al., 2006; [Hinton et al.||2015), originally designed to learn a more parameter-efficient student network
from a larger teacher network. Differs from weight regularization which imposes constraints on parameter updates,
knowledge distillation focuses on ensuring consistency in the responses of the new and old models. This distinctive feature
provides a broader solution space which is why distillation has become the dominant strategy used in tandem with rehearsal
strategy (L1 & Hoiem) 2017a; Jung et al.,|2016}; [Dhar et al., 2019} |[Zhang et al.| |2020; |Lee et al., 2019). LwF (Li & Hoiem),
2017a)), a popular data regularization strategy, uses a distillation loss to keep predictions consistent with the ones from an
old model. Our AHR strategy as discussed in the previous section incorporates LwF into exemplar replay to overcome
activation drift.

Bias-correction. Its aim is to address the challenge of task-recency bias, which refers to the tendency of incrementally

14



Autoencoder-Based Hybrid Replay for Class-Incremental Learning

learned networks to be biased towards classes in the most recently learned task (Belouadah et al., 2021} |Li et al., 2020; Wu
et al.,[2019; Maltoni & Lomonacol 2019; Lomonaco & Maltoni, [2017}|Zeno et al., [2021} |Belouadah & Popescul [2020).
Labels trick (LT) (Dhar et al.}2019) is a rehearsal-free bias-correcting algorithm that prevents negative bias on past tasks. LT
often improves the performance when added on top of other strategies (Wu et al.,|2019). However, because AHR separates
representation learning from classification similar to (Rebuffi et al.| [2017)), which gives a dose of immunity to task-recency
bias. Because AHR samples the tasks/classes for its minibatch in a statistically representative manner during training
inspired by (Castro et al.,|2018)), incorporating an explicit bias-correction strategy such as LT proved unnecessary.

Generative classifier. CIL strategies can be categorized into two types: discriminative- and generative-based classification.
Strategies count as discriminative classifiers when eventually a discriminator performs the classification. However, generative
classifiers perform classification only and directly using generative modeling (Ven et al., 2021} |Pang et al., [2005}; Zajac
et al., [2023). Gen-C (Ven et al.| 2021) is a novel rehearsal-free generative classifier strategy; the strategy does energy-based
generative modeling (Li et al., 2020) via VAEs (Kingma & Welling, [2013) and importance sampling (Burda et al., 2016).
SLDA (Hayes & Kanan| |2020) (popular in data mining (Kim et al.| 201 1} [Pang et al.l [2005)) is thought to be another form
of generative classifier (Ven et al.,[2021)); however, it prevents representation learning.
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