Under review as a conference paper at ICLR 2025

EFFICIENT IN-CONTEXT VISUAL LEARNING WITH TRI-
DENT BLOCK AND CROSS BLOCKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Visual prompt-based large vision models exhibit remarkable performance in a
range of vision tasks. However, visual prompting large vision models are com-
putationally intensive and resource-demanding due to their large parameter sizes
and the complexity of processing visual prompts, resulting in inefficiencies in
speed and memory usage. To tackle these challenges, we propose the Efficient
Painter model, which leverages a novel context-aggregated attention based trident
block to alleviate cross-task gaps and reduce memory and computation overhead.
Furthermore, we introduce a cross-blocks feature union module to capture global
contextual information at different levels and speed up training. This architecture
mitigates training costs and memory requirements during inference. Our model
strikes a balance between speed and memory efficiency, achieving a 19x reduction
in floating point operations per second (FLOPs). Moreover, our model is 9x
smaller in model size and runs 4.1x and 27 x faster during training and inference,
respectively. Comprehensive experiments demonstrate that our design effectively
processes additional visual prompts and outperforms baseline methods on standard
benchmarks like SIDD and LoL in zero-shot settings, improving performance by
0.4% and 1.2% respectively.

1 INTRODUCTION

Visual prompt-based Large Vision Models (LVMs) have recently emerged as a powerful approach for
various vision tasks without relying on language instructions. Unlike traditional models like CLIP
Radford et al.|(2021) and Flamingo |Alayrac et al.|(2022) that depend on language guidance, visual
prompt-based LVMs|Wang et al.| (2023azb; [2024) operate solely on continuous visual inputs. These
models reduce quantization errors from discretization and enable effective in-context visual learning
through masked image modeling techniques by aligning the output space to be as continuous as the
input images.

Standard LVMs typically utilize encoder-decoder architectures, which are computationally intensive
and resource-demanding due to their complex designs. This issue is magnified in visual prompt-
based LVMs, as visual prompt-based LVMs must handle additional visual prompt inputs, increasing
computational complexity and resource consumption. During inference, processing high dimensional
vision prompts leads to higher latency, negatively impacting performance in real-time applications.
Conventional methods like quantization and pruning |Liu et al.| (2021)); Mao et al.| (2023)); Molchanov:
et al.[(2019) aim to reduce computational load but often fail to improve inference time significantly.
Recent studies |[Kao et al.|(2022); Mehta & Rastegari| (2022b) have identified redundant parameters
and frequent memory access operations in multi-head self-attention (MHSA) as bottlenecks, however,
they result in reduced accuracy and minimal speed improvement. While some work |Pan et al.| (2022;
2023); Wu et al.|(2022) focus on redesigning transformer blocks to enhance performance, they do
not simultaneously address memory and computational efficiency or reduce parameter redundancy.
Therefore, these methods not only fail to achieve overall efficiency, but the distinctive manner in
which visual prompt-based LVMs incorporate visual tokens into the models also makes them directly
inapplicable. Applying these methods would impair the model’s in-context visual learning capabilities.
Consequently, such barriers complicate the application of classical architectural optimizations.

Building upon the issues outlined above, the primary challenge lies in achieving a delicate balance
between overall model efficiency in computation and memory and the in-context learning (ICL)

Under review as a conference paper at ICLR 2025

Efficient Painter-M5

o Painter ViT-Large
H Efficient Painter-M4

. Painter ViT-Large

Efficient Painter-M5
Efficient Painter-M4

Efficient Painter-M3

& Painter ViT-Base

215 '; Efficient Painter-M2
Efficient Painter-M3 |

PSNR(dB)
PSNR(dB)

Efficient Painter-M2

|
|
o Painter ViT-Base Efficient Painter-M1

Efficient Painter-M1
Efficient Painter-MO

Efficient Painter-MO

o 200 800 o 200 800

400 600 400 600
Throughput (images/s) Throughput (images/s)

(a) Denoise Task (b) Low Light Enhancement Task

Figure 1: The Comparative Analysis Result. Speed and accuracy compared on 2 benchmarks:
SIDD and LoL. Throughput results are obtained on single GPU A100 (80G).

capacities required for visual prompt-based models. To address this challenge, we propose Efficient
Painter, an advanced visual prompt-based LVM. Efficient Painter enhances efficiency by integrating a
trident block architecture equipped with context-aggregated attention (CAA), effectively optimizing
computational and memory demands while preserving robust in-context visual learning capabilities.
This design allows the model to perceive dynamic context information while reducing memory
and computational demands. The trident block also decouples visual prompts from task-specific
content images, minimizing visual semantic confusion. To enhance the model learning capacity, we
integrate a cross-blocks feature union (CBFU) module, which improves multi-level global information
processing. Additionally, we optimize prompt embedding orders based on the spatial correlation
of inputs, accelerating training and boosting performance. Our model demonstrates substantial
improvements in image low-light enhancement and denoising tasks, surpassing previous state-of-the-
art (SOTA) models. Besides, as shown in figure[T} we achieved a significant increase in optimized
efficiency compared to traditional Painter vision transformer (ViT) variants. The main contributions
of this paper are summarized as follows:

* We present a comprehensive study on a popular visual prompt-based LVM Wang et al.
(2023a)) to identify its main bottlenecks: the additional computational overhead from visual
prompts during training and a memory-inefficient architecture design.

* We propose a model named Efficient Painter, which trains the model using an efficient ICL
fashion and introduces a CAA based trident block and a CBFU module to alleviate the
cross-task gap and reduce memory and computation overhead of the model.

* We perform extensive experiments showing that our design demonstrates superior perfor-
mance over the baseline methods on standard benchmarks like SIDD |Abdelhamed et al.
(2018)) and LoL|Wei et al.|(2018), achieving a speed up of 0.4% and 1.2% respectively.

2 RELATED WORK

Efficient ViTs. ViTs |Wang et al.| (2021a) exhibit powerful capabilities in various vision tasks.
However, ViTs are hindered from deployment due to the limited throughput in resource-limited
environments. Traditional approaches such as DeiT [Touvron et al.|(2021)), and MobileViT Mehta &
Rastegari| (2022a) leverage knowledge distillation or architectural downsize fail to enhance actual
inference speed or throughput. Conversely, post-training techniques like Token Merging (ToMe)
Bolya et al.| (2023)) and DiffRate (Chen et al.| (2023)) optimize token usage to reduce the model’s
FLOPs. Despite lowering theoretical computational complexity, they do not improve memory
efficiency significantly due to additional parameters introduced in Multi-head Self-attention and Feed-
Forward Layers. Recent strategies like EfficientSAM [Zhao et al.|(2023) aim to balance parameter
reduction and computation demands by transferring the capabilities of heavy-weight models to
smaller ones using masked image pretraining. However, it incurs significant computational and
memory overhead during training, making it intolerable in scenarios with limited resources and in
vision tasks spanned across multiple semantic contexts. In addition, these methods focus primarily
on specific tasks such as SAM, which limits their general applicability.

Under review as a conference paper at ICLR 2025

LVMs with ICL. ICL Brown et al.| (2020) enables models to adapt to new tasks by leveraging
contextual information during inference. Recent research has demonstrated that LVMs are particularly
effective for ICL due to their self-attention mechanisms, which are adept at modeling long-range
dependencies across images and texts. Prominent ICL ViTs, such as Perceiver 10 [Jaegle et al.|(2021)
and Flamingo |Alayrac et al.| (2022)), excel in few-shot learning by effectively utilizing contextual
examples. Recent innovations, including Visual Prompting |Bahng et al.| (2022)) and PromptGIP
Liu et al| (2024), leverage visual prompts for task guidance. However, these methods typically
require larger parameter sizes and substantial GPU memory, limiting their practicality for real-life
applications. In this paper, we explore the development of a visual prompt-based ViT designed to
improve both time and memory efficiency while achieving ICL capabilities. Our approach aims to
address existing challenges and enhance the applicability of visual-prompt ICL models in resource-
limited scenarios.

3 BACKGROUND & MOTIVATION

Stagel (Output Unification)

I(sre) ()

Q

Output

H&-ﬁ; v

Pair B K g
s Ty
@Masked

Stage2 (Training) Stage3 (Image Restorations)

Pair A

Classification
K(ij)

Categories
Base
Conversion

Painter

Painter* Painter

@ : replaceable *: denotes training process (i,j): pixel location in RGB image

Ty e Preds: Predictions [O: a pixel-wise prediction with a location of (i,j)
(sre): two source Images GT: Ground Truth . _—

Iitgn: two target images 256 K: category number (RG.B)rases
Contextual Pair (A/B): source image with its annotation m= lT] b=[k3]

Figure 2: Training Process of Efficient Painter for Semantic Segmentation. Stage 1: Semantic
categories are converted into three-digit numbers in different bases for pixel-wise representation.
For example, "bed" (149 in base 10) becomes 415 in base 6, and when multiplied by margin
m = 42, results in RGB vector [168, 42, 210]. Stage 2: Targets are restored using simMIM. Stage 3:
Predictions are generated using context-related prompts.

Background. To achieve in-context visual learning, LVMs like Painter require 3 major stages of
the masked image modeling Xie et al] (2022) learning process, as can be shown in Fig. [2] In Stage
1, Painter unifies cross-domain visual tasks into the same RGB image space. During training, as
shown in Fig. 2] Stage 2, the Painter utilizes source input pairs: I, as queries and their annotated
target counterpart I;4; as answers and applies a 75% mask ratio to the answers. Consequently, during
inference as shown in Stage 3. in Fig. 2} the model only requires stacking a task-specific prompt and
another source image to complete the pixel-wise reconstruction. The core of the ICL frameworks
capable of performing extensive multi-modal vision tasks involves employing ViT-Large backbone,
which contains over 307 million parameters [Wang et al.| (2023aib); Bar et al.|(2022)).

Motivation. In this chapter, we empirically compare Painter with the SOTA EfficientViT backbone
Liu et al.| (2023)) to assess their overall efficiency. Additionally, leveraging Painter’s architecture, we
investigate the relationship between efficiency and in-context visual learning capabilities. TableI]

Under review as a conference paper at ICLR 2025

Table 1: A Heuristic Approach Optimizes Model Size and Reduces Computational Complexity. For
comparative analysis, the dimensions of Query (Q), Key (K), and Value (V) matrices in a Painter-customized
ViT-Large block are presented. The Feed-Forward Network (FFN) component within the Efficient Encoder has
been reduced by 2 x relative to the Painter’s Encoder architecture. The embedding dimension (ED) is utilized
to define the dimensionality of the ViT blocks. It is noteworthy that the decoder in the Painter architecture is
implemented as a series of stacked FFNs.

Blocks \ Heads Q K \'% Depth FFEN size Params(M) FLOPs(G)
Decoder (Painter) Wang et al.|(2023a) N/A NA NA NA NA EDx4xP? 67.16 119.875
Encoder ViT-Base (Painter)|Dosovitskiy et al.|(2021) 12 64 64 64 12 ED x4 87 17.58
Encoder ViT-Large (Painter) |Dosovitskiy et al.|(2021) 16 64 64 64 24 ED x4 370.7 673.24
Efficient-ViT: stage 1|Liu et al.|(2023) 4 16 16 64 1 ED x2 0.359 0.074
Efficient-ViT: stage 2|Liu et al.|(2023) 4 16 16 64 2 ED x2 3.551 0.209
Efficient-ViT: stage 3|Liu et al.|(2023) 4 16 16 64 3 ED x2 7.959 0.141

shows that Painter’s architecture is inefficient due to heavy encoder blocks. Fine-tuning a ViT-Large
backbone on a single A100 80G GPU limits the batch size to 8 and requires approximately 120
GPU hours for near-SOTA performance, yielding a throughput of 8.02 images/s. Using pure visual
prompts instead of linguistic guidance expands the input from 224 x 224 (196 patches) to 448 x 448
(768 patches), leading to quadratic growth in computational and memory demands and significantly
increasing the model’s FFN embedding dimensions. Replacing the ViT-Large backbone with a
ViT-Base variant reduces model complexity but significantly compromises in-context visual learning
capabilities without delivering substantial efficiency gains. Specifically, the ViT-Base variant achieves
throughput gains of 53.5% and 52% on the SIDD and LoL datasets, respectively, while resulting in
PSNR degradation of 3.22% and 9.69% on these image processing tasks.

These findings suggest that indiscriminate efficiency improvements can compromise critical aspects
like in-context visual learning.

4 OUR DESIGN

4.1 OVERVIEW

Designing an Efficient LVM capable of ICL from visual prompts across diverse visual tasks presents
significant challenges due to the varying context information required for different visual tasks. While
substituting a more efficient backbone seems like a straightforward approach, transferability will
diminish during training.

To overcome such deficiencies, our core design is built on three key components: (a) Trident
block with CAA; (b) CBFU with context-based order optimization; (c) context-aware multiscale
reconstruction loss function. The overall architecture is depicted in Fig. [3]

4.2 EFFICIENT LVMS WITH TRIDENT BLOCK

The following sections first introduce the CAA module and the trident block. As illustrated in Fig. 3]
(a), the context-aggregated attention module and the trident block are designed to effectively capture
and process in-context information from image pairs while maintaining computational and memory
efficiency.

Context-Aggregated Attention. Previous studies Wang et al.| (2023a)); |[Liu et al.| (2024)) utilizes
computation-bounded MHSA for learning contextual representations. As the contextual informa-
tion within each image pair for a specific task is spatially correlated and independent of channel
information. We partition the input features in a manner that aligns the number of channels with
the number of attention heads to enhance the versatility of MHSA and reduce its computational
cost, as illustrated in the left part in Fig. [3|(a). Furthermore, during the self-attention process, the
channel-wise features are aggregated again by applying an extra convolution layer iteratively to
pass global information. Let F' denotes the entire contextual feature map serving as the input of the
CAA layer, ® denotes convolution, and h denotes a smaller number of attention heads. The iterative
process can be formalized as follows:

FJ{ZFj—F(I)(F(j,l)), 1<j<h

Under review as a conference paper at ICLR 2025

Fusion Convolution

)

Feature F: : B.C. 5 y 21‘:/] B. C. ﬂ ﬂ] I
channel-wise partition | - D
: | \\l Multi-channel]= [epth-wise +
Fi F2 h

Smgle Depth-wise
o ﬁ+

: spatial concatenation

Contextual pair A

Fi
: L y
(& Contextual pair B
' ' Ty Lo
(a) Efficient Painter: Trident Block

Self-attention

Concat & Projection

2B, C, H, 2W] B: batch size

C: channels

I
|
| H: height of image
I s [. | W: width of image
2H 2H I'[B,p*+1, EDu] g 21 2w p: patch size
> > | SRR Zu;: multi-level feature map
o | o ow Y: final output feature map
W | [B. .5 EDul EDx,: embedding dimension
(I‘ émbedding) 5 (I embedding) |
£ | Haw
| B, EDL2]
: B.2 S T‘ EDLi] CBFU
Window Context A | 2
Window Context B : v { @ - Output
(B, 2%, 2%, ED) |
(b) An optimi: spatial 1 (c) Efficient Painter Encoder

Figure 3: An Overview of Proposed Efficient Painter Architecture. (a) The image features
three key components: the CAA module at the left, the trident block with two context inputs in
the center, and the detailed structure of each component within the trident block on the right. (b)
The diagram also includes context-related order optimization. (c) The Efficient Painter encoder is
depicted, showcasing variations such as CBFU, aggregation of blocks First, aggregation of blocks
Intermediate, and aggregation of blocks Last, each containing a different number of Efficient Painter
blocks in the Efficient Painter architecture.

where F]' is the j-th partition of an entire input feature map F' = [Fy, Fy, ..., F}] corresponding to

the j-th head, and F(J—1) denotes the feature from the previous head. Additionally, CAA modifies
the traditional attention mechanism to reduce redundancy in parameters and computational overhead
by adopting smaller dimensions for Q and K. Finally, CAA improves contextual locality between Q
and K through the depth-wise convolution layer (DWConv) Howard et al.|(2017), compared to recent
work [Liu et al.| (2023)).

Trident Block. Our lightweight encoder is constructed by stacking three levels of aggregation of
blocks as shown in the middle part of Fig. [3|(a). In each level of block aggregation, we employ a
distinct number of trident blocks designed to handle the contextual unrelated visual embeddings in
parallel. In particular, two CAA layers, as mentioned in the previous section, are ap’?hed to generate
representations for two contextual image patches, F4 and Fp, shaped as [B, C, £ o] from the
same task. These patches are subsequently transformed into two task-specific visual tokens with
shape of [B, EDy,,, Lioken], Where Lioken = ; x 2 and L; denotes the embedding dimensions at
the i-th level. However, since the generated visual tokens possess only independent contexts, this
leads to a reduction in mutual information and results in limited representation abilities. We introduce
a single context mixer that features a DWConv Howard et al.|(2017) layer and an FFN, where the
FFN is composed of 2 inverted DWConv |Howard et al.|(2017), to address this issue.

Despite the current design’s efficiency, it needs to work on utilizing the global relationship effectively
when the task-specific prompt changes in LVMs. Trident block further incorporates a CAA layer and
a multiple-channel fusion layer for enhanced context awareness. This multiple-channel fusion layer
comprises Ny, DWConv |Howard et al.| (2017) and FFN based on tailored to its hierarchical level.
Additionally, it includes a single Batch Normalization layer, where Ny, represents the number of
layers, L; indicates the corresponding hierarchical level i. To maintain the input-output symmetry, we
apply another context-wise concatenation before the mixer and a context-wise split after the fusion.

Under review as a conference paper at ICLR 2025

Finally, our trident block can be reformulated as
Fr, Fy = Prusion(CAA{Pmix (CAA(F), CAA(Fp))}),

where @i and Py, refer to single context mixer and multiple channel fusion layer. By incremen-
tally integrating more combinations of DWConv |[Howard et al.|(2017) and FFN as the number of
trident blocks increases, this arrangement as shown in Table [2| not only minimizes memory con-
sumption but also expedites understanding of the high-dimensional relationship compared to its ViT
counterpart. Despite these improvements, significant redundancy in global contextual information
remains in the lower tiers of the traditional backbone. To address this issue, we progressively increase
the embedding dimensions E' D, according to hierarchical levels, as illustrated in Table[2} Our trident
blocks between each level are designed to reshape the context from [B, EDy,, Lioken| into higher
dimensional feature maps with a shape of [B, EDy,, 1 Lyoken]- This transformation ensures effective
representation with minimal memory overhead introduced. The trident block depicted in Fig[3](a)
effectively grasps local and global contextual information through paralleled and memory-efficient
design, improving efficiency during the training and inference phases.

Table 2: Architecture Design Details of Efficient Painter Encoder Variants. We employ a
hierarchical structure comprising three levels of trident block aggregation. Each level incorporates L;
trident blocks. Within each level, the trident blocks utilize an equal embedding dimension of EDy,,
and Np,, combinations of DWConv |Howard et al.|(2017) and FFN.

Model (L1, Lo, Ly} (Ng,, N1, Np,} {EDy,, EDy,, EDy,} QK dimensions
Efficient Painter-M0| {1, 2, 3} (1,2,3) (64, 128, 192} 16
Efficient Painter-M1| {1, 2, 3} {1,2,3) (128, 144, 192} 16
Efficient Painter-M2| {1, 2, 3} {1,2,3} (128, 192, 224} 16
Efficient Painter-M3| {1, 2, 3} {1,2,3) {128, 240, 320} 16
Efficient Painter-M4| {1, 2, 3} {1,2,3} (128, 256, 392} 16
Efficient Painter-M5| {1, 3, 4} {1,2,3} {192, 288, 392} 16

4.3 COMBINED SINGLE AND MULTI-BLOCKS FEATURE

To ensure our efficient LVMs are robust across a wide distribution of contextual details in the visual
prompts and capture global information accurately in our efficient encoder, we propose a CBFU with
contextual order optimization.

Cross Blocks Feature Union. Traditional element-wise addition or simple concatenation is inad-
equate for encoding decoupled information between different blocks. Drawing on shortcut design
principles, as seen in ResNet and U-Net He et al.| (2015); [Ronneberger et al.| (2015). To improve
representational capacity, we implement CBFU module as outlined in Fig. [3|(c) to leverage different
levels of abstraction. CBFU integrates three direct shortcut feature maps from distinct blocks of the
Efficient Painter architecture, processed through a shared-weight Convolution and Batch Normaliza-
tion (ConvBN) layer, denoted as W. Subsequently, these maps are concatenated with a raw output, Y,
from the final aggregation blocks. This fusion process can be formalized as follows:

CBFU = concat U (¥(Z1,)),Y

L;

)

where Z;,, € RP% % FPri) a5 shown in Fig. (c) represents the output feature map at the i-th
level, with EDy,, denoting the embedding dimension for level ¢ € {1, 2, 3}. Following concatenation,
an FFN remaps the feature map to align with the dimensions of the subsequent decoder, similar
to that in the previous work [Wang et al.| (2023a)). This approach unifies feature maps across the
network, and thereby mitigate the limitation in previous study [Liu et al.|(2023). It offers two primary
advantages: alleviation of gradient explosions during training and information loss inherent in the
original Painter ViT block; and (2) the ability to utilize a smaller number of multiple-channel fusion

layers as illustrated in trident block.

Order Optimization. As illustrated in the training process detailed in the background section,
prior work |Wang et al.| (2023a) constructs a pair of queries and a pair of answers from /(,,.) and
I(14t) and feed them through patch embedding layer seperately. This approach shows a limited

Under review as a conference paper at ICLR 2025

representational capability for pixel-wise reconstruction tasks where the input and output spaces
are highly similar. To address this limitation, we adopt the method depicted in Fig. [3] (b), which
employs multi-scale convolutional layers to create patch embedding. Additionally, queries and
answers are horizontally concatenated into "window context" embeddings in the spatial domain based
on contextual information, thereby enhancing the model’s cross-task awareness.

4.4 CONTEXT-AWARE RECONSTRUCTION OBJECTIVE FUNCTION

During training, Efficient-Painter consists of a context-reorganizing encoder and a conventional dense
pixel-wise predictor as the decoder. Upon observation in Appendix Fig. [5] using smooth-/1, a clear
and increasing halo of noise is apparent around the edges of the artifact. Inspired by the approach in
Zhao et al.|(2017), we adopted a perceptual loss function combining MS-SSIM and [; to alleviate
this problem,

L = a- Lusssm(Lsre, Itgt) + (1 — a) - l1(Isre, Ltgt),
the detail of MS-SSIM loss function is included in the Appendix Loss Function [A.3] However,
we still identify an inefficiency during training by using perceptual loss function. Inspired by that
ICL visual inpainting is essentially a prompt-guided pixel-wise reconstruction process, we propose
another complementary context-aware loss function that incorporates a pretrained Painter encoder
for feature alignment tuning. Denote the final output feature map of a pretrained Painter encoder as
fp(X é), and the counterpart feature map of efficient Painter encoder as f.(X;; 6), where X is the

i-th data pair concatenated from ¢, and Ifgt for the same task, 6 represents frozen parameters, and 6

represent parameters to be trained. Additionally, Q(d) signifies the sum of elements in a batch feature
f(X;0), where X is a batch of inputs. Hence, our context-aware loss function can be formulated as
follows:)
L=8-L+(1-p8) ——I X;é,eX;Q.
BLt (1=) rblfpl(K:0), £(X50)

By incorporating the context-aware-based I, — norm, we leverage the pretrained encoder’s knowledge
to effectively guide the lightweight model without needing heavy architectures and effectively reduce
the iterations needed to reach an optimal solution. Our central objective is to perceive the contextual
inductive bias in parallel and embody prior knowledge delivered from a heavy encoder. Meanwhile,
our model benefits from different network configurations and can be quickly adapted to other low-level
image-processing tasks.

5 EVALUATION

5.1 EXPERIMENT SETUP

Hardware and Software. We compare Efficient Painter with the latest generalist model Painter on
seven benchmarks. Speed and accuracy tests are carried out on a single 80G Nvidia A100 (with a
peak performance of 9.7T FLOPs) for GPU and AMD EPYC 7543 32-Core Processor for CPU at
2.8 GHz. Our models are built with PyTorch 1.14 Paszke et al.| (2019) and detectron2 0.6.0. Other
training dependencies are listed in Appendix Table 8]

Implementation Details. Our efficient painter model undergoes 20 epochs of training using the
AdamW Kingma & Ba|(2017) optimizer with the cosine learning rate scheduler. We use a batch size
of 256 and a standard data augmentation including random resized cropping and color jittering during
training and zero data augmentation during validation. The input contextual pairs are set to 448 x224.
We employ a learning rate of 2.4 x 10~2, weight decay 0.05 with |31, 32] = [0.9,0.999]. Our dataset
of 434,850 data points combines multiple tasks with customized sampling rates: NYUv2 (0.1), ADE-
20K (0.2), COCO (0.6), SIDD (0.15), Derain Scenes (0.05), and LoL (0.05). For our context-aware
reconstruction loss function, we set o = 0.84, following Zhao et al.|(2017)). Additionally, we assign
£ = 0.5 to balance the complementary and perceptual loss functions.

5.2 BENCHMARKS AND DATASETS

We compare our methods with SOTA approaches using eight standard metrics (see Metrics in
Appendix . For each of the seven tasks, yf ; represents the ground truth and g}f ; the prediction.

Under review as a conference paper at ICLR 2025

Table 3: Computation Efficiency Comparison. Comparison of Efficient Painter models and Painter
in terms of computation efficiency metrics.

Model \ Epochs FLOPs (M) Training Cost (GPU Hours/Epoch) Avg. Throughput (imgs/s) Global Degradation (%)
Efficient Painter-M0O 20 4999 2.66 877.82 6.37

Efficient Painter-M1 20 5639 2.75 862.37 4.65

Efficient Painter-M2 20 6010 2.89 835.84 2.58

Efficient Painter-M3 20 6917 3.04 786.05 1.69

Efficient Painter-M4 20 7496 3.16 766.23 1.44

Efficient Painter-M5 20 8957 3.32 691.75 1.36

Painter (ViT-Large) | 15 172891 13.25 8.02 -

For instance, monocular depth is evaluated using the root mean square error (RMSE), absolute relative
error (A.Rel), and threshold accuracy §; within a range of [0, 10] meters. We utilize a diverse set of
datasets for our experiments: For depth estimation, we employ NYUv2 |Nathan Silberman & Fergus
(2012)). Semantic segmentation leverages ADE20K [Nathan Silberman & Fergus|(2012) (36K training,
650 validation images), while panoptic segmentation uses MS-COCO|Lin et al.|(2015) (110K training,
5K validation images). Keypoint detection utilizes COCO’s subset Xiao et al.|(2018a)) of over 15K
annotated samples. Image denoising employs SIDD |Abdelhamed et al.| (2018)), comprising 96K noisy
images from 10 scenes. For low-light enhancement, we use LoL [Wei et al.| (2018]) (500 image pairs:
485 training, 15 testing). Lastly, the derain task combines five major datasets|Fu et al.|(2017), totaling
approximately 13K images for training and validation.

5.3 MAIN RESULTS

Computational Efficiency. In Table |3] we quantitatively evaluate the computational cost of our
architecture. Without significant degradation, our Efficient Painter variants achieve a 4.98 x GPU-
hours training speedup per epoch when using the same dataset. They also provide actual speedup
during inference with relatively small FLOPs. Extensive experiments comparing various Efficient
Painter model variants (MO to M5) with the standard Painter (ViT-Large) model demonstrate that by
adjusting the number of blocks and embedding dimensions (E'Dy,,), we can optimize the models for
improved performance with fewer parameters.

Memory Efficiency. As shown in Table [d] increasing complexity from Efficient Painter-MO to
M35 raises parameters from 8.1 million to 39.0 million while decreasing global degradation from
6.37% to 1.36%. For instance, Efficient Painter-MO0, with 6 blocks and embedding dimensions
{64, 128,192}, exhibits a degradation of 6.37%, whereas Efficient Painter-M5, with 7 blocks and
dimensions {192, 288, 392}, reduces degradation to 1.36%. Compared to Painter (ViT-Large), which
has 370.7 million parameters and 24 blocks, making it 9.5 times larger than our largest model,
Efficient Painter models achieve lower performance degradation with significantly fewer parameters.
Even with only 1/19-th the FLOPs, Efficient Painter-M5 matches Painter ViT-Large in accuracy,
confirming the efficiency of our design.

Table 4: Memory Efficiency Comparison. Comparison of Efficient Painter model variants and
Painter in terms of parameters that impact memory efficiency. Global degradation is aggregated
across tasks.

Model \ Input size # of Blocks EDy, Params (M) Global Degradation (%)
Efficient Painter-MO | 448 x 224 6 {64, 128,192} 8.1 6.37

Efficient Painter-M1 | 448 x 224 6 {128,144,192} 11.7 4.65

Efficient Painter-M2 | 448 x 224 6 {128,192,224} 15.1 2.58

Efficient Painter-M3 | 448 x 224 6 {128, 240,192} 234 1.69

Efficient Painter-M4 | 448 x 224 6 {128, 256, 392} 29.0 1.44

Efficient Painter-M5 | 448 x 224 7 {192, 288,392} 39.0 1.36

Painter (ViT-Large) | 448 x 224 24 1024 370.7 -

Results. As shown in table [5] our comprehensive training and evaluation across seven different
tasks, including runtime benchmarks, confirm that Efficient Painter achieves a 5.5x speedup with
comparable accuracy after 20 epochs. Performance comparisons reveal that Efficient Painter sig-
nificantly outperforms its counterparts in various benchmarks, demonstrating only minor accuracy
drops in tasks like semantic segmentation and panoptic segmentation, while achieving improvements
in low-level tasks like PSNR and SSIM. These results highlight Efficient Painter’s advantages in

Under review as a conference paper at ICLR 2025

Table 5: Comparative Analysis of LVMs and Specialized Models Across a Spectrum of Visual
Tasks. we compare with the best results of each method. The backbones of the listed generalist
methods are: ViT-Large for UViM, Unified-10xy, with 2925M parameters, ViT-Base with another
Transformer decoder for Pix2Seq v2, and ViT-Large for Painter. The N/A indicates that acceleration
methods like Efficient-ViT are not applicable to visual prompt-based LVMs.

depth estimation semantic seg. panoptic seg. keypoint det. denoising deraining enhance.
NYUv2 ADE-20K Ccoco Ccoco SIDD 5 datasets LoL
RMSE/ARel. &1 mloU 1 PQ 1t AP PSNR{ SSIMt PSNR1 SSIM{ PSNR{ SSIM T
generalist framework, specialized models
UViM|Kolesnikov et al.[(2022] | 0.467/- - 45.8 -
generalist models
Unified-IO|Lu et al.|(2022] 0.385/- - -
Pix2Seq v2|Chen et al. (2022 - 64.8 - - - -
PromptGIP|L1u et al. (2024 - - - - - - 2546 0.8399 2030 0.803
Painter|Wang et al.[(2023a] 0.288/0.080 0.950 49.9 43.4 72.1 38.88 0.954 29.49 0.868 22.40 0.872
Painter (Efficient-VIT-M5) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Efficient Painter (ours) | 0.284/0.076 0.94 49.5 432 70.7 38.92 0.960 29.61 0.842 22.69 0.884

resource consumption, processing speed and accuracy, making it an efficient and versatile solution
for real-world applications where both performance and efficiency are critical.

5.4 ABLATION STUDY

To gain deeper insights into the factors that influence the speed-accuracy tradeoff in our design, we
thoroughly analyze the impact of each component in Efficient Painter. The evaluations are conducted
on the low-light enhancement task (LoL Wei et al.|(2018))), using our proposed Efficient Painter-M5
model. Each component’s modification and its corresponding effect on both performance metrics
and computational efficiency are assessed to better understand their contributions to the overall
architecture. The results are presented in Table[6]

Table 6: The Effects of Our Design. Efficient Painter-MS5 on LoL task [Wei et al.|(2018)) with PSNR,
SSIM and GPU throughput.

\ | Performance
Ablation ‘ Throughput (imgs/s) ‘ PSNRT SSIMT
1 Efficient Painter-M5 ‘ 691.8 | 22.69 0.88
2 CAA — MHSA 2247 21.45 0.82
3 Number of trident blocks at intermediate level = 2— 1 703.4 20.32 0.79
4 CBFU — None | 696.8 | 1849 0.64
5 Context-aware loss — smooth-l; \ | 2024 0.73

CAA. Changing the attention mechanism from CAA to MHSA drastically reduced throughput to
224.7 images per second and decreased the PSNR to 21.45 and SSIM to 0.82. This suggests that while
MHSA is a powerful attention mechanism, it is computationally more intensive and less effective in
this context than CAA.

Number of trident blocks at intermediate level. Reducing the number of trident blocks at the
intermediate level from 2 to 1 led to a decrease in both PSNR (from 22.69 to 20.32) and SSIM (from
0.88 to 0.79). The decline in image quality metrics suggests that fewer intermediate blocks limit the
model’s ability to capture and refine the key features required for effective image enhancement.

CBFU. Eliminating the CBFU entirely resulted in a substantial drop in performance, with PSNR
dropping from 22.69 to 18.49 and SSIM declining from 0.88 to 0.64. Throughput remained relatively
stable, this indicates that the feature union plays a critical role in the model’s ability to enhance
images effectively.

Contextual Order Optimization. Switching from context-aware loss to smooth-/; loss resulted in a
moderate reduction in performance, with PSNR dropping to 20.24 and SSIM to 0.73.

Under review as a conference paper at ICLR 2025

5.5 DISCUSSION

Table 7: Comparative Computational Complexity of CAA vs. MHSA. For a fair comparison, we use the
same embedding dimension £ D in both the CAA of our efficient trident block and the MHSA in the ICL
ViT-Large. For simplicity, we assume that: embedded patch token xz,, with a shape of [B, C, Hp,, Wp], which
will be embeded into [B, ED, Hy, x Wp] in the attention module, we compare their O(-) complexities based on
the main computational overheads. Here, n = H), - W), and h is the number of heads

Computation overhead in Attention | MHSA (O(n)) CAA (O(n)) Speedups x
Linear Embedding Bxnx3-ED* Bxnx 3 (& B D)2 h?
Attention Score (Q - KT) B x n? x ED Bxn?x & 4h
Applying Softmax B x n? B >< n2 -
Output Attention Bxn?xE2 Bxn?x 5 4

Computational Efficiency in CAA. As shown in Tablel we provide a detailed ana1y51s of the CAA’s
computatlon efficiency with MHSA. Specifically, setting the dimensions of Q and K to to that of V
in CAA, our approach reduces the complexity of the calculation by at least 4x in each operations.
Furthermore, we also identifies that employing the CAA method, which separates contextual features,
enables effective capture of contextual information even when utilizing the same masking strategy as
shown in Fig. 4

(c)

g (v"’ Af

ﬂ—ri-.—--i——h

R N

Figure 4: Comparison of CAA vs. MHSA. (a) rainy image pairs (b) ground truth pairs (c) non-
feature splits, where MHSA is applied (d) CAA with 8 channel splits (¢) CAA with 16 channel splits.
To enhance visualization, we extract the same level of global average feature map after only applying
50% consistent mask to all input target pairs.

6 CONCLUSION

Large Vision Models with ICL ability that employ pure vision guidance demonstrate great potential
for solving cross-task visual tasks. In this paper, we introduce Efficient Painter, an architecture
designed to optimize the speed-accuracy trade-off of a popular LVM: Painter. By leveraging an
improved trident block with CAA and a new CBFU module, Efficient Painter significantly reduces
training GPU hours to one-third and increases the throughput by 27 to 44 times, while maintaining a
comparable precision. In addition, Efficient Painter surpasses some current vision generalist models
in low-level tasks, providing a viable solution for deploying LVMs on resource-constrained devices.

7 ETHIC STATEMENT

The authors declare that there are no conflicts of interest with any individuals at Purdue University
during the review process.

REFERENCES

Abdelrahman Abdelhamed, Stephen Lin, and Michael S. Brown. A high-quality denoising dataset for
smartphone cameras. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 1692-1700, 2018. doi: 10.1109/CVPR.2018.00182.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza

10

Under review as a conference paper at ICLR 2025

Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Mon-
teiro, Jacob L Menick, Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Shar-
ifzadeh, Mikot aj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén
Simonyan. Flamingo: a visual language model for few-shot learning. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 23716-23736. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/960al72bc7fbf0177ccccbb411a7d800-Paper—Conference.pdf.

Ibraheem Alhashim and Peter Wonka. High quality monocular depth estimation via transfer learning,
2019.

Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts
for adapting large-scale models, 2022. URL https://arxiv.org/abs/2203.17274l

Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Globerson, and Alexei A. Efros. Visual prompting
via image inpainting, 2022.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster, 2023. URL https://arxiv.org/abs/2210,
09461.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers, 2020.

Mengzhao Chen, Wenqi Shao, Peng Xu, Mingbao Lin, Kaipeng Zhang, Fei Chao, Rongrong Ji,
Yu Qiao, and Ping Luo. Diffrate : Differentiable compression rate for efficient vision transformers,
2023. URL https://arxiv.org/abs/2305.17997.

Ting Chen, Saurabh Saxena, Lala Li, David J. Fleet, and Geoffrey Hinton. Pix2seq: A language
modeling framework for object detection, 2022.

Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021.

Xueyang Fu, Jiabin Huang, Delu Zeng, Yue Huang, Xinghao Ding, and John Paisley. Removing rain
from single images via a deep detail network. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1715-1723,2017. doi: 10.1109/CVPR.2017.186.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and Joao Carreira.
Perceiver: General perception with iterative attention, 2021.

Sheng-Chun Kao, Suvinay Subramanian, Gaurav Agrawal, Amir Yazdanbakhsh, and Tushar Krishna.
Flat: An optimized dataflow for mitigating attention bottlenecks, 2022.

11

https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://arxiv.org/abs/2203.17274
https://arxiv.org/abs/2210.09461
https://arxiv.org/abs/2210.09461
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2305.17997

Under review as a conference paper at ICLR 2025

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Alexander Kolesnikov, André Susano Pinto, Lucas Beyer, Xiaohua Zhai, Jeremiah Harmsen, and
Neil Houlsby. Uvim: A unified modeling approach for vision with learned guiding codes, 2022.

Zhenyu Li, Xuyang Wang, Xianming Liu, and Junjun Jiang. Binsformer: Revisiting adaptive bins for
monocular depth estimation, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollar. Microsoft coco: Common objects
in context, 2015.

Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan Yuan. Efficientvit:
Memory efficient vision transformer with cascaded group attention, 2023.

Yihao Liu, Xiangyu Chen, Xianzheng Ma, Xintao Wang, Jiantao Zhou, Yu Qiao, and Chao Dong.
Unifying image processing as visual prompting question answering, 2024. URL https://
arxiv.org/abs/2310.10513.

Zhenhua Liu, Yunhe Wang, Kai Han, Siwei Ma, and Wen Gao. Post-training quantization for vision
transformer, 2021.

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha Kembhavi. Unified-
io: A unified model for vision, language, and multi-modal tasks, 2022.

Junzhu Mao, Yazhou Yao, Zeren Sun, Xingguo Huang, Fumin Shen, and Heng-Tao Shen. Attention
map guided transformer pruning for edge device, 2023.

Armin Mehri, Parichehr B. Ardakani, and Angel D. Sappa. Mprnet: Multi-path residual network for
lightweight image super resolution, 2020.

Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-weight, general-purpose, and mobile-
friendly vision transformer, 2022a.

Sachin Mehta and Mohammad Rastegari. Separable self-attention for mobile vision transformers,
2022b.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning, 2019.

Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In ECCV, 2012.

Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios
Tzimiropoulos, and Brais Martinez. Edgevits: Competing light-weight cnns on mobile devices
with vision transformers, 2022.

Zizheng Pan, Jianfei Cai, and Bohan Zhuang. Fast vision transformers with hilo attention, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention, 2021.

12

https://arxiv.org/abs/2310.10513
https://arxiv.org/abs/2310.10513
https://arxiv.org/abs/1505.04597

Under review as a conference paper at ICLR 2025

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong
Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep high-resolution representation
learning for visual recognition, 2020.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong
Lu, Jie Zhou, Yu Qiao, et al. Visionllm: Large language model is also an open-ended decoder for
vision-centric tasks. Advances in Neural Information Processing Systems, 36, 2024.

Xinlong Wang, Wen Wang, Yue Cao, Chunhua Shen, and Tiejun Huang. Images speak in images: A
generalist painter for in-context visual learning, 2023a.

Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, and Tiejun Huang. Seggpt:
Segmenting everything in context. arXiv preprint arXiv:2304.03284, 2023b.

Yulin Wang, Rui Huang, Shiji Song, Zeyi Huang, and Gao Huang. Not all images are worth
16x16 words: Dynamic transformers for efficient image recognition, 2021a. URL https:
//arxiv.org/abs/2105.15075.

Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li.
Uformer: A general u-shaped transformer for image restoration, 2021b.

Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light
enhancement, 2018.

Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. Tinyvit:
Fast pretraining distillation for small vision transformers, 2022.

Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking,
2018a.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding, 2018b.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling, 2022.

Yuhui Yuan, Rao Fu, Lang Huang, Weihong Lin, Chao Zhang, Xilin Chen, and Jingdong Wang.
Hrformer: High-resolution transformer for dense prediction, 2021.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan
Yang, and Ling Shao. Learning enriched features for real image restoration and enhancement,
2020.

Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for image restoration with
neural networks. IEEE Transactions on Computational Imaging, 3(1):47-57, 2017. doi: 10.1109/
TCIL.2016.2644865.

Xu Zhao, Wenchao Ding, Yongqi An, Yinglong Du, Tao Yu, Min Li, Ming Tang, and Jingiao Wang.
Fast segment anything, 2023. URL https://arxiv.org/abs/2306.12156.

A APPENDIX

A.1 MORE RESULTS
A.2 METRICS
* average relative error (A. Rel.):

t ~t
Yij —Yij

t
Yij

)

1
2
i

13

https://arxiv.org/abs/2105.15075
https://arxiv.org/abs/2105.15075
https://arxiv.org/abs/2306.12156

Under review as a conference paper at ICLR 2025

(a) GT (b) PSNR:35.17 (c) PSNR:39.93

Figure 5: Visualization of Different Loss Function on Denoise Task. (a) Groundtruth (b) Smooth-I;
loss function is adopted. (c) Context-aware loss function is adopted. It alleviates image degradations,
such as blurring, and produces higher-quality images during reconstruction..

Input Painter Efficient Painter

Derain

LoL

"

Figure 6: Comparative Visualization. Our model outperforms Painter on 3 low-level reconstruction
tasks. Input and groundtruth (GT) are presented as well.

* root mean squared error (RMSE):

1 .
t .t 2.
\/E §t (yi,j yz‘,j) ;

* average (log,) error:

1 A~
n Z |10g10(yf,j) - 10g10(1/f,j)| ;
t

« threshold accuracy (d;): % of yf; st max (Zﬁ,iﬂ) = 0 < thrforthr =
7 57
1.25,1.252,1.25%
¢ mean Intersection over Union (mloU):

k
1 Dii
mloU = Z k %
k+1 i=0 Zj:() Dij + Zj:opji — Dii
TP
(FP+ FN + TP)

— k is the number of classes,

— py; represents the true positives for class ¢,

— p;; represents the predictions of class 7 as class j,
— pj; represents the predictions of class j as class ¢.

14

Under review as a conference paper at ICLR 2025

* peak signal to noise ratio (PSNR):
MAX?
PSNR = 10 - 1 —1L

where MAX is the maximum possible pixel value of the image and MSE is the Mean
Squared Error between the original and the desired output image.

e structural similarity index (SSIM):
SSIM(%, y) = [l(.’b, y)oc : C(.’E, y)ﬁ : S((E, y)’Y] =

where:

2ttty + 1) (200, + c2)
(G2 + 12 + 1) (02 + 02 + ¢3)

- Il(z,y), c(z,y), s(z,y) represent luminance comparison, contrast comparison, and
structure comparison respectively;

— g, ity TEPrEsent the mean of x, y respectively;

- 037, 05 represent the variance of x, y respectively;

— 0y 18 the covariance of x and y;

- ¢1 = (k1L)?, co = (koL)? are two variables to stabilize the division with a weak
denominator;

— L is the dynamic range of the pixel-values (typically this is 2% Per pizel _ 1),

— k1 = 0.01 and k2 = 0.03 by default.

* panoptic quality (PQ) for panoptic segmentation:

PQ = Z(p,g)eTP loU(p, g) % |TP|
|TP| \TP|+%|FP\+%|FN|
segmentation quality (SQ) recognition quality (RQ)

A.3 Loss FUNCTION

The MS-SSIM loss function Lys-sspv between two images x and y is defined as:

Lys ssm(x,y) =1 — MS-SSIM(x, y) ()
The MS-SSIM index is computed as the weighted product of SSIM indices across multiple scales:
M
MS-SSIM(x, y) = [] [SSIM; (x,¥)]" @
j=1

Each SSIM index at scale j is given by:
2ix,ifby . 20%y.j
SSIM, (3, y) = —pobstty.s + C1 20y, + Co) 3)
(Hx; + 1y +C1)(og ; + oy +C2)

Notation details

* x,y: Input images between which similarity is to be measured.
* Lys.ssiv(X,y): MS-SSIM Loss Function, defined as one minus the MS-SSIM index.

* MS-SSIM(x,y): Multi-Scale Structural Similarity Index, representing the overall similarity
between images x and y across multiple scales.

* M: Total number of scales at which SSIM is computed. Increasing M allows capturing
structural information at more levels of detail.

* SSIM;(x,y): Structural Similarity Index at scale j. It measures the similarity between x
and y at a specific scale.

* w;: Weight assigned to the SSIM index at scale j. The weights typically satisfy Z;Vil wj =
1, ensuring a normalized contribution from each scale.

* lix,j, My,;: Local means of images x and y at scale j. These are usually computed using a
Gaussian filter.

* 03 j, 05 ;: Local variances of images x and y at scale j.

* Oxy,;: Local covariance between images x and y at scale j.

15

Under review as a conference paper at ICLR 2025

A.4 Loss TREND PLOT

___ batch size: 256 epoch: 20 learning rate: e~-3
batch size: 64 epoch: 20 learning rate: e~-3
__ batch size: 256 epoch: 15 learning rate: e~-3
___ batch size: 256 epoch: 20 learning rate: e~-3
‘ _ batch size: 128 epoch: 32 learning rate: e~-2

o batch size: 256 epoch: 20 learning rate: e~-3
‘ T Ablated: without cross blocks feature union

Loss Value

“Iteration (downsampled by 10x)

Figure 7: Loss Trends for Varying Hyper-parameters and Cross-Block Feature Union (CBFU)
Ablation. This graph shows the progression of training loss across different configurations of the
Efficient Painter-MS5, highlighting the impact of batch size, learning rate, and epoch adjustments, as
well as the significant effect of removing the CBFU. Each line represents a distinct setup, providing a
visual comparison of how these changes influence model training and efficiency.

A.5 SOFTWARE ENVIRONMENT

Table 8: Software Environment

Dependency Version
detectron2 0.6.0
fairscale 0.4.13
fvcore 0.1.5
hSpy 3.10.0
panopticapi 0.1
timm 054
torch 0.13.1+cul17

torchvision 0.14.1+cul17
torchaudio 0.13.1+cul17
xtcocotools 1.14.3
yacs 0.1.8

16

	Introduction
	Related Work
	Background & Motivation
	Our Design
	Overview
	Efficient LVMs with trident block
	Combined Single and Multi-Blocks Feature
	Context-aware reconstruction objective function

	Evaluation
	Experiment Setup
	Benchmarks and Datasets
	Main Results
	Ablation Study
	Discussion

	Conclusion
	Ethic Statement
	Appendix
	More Results
	Metrics
	Loss Function
	Loss Trend Plot
	Software Environment

