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Abstract
Homophily is a graph property describing the tendency of edges to connect
similar nodes. There are several measures used for assessing homophily but
all are known to have certain drawbacks: in particular, they cannot be reliably
used for comparing datasets with varying numbers of classes and class size
balance. To show this, previous works on graph homophily suggested several
properties desirable for a good homophily measure, also noting that no existing
homophily measure has all these properties. Our paper addresses this issue by
introducing a new homophily measure — unbiased homophily — that has all the
desirable properties and thus can be reliably used across datasets with different
label distributions. The proposed measure is suitable for undirected (and possibly
weighted) graphs. We show both theoretically and via empirical examples that the
existing homophily measures have serious drawbacks while unbiased homophily
has a desirable behavior for the considered scenarios. Finally, when it comes to
directed graphs, we prove that some desirable properties contradict each other
and thus a measure satisfying all of them cannot exist.

1 Introduction
Graphs serve as a natural data structure in many areas: social networks, molecules, databases, road
traffic, citation networks, etc. Graph nodes often come with labels that characterize them and divide
them into several classes. For instance, in a molecular graph, these labels could represent different
types of atoms, while in a citation network, they might indicate the scientific disciplines to which
each paper belongs. Based on the relationship between graph edges and node labels, graphs are
typically categorized as either homophilic or heterophilic [1]. A graph is called homophilic if its
nodes are more likely to connect with nodes having the same label. For example, a citation network
where papers are annotated with their research areas is a homophilic graph since papers tend to cite
other papers from the same research area. In contrast, a graph is called heterophilic if its nodes are
more likely to be connected to nodes with different labels. An example of a heterophilic graph is a
supply chain network where suppliers tend to connect to manufacturers but not to other suppliers.

Graph neural networks (GNNs) are the primary modern machine learning tools for working with
graphs. The performance of GNNs can vary depending on whether they are applied to homophilic or
heterophilic graphs. Earlier studies on GNNs primarily concentrated on homophilic graphs; however,
there is a growing debate regarding the necessity of developing specialized models tailored for
heterophilic settings [2–5]. Thus, the notion of homophily and heterophily is important for machine
learning on graphs, and it is important to be able to measure how homophilic or heterophilic each
graph is.

A homophily measure is a graph characteristic that indicates the level of homophily of a given
graph. For undirected graphs, many homophily measures were constructed in previous works, e.g.,
edge homophily, node homophily, class homophily, and adjusted homophily. Since these measures
may often disagree on which graph is more homophilic, being able to decide which measure is
more reliable is important. In a recent paper, Platonov et al. [6] propose the following approach for
comparing different homophily measures: first, formulate desirable properties that a reliable measure
is expected to satisfy, and then check what measures have these properties. The authors formulate
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five such desirable properties. In a nutshell, these properties set the range of a homophily measure
values, ensure that homophily increases when we add a homophilic or remove a heterophilic edge,
and guarantee that the measure is not biased towards a particular number of classes or their size
balance. Platonov et al. [6] prove that none of the known homophily measures has all five desirable
properties and recommend using adjusted homophily since it dominates all other measures. Finally,
they pose an open question regarding the existence of a measure that has all five properties.

We solve this open problem by proposing a new homophily measure — unbiased homophily. It has
all five desirable properties and thus is not biased towards a particular number of classes or their size
balance. Hence, unbiased homophily can be reliably used across different datasets. To additionally
illustrate this, we conduct experiments showing that all known measures have their failure cases,
while unbiased homophily works well in all the considered scenarios. The proposed measure can be
applied to any undirected graphs, including weighted with non-negative weights.

Then, we extend our research to directed graphs. We note that all the considered desirable properties
of a homophily measure can be naturally formulated for the directed case. However, we prove that
in this case, the desirable properties contradict each other, thus no homophily measure for directed
graphs can have all five of them. This opens a direction for future research — we need to rethink the
list of desirable properties for the directed case and find a reliable measure.

To sum up, our paper answers the open question of whether there exists a homophily measure
satisfying all the desirable properties: positively for undirected and negatively for directed graphs.

2 Background on Homophily Measures
Our work focuses on homophily measures that quantify how well graph structure agrees with node
labels. In a homophilic graph, edges tend to connect nodes with the same label. In graph analysis
literature, homophily is usually referred to as label assortativity (we refer to Appendix A for a
discussion of assortativity measures).

Let us now define homophily measures used in previous studies. We start with notation. Suppose
we are given a graph G = (V,E) with nodes V , |V | = n, and edges E. For now, we assume that
G is undirected but may include self-loops and multiple edges. For simplicity, we assume that G is
unweighted, but all the results and measures easily generalize to the weighted graphs by replacing
edge indicators with edge weights. Each node v has a class label yv ∈ {1, . . . ,m}. We denote by
d(v) the degree of v and by N(v) the multiset of neighbors of v, that is d(v) = |N(v)|. We denote
by nk the size of the k-th class, i.e., nk = |{v : yv = k}|. Finally, by Dk we denote the total degree
of the k-th class, i.e., Dk =

∑
v:yv=k

d(v).

Edge homophily [2, 7] is simply the fraction of homophilic edges:

hedge =
|{{u, v} ∈ E : yu = yv}|

|E|
.

Node homophily [8] computes how homophilic each node is and then averages the values over all
nodes:

hnode =
1

n

∑
v∈V

|{u ∈ N(v) : yu = yv}|
d(v)

.

Class homophily [9] sums positive excess homophily in every class:

hclass =
1

m− 1

m∑
k=1


∑

v:yv=k

|{u ∈ N(v) : yu = yv}|

Dk
− nk

n


+

,

where [x]+ = max{x, 0}. The factor 1
m−1 scales hclass to the interval [0, 1].

Adjusted homophily [6] (also known as assortativity coefficient [10]) is defined as:

hadj =

hedge −
m∑

k=1

D2
k/(2|E|)2

1−
m∑

k=1

D2
k/(2|E|)2

. (1)
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Here the numerator is the difference between the observed fraction of homophilic edges and its
expected value assuming that the edge endpoints are connected randomly. The denominator scales the
obtained value so that the maximum achievable homophily equals one. Platonov et al. [6] recommend
using adjusted homophily instead of other homophily measures since it is the only measure that
is unbiased towards particular class size distributions (as it has the constant baseline property, see
Section 4 for the discussion).

To outline the scope of the paper, we first note that our work solely focuses on graph-label relations.
In other words, we do not consider node features to be a part of a homophily measure. Also, in graph
machine learning literature, the term homophily is sometimes used with a different meaning [4, 11]:
that a good homophily measure is expected to correlate well with GNN performance. However,
Platonov et al. [6] suggest separating these concepts since both highly homophilic and highly
heterophilic datasets are easy for GNNs and thus other types of measures should be applied for
evaluating the simplicity of a dataset for GNNs [4, 11, 12]. In this work we also stick to the standard
definition of a homophily measure: it evaluates whether similar nodes are connected. In particular,
this implies that we do not evaluate and compare homophily measures based on how well they
correlate with GNN performance. Instead, we rely on the theoretical approach based on properties
that a good homophily measure is expected to satisfy.

3 Inconsistency of Homophily Measures
It turns out that homophily measures discussed in the previous section are often inconsistent with
each other. That is, given two graphs G1 and G2, the graph G1 can be more homophilic than G2

according to one homophily measure, while G2 more homophilic than G1 according to another
homophily measure.

Table 1: Agreement of homophily measures
on the AIDS dataset

hedge hnode hclass hadj

hedge - 91% 60% 73%
hnode 91% - 59% 74%
hclass 60% 59% - 71%
hadj 73% 74% 71% -

To illustrate this inconsistency, we conducted an ex-
periment on the AIDS molecular dataset [13]. This
dataset contains molecular graphs and we consider
the types of atoms as node classes. We sampled 1000
pairs of graphs. For each pair and each homophily
measure, either the first graph is more homophilic,
the second graph is more homophilic, or they are
equally homophilic according to this measure. Thus,
for two homophlily measures, we can count the per-
centage of pairs where the measures agree on what graph is more homophilic. The results are
shown in Table 1. As we can see, while edge and node homophily usually agree with each other,
the consistency of all other pairs of measures is below 75%, which means that in many cases the
measures disagree on which graph is more homophilic.

We conducted similar experiments for the PROTEINS and MUTAG molecular datasets [13], synthetic
graphs, and real node classification datasets, see Appendix B. Interestingly, for the MUTAG dataset,
the agreement of class homophily with the other measures is below 50% which means that in most of
the cases, the measures are inconsistent. These experiments clearly demonstrate the disagreements
between existing homophily measures and thus motivate our study on the comparative analysis of
these measures.

4 Desirable Properties of Homophily Measures

Our experiments in the previous section show that known homophily measures are often inconsistent.
So how to choose which ones to trust? In other words, can we say that some measures are better
at quantifying the level of homophily? To answer this question, we follow previous studies [6]
and formulate what properties a good homophily measure should have. Then, by checking which
measures satisfy which properties we can compare these measures.

In this section, we motivate and discuss such desirable properties. All of these properties (excluding
class symmetry) were introduced by Platonov et al. [6]. We give an intuitive explanation for each
property in this section and refer to Appendix C for formal definitions and deeper discussion. To
illustrate why each property is needed, we motivate it with a simple example showing desirable
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and undesirable behavior of the existing homophily measures. Further in the text, we call an edge
homophilic if it connects nodes with the same label and heterophilic otherwise.

Property 1. Monotonicity requires that if we add a homophilic edge or remove a heterophilic edge,
homophily of a graph must increase.

This property is natural to require as it formalizes the meaning of the term ‘homophily’.

v1
hedge = 0.25
hnode = 0.25

hedge = 0.33
hnode = 0.25

v1v2 v2

Example. Consider a graph G and two of its nodes v1
and v2 that are connected and belong to different classes.
Assume that v1 and v2 are fully heterophilic, i.e., are not
connected to any node of its class. Then, deleting the edge
between v1 and v2 does increase edge homophily, but does
not change node homophily, see the illustration on the
right. We consider the behavior of node homophily to be
undesirable in this case.

A more problematic situation is when deleting a heterophilic edge leads to a decrease of a homophily
measure. We show such an example for adjusted homophily in Appendix F.

Property 2. Minimal agreement requires that graphs with only heterophilic edges achieve constant
lower bound Rmin of the homophily measure.

hedge = 0
hadj = − 0.5

hedge = 0
hadj = − 0.33

Example. Consider graphs G1 with 3 nodes and G2 with
4 nodes. Both graphs are complete and the labels of all
nodes are different. Clearly, both G1 and G2 are fully
heterophilic and we expect a homophily measure to have
the lowest possible (and equal) values on these graphs.
Edge homophily, node homophily, and class homophily
do just that: they take the value 0 on both these graphs.
Yet adjusted homophily takes the value −0.50 on G1 and
−0.33 on G2, which we consider as undesirable behavior.

Property 3. Maximal agreement requires that graphs with only homophilic edges achieve constant
upper bound Rmax of the homophily measure.

Similarly to minimal agreement, this property is natural to require for any good homophily measure.
We note that all measures listed in Section 2 have maximal agreement.

Property 4. Empty class tolerance requires that if we add a new dummy label that is not present in
the graph, the graph homophily does not change.

Example. Consider a graph and suppose we add a new dummy label that is not present in the graph.
That is, the graph does not change, but the formal number of classes m increases by 1. We expect
graph homophily to not change. This property is essential for being able to compare the values of a
homophily measure for datasets with different numbers of classes. Clearly, edge homophily, node
homophily, and adjusted homophily are not affected by the addition of a dummy label. However,
class homophily becomes undefined when we make such an addition since we get Dk = 0 in the
denominator of the corresponding term.

Property 5. Constant baseline requires that if the graph structure is independent of node labels, the
homophily measure should be equal to some constant Rbase. We formalize and discuss this property
in more detail in Appendix C.

Example. Suppose we have two graphs G1 and G2 with 100 nodes each. Each graph has two
classes, where the class balance of G1 is 50 : 50, and the class balance of G2 is 98 : 2. Suppose we
draw edges according to the Erdős–Rényi model (with self-loops): every two nodes are connected
with probability 0.5 independently of their labels and other edges. Such graphs should be considered
neutral with respect to homophily, i.e., neither homophilic nor heterophilic. Thus, we expect both
graphs to have the same homophily value (in expectation). The expected value of adjusted homophily
is 0 for both G1 and G2, which we consider as desirable behavior. Yet, the expected value of edge
homophily is 0.5 for G1 and 0.9608 for G2, which we clearly consider as undesirable behavior.
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Finally, let us introduce an additional simple property.

Property 6. Class symmetry requires that if we reorder (or rename) the classes, the value of a
homophily measure should not change.

Note that all measures listed in Section 2 have class symmetry.

The problem raised in previous studies [6] is that no known measure has all the above properties.
Indeed, only adjusted homophily has constant baseline, but it is not monotone for some values of hadj ,
which is a critical drawback. In the next section, we construct a measure that has all the properties.

5 Homophily Measure Having All Desirable Properties
In this section, we construct a measure that has all the desirable properties discussed above. Moreover,
we require one additional property — continuity — and we explain why it is necessary below. To
formulate this property, we need to first define edge-wise scale-invariant measures.

5.1 Edge-Wise and Scale-Invariant Measures

In this section, we say that a homophily measure is a function h from the set of all undirected
unweighted graphs with labeled nodes to R. A homophily measure is called edge-wise if it is a
function of the class adjacency matrix that we define below.
Definition 1. For a graph G, we define an m×m class adjacency matrix LG as follows:

lii = 2|{{u, v} ∈ E : yu = yv = i}| ,
lij = |{{u, v} ∈ E : {yu, yv} = {i, j}}| for i ̸= j .

In other words, an edge-wise homophily measure depends on the number of edges between nodes
of each pair of classes (or within one class), but it does not take into account how the edges are
distributed among individual nodes. Considering the measures listed in Section 2, edge homophily
and adjusted homophily are edge-wise.
Definition 2. An edge-wise homophily measure h is called scale-invariant if h(LG) = h(LG′) for
any graphs G,G′ such that LG = βLG′ for some β > 0.

Note that edge homophily and adjusted homophily are scale-invariant.

By definition, edge-wise scale-invariant homophily measures maintain their value under scaling
transformations of the class adjacency matrix LG. Let us then normalize LG as follows.
Definition 3. For a graph G, we define m×m normalized class adjacency matrix CG = 1

2|E|LG :

cii =
|{{u, v} ∈ E : yu = yv = i}|

|E|
,

cij =
|{{u, v} ∈ E : {yu, yv} = {i, j}}|

2|E|
for i ̸= j .

For any nonempty graph G, its matrix CG is symmetric, non-negative, and its elements sum to 1.

Clearly, every edge-wise scale-invariant homophily measure can be viewed as a function of the
normalized class adjacency matrix CG. Sometimes (when it is clear from the context), we omit
the index G and denote the normalized class adjacency matrix CG by C. Also, we further assume
that there are at least two non-zero elements in C, that is, we consider graphs with at least two
non-degenerate classes.

For edge-wise scale-invariant homophily measures, we require one more property to hold (in addition
to those listed in Section 4).
Property 7. Continuity requires an edge-wise scale-invariant homophily measure h to be a continuous
function of C.

This property ensures that small changes in the graph structure (i.e., in the normalized class adjacency
matrix) result in small changes in the homophily measure, which is a natural requirement. Note that
edge homophily and adjusted homophily are continuous. To show the importance of this property, in
Appendix D we give an example of a homophily measure that has all desirable properties excluding
continuity but demonstrates unwanted behavior, thus proving that continuity must be required.

5



Revisiting Graph Homophily Measures

Formal definition of Properties 1–6. We formally define all the properties in terms of the normal-
ized class adjacency matrix in Appendix C.

5.2 Unbiased Homophily

In this subsection, we construct a homophily measure that satisfies all the desirable properties. We
name this new measure unbiased homophily, since by having all the desirable properties it is not
biased towards a particular number of classes or their size balance. Hence, unbiased homophily can
be reliably used across different datasets: the value of the measure is calibrated for fully homophilic,
fully heterophilic, and fully randomized graphs and behaves as desired (due to monotonicity) between
these values.1

We define unbiased homophily as:

hα
unb(C) :=

∑
i<j

(
√
ciicjj − cij)∑

i<j

(
√
ciicjj + cij)

+ αmin

(∑
i

√
cii, 1

)
, (2)

where α > 0 is any positive constant. Note that the denominator of the first term is always greater
than zero, thus hα

unb is well-defined.

Interpretation. First, consider the first term of (2) since, as discussed below, it is the main ingredient
of the measure. Note that if edges were drawn independently of classes, we expect cij to be equal
to √

ciicjj (see the definition of rand(C) in Appendix C for the details). So, √ciicjj − cij can
be interpreted as the difference between the expected and observed fraction of heterophilic edges
between the classes i and j (up to a factor of 2 since the fraction of such heterophilic edges equals
2cij). Summing such differences for all pairs of classes, we interpret the numerator as the difference
between the expected and observed fraction of heterophilic edges in the graph (again up to a factor
of 2). The denominator normalizes the obtained value to the interval [-1;1]: when a graph is fully

homophilic (i.e., cij = 0 ∀i, j) the first term equals

∑
i<j

√
ciicjj∑

i<j

√
ciicjj

= 1, while for fully heterophilic

graphs we get

∑
i<j

−cij∑
i<j

cij
= −1.

As we discuss below, the second term αmin

(∑
i

√
cii, 1

)
is needed to cover some rare special cases,

and in practice, we advise using α = 0. So essentially hα
unb should be interpreted as the scaled

difference between the expected and observed fraction of heterophilic edges.

Theoretical guarantees. The following theorem holds (the proof can be found in Appendix E).
Theorem 5.1. For α > 0, the measure hα

unb(C) is continuous, has all the desirable properties listed
in Section 4, and its values Rmax, Rbase, Rmin are equal to 1 + α, α,−1, respectively.

Note that the desirable properties of unbiased homophily (2) hold for any α > 0. To apply this
measure in practice, one has to choose the value of α, since different choices may potentially give
different results. As we show in the proof of the theorem, the first term of (2) by itself satisfies all the
desirable properties in most cases, and the second term is added to resolve sensitivity issues in some
rare special cases. Thus, in practice we recommend taking α = 0 as the default value and use:

hunb(C) := h0
unb(C) =

∑
i<j

(
√
ciicjj − cij)∑

i<j

(
√
ciicjj + cij)

. (3)

Theorem 5.2. The measure hunb(C) is continuous and differentiable and it has all the desirable
properties listed in Section 4 except some special cases that only occur when there is at most one non-
zero element on the diagonal (i.e., only one class has intra-edges). The values Rmax, Rbase, Rmin

are equal to 1, 0,−1, respectively.
1Note that we do not claim that unbiased homophily is the only possible homophily measure having all the

desirable properties. Our goal was to construct at least one measure satisfying these conditions since all the
measures from previous studies do not have at least one property.
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Table 2: Properties of homophily measures; ✓* means that the property is satisfied always except a
rare special case when only one class has intra-edges

continuity max
agreement

min
agreement

const
baseline monotonicity empty class

tolerance
class

symmetry

hedge ✓ ✓ ✓ ✗ ✓ ✓ ✓
hnode n/a ✓ ✓ ✗ ✓ ✓ ✓
hclass n/a ✓ ✗ ✗ ✗ ✗ ✓
hadj ✓ ✓ ✗ ✓ ✗ ✓ ✓
hα
unb ✓ ✓ ✓ ✓ ✓ ✓ ✓

hunb ✓ ✓ ✓* ✓ ✓* ✓ ✓

The proof of this theorem follows from the proof of Theorem 5.1. Note that hunb is differentiable,
while hα

unb with α > 0 is not differentiable at the points where
∑
i

√
cii = 1.

Thus, unbiased homophily hunb has all the required properties in all cases excluding the case when
there is at most one non-zero element on the diagonal (when minimal agreement and monotonicity
do not hold). This case rarely appears in real datasets. So, we argue that the simplicity of hunb (in
comparison to hα

unb) outweighs the fact that hunb has slightly weaker theoretical properties. That is
why we recommend using unbiased homophily hunb as a homophily measure in practice. See Table 2
for the list of homophily measures and their properties.

Computing unbiased homophily. The formula (3) is easy to interpret, but there is also an equiv-
alent formula for hunb that is more convenient for computing as it requires only the number of
intra-class edges for each class instead of summation over the pairs of classes:

hunb(C) =

(∑
i

√
cii

)2

− 1(∑
i

√
cii

)2

+ 1− 2
∑
i

cii

. (4)

We show the equivalence of (3) and (4) in Appendix G.

Unbiased homophily of weighted graphs. For simplicity of the presentation, all the desirable
properties were formulated for unweighted graphs. However, they can be easily rewritten for graphs
with positive weights. To do so, in Definition 1 of the class adjacency matrix, instead of the number
of edges we use the total weight of the corresponding edges. In Definition 3 of the normalized class
adjacency matrix, we replace |E| by the total weight of all edges. Note that the sets of normalized
class adjacency matrices in the unweighted and weighted cases are the same (up to the transition from
rational to real coefficients by continuity in the unweighted case). Thus, for the weighted case, we
can define all properties (see Appendix C) in the same way as in the unweighted case. The measures
hα
unb and hunb for the weighted case have the same properties as for the unweighted case. So, we can

use them to measure homophily of weighted graphs.

6 Empirical Comparison
In this section, we empirically compare unbiased homophily with existing homophily measures. First,
we consider synthetic examples that demonstrate unwanted behavior of the existing measures, while
the results of unbiased homophily are as desired. Then, we compare the level of homophily for
different measures on real graph datasets.

6.1 Synthetic Examples

In this section, we compare the behavior of homophily measures for simple synthetic datasets.

Example 1. The first graph G1 is generated by the Erdős–Rényi model with p = 0.5, it has 2
classes and the class size balance is 90 : 10.

7



Revisiting Graph Homophily Measures

The second graph G2 is generated by the stochastic block model with intra-class edge probability 0.3
and inter-class probability 0.2, with 2 classes and class size balance 50 : 50.

Table 3: ER with class imbalance vs SBM

G1, ER G2, SBM

hedge 0.82 > 0.6
hnode 0.82 > 0.6
hclass 0 < 0.05
hadj 0 < 0.2

hunb 0 < 0.38

Clearly, G1 is neutral w.r.t. homophily since
graph edges are independent of node labels. In
contrast, G2 exhibits some homophily since
intra-class edges have a higher probability. Thus,
we expect a good homophily measure to take a
higher value on G2. The results for different
homophily measures are listed in Table 3. As
we see, edge and node homophily exhibit unde-
sirable behavior for this example.

Example 2. Both graphs G1 and G2 are complete graphs on 6 nodes, but G1 has one node in each
of 6 classes, while G2 has two nodes in each of 3 classes.

G1 G2

Figure 1: Visualization of G1 and G2 in Example 2

Table 4: Homophily values for Example 2

G1 G2

hedge 0 < 0.2
hnode 0 < 0.2
hclass 0 = 0
hadj −0.2 = −0.2

hunb −1 < −0.33

Clearly, G1 is fully heterophilic, while G2 exhibits some homophily, so we expect a good homophily
measure to take a higher value on G2. The results for different homophily measures are listed in
Table 4. As we see, class and adjusted homophily exhibit undesirable behavior.

We see that only unbiased homophily behaves as desired for both of these simple examples. This
superiority of unbiased homophily follows from the fact that it satisfies all the desirable properties.

6.2 Homophily of Real Datasets

We measure edge, node, class, adjusted, and unbiased homophily for various real datasets that are
often used in graph machine learning literature. The description of the datasets can be found in
Appendix J. The results are shown in Table 5.

As expected, node and edge homophily often take higher values, especially on datasets with two
classes (that are imbalanced). For instance, for the minesweeper dataset, edge and node homophily
are equal to 0.68, while all the other homophily measures indicate that the homophily level is close
to zero (below 0.02 for all the other measures).

In turn, hclass, hadj , and hunb mostly agree with each other on how homophilic a dataset is. The
possible reason for this agreement is that all three measures have been motivated by the constant
baseline property. Importantly, hadj and hunb usually agree on whether the homophily value is
positive or negative since they both do satisfy constant baseline.

One can see that the proposed unbiased homophily usually takes higher values than hadj when
homophily is positive. For instance, for the amazon-computers dataset, hunb = 0.91 and hadj = 0.68.
Another interesting observation is that for the most heterophilic dataset roman-empire, hadj = −0.05
while hunb = −0.49, indicating that this dataset is significantly more heterophilic than reported
before. This dataset is expected to be quite heterophilic: here the nodes are words, the labels are their
syntactic roles, and two nodes are connected if either these words follow each other in the text, or
they are connected in the dependency tree of the sentence. This dataset has 18 classes but less than
5% homophilic edges. Adjusted homophily cannot predict the low score for this dataset since hadj

does not satisfy minimal agreement. In contrast, hunb is able to predict a low score.

The difference between edge and unbiased homophily can be illustrated on the pubmed and coauthors-
cs datasets. For these datasets, hedge is nearly the same (0.80 and 0.81), but hunb differs significantly:
0.77 for pubmed and 0.96 for coauthors-cs. This difference arises because pubmed has 3 classes,
while coauthors-cs has 15, with relatively balanced class distributions. Unbiased homophily accounts
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Table 5: Homophily of various datasets

Dataset n |E| m hedge hnode hclass hadj hunb

lastfm-asia 7 624 27 806 18 0.8739 0.8332 0.7656 0.8562 0.9746
coauthor-cs 18 333 81 894 15 0.8081 0.8320 0.7547 0.7845 0.9582
coauthor-physics 34 493 247 962 5 0.9314 0.9153 0.8474 0.8724 0.9480
amazon-photo 7 650 119 081 8 0.8272 0.8493 0.7722 0.7850 0.9329
cora 2 708 5 278 7 0.8100 0.8252 0.7657 0.7711 0.9200
amazon-computers 13 752 245 861 10 0.7772 0.8017 0.7002 0.6823 0.9055
facebook 22 470 170 823 4 0.8853 0.8834 0.8195 0.8206 0.9033
citeseer 3 327 4 552 6 0.7355 0.7166 0.6267 0.6707 0.8520
pubmed 19 717 44 324 3 0.8024 0.7924 0.6641 0.6860 0.7653
github 37 700 289 003 2 0.8453 0.8011 0.3778 0.3778 0.4969
amazon-ratings 24 492 93 050 5 0.3804 0.3757 0.1266 0.1402 0.2769
flickr 89 250 449 878 7 0.3195 0.3221 0.0698 0.0941 0.2264
twitch-de 9 498 153 138 2 0.6322 0.5958 0.1394 0.1394 0.1566
twitch-pt 1 912 31 299 2 0.5708 0.5949 0.1196 0.1069 0.1104
tolokers 11 758 519 000 2 0.5945 0.6344 0.1801 0.0926 0.1016
questions 48 921 153 540 2 0.8396 0.8980 0.0790 0.0207 0.0583
deezer-europe 28 281 92 752 2 0.5251 0.5299 0.0304 0.0304 0.0310
minesweeper 10 000 39 402 2 0.6828 0.6829 0.0094 0.0094 0.0145
actor 7 600 26 659 5 0.2167 0.2199 0.0064 0.0028 0.0053
genius 421 961 922 868 2 0.5932 0.5087 0.0229 -0.0527 -0.0705
roman-empire 22 662 32 927 18 0.0469 0.0460 0.0208 -0.0468 -0.4913

for the fact that in coauthors-cs, having 80% homophilous edges reflects much stronger homophily
than in pubmed, due to different class distribution.

7 Homophily for Directed Graphs
Above, we have only discussed homophily for undirected graphs. The natural next step would
be to extend our analysis to directed graphs. The study of edge-wise homophily measures in the
directed case is important since these measures have a one-to-one correspondence with classification
evaluation measures [14]. Thus, if we find a good homophily measure for directed graphs, we also get
a good classification evaluation measure that would allow us to compare classification performance
for datasets with different numbers of classes.

In Appendix I, we reformulate the desirable properties of homophily measures for directed graphs.
Unfortunately, it turns out that in the directed case the properties do contradict each other, which we
prove in Appendix I. Thus, no measure satisfying all of them can be constructed. We suggest steps
towards modification of these properties to avoid contradictions in the last subsection of Appendix I.

8 Conclusion
In this paper, we address the problem of how to choose a reliable homophily measure. We show via a
series of examples that previously used measures are flawed and construct a new one — unbiased
homophily — that behaves as desired in all the considered scenarios. We theoretically prove that the
proposed measure satisfies the desirable properties introduced in previous studies and some additional
ones. Thus, we solve the open problem of whether there exists a homophily measure satisfying all
these properties. The proposed measure can be applied to any undirected graphs, and we recommend
using it to estimate and compare homophily levels of various graphs in future works. We believe that
the proposed measure will become a useful tool for researchers and practitioners.

In contrast, for directed graphs, we prove that the desirable properties contradict each other, thus
no homophily measure can have all the desirable properties. This opens a direction for future
research — constructing a list of non-contradicting properties and finding the best measure in
terms of these properties. Another interesting direction for future studies is to theoretically analyze
homophily measures for higher-order relationship networks, such as hypergraphs or simplicial
complex networks [15].
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A Graph Assortativity Measures
In network science literature, there is a concept related to homophily that is called assortativity.
Assortativity is a general concept that is often applied to node degrees and the level of assortativity is
typically measured by assortativity coefficient [10]. When applied to node labels, the assortativity
coefficient reduces to adjusted homophily [5].

In terms of the class adjacency matrix C, the assortativity coefficient (for undirected graphs) can be
written as:

AC =

∑
i

cii −
∑
i

(∑
j

cij

)2

1−
∑
i

(∑
j

cij

)2 , (5)

which is equivalent to (1). Thus, the assortativity coefficient (sometimes referred to as nominal
assortativity) has maximal agreement and constant baseline, but it does not have minimal agreement
and monotonicity.

Recently, Karimi and Oliveira [16] proposed a new measure which is called adjusted nominal
assortativity that is designed to better handle cases when classes are size imbalanced. The formula
of adjusted nominal assortativity can be obtained from (5) by dividing each coefficient cij by fifj ,
where fi is the fraction of nodes in class i. That is, the formula of adjusted nominal assortativity for
undirected graphs is:

ACadj =

∑
i

cii
fifi

−
∑
i

(∑
j

cij
fifj

)2

1−
∑
i

(∑
j

cij
fifj

)2 .

However, it turns out that scaling the coefficients of nominal assortativity by class sizes prevents the
obtained measure from satisfying the desirable properties, as we prove below.

Maximal agreement. For fully homophilic graphs, the value of adjusted nominal assortativity is∑
i

cii
fifi

. Clearly, by fixing all cii and changing the number of nodes in classes, we can change the

value of
∑
i

cii
fifi

(given that at least two of cii are non-zero).

Minimal agreement. Assume that all classes have the same number of nodes, that is, fi = 1
m .

Then, adjusted nominal assortativity for a fully heterophilic graph becomes:

−
∑
i

(∑
j

cij
fifj

)2

1−
∑
i

(∑
j

cij
fifj

)2 =

−
∑
i

(∑
j

cij

)2

m4

1−
∑
i

(∑
j

cij

)2

m4

.

Since for different fully heterophilic graphs the value of
∑
i

(∑
j

cij

)2

can be different, the value of

adjusted nominal assortativity can also be different.

Constant baseline. Assume that all classes have the same number of nodes, that is, fi = 1
m . Then,

adjusted nominal assortativity becomes:

∑
i

cii −
∑
i

(∑
j

cij

)2

1−
∑
i

(∑
j

cij

)2 =

∑
i

cii m
2 −

∑
i

(∑
j

cij

)2

m4

1−
∑
i

(∑
j

cij

)2

m4

.
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Let C = rand(C) (see the definition of rand(C) in Appendix C for the details), that is, cii =(∑
j

cij

)2

for all i. Then,

∑
i

ciim
2 −

∑
i

(∑
j

cij

)2

m4

1−
∑
i

(∑
j

cij

)2

m4

=

∑
i

ciim
2 −

∑
i

ciim
4

1−
∑
i

ciim4
=

∑
i

cii(m
2 −m4)

1−
∑
i

ciim4
.

Since for different rand(C) the value of
∑
i

cii can be different, the value of adjusted nominal

assortativity can also be different.

B Inconsistency of Homophily Measures
In this section, we report the results of additional experiments that are analogous to those in Section 3.
As before, we sample 1000 pairs of graphs and for each pair of homophily measures, we count the
percentage of pairs where the measures agree on what graph is more homophilic.

PROTEINS and MUTAG [13]. The results for these datasets are reported in Tables 6 and 7. The
most notable is the inconsistency between class homophily and other measures in Table 7.

Table 6: Agreement of homophily measures
on the PROTEINS dataset

hedge hnode hclass hadj

hedge - 96% 76% 81%
hnode 96% - 76% 81%
hclass 76% 76% - 92%
hadj 81% 81% 92% -

Table 7: Agreement of homophily measures
on the MUTAG dataset

hedge hnode hclass hadj

hedge - 97% 30% 89%
hnode 97% - 30% 88%
hclass 30% 30% - 41%
hadj 89% 88% 41% -

Synthetic data. We generate synthetic graphs as follows. We sample the number of classes m
uniformly at random from [2, 10]. Each graph has 100 nodes, nodes are numbered from 1 to 100. We
sample m− 1 different numbers a1, . . . , am−1 from [1, 99] and assign class i to nodes in (ai−1, ai]
(assuming a0 = 1 and am = 100). For every pair of classes i ≤ j we sample pij uniformly at
random from [0, 1]. For every pair of nodes in the graph we draw an edge between them with
probability pij where i and j are classes of these nodes. As a result, we obtain graphs with different
community structures and with varying numbers of classes and class size balance. The consistency of
the homophily measures on this dataset is shown in Table 8.

Table 8: Agreement of homophily measures
on the synthetic dataset

hedge hnode hclass hadj

hedge - 97% 67% 69%
hnode 97% - 67% 68%
hclass 67% 67% - 79%
hadj 69% 68% 79% -

Table 9: Agreement of homophily measures
on the real datasets from Table 5

hedge hnode hclass hadj

hedge - 94% 83% 81%
hnode 94% - 85% 82%
hclass 83% 85% - 92%
hadj 81% 82% 92% -

Node classification datasets. We also conducted a similar measurement on the datasets from
Table 5, i.e., we consider all pairs of datasets and check whether two homophily measures agree
on which dataset is more homophilic. The results are shown in Table 9. Note that the obtained
values are (in most cases) higher than in our previous experiments. This difference can be explained
by the fact that the datasets in Table 5 are very different from each other and, in particular, may
have very different homophily levels. When the difference in homophily is significant, it is easy for
two measures to agree on which dataset is more homophilic. In contrast, in molecular datasets and
synthetic data used for Table 8, all graphs are of the same nature and thus are more similar and we

13



Revisiting Graph Homophily Measures

expect more inconsistencies. In general, we expect such inconsistency results to highly depend on
a dataset. However, note that in all the cases there are many examples of situations when any two
measures are inconsistent.

C Formal Desirable Properties for Scale-Invariant Homophily Measures
Let us formally define a list of desirable properties a good homophily measure h is expected to
satisfy. For convenience of further analysis, we formulate these properties only for edge-wise
scale-invariant measures. Also for convenience, we split monotonicity property into two properties:
homo-monotonicity and hetero-monotonicity.

Denote by MQ the set of all matrices which are symmetric, non-negative, with rational elements that
sum to 1 (and with at least two non-zero elements). Clearly, every element of MQ corresponds to the
normalized class adjacency matrix of some graph, and all matrices corresponding to graphs belong to
MQ. Therefore, a homophily measure h can be considered as a function on MQ.

Continuity. A homophily measure h is a continuous function.

This property ensures that small changes in the graph structure (i.e., in the normalized class adjacency
matrix) result in small changes in the homophily measure, which is a natural requirement. Note that
all edge-wise scale-invariant measures listed in Section 2 are continuous. To show the importance
of this property, in Appendix D we give an example of a homophily measure that has all desirable
properties excluding continuity but demonstrates unwanted behavior, thus proving that continuity
must be required.

Denote by MR the set of all symmetric non-negative matrices with real elements that sum to 1 (and
with at least two non-zero elements). Since MQ is a dense subset of MR, any continuous function h
on MQ can be uniquely extended to a continuous function on MR. Hence, if a homophily measure h
is continuous, it can be uniquely extended to a continuous function on MR. Thus, we further assume
that continuous homophily measures are defined on MR, i.e., C can be any element of MR.

Maximal agreement. There exists Rmax ∈ R such that h(C) ≤ Rmax and equality holds iff
m∑
i=1

cii = 1. In other words, if all edges of a graph are homophilic, then h(C) = Rmax, and if a graph

has at least one heterophilic edge, then h(C) < Rmax.

Minimal agreement. There exists Rmin ∈ R such that h(C) ≥ Rmin and equality holds iff
m∑
i=1

cii = 0. In other words, if all edges of a graph are heterophilic, then h(C) = Rmin, and if a

graph has at least one homophilic edge, then h(C) > Rmin.

Constant baseline. This property ensures that a homophily measure is not biased towards graphs
with small or large number of classes or particular class size distributions. To achieve this, the
property requires that if a graph structure is independent of labels, then homophily should be equal to
some constant Rbase.

To formalize this property, for every CG, we construct a new normalized class adjacency matrix
rand(CG), corresponding to a graph whose structure is independent of labels, while class degrees
distribution is the same as for CG. After that, we require ∀CG : h(rand(CG)) = Rbase.

Definition 4. For a normalized class adjacency matrix CG, let ai :=
m∑

k=1

cik = Di

2|E| . Then, we define

rand(CG) as: rand(CG)ij := aiaj .

Let us motivate this definition. Suppose we fix the degrees and labels of all nodes in G and redraw
edges between the nodes uniformly at random. That is, every half-edge has an equal probability to
form an edge with any other half-edge. It is easy to see that the expected fraction of homophilic edges
in class i is Di

2|E| ·
Di

2|E| = a2i (up to a negligible term that is usually ignored). Similarly, the expected

fraction of heterophilic edges between classes i and j is 2 · Di

2|E| ·
Dj

2|E| = 2aiaj . Thus, the elements
of rand(CG) correspond to expected fractions of edges of each type under the procedure when we
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randomly redraw all edges in a graph G. Note that column-wise and row-wise sums of rand(CG)
remain the same as in CG.

We see that the structure of rand(CG) is independent of labels. Thus, it is natural to say that
rand(CG) is neither homophilic nor heterophilic for any CG. This motivates the following definition.
Definition 5 (Constant baseline). A homophily measure h has constant baseline if there exists
Rbase ∈ R such that for any CG we have h(rand(CG)) = Rbase.

Homo-monotonicity. This property requires that adding homophilic edges increases the value of
the measure. Let us reformulate this requirement in terms of the normalized class adjacency matrix C.
If we add a homophilic edge within a class i, then in Definition 3, the denominator |E| gets replaced
by |E| + 1, the numerator of cii increases by 1, and the numerators of all other elements stay the
same. Thus, when we add a homophilic edge within class i, all elements of C are multiplied by
|E|

|E|+1 = 1− 1
|E|+1 , and after that cii is increased by 1

|E|+1 . Due to scale invariance, we can make
|E| arbitrarily large and thus make 1

|E|+1 arbitrarily close to zero. Using the fact that we can add
several homophilic edges one by one and the continuity property, we can essentially replace 1

|E|+1 by
any number from (0, 1), from which the following definition follows.

Definition 6 (Homo-monotonicity). Suppose C is not fully homophilic, i.e.,
m∑
i=1

cii < 1. Then, for

any i and any 0 < ϵ < 1 we have h((1− ϵ)C + ϵEii) > h(C), where Eii is a matrix unit (it has 1 at
the position (i, i) and zeros everywhere else).

In other words, if not all edges of G are homophilic and we add one or several homophilic edges to
G, then the resulting graph G′ satisfies h(G′) > h(G).

Hetero-monotonicity. This property requires that removing heterophilic edges increases the value
of the measure. Similarly to the above, when we delete a heterophilic edge between classes i and j,
all elements of C are multiplied by |E|

|E|−1 = 1 + 1
|E|−1 , and after that cij and cji are decreased by

1
2(|E|−1) .

Definition 7 (Hetero-monotonicity). Suppose C is not fully heterophilic, i.e.,
m∑
i=1

cii > 0. Then, for

any i ̸= j and any ϵ such that 0 < ϵ ≤ 2(1 + ϵ)cij we have

h((1 + ϵ)C − ϵ

2
Eij −

ϵ

2
Eji) > h(C),

where Eij is a matrix unit (it has 1 at the position i, j and zeros everywhere else).

In other words, if not all edges of G are heterophilic and we remove one or several heterophilic edges
from G, then the resulting graph G′ satisfies h(G′) > h(G).

Empty class tolerance. If we pad a matrix C with a row and a column of zeros, the homophily of
the matrix does not change. In other words, if we add to G a new dummy label that is not present in
the graph, then the resulting graph G′ satisfies h(G′) = h(G).

Class symmetry. Given any m×m matrix and any permutation σ ∈ Sm, we can simultaneously
permute the rows and columns by σ. A homophily measure h is called class-symmetric iff for any
C and any σ we have h(σ(C)) = h(C). In other words, the measure h is invariant to permuting
(renaming) the classes. Note that all existing measures have class-symmetry.

D Homophily Measure Without Continuity Property

In this section, we give an example of a homophily measure that has all desirable properties excluding
continuity. We show that it exhibits unwanted behavior and this justifies that continuity is indeed a
necessary property.
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Consider the following homophily measure:

h(C) =
∑
i

√
cii − 1 if

∑
i

√
cii ≤ 1,

h(C) =
∑
i

cii if
∑
i

√
cii > 1.

Here is an informal idea of the example. The term
∑
i

√
cii has minimal agreement and constant

baseline, but it does not have maximal agreement. Also, it has hetero-monotonicity everywhere, but
its homo-monotonicity is sometimes violated when

∑
i

√
cii > 1. So, we cut it at

∑
i

√
cii = 1 to

keep all desirable properties and avoid problems with maximal agreement and homo-monotonicity.
After that, for

∑
i

√
cii > 1 we use

∑
i

cii (i.e., edge homophily), which has all desirable properties

but does not have constant baseline. The problem with constant baseline is avoided since all rand(C)
graphs (which constant baseline cares about) satisfy

∑
i

√
cii = 1.

Thus, the measure h(C) is artificially constructed from two measures one of which is known to have
no constant baseline. As a result, when a graph is homophilic (h(C) > 0), h(C) is equal to edge
homophily which is known to be not a good measure. This is achieved since we have a discontinuity
at h(C) = 0.

Indeed, let us consider the following normalized class adjacency matrices:

L1 =

[
1
4

1
4

1
4

1
4

]
, L2 =

[
1
4 + ϵ 1

4 − ϵ
1
4 − ϵ 1

4 + ϵ

]
,

where ϵ > 0 is a small positive number.

Since for L1 we have
∑
i

√
cii = 1

2 + 1
2 = 1, we have h(L1) =

∑
i

√
cii − 1 = 0. Since for L2

we have
∑
i

√
cii =

√
1
4 + ϵ +

√
1
4 + ϵ > 1, we have h(L2) =

∑
i

cii =
1
2 + 2ϵ. Thus, h(L1) and

h(L2) differ by at least 1
2 , which is an unwanted behavior, since L1 and L2 themself are very close

to each other. In particular, for ϵ → 0, the matrix L2 tends to rand(L2), but h(L2) does not tend to
Rbase = 0, which indicates that the measure is biased.

Now let us briefly discuss why h indeed has all desirable properties except continuity.

Continuity. Not satisfied at the points where
∑
i

√
cii = 1.

Minimal and maximal agreement. The measure h has minimal and maximal agreement with
Rmin = −1 and Rmax = 1.

Homo- and hetero-monotonicity. The term
∑
i

√
cii has homo- and hetero-monotonicity when∑

i

√
cii ≤ 1, as we prove in Appendix E (since this term is proportional to the second term of

unbiased homophily). The term
∑
i

cii has homo- and hetero-monotonicity.

Constant baseline. Suppose C = rand(C). Then,
∑
i

√
cii =

∑
i

√
a2i =

∑
i

ai = 1. Therefore,

h(C) =
∑
i

√
cii = 1. Thus, constant baseline is satisfied with Rbase = 0.

Empty class tolerance. Satisfied, since both
∑
i

√
cii and 1 +

∑
i

cii do not change after padding a

matrix C with a row and a column of zeros.

Class-symmetry. Satisfied, since both
∑
i

√
cii and 1+

∑
i

cii are invariant to permuting (renaming)

the classes.
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E Proof of Theorem 5.1

In this section, we prove that the measure

hα
unb(C) :=

∑
i<j

(
√
ciicjj − cij)∑

i<j

(
√
ciicjj + cij)

+ αmin

(∑
i

√
cii, 1

)
, α > 0

has all the desirable properties listed in Appendix C, and its values Rmax, Rbase, Rmin are equal to
1 + α, α,−1, respectively.

Maximal agreement. Suppose
m∑
i=1

cii = 1 (and therefore all cij = 0). Then the first term is equal

to 1. Since 0 ≤ cii ≤ 1, we have
√
cii ≥ cii, thus

∑
i

√
cii ≥

∑
i

cii = 1 and min(
∑
i

√
cii, 1) = 1.

Therefore, the second term is equal to α, and homophily is equal to 1 + α.

If
m∑
i=1

cii < 1 (and therefore at least one cij > 0), then the first term is less than 1 and the second

term is less than or equal to α. Thus, maximal agreement is satisfied with Rmax = 1 + α.

Minimal agreement. If
m∑
i=1

cii = 0 (and therefore at least one cij > 0), then the first term is equal

to −1 and the second term is equal to 0. If
m∑
i=1

cii > 0, then the first term is greater than or equal to

−1 and the second term is greater than 0. Thus, minimal agreement is satisfied with Rmin = −1.

Constant baseline. Suppose C = rand(C). Then, the first term is equal to 0 since the numerator
of the first term is equal to∑

i<j

(
√
ciicjj − cij) =

∑
i<j

(
√
a2i a

2
j − aiaj) =

∑
i<j

(0) = 0.

The second term is equal to α since∑
i

√
cii =

∑
i

√
a2i =

∑
i

ai = 1.

Thus, constant baseline is satisfied with Rbase = 0 + α = α.

Homo-monotonicity. W.l.o.g. we can assume that we increase c11. That is, all elements of C are
multiplied by (1− ϵ) and after that the element (1− ϵ)c11 is increased by ϵ. We need to prove that
after that the homophily measure has increased, given that C has at least one non-zero non-diagonal
element.

Let us see what happens to the first term. Multiplying all elements by (1− ϵ) does not change the first
term, since both numerator and denominator are multiplied by (1− ϵ). The subsequent addition of ϵ
to (1− ϵ)c11 increases both numerator and denominator by δ, where δ = 0 if c22 = · · · = cnn = 0,
and δ > 0 if at least one of c22, . . . , cnn is not zero.

Let us prove that if δ > 0, then the first term has increased. Denote the numerator by N , the
denominator by D:

N + δ

D + δ
>

N

D
⇔ (N + δ)D > N(D + δ) ⇔ Dδ > Nδ ⇔ D > N,

where we used the facts that D, D+ δ, and δ are greater than 0. The last inequality D > N holds for
all C with at least one non-zero non-diagonal element. Thus, we proved that if δ > 0, then the first
term has increased. Clearly, if δ = 0, the first term does not change.
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Let us see what happens to the second term. Instead of adding ϵ, we calculate the derivative w.r.t. ϵ:

∂

∂ϵ

(√
(1− ϵ)c11 + ϵ+

√
(1− ϵ)c22 + . . .+

√
(1− ϵ)cnn

)
=

=
1

2

(
1− c11√

c11
− c22√

c22
− . . .− c22√

cnn

)
=

1

2

(
1

√
c11

−
∑
i

√
cii

)
.

As long as 1 ≥
∑
i

√
cii, this derivative is positive, since 1√

c11
> 1 ≥

∑
i

√
cii. Thus, the second term

has a positive derivative with respect to ϵ when
∑
i

√
cii < 1 and zero derivative when

∑
i

√
cii > 1.

Now let us combine our results for the first and second terms to prove that homo-monotonicity
holds. If δ > 0, then the first term is increasing and the second term is non-decreasing, thus homo-
monotonicity holds. If δ = 0, then the only possibly nonzero diagonal element is c11 and c11 < 1,
thus

∑
i

√
cii =

√
c11 < 1. Therefore, the first term stays constant and the second term is increasing,

thus homo-monotonicity holds. This concludes the proof that h satisfies the homo-monotonicity
property.

Hetero-monotonicity. W.l.o.g. we can assume that c12 decreases. That is, all the elements of C
are multiplied by (1 + ϵ) and after that the element (1 + ϵ)c12 is decreased by ϵ. We need to prove
that after that the homophily measure has increased, given that C has at least one non-zero diagonal
element.

Let us see what happens to the first term. Multiplying all the elements by (1 + ϵ) does not change
the first term, since both numerator and denominator are multiplied by (1 + ϵ). The subsequent
subtraction of ϵ from (1 + ϵ)c12 increases the numerator and decreases the denominator by positive
δ = ϵ > 0. Denote the numerator by N , the denominator by D:

N + δ

D − δ
>

N

D
⇔ (N + δ)D > N(D − δ) ⇔ Dδ > −Nδ ⇔ D > −N,

where we use the facts that D,D − δ, and δ are greater than 0. The last inequality D > −N holds
for all C with at least two non-zero diagonal elements. Thus, we proved that if C has at least two
non-zero diagonal elements, then the first term has increased. Clearly, if C has exactly one non-zero
diagonal element, then the first term stays equal to −1 and thus does not change.

Let us see what happens to the second term. The expression
∑
i

√
cii will be multiplied by

√
1 + ϵ.

Therefore, the second term will increase if
∑
i

√
cii < 1 or stay constant if

∑
i

√
cii ≥ 1. Clearly, if C

has exactly one non-zero diagonal element, then
∑
i

√
cii < 1, thus the second term increases.

Now let us combine our results for the first and second terms to prove that hetero-monotonicity holds.
If C has exactly one non-zero diagonal element, then the first term stays constant and the second
term increases. If C has at least two non-zero diagonal elements, then the first term increases and
the second term non-decreases. This concludes the proof that h satisfies the hetero-monotonicity
property.

Empty class tolerance. Satisfied, since both first and second terms do not change after padding a
matrix C with a row and a column of zeros.

Class-symmetry. Satisfied, since both first and second terms are invariant to permuting (renaming)
the classes.

Continuity. Satisfied, since both first and second terms are continuous.

F Ajusted Homophily Non-Monotonicity Example
Adjusted homophily does not have minimal agreement and it does not have monotonicity when the
value of adjusted homophily is low. Let us give an example of unwanted behavior corresponding to
the lack of monotonicity.
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Consider the following class adjacency matrix. We delete heterophilc edge between classes 1 and 2
and see how adjusted homophily changes.


0 �1 0 0

�1 0 0 0

0 0 2 8

0 0 8 2

 .

Before deleting the edge the adjusted homophily was equal to
2
11−

1+1+100+100

222

1− 1+1+100+100

222

≈ −0.404. After

deleting the edge the adjusted homophily is equal to
2
10−

100+100

202

1− 100+100

202

= −0.6. Thus the adjusted

homophily has decreased which contradicts hetero-monotonicity. In contract, the unbiased homophily
hunb has increased from 2−8−1

2+8+1 ≈ −0.636 to 2−8
2+8 = −0.6. For hα

unb we have an increase from
−0.636 + 0.603α to −0.6 + 0.632α.

G Equivalence of Two Formulas for hunb

Here is a calculation which proves that formulas (3) and (4) for hunb are equivalent:

hunb(C) =

∑
i<j

(
√
ciicjj − cij)∑

i<j

(
√
ciicjj + cij)

=

2
∑
i<j

(
√
ciicjj − cij)

2
∑
i<j

(
√
ciicjj + cij)

=

∑
i̸=j

(
√
ciicjj − cij)∑

i̸=j

(
√
ciicjj + cij)

=

=

(∑
i

√
cii

)2

−
∑
i

cii −
∑
i ̸=j

cij(∑
i

√
cii

)2

−
∑
i

cii +
∑
i ̸=j

cij

=

(∑
i

√
cii

)2

− 1(∑
i

√
cii

)2

+ 1− 2
∑
i

cii

. (6)

H Comparing Unbiased and Adjusted Homophily
In this section, we additionally illustrate the difference between unbiased and adjusted homophily
with a simple synthetic example.

Here, for a fixed number of classes m and a chosen value of hunb, we construct a normalized
class adjacency matrix (assuming that homophilic/heterophilic edges are evenly distributed between
classes/class pairs), and calculate hadj based on it. Thus, we can see how adjusted homophily changes
if we fix unbiased homophily but change the number of classes. We make the following observations.

Table 10: Adjusted homophily for different values of hunb and m

m,hunb −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

2 -1.000 -0.800 -0.600 -0.400 -0.200 0.000 0.200 0.400 0.600 0.800 1.000
3 -0.500 -0.421 -0.333 -0.235 -0.125 0.000 0.143 0.308 0.500 0.727 1.000
4 -0.333 -0.286 -0.231 -0.167 -0.091 0.000 0.111 0.250 0.429 0.667 1.000
5 -0.250 -0.216 -0.176 -0.129 -0.071 0.000 0.091 0.211 0.375 0.615 1.000
6 -0.200 -0.174 -0.143 -0.105 -0.059 0.000 0.077 0.182 0.333 0.571 1.000
7 -0.167 -0.145 -0.120 -0.089 -0.050 0.000 0.067 0.160 0.300 0.533 1.000
8 -0.143 -0.125 -0.103 -0.077 -0.043 0.000 0.059 0.143 0.273 0.500 1.000
9 -0.125 -0.110 -0.091 -0.068 -0.038 0.000 0.053 0.129 0.250 0.471 1.000

10 -0.111 -0.098 -0.081 -0.061 -0.034 0.000 0.048 0.118 0.231 0.444 1.000

First, when hunb = 1, we always have hadj = 1. This is expected since this case corresponds to
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graphs having only homophilic edges and both measures have maximal agreement. Second, when
hunb = 0, we always have hadj = 0. This is also expected since both measures have constant
baseline.

Then, when hunb = −1, one can see that hadj increases with the number of classes. Since hunb = −1
corresponds to graphs containing only heterophilic edges, this shows the lack of minimal agreement
for hadj .

We also see that when m = 2, the measures are equal to each other (in our synthetic example). Then,
for heterophilic graphs (hunb < 0) and fixed hunb, hadj increases with the number of classes, while
for homophilic graphs (hunb > 0) and fixed hunb, hadj decreases with the number of classes.

I Homophily Measures for Directed Graphs
In this section, we reformulate the desirable properties of a homophily measure for directed graphs.
After that, we prove that these properties contradict each other. Thus, no measure satisfying all of
them can be constructed. In Subsection I.3, we suggest steps towards modification of these properties
to avoid contradictions.

I.1 Desirable Properties of Homophily Measures

In this section, a homophily measure is a function h from the set of all directed unweighted graphs
(that may include self-loops and multiple edges) with labeled nodes to R.
Definition 8. For a directed graph G, we define m×m class adjacency matrix LG by lij = |{(u, v) ∈
E : (yu, yv) = (i, j)}|.
The normalized class adjacency matrix CG is then defined as 1

|E|LG. This matrix can be non-
symmetric and it has non-negative elements summing to one. As before, we consider only CG with
at least two non-zero elements.

Below we consider only edge-wise and scale-invariant homophily measures that are defined exactly
as in the undirected case. We define the properties maximal agreement, minimal agreement, homo-
monotonicity, empty class tolerance, class-symmetry, and continuity as in the undirected case (see
Appendix C). Let us now define hetero-monotonicity and constant baseline.

Hetero-monotonicity As in the undirected case, if not all edges of G are heterophilic and we remove
one or several heterophilic edges from G, then the resulting graph G′ should satisfy h(G′) > h(G).

Formally, let C be not fully heterophilic, i.e.,
m∑
i=1

cii > 0. Then, for any i ̸= j and any ϵ such that

0 < ϵ ≤ (1 + ϵ)cij , we have h((1 + ϵ)C − ϵEij) > h(C).

Constant baseline As in the undirected case, for every CG, we define the normalized class adjacency
matrix rand(CG), corresponding to a graph whose structure is independent of labels, while class
degrees distribution is the same as for CG. After that, we require ∀CG : h(rand(CG)) = Rbase.

Definition 9. For a normalized class adjacency matrix CG, let ai :=
m∑

k=1

cik and bj :=
m∑

k=1

ckj . Then,

we define rand(CG) as: rand(C)ij := aibj .

To motivate this definition, suppose we fix the in-degrees, out-degrees, and labels of all nodes in
G and redraw edges between the nodes uniformly at random. That is, every out-half-edge has an
equal probability to form an edge with any in-half-edge. Similarly to the undirected case, we observe
that the expected fraction of homophilic edges in class i is then aibi and the expected fraction of
heterophilic edges from class i to class j is aibj . Thus, the elements of rand(CG) correspond to
expected fractions of edges of each type under the procedure when we randomly redraw all edges in
a graph G. Note that column-wise and row-wise sums of rand(CG) remain the same as in CG.
Definition 10 (Constant baseline). A homophily measure h has constant baseline if there exists
Rbase ∈ R such that for any CG we have h(rand(CG)) = Rbase.

I.2 Contradiction

It turns out that this set of properties is internally contradictory. The following two propositions hold.
Proposition I.1. The constant baseline and minimal agreement properties contradict each other.
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Proof. Suppose we have a graph K where some classes have only out-edges and all the other
classes have only in-edges. Suppose we also have K = rand(K), thus constant baseline requires
the homophily of this graph to be equal to Rbase. On the other hand, minimal agreement requires
the homophily of this graph to be equal to Rmin since all edges of this graph are heterophilic.
This easily leads to contradiction, as we see in the example below: here constant baseline requires
h(K) = h(L) = Rbase and minimal agreement requires h(K) = Rmin < h(L), which gives a
contradiction.

K =


0 0 1

4
1
4

0 0 1
4

1
4

0 0 0 0

0 0 0 0

 , L =


1
4

1
4 0 0

1
4

1
4 0 0

0 0 0 0

0 0 0 0

 .

Proposition I.2. Constant baseline and hetero-monotonicity properties contradict each other.

Proof. Suppose we have graphs T = rand(T ) and L = rand(L) such that L can be obtained from
T by deleting several heterophilc edges. Then, constant baseline requires h(T ) = h(L) = Rbase and
hetero-monotonicity requires h(T ) < h(L), which gives a contradiction. In example below using the
hetero-monotonicity property, we can replace all non-zero elements in the fourth column and third
row of T with zeros, obtaining matrix L.

T =


1
9

1
9 0 ��

1
9

1
9

1
9 0 ��

1
9

��
1
9 ��

1
9 0 ��

1
9

0 0 0 0

 , L =


1
4

1
4 0 0

1
4

1
4 0 0

0 0 0 0

0 0 0 0

 .

Not necessarily edge-wise scalar-invariant measures. We gave the examples above to prove the
contradiction between the desirable properties, while the properties were formulated for edge-wise
scalar-invariant measures. Let us give a sketch of the proof that the same examples work for any
measure which is not necessarily scalar-invariant or even edge-wise.

Indeed, consider our example which shows the contradiction between constant baseline and minimal
agreement. Consider two graphs satisfying constant baseline, with corresponding normalized adja-
cency matrices K and L. Since all edges of the first graph are heterophilic and not all edges of the
second graph are heterophilic, the minimal agreement property requires that homophily of the first
graph is Rmin and homophily of the second is greater than Rmin. Yet, constant baseline requires the
homophily of both of them to be equal to Rbase, thus giving a contradiction.

Consider our example which shows contradiction between constant baseline and hetero-monotonicity.
Consider any graph satisfying constant baseline, corresponding to normalized adjacency matrix T .
Delete in this graph all edges with at least one end in classes 3 and 4, getting the second graph with
normalized adjacency matrix L. Constant baseline require the homophily of both of these graphs to
be equal to Rbase. Yet we have deleted only hereophilic edges, thus hetero-monotonicity requires
the homophily of the second graph to be greater than homophily of the first graph, thus giving a
contradiction.

I.3 Discussion

As shown above, the list of desirable properties for the directed case is self-contradicting. Hence, it is
natural to try to modify these properties to avoid contradictions.

The contradiction between constant baseline and minimal agreement properties is quite severe. This
contradiction occurs since there can be cases when C is fully hetero and C = rand(C). A possible
way to resolve this problem is to simply allow h to be undefined (and discontinuous) for all such C.

To resolve the contradiction between constant baseline and hetero-monotonicity, we can rethink the
property of monotonicity. Note that our current definition of constant baseline is naturally formulated
in terms of normalized class adjacency matrices, while homo- and heter-monotonicity are formulated
in terms of edges, and only after that are translated to matrices. Let us formulate a new property that
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we call randomization monotonicity. First, this property is formulated in terms of normalized class
adjacency matrices. Second, it essentially extends the constant baseline from one point to the whole
range of the measure: we require some desirable (unbiased) behavior not only for random graphs but
also for homophilic/heterophilic structures.

Suppose that for a given graph G, we randomly sample some fraction of its edges and redraw
them randomly (while keeping the degree distribution, as before). In terms of the normalized class
adjacency matrix, we replace C by (1− ϵ) · C + ϵ · rand(C) for some ϵ > 0. Then, it is natural to
require that homophily of the graph gets closer to Rbase, since a part of its edges become independent
of labels. Formally, we require the following.

Randomization monotonicity For any ϵ ∈ (0, 1] we have:

h(C) < h((1− ϵ) · C + ϵ · rand(C)) ≤ Rbase if h(C) < Rbase ,

h(C) > h((1− ϵ) · C + ϵ · rand(C)) ≥ Rbase if h(C) > Rbase .

We believe that the development and analysis of non-contradicting properties for the directed case is
an important subject for future studies.

J Graph Datasets Description
Cora, citeseer, and pubmed [17–21] are three paper citation graph datasets. In cora and citeseer, the
labels are paper topics, and in pubmed the labels correspond to the type of diabetes addressed in the
paper. Coauthor-cs and coauthor-physics [22] are co-authorship graph datasets. Nodes are authors,
an edge corresponds to co-authoring a paper, and labels are fields of study. Amazon-computers
and amazon-photo [22] are co-purchasing graph datasets. Nodes are products, an edge means that
two products are frequently bought together, and labels are product categories. Lastfm-asia is a
social graph of music streaming site LastFM users living in Asia [23]. Edges correspond to follower
relationships, labels are the user’s nationality. Facebook [24] is a graph dataset, where nodes are
official Facebook pages, links correspond to mutual likes, and labels are site categories. Github [24]
is a graph dataset, where nodes are GitHub users, edges correspond to follower relationships, and
binary label tells that a person is either a web or a machine learning developer. Actor [8, 25] is a graph
dataset, where nodes are actors, edges correspond to co-occurrence on the same Wikipedia page,
and the labels are based on words from an actor’s Wikipedia page. Flickr [26] is a graph dataset of
images, where labels are image types. Deezer-europe [23] is a graph of users of the music streaming
service Deezer, where labels correspond to the user’s gender. Twitch-de and twitch-pt [24] are graph
datasets of gamers from the streaming service Twitch, where labels correspond to the use of explicit
language by the gamers. Genius [27] is a large-scale heterophilous graph dataset. Roman-empire,
amazon-ratings, minesweeper, tolokers, and questions [5] are mid-scale heterophilous datasets.

We transform all graph datasets to undirected graphs and remove self-loops and multiple edges.
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