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ABSTRACT

In this paper, we systematically study the audio-visual speech separation task in
a multi-speaker scenario. Given the facial information of each speaker, the goal
of this task is to separate the corresponding speech from the mixed speech. The
existing works are designed for speech separation in a controlled setting with a
fixed number of speakers (mostly 2 or 3 speakers), which seems to be impractical
for real applications. As a result, we try to utilize a single model to separate the
voices with a variable number of speakers. Based on the observation, there are
two prominent issues for multi-speaker separation: 1) There are some noisy voice
pieces belonging to other speakers in the separation results; 2) Part of the target
speech is missing after separation. Accordingly, we propose BFRNet, including a
Basic audio-visual speech separator and a Filter-Recovery Network (FRNet). FR-
Net can refine the coarse audio separated by basic audio-visual speech separator.
To have fair comparisons, we build a comprehensive benchmark for multi-speaker
audio-visual speech separation to verify the performance of various methods. Ex-
perimental results show that our method is able to achieve the state-of-the-art per-
formance. Furthermore, we also find that FRNet can boost the performance of
other off-the-shelf speech separators, which exhibits its ability of generalization.

1 INTRODUCTION

Audio-visual speech separation has been extensively used in various applications, such as speech
recognition (Radford et al.; Chan et al., 2015), assistive hearing device (Kumar et al., 2022), and
online video meetings (Tamm et al., 2022). As human voices are naturally mixed together in public
places, it would be challenging to directly extract the information of interest from such raw audio-
visual signals containing multiple speakers. As a result, separating audio signals for each speaker
could serve as an effective pre-processing step for further analysis on the audio-visual signal.

Convolutional neural networks (Gogate et al., 2018; Makishima et al., 2021; Gao & Grauman, 2021)
and Transformers (Ramesh et al., 2021; Montesinos et al., 2022; Rahimi et al., 2022) has made
prominent progress in the field of audio-visual speech separation. However, previous works (Lee
et al., 2021; Gao & Grauman, 2021; Montesinos et al., 2022) mostly focus on two-speaker speech
separation. Although other researches (Ephrat et al., 2018; Afouras et al., 2018b; 2019) manage
to separate voices for more speakers, (Ephrat et al., 2018) requires customized models for each
kind of mixture instead of separating all kinds of mixtures with a single model, and (Afouras et al.,
2018b) mainly contributes to enhancing the voice of the target individual while ignoring others. Fur-
thermore, (Afouras et al., 2019) uses pre-enrolled speaker embeddings to extract the corresponding
speech, but still leaves a performance gap compared with unenrolled speakers.

Therefore, how to efficiently and effectively separate speech under a multi-speaker environment still
requires further study. Through our explorations, prior works Gao & Grauman (2021); Montesinos
et al. (2022); Chuang et al. (2020); Makishima et al. (2021); Afouras et al. (2019) show their superi-
ority in two-speaker speech separation but yield disappointing results with more speakers (e.g., 3, 4,
or even 5 speakers). It exhibits a simple yet important fact that the complexity of speech separation
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strongly correlates with the number of speakers in the mixed audio. As shown in Fig. 1, the core
problems for multi-speaker speech separation can be empirically summarized as two folds:
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Figure 1: Illustration of two critical issues in multi-speaker
audio-visual speech separation. The missing parts in separa-
tion results compared to ground truth speech are indicated by gray
boxes, while the noisy parts are marked by red boxes.

1) The noisy parts (red box in Fig-
ure 1) contains the components from
other speakers within the separated
audio . 2) The missing parts (gray
box in Figure 1) represent some tar-
get speech pieces dropped by mod-
els. These two problems usually oc-
cur in complex conditions, reflecting
that models fail to accurately separate
audio signals under such challenging
scenarios.

As a result, there is still a long way
to go toward solving audio-visual
speech separation for multi-speaker
conditions.

To this end, we come up with an
effective method BFRNet, to con-
quer the aforementioned challenges
in multi-speaker audio-visual speech separation. As illustrated in Figure 2, the BFRNet consists
of a basic audio-visual speech separator and a Filter-Recovery Network (FRNet). The FRNet aims
at solving the two issues in the results of any identically structured basic separator. It comprises
two serial modules, i.e., Filter and Recovery. Firstly, the Filter module utilizes the visual features
of the target speaker to query corresponding audio signals from the coarse prediction and suppress
components from other speakers. Then, the Recovery module uses the clean audio yielded by the
Filter module to query the missing components that belong to the target speaker from others’ pre-
dictions. Essentially, FRNet aims to calibrate the coarsely separated audio predicted by off-the-shelf
models (Gao & Grauman, 2021; Montesinos et al., 2022; Chuang et al., 2020).

Furthermore, we have noticed that there is still one obstacle in evaluating audio-visual speech sep-
aration. As we found that most works (Gao & Grauman, 2021; Montesinos et al., 2022) evaluate
performance on unfixed numbers of samples generated by randomly mixing the audio signals dur-
ing each inference, it sometimes leads to hard reproductions and unfair comparisons. Consequently,
to unify the evaluation protocols, we create a comprehensive benchmark to verify the models’ per-
formance fairly. Specifically, for each type of mixture, we randomly sample test videos without
replacement to make up the speech mixtures. The constructed fixed test sets serve for all experi-
ments to ensure fairness and reproducibility of the results.

To sum up, our contributions are as follows:

• First, we design a Filter-Recovery Network (FRNet) with multi-speaker training paradigm
to improve the quality of multi-speaker speech separation.

• Second, to test the different methods on a fair basis, a well-established benchmark for
multi-speaker audio-visual speech separation is created. We not only unify the evaluation
protocol but also re-implement several state-of-the-art methods on this benchmark.

• Finally, in the experiments, we demonstrate that our proposed FRNet can be equipped with
other models to further improve the quality of audio separation and achieve the state-of-
the-art performance.

2 RELATED WORKS

Audio-Only Speech Separation. Using only audio modality for speech separation faces the prob-
lem of speaker agnosticism. Some works (Liu et al., 2019; Wang et al., 2018) utilize the speaker’s
voice embedding as the hint to isolate the target speech. Current methods mostly treat the audio-only
speech separation as a label permutation problem. (Chen et al., 2017) cluster the similar speech to
perform speech separation. (Luo et al., 2018) requires no prior information of speaker number. (Luo
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& Mesgarani, 2019) adopts a deep learning network comprising a series of convolutional layers and
trains the network with permutation-invariant loss (Yu et al., 2017).

Visual Sound Separation. There are various kinds of sound separation explored in the literature.
One type focuses on music separation (Zhao et al., 2018; Gao & Grauman, 2019; Xu et al., 2019;
Gan et al., 2020), where the diverse shapes of musical instruments and the distinguished patterns of
music sounds are the key clues. Other works concentrate on the in-the-wild sounds (Gao et al., 2018;
Tzinis et al., 2020; Chen et al., 2020), such as animal sounds, vehicle sounds, etc. (Gao et al., 2018)
incorporate the image recognition results as the advisor and learn prototypical spectral patterns for
each sounding object. (Tzinis et al., 2020) extend to unsupervised, open-domain audio-visual sound
separation and develop a large new dataset. (Chen et al., 2020) propose an algorithm to generate
temporally synchronized sound given mismatched visual information.

Visual Speech Separation. Speech is extensively studied as the most closely associated audio
with humans, and has a broad range of applications. Due to the natural correlation between face
and speech, many works (Gabbay et al., 2018; Lu et al., 2018; Ephrat et al., 2018; Afouras et al.,
2019; Chung et al., 2020; Hegde et al., 2021; Rahimi et al., 2022) employ face-related information
to separate speech from a mixture in the literature. (Chung et al., 2020) use only the still images
containing facial appearance to isolate speech, with the assistance of the consistency of face identity
and speech identity. Numerous methods (Afouras et al., 2018b; Gao & Grauman, 2021; Ephrat et al.,
2018) explore the simultaneous lip motions and voice fluctuations clues. (Lu et al., 2018) integrate
optical flow and lip movements to predict the spectrogram masks. (Hegde et al., 2021) propose
synthesizing a virtual visual stream to deal with the situation where the visual stream is unreliable
or completely absent. Another family of works (Owens & Efros, 2018; Afouras et al., 2020; Truong
et al., 2021) combines multiple tasks for joint learning.

The most relevant works to ours are (Afouras et al., 2018b), (Shi et al., 2020), and (Yao et al., 2022).
(Afouras et al., 2018b) also pays attention to the uncontrolled environment with several speakers, but
it only focuses on enhancing the target speech and suppressing the noisy voices. Our method further
separates every speech component for different mixtures in a single model. (Shi et al., 2020) and
(Yao et al., 2022) perform a coarse-to-fine procedure by adopting an additional refining separation
phase. However, the refining phase applies the same model as the coarse phase. Thus if the coarse
phase cannot achieve a clean separation, the refining results will likewise be sub-optimal.

3 METHOD

To best of our knowledge, this is the first work that systematically studies the audio-visual speech
separation under a multi-speaker setting. In this section, we first elaborate on our proposed multi-
speaker training strategy in Sec. 3.1; Next, we introduce the adopted basic audio-visual speech
separator in Sec. 3.2, which takes the visual information and the speech mixture as input and outputs
separated speech; Then the Filter-Recovery Network is detailedly described in Sec. 3.3; Finally, we
formulate the objective function for training model in Sec. 3.4.

3.1 OVERVIEW

Given a video containing S simultaneous speakers, our goal is to isolate the individual speech for
each speaker. Formally, we denote time-domain speech mixture as x =

∑S
i=1 xi, xi ∈ RTx , where

Tx represents the time length, and xi is the separate speech of the i-th speaker. Since acquiring
the exact individual ground truth data from the mixtures in real scenes is yet impossible, we follow
previous works (Afouras et al., 2018b; Gao & Grauman, 2021) to synthesize mixtures by adding
individual speech together.

Current works are designed for definite speakers in the mixture, mostly 2 or 3 speakers. However,
these models present poor effects for practical applications, where there are usually a variable num-
ber of speakers. Alternatively, they take an inefficient strategy of training separate models for each
kind of mixture different in speaker numbers. To meet the demand for practical applications, we
create different mixtures with various numbers of speakers during training, i.e., S ranges from 2 to
5. The network is required to isolate all speech components for all kinds of mixtures.
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Figure 2: Overview of the proposed framework. It consists of a basic audio-visual speech separator and
a Filter-Recovery Network (FRNet). Given a mixture spectrogram containing S pieces of speech, the basic
separator takes each speaker’s visual clue separately and outputs the corresponding visual feature and speech
mask. For i-th speaker, the basic separator outputs Vi and Mi. Then the visual features and speech masks of
all S speakers in a mixture are fed into the Filter-Recovery Network to obtain a more precise speech mask M̃i

for each speaker. The Filter Net utilizes visual embedding Vi to reduce the noisy components in Mi to obtain
M̂i. Then the Recovery Net takes the clean mask M̂i as the query to extract the corresponding missing parts
from the speech masks of other speakers. To better illustrate the effect of the FRNet, we visualize masks into
the form of waveforms to present speech components by →. The red/gray boxes and the corresponding 99K
represent the noisy/missing speech pieces that are removed or retrieved.

Fig. 2 illustrates the architecture of the proposed model, consisting of a basic audio-visual speech
separator and an additional Filter-Recovery Network (FRNet). During training, we feed mixtures
into the audio-visual speech separator and obtain the separated coarse speech. The model takes
the time-frequency spectrogram X ∈ R2×F×TX as input, which is converted from time-domain
audio x via Short-Time Fourier Transform (STFT). F and TX indicate the spectrogram’s maximum
frequency and time span. Each time-frequency bin contains the real and imaginary parts of the
complex spectrogram. For i-th speaker, the basic separator outputs target mask Mi ∈ R2×F×TX of
input spectrogram X and visual feature Vi.

Afterward, for each mixture, the separated S masks and visual features are sent to the FRNet to filter
the noisy components and recover the missing ones. The FRNet outputs an improved mask for each
speaker in the mixture, which is finally used to restore the exact time-domain speech.

3.2 BASIC AUDIO-VISUAL SPEECH SEPARATOR

In our framework, the basic audio-visual speech separator can be replaced with any network that
outputs the masks of the mixture spectrogram. Following (Gao & Grauman, 2021), we adopt both
lip and face clues to guide target speech separation. Specifically, a lip net is taken to dig out the con-
sistency of lip motion and continuous pronunciation, and a face net is used to explore the relationship
between speech and face attributes.

Lip Net. Following the previous structure (Ma et al., 2021; Gao & Grauman, 2021), we feed Tv

consecutive frames of lip regions into a 3D convolutional layer followed by a ShuffleNet v2 (Ma
et al., 2018) network to extract mouth features. A temporal convolutional network is further utilized
to output the lip motion features Lipi ∈ RCl×Tv for i-th speaker.

Face Net. The Face Net aims at leveraging the correspondence between face attributes and speech.
A ResNet-18 network takes a single face image as input, and outputs a face embedding for i-th
speaker. We repeat the face embedding along the time dimension to obtain Facei ∈ RCf×Tv .

Encoder-Decoder Separator. As for the speech analysis and separation end, we adopt a U-Net
network consisting of an encoder, a fusion module, and a decoder. The encoder is composed of
multiple convolutions and pooling layers. It takes the mixture spectrogram X as input and outputs
an audio feature Au of dimension Ca × Tv . Following (Xiong et al., 2022), we take an AV-Fusion
module, an attention-like operation, to obtain vision-related audio representation for a given speaker.
We first concatenate the lip feature Lipi and face feature Facei together along the time dimension
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to get visual feature Vi ∈ RCv×Tv , then feed Vi and Au to AV-Fusion module to obtain an enhanced
feature. It is further delivered into the decoder to predict a mask Mi of input spectrogram for i-th
speaker, which denotes the projection values of the prediction onto the mixture. Note that the values
might be positive or negative, as the spectrograms have both positive and negative values.

3.3 FILTER AND RECOVERY NETWORK

Due to the high complexity of speech mixture with multiple speakers (especially above 3 speakers),
the separated target speech remains two apparent issues: 1) There still exists voices from others;
2) The isolated speech is partially missing compared to the ground truth speech. To solve the two
problems, we introduce the Filter-Recovery Network (FRNet), which takes the visual features and
the separated coarse speech masks as input, and outputs more precise target speech masks. For
convenience, we concatenate the real and imaginary parts of Mi obtained by the basic separator to
form dimension 2F × TX before feeding it into FRNet, which we still denote Mi. Besides, to align
the dimension, we transform Vi to V ′

i of shape 2F × TX with a convolutional layer.

As Fig. 2 shows, the FRNet consists of a Filter Net and a Recovery Net. The former utilizes visual
features to remove the noisy voices from the separated speech, and the latter learns the correlation
between all separated speech to extract the missing voices from others.

Since the attention mechanism (Vaswani et al., 2017) enhances some parts of the input data while
declining other parts, we adopt attention as the component module. For the sake of fluent description,
we define some operations here. Given three tensors q ∈ RDh×Nq , k, v ∈ RDh×Nkv , we compute
the weighted sum of v:

[q′,k′,v′] = [Uqq,Ukk,Uvv], Uq,k,v ∈ RDh×Dh , (1)

W = softmax
(
(q′)⊤k′/

√
Dh

)
, W ∈ RNq×Nkv , (2)

Attn(q,k,v) = v′W⊤, Attn ∈ RDh×Nq . (3)

Filter Net. Since the visual information is highly correlated with speech, we utilize each speaker’s
visual knowledge to reduce irrelevant voices in the separation results during the Filter phase. The
Filter Net consists of L basic layers, each consisting of an Attn and an MLP module, where the
MLP block contains two fully-convolutional layers and a ReLU activation function.

For l-th layer, the model takes V ′
i and M l

i as input, and outputs M l+1
i , where M0

i = Mi, and LN
denotes Layer Normalization (Ba et al., 2016):

zl+1 = LN
(
Attn(V ′

i ,M
l
i ,M

l
i ) +M l

i

)
, zl+1 ∈ R2F×TX , (4)

M l+1
i = LN

(
MLP(zl+1) + zl+1

)
, M l+1

i ∈ R2F×TX . (5)

For i-th speaker, the Filter Net output mask M̂i = ML
i where the noise speech pieces are removed.

Recovery Net. According to our analysis, there are some pieces of speech from other speakers in
the target separation result of basic separator. So we design the Recovery Net to pull out the missing
voice pieces M̄i for i-th speaker from the separation results of other speakers, which is much easier
than recovering the missing parts from the original mixture. We define a rearrange operation by
stacking S − 1 masks of other speakers:

temp = [M1; · · · ;Mi−1;Mi+1; · · · ;MS ], Mi
reshape←−−−−− temp, Mi ∈ RTX×2F×(S−1), (6)

where the
reshape←−−−−− operation rearranges the input tensor to the target dimension.

The Recovery Net aims to learn the association between M̂i and Mi. It consists of L basic layers,
similar to the decoder of Transformer (Vaswani et al., 2017). Specifically, the output of layer l + 1

can be conveyed by the following equations, where q0i = M̂i:

q̂li = LN(Attn(qli, q
l
i, q

l
i) + qli), q̄li

reshape←−−−−− q̂li, q̂li ∈ R2F×TX , q̄li ∈ RTX×2F×1, (7)

zl[t] = LN
(
Attn

(
q̄li[t],Mi[t],Mi[t]

)
+ q̄li[t]

)
, zl[t] ∈ R2F×1, (8)

ẑl[t] = LN
(
MLP(zl[t]) + zl[t]

)
, ẑl[t] ∈ R2F×1, (9)

ẑl = [ẑl[0]; ...; ẑl[t]; ...; ẑl[TX ]], ql+1
i

reshape←−−−−− ẑl, ẑl ∈ RTX×2F×1, ql+1
i ∈ R2F×TX . (10)
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We hold the view that the speech separation issues analyzed above do not always manifest to the
same degree at different time slots. As a result, in Equ. 8, the attention operations are performed
separately for each time slice of tensor to recover missing parts. Finally, the missing components
M̄i can be obtained by applying a fully-convolutional layer on qLi , i.e., M̄i = FC(qLi ).

After obtaining the noise-filtered result M̂i and the recovered missing part M̄i, we add them up to
obtain the clean and complete separation target mask:

M̃i = M̂i + M̄i. (11)

3.4 LOSS FUNCTION

We jointly optimize the outputs of the basic separator and the FRNet. Following previous work (Pan
et al., 2022), We take the scale-invariant signal-to-noise ratio (SI-SNR) (Le Roux et al., 2019) as the
loss function. The predicted masks Mi and M̃i are separately multiplied by the mixture spectrogram
X to get the separated spectrograms, which are finally transformed by inverse STFT to restore the
time-domain speech yi and ỹi. Given any prediction ŝ and ground truth s, the SI-SNR loss can be
computed with the following formula:

LSI-SNR(ŝ, s) = −10 log10(
∥ ⟨ŝ,s⟩s∥s∥2 ∥2

∥ŝ− ⟨ŝ,s⟩s
∥s∥2 ∥2

). (12)

We jointly train the basic separator and the FRNet by an overall loss for k-th speaker:

Li = λLSI-SNR(yi, xi) + (1− λ)LSI-SNR(ỹi, xi), (13)

where λ is the factor to control the ratio of the two loss parts. For a batch of mixtures containing a
total number of N speakers, the training loss is the average of all N individual losses.

4 EXPERIMENTS

4.1 DATASETS

VoxCeleb2 (Chung et al., 2018). This dataset is organized in the identity labels, with 5994 speakers
in the training set and another 118 in the test set. It contains more than 1 million samples, each
consisting of an utterance and synchronized face tracks. Following (Gao & Grauman, 2021), we
hold out two videos for each speaker in the original training set and utilize the rest videos as our
training set. For the remaining videos in the original training set, we randomly sample 7200 videos
to build the seen test set. The speakers also appear in the training set, but the specific utterances do
not. Our unseen test set consists of 7200 videos randomly chosen from the original test set. All of
the rest videos in the VoxCeleb2 dataset form our validation set.

Table 1: Numbers of videos and mixtures for four
test sets.

Test Dataset # Videos # 2-mix # 3-mix # 4-mix # 5-mix

VoxCeleb2 unseen set 7200 3600 2400 1800 1440
VoxCeleb2 seen set 7200 3600 2400 1800 1440
LRS2 1200 600 400 300 240
LRS3 1200 600 400 300 240

Lip Reading Sentences 2&3 (Afouras et al.,
2018a;c). LRS2 and LRS3 datasets contain
144k and 151k video clips from TV programs.
To evaluate the generalization of models, we
train them on the VoxCeleb2 dataset and test
them on cross-domain LRS2 and LRS3 datasets
without fine-tuning. For each dataset, the test
set consists of 1200 randomly selected videos from the original test set.

Test Benchmark. During the test, we thoroughly evaluate the models’ performance on mixtures
with various numbers of speakers, i.e., from mixtures with 2 speakers to 5 speakers. Meanwhile, to
eliminate the uncertainty of results caused by testing on randomly created mixtures each time, we
construct fixed test sets of mixtures and perform all experiments on these predetermined mixtures.

For each dataset, we randomly mix the test videos to build 2-mix, 3-mix, 4-mix, and 5-mix test sets
without any subjective considerations. Each video appears only once in each mixture set. To be
more explicit, we list the number of videos and each kind of mixture for all test sets in Tab. 1.
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4.2 IMPLEMENTATION DETAILS

Data Process. Following the previous setting (Gao & Grauman, 2021), we randomly cut 2.55-
second long clips from videos sampled at 25fps and the corresponding audios sampled at 16kHz as
the training pairs. For all utterances that make up a mixture, we first normalize the energy of each
one to the same, which corresponds to the same loudness for each utterance. Then we add up all
normalized speech to obtain the mixture. STFT is conducted on the mixture waveform using a Hann
window length of 400, a hop size of 160, and an FFT window size of 512 to output the complex
spectrogram of dimension 2 × 257 × 256, which is taken as the input to the U-Net encoder. A
randomly selected frame from the video is rescaled to 224 × 224 and sent to the face analysis net-
work. The input to the lip reading network is 64 consecutive frames of cropped gray mouth regions
of dimension 88 × 88. We adopt the official implementation of 2D face landmark detection (Bulat
& Tzimiropoulos, 2017) to detect the mouth landmarks and crop the mouth regions.

Training Setting. To achieve great separation results for mixtures containing different numbers of
speakers, we separate all types of mixtures into individual speech simultaneously. In each batch,
the ratio of 2-mix, 3-mix, 4-mix, and 5-mix numbers is set to 2:1:1:1, and the total number of
speakers is 256. As for selecting utterances to create mixtures, some methods (Gao & Grauman,
2021; Rahimi et al., 2022) perform put-back random sampling. Such an approach results in some
utterances being sampled multiple times while others are ignored, in which case the model might
overfit some samples and underfit others. Instead, at the beginning of each training epoch, we shuffle
all samples randomly and pick them one by one to ensure no duplication or omission.

Optimization. Empirically, we adopt the Adam optimizer to train the network with a weight decay
of 1e-4 and a learning rate of 1e-4. We drop the learning rate by a factor of 0.1 after epochs 12
and 15, and train models for 19 epochs, when the loss almost reaches a plain. Tab. 8 displays
experimental results of setting different lambda values, and we finally set it to 0.5.

Evaluation. Following previous methods (Afouras et al., 2018b; Ephrat et al., 2018; Gao & Grau-
man, 2021; Rahimi et al., 2022), we adopt the standard blind source separation metric Signal-to-
Distortion-Ratio (SDR) (Vincent et al., 2006), which measures the ratio between the energy of the
target signal and that of the errors. To further assess the speech quality and intelligibility, we also
employ the Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001) metric.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Tab. 2 and 3 compare our method to other open-source state-of-the-art models on the test sets. All
experiments follow the same test and evaluation protocols. We choose two types of methods for
comparison: audio-only methods and audio-visual methods.

Audio-Only Methods:

U-Net-AO. By removing the face net and the lip net from the adopted basic audio-visual speech
separator and making corresponding adaptations for the U-Net, we obtain an audio-only speech
separator and train it with permutation-invariant loss.

VoiceFilter (Wang et al., 2018). This method uses the speech mixture and a reference utterance to
extract the target speech from the mixture. Note that the reference audio is a piece of a randomly
sampled utterance of the target speaker different from the target speech.

Conv-TasNet (Luo & Mesgarani, 2019). This method is widely adopted in audio-only speech sep-
aration practices. It adopts a fully-convolutional audio separation network, which takes the time-
domain speech mixture as input and outputs all speech components simultaneously.

Audio-Visual Methods:

LAVSE (Chuang et al., 2020). To reduce processing costs, this work employs a lightweight but
efficient framework, where a lip encoder extracts the lip motion feature as the synchronization signal
for target speech extraction.

VisualVoice (Gao & Grauman, 2021). It contains the same visual networks and U-Net as our basic
audio-visual separator, except the U-Net simply concatenates the audio and visual features, while we
perform AV-Fusion to obtain enhanced audio features and achieve better results on VoxCeleb2. Be-
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Table 2: Results on VoxCeleb2 dataset. The metrics are the average of all speakers for each test set. All
methods are trained in the proposed multi-speaker setting. BFRNet achieves the best performance among
all methods for all types of mixtures. (e.g., we achieve 11.06 dB SDR on VoxCeleb2 unseen 2-mix set.)
Besides, we list the overall (O.A.) performance of all methods for convenient comparison, which is the average
performance of each speaker in all kinds of mixtures. It is worth mentioning that each audio-visual method
combined with the FRNet results in a large improvement.

Method
# Spk. Unseen Seen

SDR (dB) PESQ SDR (dB) PESQ
2 3 4 5 O.A. 2 3 4 5 O.A. 2 3 4 5 O.A. 2 3 4 5 O.A.

Audio-Only
U-Net-AO 0.06 -2.93 -4.66 -5.87 -3.35 1.55 1.15 0.98 0.89 1.14 0.06 -2.92 -4.65 -5.87 -3.34 1.59 1.17 1.01 0.94 1.18
VoiceFilter 7.07 4.21 1.98 -0.57 3.17 2.39 2.08 1.87 1.22 1.89 7.56 4.53 2.12 0.13 3.59 2.54 2.27 1.99 1.53 2.08
Conv-TasNet 9.46 4.57 1.50 -0.62 3.73 2.67 2.11 1.78 1.66 2.05 9.88 4.76 1.54 -0.65 3.88 2.70 2.13 1.79 1.66 2.07
Audio-Visual
LAVSE 5.38 1.53 -0.6 -2.13 1.05 2.17 1.67 1.43 1.28 1.64 5.54 1.45 -0.72 -2.31 0.99 2.20 1.67 1.43 1.28 1.64
LAVSE + FRNet 8.45 4.63 2.25 0.45 3.95 2.57 2.07 1.79 1.58 2.00 8.70 4.66 2.16 0.24 3.94 2.59 2.07 1.77 1.56 2.00
VisualVoice 8.97 4.59 2.05 0.25 3.96 2.64 2.12 1.82 1.62 2.05 8.61 3.96 1.39 -0.4 3.39 2.61 2.05 1.74 1.54 1.98
VisualVoice + FRNet 10.78 7.04 4.62 2.76 6.30 2.86 2.43 2.13 1.91 2.33 10.95 6.95 4.37 2.40 6.17 2.87 2.41 2.09 1.86 2.31
VoViT 9.62 5.08 2.06 -0.21 4.14 2.66 2.12 1.77 1.53 2.02 9.91 5.29 2.17 -0.11 4.31 2.69 2.15 1.80 1.54 2.04
VoViT + FRNet 10.72 6.74 3.82 1.44 5.68 2.76 2.27 1.92 1.65 2.15 11.05 6.97 3.98 1.55 5.89 2.79 2.30 1.95 1.68 2.18
DeBaSe 10.08 5.91 3.16 1.06 5.05 2.72 2.23 1.90 1.65 2.12 10.05 5.44 2.51 0.28 4.57 2.72 2.17 1.82 1.56 2.07
BFRNet (ours) 11.06 7.48 5.13 3.26 6.73 2.87 2.48 2.20 1.97 2.38 11.27 7.48 4.89 2.86 6.63 2.89 2.47 2.16 1.91 2.36

Table 3: Results on LRS 2&3 datasets. To validate the generalization of separation models, they are trained
on VoxCeleb2 and validated on LRS2/LRS3 without fine-tuning. BFRNet outperforms all base methods that
do not integrate FRNet. Although some methods combined with FRNet achieve the best performance in certain
metrics, it still proves the effectiveness of FRNet. Similarly, we give the overall (O.A.) performance on all
kinds of mixtures for each test set for direct comparison.

Method
# Spk. LRS2 LRS3

SDR(dB) PESQ SDR(dB) PESQ
2 3 4 5 O.A. 2 3 4 5 O.A. 2 3 4 5 O.A. 2 3 4 5 O.A.

Audio-Only
U-Net-AO 0.25 -2.65 -4.26 -5.37 -3.01 1.51 1.14 0.97 0.90 1.13 0.19 -2.70 -4.34 -5.45 -3.08 1.40 1.03 0.85 0.76 1.01
VoiceFilter 6.98 4.10 1.78 -0.77 3.02 2.35 2.01 1.69 1.17 1.80 8.02 4.58 2.95 -0.31 3.81 2.48 2.08 1.86 1.26 1.92
Conv-TasNet 9.26 4.16 1.13 -1.10 3.36 2.48 1.88 1.51 1.30 1.79 10.35 4.68 3.45 -0.58 4.48 2.64 1.98 1.79 1.38 1.95
Audio-Visual
LAVSE 5.74 1.68 -0.54 -2.16 1.18 2.04 1.54 1.30 1.17 1.51 6.10 1.80 -0.39 -1.96 1.39 2.05 1.50 1.26 1.10 1.48
LAVSE + FRNet 8.85 4.58 1.92 -0.06 3.82 2.45 1.90 1.58 1.37 1.83 9.46 4.78 2.11 0.04 4.10 2.53 1.91 1.58 1.35 1.84
VisualVoice 10.31 5.55 2.62 0.56 4.76 2.61 2.04 1.68 1.47 1.95 11.21 6.09 3.20 1.04 5.38 2.72 2.09 1.73 1.47 2.00
VisualVoice + FRNet 11.70 7.83 5.02 2.90 6.86 2.79 2.35 1.99 1.73 2.22 12.66 8.47 5.73 3.54 7.60 2.93 2.45 2.09 1.79 2.32
VoViT 10.03 4.66 1.15 -1.48 3.59 2.56 1.94 1.55 1.29 1.84 10.64 5.37 1.41 -0.88 4.14 2.64 1.97 1.51 1.26 1.84
VoViT + FRNet 11.29 6.50 2.84 -0.07 5.14 2.67 2.10 1.67 1.40 1.96 11.92 7.10 3.35 0.70 5.77 2.75 2.17 1.70 1.40 2.01
DeBaSe 9.95 4.62 1.09 -1.10 3.64 2.54 1.91 1.50 1.25 1.8 11.25 5.80 2.55 -0.22 4.85 2.69 2.04 1.63 1.30 1.92
BFRNet (ours) 11.68 7.37 4.15 1.86 6.26 2.78 2.28 1.86 1.58 2.12 12.74 8.37 5.38 2.80 7.32 2.92 2.42 2.03 1.69 2.26

sides, VisualVoice contains an additional vocal analysis network designed for only 2-mix separation,
so we remove the vocal analysis network to adapt to our multi-speaker setting.
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Figure 3: Visualization of SDR for each
method on VoxCeleb2 unseen test set. The in-
crements on each bar denote the improvement af-
ter combining FRNet with base methods. ‘BaSe’
is our basic audio-visual separator.

VoViT (Montesinos et al., 2022). The newly pro-
posed method uses a landmark-based graph convo-
lutional network (Yan et al., 2018) to capture the fa-
cial motion cues. It adopts an AV spectro-temporal
transformer for target speech separation.

DeBaSe. In order to offset the impact of increased
model capacity brought by the additional FRNet, we
compare the results of a deeper basic audio-visual
speech separator (DeBaSe) to that of BFRNet, which
has more layers in the encoder and has almost the
same parameter counts as BFRNet.

Besides, we combine all audio-visual methods apart
from DeBaSe with the proposed FRNet to verify its
generality. We call these methods ‘*+FR’.

As seen in Tab. 2, Tab. 3 and Fig. 3, BFRNet
achieves the best results in all test sets compared to
other baseline methods with at least 1 dB SDR ad-
vantage. Besides, the FRNet combined with any audio-visual method can significantly improve per-
formance. For instance, VisualVoice (Gao & Grauman, 2021) combined with FRNet receives a 1.67
dB gain of SDR on the VoxCeleb2 unseen 2-mix test set. It is worth noting that there is still a large
gap between DeBaSe and BFRNet, although their parameter amounts are nearly equal. It means
that just expanding the model capacity does not necessarily lead to significant performance gain.
In contrast, BFRNet focuses on the main issues of the separation task, thus significantly enhancing
the separation results. The difficulty of separation grows with the increase of speaker number in the
mixture, resulting in lower metrics. For the VoxCeleb2 dataset, although the speakers in the seen
test set appear in the training set, the results of the seen set are not certainly higher than that of the
unseen set. We argue that the speakers’ voiceprint features is not very critical for speech separation.
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4.4 ABLATION STUDIES

We conduct ablation studies and report average results on VoxCeleb2 unseen and seen test sets.

Table 4: Experiments on effect of visual clues.
Modules SDR (dB) PESQ

Face Net Lip Net 2 3 4 5 2 3 4 5

✓ 11.07 7.43 4.99 3.06 2.83 2.44 2.14 1.92
✓ 8.25 4.40 1.28 -1.39 2.54 1.90 1.53 1.31
✓ ✓ 11.17 7.48 5.01 3.06 2.88 2.48 2.18 1.94

The effect of visual knowledge. We remove the
Face Net and Lip Net separately while remaining
other parts. Tab. 4 shows that modified models con-
sistently yield lower results than BFRNet. However,
as lip motion is more related to speech, it plays a
principal role in speech separation, while the static
face image only serves as extra information.

Table 5: Ablation study on FRNet modules.
Modules SDR (dB) PESQ

Filter Recovery 2 3 4 5 2 3 4 5

10.05 5.79 3.12 1.13 2.74 2.24 1.93 1.70
✓ 10.8 6.65 4.51 2.48 2.83 2.38 2.10 1.86

✓ 10.3 6.30 3.75 1.81 2.85 2.37 2.05 1.82
✓ ✓ 11.17 7.48 5.01 3.06 2.88 2.48 2.18 1.94

The effect of FRNet modules. To validate the ne-
cessity of each module, we conduct experiments in
Tab. 5 that remove individual modules. When the
Filter net is removed, the Recovery net adopts Mi to
replace M̂i. When the Recovery net is removed, the
output of Filter net M̂i is considered the final output.

Table 6: Ablation study on module design.
Exps SDR (dB) PESQ

2 3 4 5 2 3 4 5

Filter-sa 10.91 7.19 4.81 2.86 2.85 2.37 2.86 1.82
Recovery-noise 10.81 7.21 4.82 2.88 2.86 2.43 2.12 1.88

FR 11.17 7.48 5.01 3.06 2.88 2.48 2.18 1.94Module design of FRNet. Tab. 6 explores deformed
structures of FRNet. For Filter Net, we filter voice
noise from Mi with itself as a clue instead of a si-
multaneous visual signal Vi. We name this ablation
‘filter-sa’. As to Recovery Net, we replace the clean
mask M̂i with Mi as the clue to extract the missing
voices from Mi, and we name it ‘recovery-noise’.

Table 7: Ablation study on the layers L.
Layers SDR (dB) PESQ

2 3 4 5 2 3 4 5

1 10.88 7.17 4.69 2.74 2.83 2.41 2.10 1.86
2 11.17 7.48 5.01 3.06 2.88 2.48 2.18 1.94
3 11.20 7.52 5.17 3.31 2.88 2.50 2.18 1.95

Layers of the FRNet. Both the Filter and Recovery Nets are composed of L basic layers. We here
study the impact of L. As seen in Tab. 7, there is a great improvement for the network with L = 2
compared to L = 1. When the number of layers L increases to 3, the performance improvement is
insignificant. To balance performance and efficiency, we adopt the 2-layer FRNet.

4.5 QUALITATIVE RESULTS

GT Basic Separator BFRNet

VoViTConv-TasNet LAVSE

Figure 4: Spectrogram visualization of ground
truth and predictions.

We visualize the intensity of ground truth (GT) spec-
trograms and predictions by models in Fig 4. The
first row presents the ground truth, the separation re-
sult of the basic separator, and the result of BFRNet,
respectively. The second row shows the separation
results of other approaches. The results demonstrate
that the separation results of baseline methods are
subject to the two issues we claim, including the re-
sults of the proposed method without the FRNet. We
use black boxes to highlight the missing parts com-
pared to GT, and red boxes to indicate the noisy parts
from other speakers. As seen in Fig. 4, the two prob-
lems are greatly suppressed after utilizing FRNet.

5 CONCLUSION

In this paper, we have focused on the multi-speaker audio-visual speech separation task. We are the
first to propose separating mixtures with a variable number of speakers simultaneously during train-
ing, and we also provide a standard test benchmark for a fair comparison. There are two significant
problems for speech separation, especially in the multi-speaker setting: part of the voice is missing
in the separated speech; the separated speech may still be mixed with others’ voices. To deal with
this, we propose a Filter and Recovery network to solve these two problems. The filter module filters
out other people’s voices, and the recovery module compensates for their missing voices. We con-
duct various experiments to demonstrate the effectiveness of this module, and its addition to other
audio-visual speech separation methods has led to considerable improvements.
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A APPENDIX

We provide an additional ablation study and more visualization examples in the appendix.

Table 8: Ablation Study on λ.
λ

SDR (dB) PESQ
2 3 4 5 2 3 4 5

0.2 11.13 7.47 5.01 3.08 2.86 2.47 2.19 1.95
0.5 11.17 7.48 5.01 3.06 2.88 2.48 2.18 1.94
0.8 10.99 7.20 4.63 2.54 2.84 2.41 2.09 1.83

Ablation study on λ in loss function. We conduct
experiments to explore the impact of different train-
ing λ in Eq. 13 on the results. A smaller λ means a
higher training loss weight of FRNet. On the con-
trary, a larger λ implies a lower weight of FRNet in
the whole model. Tab. 8 displays the average results
of VoxCeleb2 unseen and seen test sets. As seen in the table, attaching a higher weight to the train-
ing of FRNet (λ is 0.2) yields similar results to giving an equal weight (λ is 0.5). Nevertheless, a
lower loss weight of FRNet (λ is 0.8) results in a non-negligible performance drop, which proves
the necessity of FRNet.

Spectrogram visualization of BFRNet. We visualize the intensity of spectrograms of ground truth
(GT) and predictions by each network of BFRNet in Fig. 5. The red boxes indicate the noisy part
generated by the basic separator and then suppressed by Filter Net. The black boxes denote the
missing part yielded by the basic separator and further recovered by Recovery Net. The results
demonstrate the effects of Filter Net and Recovery Net.

GT Basic Separator

Filter Net Recovery Net

(a) Example 1

GT Basic Separator

Filter Net Recovery Net

(b) Example 2
GT Basic Separator

Filter Net Recovery Net

(c) Example 3

Basic SeparatorGT

Filter Net Recovery Net

(d) Example 4

Figure 5: Visualization of the intensity of spectrogram: ground truth (GT), outputs of the basic
separator, outputs of the Filter Net, and outputs of the Recovery Net.
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