
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT IN-CONTEXT VISUAL LEARNING WITH TRI-
DENT BLOCK AND CROSS BLOCKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Visual prompt-based large vision models exhibit remarkable performance in a
range of vision tasks. However, visual prompting large vision models are com-
putationally intensive and resource-demanding due to their large parameter sizes
and the complexity of processing visual prompts, resulting in inefficiencies in
speed and memory usage. To tackle these challenges, we propose the Efficient
Painter model, which leverages a novel context-aggregated attention based trident
block to alleviate cross-task gaps and reduce memory and computation overhead.
Furthermore, we introduce a cross-blocks feature union module to capture global
contextual information at different levels and speed up training. This architecture
mitigates training costs and memory requirements during inference. Our model
strikes a balance between speed and memory efficiency, achieving a 19× reduction
in floating point operations per second (FLOPs). Moreover, our model is 9×
smaller in model size and runs 4.1× and 27× faster during training and inference,
respectively. Comprehensive experiments demonstrate that our design effectively
processes additional visual prompts and outperforms baseline methods on standard
benchmarks like SIDD and LoL in zero-shot settings, improving performance by
0.4% and 1.2% respectively.

1 INTRODUCTION

Visual prompt-based Large Vision Models (LVMs) have recently emerged as a powerful approach for
various vision tasks without relying on language instructions. Unlike traditional models like CLIP
Radford et al. (2021) and Flamingo Alayrac et al. (2022) that depend on language guidance, visual
prompt-based LVMs Wang et al. (2023a;b; 2024) operate solely on continuous visual inputs. These
models reduce quantization errors from discretization and enable effective in-context visual learning
through masked image modeling techniques by aligning the output space to be as continuous as the
input images.

Standard LVMs typically utilize encoder-decoder architectures, which are computationally intensive
and resource-demanding due to their complex designs. This issue is magnified in visual prompt-
based LVMs, as visual prompt-based LVMs must handle additional visual prompt inputs, increasing
computational complexity and resource consumption. During inference, processing high dimensional
vision prompts leads to higher latency, negatively impacting performance in real-time applications.
Conventional methods like quantization and pruning Liu et al. (2021); Mao et al. (2023); Molchanov
et al. (2019) aim to reduce computational load but often fail to improve inference time significantly.
Recent studies Kao et al. (2022); Mehta & Rastegari (2022b) have identified redundant parameters
and frequent memory access operations in multi-head self-attention (MHSA) as bottlenecks, however,
they result in reduced accuracy and minimal speed improvement. While some work Pan et al. (2022;
2023); Wu et al. (2022) focus on redesigning transformer blocks to enhance performance, they do
not simultaneously address memory and computational efficiency or reduce parameter redundancy.
Therefore, these methods not only fail to achieve overall efficiency, but the distinctive manner in
which visual prompt-based LVMs incorporate visual tokens into the models also makes them directly
inapplicable. Applying these methods would impair the model’s in-context visual learning capabilities.
Consequently, such barriers complicate the application of classical architectural optimizations.

Building upon the issues outlined above, the primary challenge lies in achieving a delicate balance
between overall model efficiency in computation and memory and the in-context learning (ICL)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Denoise Task (b) Low Light Enhancement Task

Figure 1: The Comparative Analysis Result. Speed and accuracy compared on 2 benchmarks:
SIDD and LoL. Throughput results are obtained on single GPU A100 (80G).

capacities required for visual prompt-based models. To address this challenge, we propose Efficient
Painter, an advanced visual prompt-based LVM. Efficient Painter enhances efficiency by integrating a
trident block architecture equipped with context-aggregated attention (CAA), effectively optimizing
computational and memory demands while preserving robust in-context visual learning capabilities.
This design allows the model to perceive dynamic context information while reducing memory
and computational demands. The trident block also decouples visual prompts from task-specific
content images, minimizing visual semantic confusion. To enhance the model learning capacity, we
integrate a cross-blocks feature union (CBFU) module, which improves multi-level global information
processing. Additionally, we optimize prompt embedding orders based on the spatial correlation
of inputs, accelerating training and boosting performance. Our model demonstrates substantial
improvements in image low-light enhancement and denoising tasks, surpassing previous state-of-the-
art (SOTA) models. Besides, as shown in figure 1, we achieved a significant increase in optimized
efficiency compared to traditional Painter vision transformer (ViT) variants. The main contributions
of this paper are summarized as follows:

• We present a comprehensive study on a popular visual prompt-based LVM Wang et al.
(2023a) to identify its main bottlenecks: the additional computational overhead from visual
prompts during training and a memory-inefficient architecture design.

• We propose a model named Efficient Painter, which trains the model using an efficient ICL
fashion and introduces a CAA based trident block and a CBFU module to alleviate the
cross-task gap and reduce memory and computation overhead of the model.

• We perform extensive experiments showing that our design demonstrates superior perfor-
mance over the baseline methods on standard benchmarks like SIDD Abdelhamed et al.
(2018) and LoL Wei et al. (2018), achieving a speed up of 0.4% and 1.2% respectively.

2 RELATED WORK

Efficient ViTs. ViTs Wang et al. (2021a) exhibit powerful capabilities in various vision tasks.
However, ViTs are hindered from deployment due to the limited throughput in resource-limited
environments. Traditional approaches such as DeiT Touvron et al. (2021), and MobileViT Mehta &
Rastegari (2022a) leverage knowledge distillation or architectural downsize fail to enhance actual
inference speed or throughput. Conversely, post-training techniques like Token Merging (ToMe)
Bolya et al. (2023) and DiffRate Chen et al. (2023) optimize token usage to reduce the model’s
FLOPs. Despite lowering theoretical computational complexity, they do not improve memory
efficiency significantly due to additional parameters introduced in Multi-head Self-attention and Feed-
Forward Layers. Recent strategies like EfficientSAM Zhao et al. (2023) aim to balance parameter
reduction and computation demands by transferring the capabilities of heavy-weight models to
smaller ones using masked image pretraining. However, it incurs significant computational and
memory overhead during training, making it intolerable in scenarios with limited resources and in
vision tasks spanned across multiple semantic contexts. In addition, these methods focus primarily
on specific tasks such as SAM, which limits their general applicability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

LVMs with ICL. ICL Brown et al. (2020) enables models to adapt to new tasks by leveraging
contextual information during inference. Recent research has demonstrated that LVMs are particularly
effective for ICL due to their self-attention mechanisms, which are adept at modeling long-range
dependencies across images and texts. Prominent ICL ViTs, such as Perceiver IO Jaegle et al. (2021)
and Flamingo Alayrac et al. (2022), excel in few-shot learning by effectively utilizing contextual
examples. Recent innovations, including Visual Prompting Bahng et al. (2022) and PromptGIP
Liu et al. (2024), leverage visual prompts for task guidance. However, these methods typically
require larger parameter sizes and substantial GPU memory, limiting their practicality for real-life
applications. In this paper, we explore the development of a visual prompt-based ViT designed to
improve both time and memory efficiency while achieving ICL capabilities. Our approach aims to
address existing challenges and enhance the applicability of visual-prompt ICL models in resource-
limited scenarios.

3 BACKGROUND & MOTIVATION

Pair B

Pair A

Painter

Stage1 (Output Unification)

Classification
K(i,j)

Output
Categories

Base
Conversion

Masked

Stage2 (Training)

(i,j): pixel location in RGB image

K: category number (R,G,B)base-b

: a pixel-wise prediction with a location of (i,j)I(src): two source images
I(tgt): two target images
Contextual Pair (A/B): source image with its annotation

*: denotes training process
Preds: Predictions
GT: Ground Truth

m = ⌊ ⌋

: replaceable

Stage3 (Image Restorations)

Painter

i

R

G

B

i

j i

j

42

210

j

168

I(src) I(tgt)

Painter*

Loss

Preds GT

m

b = ⌈ ⌉

Figure 2: Training Process of Efficient Painter for Semantic Segmentation. Stage 1: Semantic
categories are converted into three-digit numbers in different bases for pixel-wise representation.
For example, "bed" (149 in base 10) becomes 415 in base 6, and when multiplied by margin
m = 42, results in RGB vector [168, 42, 210]. Stage 2: Targets are restored using simMIM. Stage 3:
Predictions are generated using context-related prompts.

Background. To achieve in-context visual learning, LVMs like Painter require 3 major stages of
the masked image modeling Xie et al. (2022) learning process, as can be shown in Fig. 2. In Stage
1, Painter unifies cross-domain visual tasks into the same RGB image space. During training, as
shown in Fig. 2 Stage 2, the Painter utilizes source input pairs: Isrc as queries and their annotated
target counterpart Itgt as answers and applies a 75% mask ratio to the answers. Consequently, during
inference as shown in Stage 3. in Fig. 2, the model only requires stacking a task-specific prompt and
another source image to complete the pixel-wise reconstruction. The core of the ICL frameworks
capable of performing extensive multi-modal vision tasks involves employing ViT-Large backbone,
which contains over 307 million parameters Wang et al. (2023a;b); Bar et al. (2022).

Motivation. In this chapter, we empirically compare Painter with the SOTA EfficientViT backbone
Liu et al. (2023) to assess their overall efficiency. Additionally, leveraging Painter’s architecture, we
investigate the relationship between efficiency and in-context visual learning capabilities. Table 1

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: A Heuristic Approach Optimizes Model Size and Reduces Computational Complexity. For
comparative analysis, the dimensions of Query (Q), Key (K), and Value (V) matrices in a Painter-customized
ViT-Large block are presented. The Feed-Forward Network (FFN) component within the Efficient Encoder has
been reduced by 2× relative to the Painter’s Encoder architecture. The embedding dimension (ED) is utilized
to define the dimensionality of the ViT blocks. It is noteworthy that the decoder in the Painter architecture is
implemented as a series of stacked FFNs.

Blocks Heads Q K V Depth FFN size Params(M) FLOPs(G)

Decoder (Painter) Wang et al. (2023a) N/A N/A N/A N/A N/A ED × 4 × P 2 67.16 119.875
Encoder ViT-Base (Painter) Dosovitskiy et al. (2021) 12 64 64 64 12 ED ×4 87 17.58
Encoder ViT-Large (Painter) Dosovitskiy et al. (2021) 16 64 64 64 24 ED ×4 370.7 673.24

Efficient-ViT: stage 1 Liu et al. (2023) 4 16 16 64 1 ED ×2 0.359 0.074
Efficient-ViT: stage 2 Liu et al. (2023) 4 16 16 64 2 ED ×2 3.551 0.209
Efficient-ViT: stage 3 Liu et al. (2023) 4 16 16 64 3 ED ×2 7.959 0.141

shows that Painter’s architecture is inefficient due to heavy encoder blocks. Fine-tuning a ViT-Large
backbone on a single A100 80G GPU limits the batch size to 8 and requires approximately 120
GPU hours for near-SOTA performance, yielding a throughput of 8.02 images/s. Using pure visual
prompts instead of linguistic guidance expands the input from 224× 224 (196 patches) to 448× 448
(768 patches), leading to quadratic growth in computational and memory demands and significantly
increasing the model’s FFN embedding dimensions. Replacing the ViT-Large backbone with a
ViT-Base variant reduces model complexity but significantly compromises in-context visual learning
capabilities without delivering substantial efficiency gains. Specifically, the ViT-Base variant achieves
throughput gains of 53.5% and 52% on the SIDD and LoL datasets, respectively, while resulting in
PSNR degradation of 3.22% and 9.69% on these image processing tasks.

These findings suggest that indiscriminate efficiency improvements can compromise critical aspects
like in-context visual learning.

4 OUR DESIGN

4.1 OVERVIEW

Designing an Efficient LVM capable of ICL from visual prompts across diverse visual tasks presents
significant challenges due to the varying context information required for different visual tasks. While
substituting a more efficient backbone seems like a straightforward approach, transferability will
diminish during training.

To overcome such deficiencies, our core design is built on three key components: (a) Trident
block with CAA; (b) CBFU with context-based order optimization; (c) context-aware multiscale
reconstruction loss function. The overall architecture is depicted in Fig. 3.

4.2 EFFICIENT LVMS WITH TRIDENT BLOCK

The following sections first introduce the CAA module and the trident block. As illustrated in Fig. 3
(a), the context-aggregated attention module and the trident block are designed to effectively capture
and process in-context information from image pairs while maintaining computational and memory
efficiency.

Context-Aggregated Attention. Previous studies Wang et al. (2023a); Liu et al. (2024) utilizes
computation-bounded MHSA for learning contextual representations. As the contextual informa-
tion within each image pair for a specific task is spatially correlated and independent of channel
information. We partition the input features in a manner that aligns the number of channels with
the number of attention heads to enhance the versatility of MHSA and reduce its computational
cost, as illustrated in the left part in Fig. 3 (a). Furthermore, during the self-attention process, the
channel-wise features are aggregated again by applying an extra convolution layer iteratively to
pass global information. Let F denotes the entire contextual feature map serving as the input of the
CAA layer, Φ denotes convolution, and h denotes a smaller number of attention heads. The iterative
process can be formalized as follows:

F ′
j = Fj +Φ(F̃(j−1)), 1 < j ≤ h

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

``

(b) An optimized spatial concatenation

(a) Efficient Painter: Trident Block

(c) Efficient Painter Encoder

B: batch size
C: channels
H: height of image
W: width of image
p: patch size
ZLi: multi-level feature map
Y: final output feature map
EDLi: embedding dimension

channel-wise partition

Head 1

Q K V

Depth-wise
Convolution

Self-attention

Concat & Projection

…
…
…
…

Head 2

Q K V

Depth-wise
Convolution

Self-attention

…
…
…
…

Concatenation

Patch Embed

First

Input Pairs

Intermediate

Last

Y Output

CBFU

Pos Embed

[B, p2+1, EDL1]

[2B, C, H, 2W]

ZL0Conv BN

Conv BN

Conv BN

[B, , , EDL1]

ZL1

ZL2

Head h

Q K V

Depth-wise
Convolution

Self-attention Contextual pair A

Contextual pair B

I(src) I(tgt)

1 ×1
Conv

1 ×1
Conv

..

ED

..

ED

(I(src) embedding) (I(tgt) embedding)

..

[B, , , ED]

Window Context A

Window Context B

Multi-channel
Fusion

Depth-wise
Convolution

FFN

Single
Context Mixer

FFN
Depth-wise
Convolution

BN

: spatial concatenation

Context A

CAA

Single Context
Mixer

Multi-channel
Fusion

CAA

Context B

[B, C, ,]

×NLi

×1

CAA

1 ×1
Conv

[B, C, ,] Feature F:

F1 F2 Fh

F1
~

F2
~

Fh
~

[B, , , EDL1]

[B, , , EDL2]

[B, , , EDL3]

Figure 3: An Overview of Proposed Efficient Painter Architecture. (a) The image features
three key components: the CAA module at the left, the trident block with two context inputs in
the center, and the detailed structure of each component within the trident block on the right. (b)
The diagram also includes context-related order optimization. (c) The Efficient Painter encoder is
depicted, showcasing variations such as CBFU, aggregation of blocks First, aggregation of blocks
Intermediate, and aggregation of blocks Last, each containing a different number of Efficient Painter
blocks in the Efficient Painter architecture.

where F ′
j is the j-th partition of an entire input feature map F = [F1, F2, ..., Fh] corresponding to

the j-th head, and F̃(j−1) denotes the feature from the previous head. Additionally, CAA modifies
the traditional attention mechanism to reduce redundancy in parameters and computational overhead
by adopting smaller dimensions for Q and K. Finally, CAA improves contextual locality between Q
and K through the depth-wise convolution layer (DWConv) Howard et al. (2017), compared to recent
work Liu et al. (2023).

Trident Block. Our lightweight encoder is constructed by stacking three levels of aggregation of
blocks as shown in the middle part of Fig. 3 (a). In each level of block aggregation, we employ a
distinct number of trident blocks designed to handle the contextual unrelated visual embeddings in
parallel. In particular, two CAA layers, as mentioned in the previous section, are applied to generate
representations for two contextual image patches, FA and FB , shaped as [B,C, H

p ,
2W
p] from the

same task. These patches are subsequently transformed into two task-specific visual tokens with
shape of [B,EDLi , Ltoken], where Ltoken = H

p × 2W
p and Li denotes the embedding dimensions at

the i-th level. However, since the generated visual tokens possess only independent contexts, this
leads to a reduction in mutual information and results in limited representation abilities. We introduce
a single context mixer that features a DWConv Howard et al. (2017) layer and an FFN, where the
FFN is composed of 2 inverted DWConv Howard et al. (2017), to address this issue.

Despite the current design’s efficiency, it needs to work on utilizing the global relationship effectively
when the task-specific prompt changes in LVMs. Trident block further incorporates a CAA layer and
a multiple-channel fusion layer for enhanced context awareness. This multiple-channel fusion layer
comprises NLi

DWConv Howard et al. (2017) and FFN based on tailored to its hierarchical level.
Additionally, it includes a single Batch Normalization layer, where NLi

represents the number of
layers, Li indicates the corresponding hierarchical level i. To maintain the input-output symmetry, we
apply another context-wise concatenation before the mixer and a context-wise split after the fusion.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Finally, our trident block can be reformulated as

F̂A, F̂B = Φfusion(CAA{Φmix(CAA(FA),CAA(FB))}),

where Φmix and Φfusion refer to single context mixer and multiple channel fusion layer. By incremen-
tally integrating more combinations of DWConv Howard et al. (2017) and FFN as the number of
trident blocks increases, this arrangement as shown in Table 2, not only minimizes memory con-
sumption but also expedites understanding of the high-dimensional relationship compared to its ViT
counterpart. Despite these improvements, significant redundancy in global contextual information
remains in the lower tiers of the traditional backbone. To address this issue, we progressively increase
the embedding dimensions EDLi

according to hierarchical levels, as illustrated in Table 2. Our trident
blocks between each level are designed to reshape the context from [B,EDLi

, Ltoken] into higher
dimensional feature maps with a shape of [B,EDLi+1

, Ltoken]. This transformation ensures effective
representation with minimal memory overhead introduced. The trident block depicted in Fig.3 (a)
effectively grasps local and global contextual information through paralleled and memory-efficient
design, improving efficiency during the training and inference phases.

Table 2: Architecture Design Details of Efficient Painter Encoder Variants. We employ a
hierarchical structure comprising three levels of trident block aggregation. Each level incorporates Li

trident blocks. Within each level, the trident blocks utilize an equal embedding dimension of EDLi

and NLi
combinations of DWConv Howard et al. (2017) and FFN.

Model {L1, L2, L3} {NL1
, NL2

, NL3
} {EDL1

, EDL2
, EDL3

} Q,K dimensions

Efficient Painter-M0 {1, 2, 3} {1, 2, 3} {64, 128, 192} 16
Efficient Painter-M1 {1, 2, 3} {1, 2, 3} {128, 144, 192} 16
Efficient Painter-M2 {1, 2, 3} {1, 2, 3} {128, 192, 224} 16
Efficient Painter-M3 {1, 2, 3} {1, 2, 3} {128, 240, 320} 16
Efficient Painter-M4 {1, 2, 3} {1, 2, 3} {128, 256, 392} 16
Efficient Painter-M5 {1, 3, 4} {1, 2, 3} {192, 288, 392} 16

4.3 COMBINED SINGLE AND MULTI-BLOCKS FEATURE

To ensure our efficient LVMs are robust across a wide distribution of contextual details in the visual
prompts and capture global information accurately in our efficient encoder, we propose a CBFU with
contextual order optimization.
Cross Blocks Feature Union. Traditional element-wise addition or simple concatenation is inad-
equate for encoding decoupled information between different blocks. Drawing on shortcut design
principles, as seen in ResNet and U-Net He et al. (2015); Ronneberger et al. (2015). To improve
representational capacity, we implement CBFU module as outlined in Fig. 3 (c) to leverage different
levels of abstraction. CBFU integrates three direct shortcut feature maps from distinct blocks of the
Efficient Painter architecture, processed through a shared-weight Convolution and Batch Normaliza-
tion (ConvBN) layer, denoted as Ψ. Subsequently, these maps are concatenated with a raw output, Y ,
from the final aggregation blocks. This fusion process can be formalized as follows:

CBFU = concat

[⋃
Li

(Ψ(ZLi)) , Y

]
,

where ZLi
∈ R(B,Hp ,Wp ,EDLi

) as shown in Fig. 3 (c) represents the output feature map at the i-th
level, with EDLi

denoting the embedding dimension for level i ∈ {1, 2, 3}. Following concatenation,
an FFN remaps the feature map to align with the dimensions of the subsequent decoder, similar
to that in the previous work Wang et al. (2023a). This approach unifies feature maps across the
network, and thereby mitigate the limitation in previous study Liu et al. (2023). It offers two primary
advantages: alleviation of gradient explosions during training and information loss inherent in the
original Painter ViT block; and (2) the ability to utilize a smaller number of multiple-channel fusion
layers as illustrated in trident block.

Order Optimization. As illustrated in the training process detailed in the background section,
prior work Wang et al. (2023a) constructs a pair of queries and a pair of answers from I(src) and
I(tgt) and feed them through patch embedding layer seperately. This approach shows a limited

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

representational capability for pixel-wise reconstruction tasks where the input and output spaces
are highly similar. To address this limitation, we adopt the method depicted in Fig. 3 (b), which
employs multi-scale convolutional layers to create patch embedding. Additionally, queries and
answers are horizontally concatenated into "window context" embeddings in the spatial domain based
on contextual information, thereby enhancing the model’s cross-task awareness.

4.4 CONTEXT-AWARE RECONSTRUCTION OBJECTIVE FUNCTION

During training, Efficient-Painter consists of a context-reorganizing encoder and a conventional dense
pixel-wise predictor as the decoder. Upon observation in Appendix Fig. 5, using smooth-l1, a clear
and increasing halo of noise is apparent around the edges of the artifact. Inspired by the approach in
Zhao et al. (2017), we adopted a perceptual loss function combining MS-SSIM and l1 to alleviate
this problem,

L̂ = α · LMS-SSIM(Isrc, Itgt) + (1− α) · l1(Isrc, Itgt),
the detail of MS-SSIM loss function is included in the Appendix Loss Function A.3. However,
we still identify an inefficiency during training by using perceptual loss function. Inspired by that
ICL visual inpainting is essentially a prompt-guided pixel-wise reconstruction process, we propose
another complementary context-aware loss function that incorporates a pretrained Painter encoder
for feature alignment tuning. Denote the final output feature map of a pretrained Painter encoder as
fp(Xi; θ̂), and the counterpart feature map of efficient Painter encoder as fe(Xi; θ), where Xi is the
i-th data pair concatenated from Iisrc and Iitgt for the same task, θ̂ represents frozen parameters, and θ
represent parameters to be trained. Additionally, Ω(d) signifies the sum of elements in a batch feature
f(X⃗; θ), where X⃗ is a batch of inputs. Hence, our context-aware loss function can be formulated as
follows:

L = β · L̂+ (1− β) · 1

Ω(d)
l2[fp(X⃗; θ̂), fe(X⃗; θ)].

By incorporating the context-aware-based l2−norm, we leverage the pretrained encoder’s knowledge
to effectively guide the lightweight model without needing heavy architectures and effectively reduce
the iterations needed to reach an optimal solution. Our central objective is to perceive the contextual
inductive bias in parallel and embody prior knowledge delivered from a heavy encoder. Meanwhile,
our model benefits from different network configurations and can be quickly adapted to other low-level
image-processing tasks.

5 EVALUATION

5.1 EXPERIMENT SETUP

Hardware and Software. We compare Efficient Painter with the latest generalist model Painter on
seven benchmarks. Speed and accuracy tests are carried out on a single 80G Nvidia A100 (with a
peak performance of 9.7T FLOPs) for GPU and AMD EPYC 7543 32-Core Processor for CPU at
2.8 GHz. Our models are built with PyTorch 1.14 Paszke et al. (2019) and detectron2 0.6.0. Other
training dependencies are listed in Appendix Table 8.

Implementation Details. Our efficient painter model undergoes 20 epochs of training using the
AdamW Kingma & Ba (2017) optimizer with the cosine learning rate scheduler. We use a batch size
of 256 and a standard data augmentation including random resized cropping and color jittering during
training and zero data augmentation during validation. The input contextual pairs are set to 448×224.
We employ a learning rate of 2.4× 10−3, weight decay 0.05 with [β1, β2] = [0.9, 0.999]. Our dataset
of 434,850 data points combines multiple tasks with customized sampling rates: NYUv2 (0.1), ADE-
20K (0.2), COCO (0.6), SIDD (0.15), Derain Scenes (0.05), and LoL (0.05). For our context-aware
reconstruction loss function, we set α = 0.84, following Zhao et al. (2017). Additionally, we assign
β = 0.5 to balance the complementary and perceptual loss functions.

5.2 BENCHMARKS AND DATASETS

We compare our methods with SOTA approaches using eight standard metrics (see Metrics in
Appendix A.2). For each of the seven tasks, yti,j represents the ground truth and ŷti,j the prediction.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Computation Efficiency Comparison. Comparison of Efficient Painter models and Painter
in terms of computation efficiency metrics.

Model Epochs FLOPs (M) Training Cost (GPU Hours/Epoch) Avg. Throughput (imgs/s) Global Degradation (%)

Efficient Painter-M0 20 4999 2.66 877.82 6.37
Efficient Painter-M1 20 5639 2.75 862.37 4.65
Efficient Painter-M2 20 6010 2.89 835.84 2.58
Efficient Painter-M3 20 6917 3.04 786.05 1.69
Efficient Painter-M4 20 7496 3.16 766.23 1.44
Efficient Painter-M5 20 8957 3.32 691.75 1.36
Painter (ViT-Large) 15 172891 13.25 8.02 -

For instance, monocular depth is evaluated using the root mean square error (RMSE), absolute relative
error (A.Rel), and threshold accuracy δ1 within a range of [0, 10] meters. We utilize a diverse set of
datasets for our experiments: For depth estimation, we employ NYUv2 Nathan Silberman & Fergus
(2012). Semantic segmentation leverages ADE20K Nathan Silberman & Fergus (2012) (36K training,
650 validation images), while panoptic segmentation uses MS-COCO Lin et al. (2015) (110K training,
5K validation images). Keypoint detection utilizes COCO’s subset Xiao et al. (2018a) of over 15K
annotated samples. Image denoising employs SIDD Abdelhamed et al. (2018), comprising 96K noisy
images from 10 scenes. For low-light enhancement, we use LoL Wei et al. (2018) (500 image pairs:
485 training, 15 testing). Lastly, the derain task combines five major datasets Fu et al. (2017), totaling
approximately 13K images for training and validation.

5.3 MAIN RESULTS

Computational Efficiency. In Table 3, we quantitatively evaluate the computational cost of our
architecture. Without significant degradation, our Efficient Painter variants achieve a 4.98× GPU-
hours training speedup per epoch when using the same dataset. They also provide actual speedup
during inference with relatively small FLOPs. Extensive experiments comparing various Efficient
Painter model variants (M0 to M5) with the standard Painter (ViT-Large) model demonstrate that by
adjusting the number of blocks and embedding dimensions (EDLi

), we can optimize the models for
improved performance with fewer parameters.

Memory Efficiency. As shown in Table 4, increasing complexity from Efficient Painter-M0 to
M5 raises parameters from 8.1 million to 39.0 million while decreasing global degradation from
6.37% to 1.36%. For instance, Efficient Painter-M0, with 6 blocks and embedding dimensions
{64, 128, 192}, exhibits a degradation of 6.37%, whereas Efficient Painter-M5, with 7 blocks and
dimensions {192, 288, 392}, reduces degradation to 1.36%. Compared to Painter (ViT-Large), which
has 370.7 million parameters and 24 blocks, making it 9.5 times larger than our largest model,
Efficient Painter models achieve lower performance degradation with significantly fewer parameters.
Even with only 1/19-th the FLOPs, Efficient Painter-M5 matches Painter ViT-Large in accuracy,
confirming the efficiency of our design.

Table 4: Memory Efficiency Comparison. Comparison of Efficient Painter model variants and
Painter in terms of parameters that impact memory efficiency. Global degradation is aggregated
across tasks.

Model Input size # of Blocks EDLi
Params (M) Global Degradation (%)

Efficient Painter-M0 448× 224 6 {64, 128, 192} 8.1 6.37
Efficient Painter-M1 448× 224 6 {128, 144, 192} 11.7 4.65
Efficient Painter-M2 448× 224 6 {128, 192, 224} 15.1 2.58
Efficient Painter-M3 448× 224 6 {128, 240, 192} 23.4 1.69
Efficient Painter-M4 448× 224 6 {128, 256, 392} 29.0 1.44
Efficient Painter-M5 448× 224 7 {192, 288, 392} 39.0 1.36
Painter (ViT-Large) 448× 224 24 1024 370.7 -

Results. As shown in table 5, our comprehensive training and evaluation across seven different
tasks, including runtime benchmarks, confirm that Efficient Painter achieves a 5.5× speedup with
comparable accuracy after 20 epochs. Performance comparisons reveal that Efficient Painter sig-
nificantly outperforms its counterparts in various benchmarks, demonstrating only minor accuracy
drops in tasks like semantic segmentation and panoptic segmentation, while achieving improvements
in low-level tasks like PSNR and SSIM. These results highlight Efficient Painter’s advantages in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Comparative Analysis of LVMs and Specialized Models Across a Spectrum of Visual
Tasks. we compare with the best results of each method. The backbones of the listed generalist
methods are: ViT-Large for UViM, Unified-IOXL with 2925M parameters, ViT-Base with another
Transformer decoder for Pix2Seq v2, and ViT-Large for Painter. The N/A indicates that acceleration
methods like Efficient-ViT are not applicable to visual prompt-based LVMs.

depth estimation semantic seg. panoptic seg. keypoint det. denoising deraining enhance.
NYUv2 ADE-20K COCO COCO SIDD 5 datasets LoL

RMSE/A.Rel. δ1 ↑ mIoU ↑ PQ ↑ AP ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
specialized models

DenseDepth Alhashim & Wonka (2019) 0.465/0.123 0.846 - - - - - - - - -
BinsFormer Li et al. (2022) 0.330/0.094 0.925 - - - - - - - - -

UperNet-ViT-Large Xiao et al. (2018b) - - 49.9 - - - - - - - -
Mask2Former Cheng et al. (2022) - - 57.7 57.8 - - - - - - -

DETR Carion et al. (2020) - - - 45.6 - - - - - - -
HRNet Wang et al. (2020) - - - - 76.3 - - - - - -

HRFormer Yuan et al. (2021) - - - - 77.2 - - - - - -
Uformer Wang et al. (2021b) - - - - - 39.89 0.960 - - - -
MPRNet Mehri et al. (2020) - - - - - 39.71 0.958 32.73 0.921 - -

MIRNet-v2 Zamir et al. (2020) - - - - - 39.84 0.959 - - 24.74 0.851
generalist framework, specialized models

UViM Kolesnikov et al. (2022) 0.467/- - - 45.8 - - - - - - -
generalist models

Unified-IO Lu et al. (2022) 0.385/- - - - - - - - - - -
Pix2Seq v2 Chen et al. (2022) - - - - 64.8 - - - - - -

PromptGIP Liu et al. (2024) - - - - - - - 25.46 0.8399 20.30 0.803
Painter Wang et al. (2023a) 0.288/0.080 0.950 49.9 43.4 72.1 38.88 0.954 29.49 0.868 22.40 0.872
Painter (Efficient-ViT-M5) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Efficient Painter (ours) 0.284/0.076 0.94 49.5 43.2 70.7 38.92 0.960 29.61 0.842 22.69 0.884

resource consumption, processing speed and accuracy, making it an efficient and versatile solution
for real-world applications where both performance and efficiency are critical.

5.4 ABLATION STUDY

To gain deeper insights into the factors that influence the speed-accuracy tradeoff in our design, we
thoroughly analyze the impact of each component in Efficient Painter. The evaluations are conducted
on the low-light enhancement task (LoL Wei et al. (2018)), using our proposed Efficient Painter-M5
model. Each component’s modification and its corresponding effect on both performance metrics
and computational efficiency are assessed to better understand their contributions to the overall
architecture. The results are presented in Table 6.

Table 6: The Effects of Our Design. Efficient Painter-M5 on LoL task Wei et al. (2018) with PSNR,
SSIM and GPU throughput.

Ablation Throughput (imgs/s)
Performance

PSNR↑ SSIM↑
1 Efficient Painter-M5 691.8 22.69 0.88

2 CAA → MHSA 224.7 21.45 0.82
3 Number of trident blocks at intermediate level = 2→1 703.4 20.32 0.79

4 CBFU → None 696.8 18.49 0.64

5 Context-aware loss → smooth-l1 - 20.24 0.73

CAA. Changing the attention mechanism from CAA to MHSA drastically reduced throughput to
224.7 images per second and decreased the PSNR to 21.45 and SSIM to 0.82. This suggests that while
MHSA is a powerful attention mechanism, it is computationally more intensive and less effective in
this context than CAA.

Number of trident blocks at intermediate level. Reducing the number of trident blocks at the
intermediate level from 2 to 1 led to a decrease in both PSNR (from 22.69 to 20.32) and SSIM (from
0.88 to 0.79). The decline in image quality metrics suggests that fewer intermediate blocks limit the
model’s ability to capture and refine the key features required for effective image enhancement.

CBFU. Eliminating the CBFU entirely resulted in a substantial drop in performance, with PSNR
dropping from 22.69 to 18.49 and SSIM declining from 0.88 to 0.64. Throughput remained relatively
stable, this indicates that the feature union plays a critical role in the model’s ability to enhance
images effectively.

Contextual Order Optimization. Switching from context-aware loss to smooth-l1 loss resulted in a
moderate reduction in performance, with PSNR dropping to 20.24 and SSIM to 0.73.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.5 DISCUSSION

Table 7: Comparative Computational Complexity of CAA vs. MHSA. For a fair comparison, we use the
same embedding dimension ED in both the CAA of our efficient trident block and the MHSA in the ICL
ViT-Large. For simplicity, we assume that: embedded patch token xp with a shape of [B,C,Hp,Wp], which
will be embeded into [B,ED,Hp ×Wp] in the attention module, we compare their O(·) complexities based on
the main computational overheads. Here, n = Hp ·Wp, and h is the number of heads

Computation overhead in Attention MHSA (O(n)) CAA (O(n)) Speedups ×
Linear Embedding B × n× 3 · ED2 B × n× 3 · (ED

h)2 h2

Attention Score (Q ·KT) B × n2 × ED B × n2 × ED
4h 4h

Applying Softmax B × n2 B × n2 -
Output Attention B × n2 × ED

h B × n2 × ED
4h 4

Computational Efficiency in CAA. As shown in Table 7, we provide a detailed analysis of the CAA’s
computation efficiency with MHSA. Specifically, setting the dimensions of Q and K to 1

4 to that of V
in CAA, our approach reduces the complexity of the calculation by at least 4× in each operations.
Furthermore, we also identifies that employing the CAA method, which separates contextual features,
enables effective capture of contextual information even when utilizing the same masking strategy as
shown in Fig. 4.

Figure 4: Comparison of CAA vs. MHSA. (a) rainy image pairs (b) ground truth pairs (c) non-
feature splits, where MHSA is applied (d) CAA with 8 channel splits (e) CAA with 16 channel splits.
To enhance visualization, we extract the same level of global average feature map after only applying
50% consistent mask to all input target pairs.

6 CONCLUSION

Large Vision Models with ICL ability that employ pure vision guidance demonstrate great potential
for solving cross-task visual tasks. In this paper, we introduce Efficient Painter, an architecture
designed to optimize the speed-accuracy trade-off of a popular LVM: Painter. By leveraging an
improved trident block with CAA and a new CBFU module, Efficient Painter significantly reduces
training GPU hours to one-third and increases the throughput by 27 to 44 times, while maintaining a
comparable precision. In addition, Efficient Painter surpasses some current vision generalist models
in low-level tasks, providing a viable solution for deploying LVMs on resource-constrained devices.

7 ETHIC STATEMENT

The authors declare that there are no conflicts of interest with any individuals at Purdue University
during the review process.

REFERENCES

Abdelrahman Abdelhamed, Stephen Lin, and Michael S. Brown. A high-quality denoising dataset for
smartphone cameras. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 1692–1700, 2018. doi: 10.1109/CVPR.2018.00182.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Mon-
teiro, Jacob L Menick, Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Shar-
ifzadeh, Mikoł aj Bińkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén
Simonyan. Flamingo: a visual language model for few-shot learning. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 23716–23736. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf.

Ibraheem Alhashim and Peter Wonka. High quality monocular depth estimation via transfer learning,
2019.

Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts
for adapting large-scale models, 2022. URL https://arxiv.org/abs/2203.17274.

Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Globerson, and Alexei A. Efros. Visual prompting
via image inpainting, 2022.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster, 2023. URL https://arxiv.org/abs/2210.
09461.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers, 2020.

Mengzhao Chen, Wenqi Shao, Peng Xu, Mingbao Lin, Kaipeng Zhang, Fei Chao, Rongrong Ji,
Yu Qiao, and Ping Luo. Diffrate : Differentiable compression rate for efficient vision transformers,
2023. URL https://arxiv.org/abs/2305.17997.

Ting Chen, Saurabh Saxena, Lala Li, David J. Fleet, and Geoffrey Hinton. Pix2seq: A language
modeling framework for object detection, 2022.

Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021.

Xueyang Fu, Jiabin Huang, Delu Zeng, Yue Huang, Xinghao Ding, and John Paisley. Removing rain
from single images via a deep detail network. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1715–1723, 2017. doi: 10.1109/CVPR.2017.186.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and Joao Carreira.
Perceiver: General perception with iterative attention, 2021.

Sheng-Chun Kao, Suvinay Subramanian, Gaurav Agrawal, Amir Yazdanbakhsh, and Tushar Krishna.
Flat: An optimized dataflow for mitigating attention bottlenecks, 2022.

11

https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://arxiv.org/abs/2203.17274
https://arxiv.org/abs/2210.09461
https://arxiv.org/abs/2210.09461
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2305.17997

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Alexander Kolesnikov, André Susano Pinto, Lucas Beyer, Xiaohua Zhai, Jeremiah Harmsen, and
Neil Houlsby. Uvim: A unified modeling approach for vision with learned guiding codes, 2022.

Zhenyu Li, Xuyang Wang, Xianming Liu, and Junjun Jiang. Binsformer: Revisiting adaptive bins for
monocular depth estimation, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context, 2015.

Xinyu Liu, Houwen Peng, Ningxin Zheng, Yuqing Yang, Han Hu, and Yixuan Yuan. Efficientvit:
Memory efficient vision transformer with cascaded group attention, 2023.

Yihao Liu, Xiangyu Chen, Xianzheng Ma, Xintao Wang, Jiantao Zhou, Yu Qiao, and Chao Dong.
Unifying image processing as visual prompting question answering, 2024. URL https://
arxiv.org/abs/2310.10513.

Zhenhua Liu, Yunhe Wang, Kai Han, Siwei Ma, and Wen Gao. Post-training quantization for vision
transformer, 2021.

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha Kembhavi. Unified-
io: A unified model for vision, language, and multi-modal tasks, 2022.

Junzhu Mao, Yazhou Yao, Zeren Sun, Xingguo Huang, Fumin Shen, and Heng-Tao Shen. Attention
map guided transformer pruning for edge device, 2023.

Armin Mehri, Parichehr B. Ardakani, and Angel D. Sappa. Mprnet: Multi-path residual network for
lightweight image super resolution, 2020.

Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-weight, general-purpose, and mobile-
friendly vision transformer, 2022a.

Sachin Mehta and Mohammad Rastegari. Separable self-attention for mobile vision transformers,
2022b.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning, 2019.

Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In ECCV, 2012.

Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios
Tzimiropoulos, and Brais Martinez. Edgevits: Competing light-weight cnns on mobile devices
with vision transformers, 2022.

Zizheng Pan, Jianfei Cai, and Bohan Zhuang. Fast vision transformers with hilo attention, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention, 2021.

12

https://arxiv.org/abs/2310.10513
https://arxiv.org/abs/2310.10513
https://arxiv.org/abs/1505.04597

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong
Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep high-resolution representation
learning for visual recognition, 2020.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong
Lu, Jie Zhou, Yu Qiao, et al. Visionllm: Large language model is also an open-ended decoder for
vision-centric tasks. Advances in Neural Information Processing Systems, 36, 2024.

Xinlong Wang, Wen Wang, Yue Cao, Chunhua Shen, and Tiejun Huang. Images speak in images: A
generalist painter for in-context visual learning, 2023a.

Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, and Tiejun Huang. Seggpt:
Segmenting everything in context. arXiv preprint arXiv:2304.03284, 2023b.

Yulin Wang, Rui Huang, Shiji Song, Zeyi Huang, and Gao Huang. Not all images are worth
16x16 words: Dynamic transformers for efficient image recognition, 2021a. URL https:
//arxiv.org/abs/2105.15075.

Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li.
Uformer: A general u-shaped transformer for image restoration, 2021b.

Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu. Deep retinex decomposition for low-light
enhancement, 2018.

Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. Tinyvit:
Fast pretraining distillation for small vision transformers, 2022.

Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking,
2018a.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding, 2018b.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling, 2022.

Yuhui Yuan, Rao Fu, Lang Huang, Weihong Lin, Chao Zhang, Xilin Chen, and Jingdong Wang.
Hrformer: High-resolution transformer for dense prediction, 2021.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan
Yang, and Ling Shao. Learning enriched features for real image restoration and enhancement,
2020.

Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for image restoration with
neural networks. IEEE Transactions on Computational Imaging, 3(1):47–57, 2017. doi: 10.1109/
TCI.2016.2644865.

Xu Zhao, Wenchao Ding, Yongqi An, Yinglong Du, Tao Yu, Min Li, Ming Tang, and Jinqiao Wang.
Fast segment anything, 2023. URL https://arxiv.org/abs/2306.12156.

A APPENDIX

A.1 MORE RESULTS

A.2 METRICS

• average relative error (A. Rel.):

1

n

∑
i,j

∣∣∣∣∣yti,j − ŷti,j
yti,j

∣∣∣∣∣ ;
13

https://arxiv.org/abs/2105.15075
https://arxiv.org/abs/2105.15075
https://arxiv.org/abs/2306.12156

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 5: Visualization of Different Loss Function on Denoise Task. (a) Groundtruth (b) Smooth-l1
loss function is adopted. (c) Context-aware loss function is adopted. It alleviates image degradations,
such as blurring, and produces higher-quality images during reconstruction..

Input Painter Efficient Painter GT

D
er

ai
n

L
oL

D
en

oi
se

Figure 6: Comparative Visualization. Our model outperforms Painter on 3 low-level reconstruction
tasks. Input and groundtruth (GT) are presented as well.

• root mean squared error (RMSE):√
1

n

∑
t

(yti,j − ˆyti,j)
2;

• average (log10) error:
1

n

∑
t

∣∣log10(yti,j)− log10(ŷ
t
i,j)

∣∣ ;
• threshold accuracy (δi): % of yti,j s.t. max

(
yt
i,j

ŷt
i,j
,
ŷt
i,j

yt
i,j

)
= δ < thr for thr =

1.25, 1.252, 1.253

• mean Intersection over Union (mIoU):

mIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

=
TP

(FP + FN + TP)

– k is the number of classes,
– pii represents the true positives for class i,
– pij represents the predictions of class i as class j,
– pji represents the predictions of class j as class i.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• peak signal to noise ratio (PSNR):

PSNR = 10 · log10
(

MAX2
I

MSE

)
where MAXI is the maximum possible pixel value of the image and MSE is the Mean
Squared Error between the original and the desired output image.

• structural similarity index (SSIM):

SSIM(x, y) =
[
l(x, y)α · c(x, y)β · s(x, y)γ

]
=

(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

where:
– l(x, y), c(x, y), s(x, y) represent luminance comparison, contrast comparison, and

structure comparison respectively;
– µx,µy represent the mean of x, y respectively;
– σ2

x, σ2
y represent the variance of x, y respectively;

– σxy is the covariance of x and y;
– c1 = (k1L)

2, c2 = (k2L)
2 are two variables to stabilize the division with a weak

denominator;
– L is the dynamic range of the pixel-values (typically this is 2bits per pixel − 1);
– k1 = 0.01 and k2 = 0.03 by default.

• panoptic quality (PQ) for panoptic segmentation:

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
segmentation quality (SQ)

× |TP |
|TP |+ 1

2 |FP |+ 1
2 |FN |︸ ︷︷ ︸

recognition quality (RQ)

A.3 LOSS FUNCTION

The MS-SSIM loss function LMS-SSIM between two images x and y is defined as:
LMS-SSIM(x,y) = 1− MS-SSIM(x,y) (1)

The MS-SSIM index is computed as the weighted product of SSIM indices across multiple scales:

MS-SSIM(x,y) =

M∏
j=1

[SSIMj(x,y)]
wj (2)

Each SSIM index at scale j is given by:

SSIMj(x,y) =
(2µx,jµy,j + C1)(2σxy,j + C2)

(µ2
x,j + µ2

y,j + C1)(σ2
x,j + σ2

y,j + C2)
(3)

Notation details

• x,y: Input images between which similarity is to be measured.
• LMS-SSIM(x,y): MS-SSIM Loss Function, defined as one minus the MS-SSIM index.
• MS-SSIM(x,y): Multi-Scale Structural Similarity Index, representing the overall similarity

between images x and y across multiple scales.
• M : Total number of scales at which SSIM is computed. Increasing M allows capturing

structural information at more levels of detail.
• SSIMj(x,y): Structural Similarity Index at scale j. It measures the similarity between x

and y at a specific scale.

• wj : Weight assigned to the SSIM index at scale j. The weights typically satisfy
∑M

j=1 wj =
1, ensuring a normalized contribution from each scale.

• µx,j , µy,j : Local means of images x and y at scale j. These are usually computed using a
Gaussian filter.

• σ2
x,j , σ

2
y,j : Local variances of images x and y at scale j.

• σxy,j : Local covariance between images x and y at scale j.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4 LOSS TREND PLOT

Figure 7: Loss Trends for Varying Hyper-parameters and Cross-Block Feature Union (CBFU)
Ablation. This graph shows the progression of training loss across different configurations of the
Efficient Painter-M5, highlighting the impact of batch size, learning rate, and epoch adjustments, as
well as the significant effect of removing the CBFU. Each line represents a distinct setup, providing a
visual comparison of how these changes influence model training and efficiency.

A.5 SOFTWARE ENVIRONMENT

Table 8: Software Environment
Dependency Version

detectron2 0.6.0
fairscale 0.4.13
fvcore 0.1.5
h5py 3.10.0
panopticapi 0.1
timm 0.5.4
torch 0.13.1+cu117
torchvision 0.14.1+cu117
torchaudio 0.13.1+cu117
xtcocotools 1.14.3
yacs 0.1.8

16

	Introduction
	Related Work
	Background & Motivation
	Our Design
	Overview
	Efficient LVMs with trident block
	Combined Single and Multi-Blocks Feature
	Context-aware reconstruction objective function

	Evaluation
	Experiment Setup
	Benchmarks and Datasets
	Main Results
	Ablation Study
	Discussion

	Conclusion
	Ethic Statement
	Appendix
	More Results
	Metrics
	Loss Function
	Loss Trend Plot
	Software Environment

