
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACTION ABSTRACTIONS FOR AMORTIZED SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

As trajectories sampled by policies used by reinforcement learning (RL) and gen-
erative flow networks (GFlowNets) grow longer, credit assignment and explo-
ration become more challenging, and the long planning horizon hinders mode dis-
covery and generalization. The challenge is particularly pronounced in entropy-
seeking RL methods, such as generative flow networks, where the agent must learn
to sample from a structured distribution and discover multiple high-reward states,
each of which take many steps to reach. To tackle this challenge, we propose an
approach to incorporate the discovery of action abstractions, or high-level actions,
into the policy optimization process. Our approach involves iteratively extracting
action subsequences commonly used across many high-reward trajectories and
‘chunking’ them into a single action that is added to the action space. In empirical
evaluation on synthetic and real-world environments, our approach demonstrates
improved sample efficiency performance in discovering diverse high-reward ob-
jects, especially on harder exploration problems. We also observe that the ab-
stracted high-order actions are potentially interpretable, capturing the latent struc-
ture of the reward landscape of the action space. This work provides a cognitively
motivated approach to action abstraction in RL and is the first demonstration of
hierarchical planning in amortized sequential sampling.

1 INTRODUCTION

Reinforcement learning (RL) relies on a stochastic policy 𝜋𝜃 to generate potentially long trajectories
𝜏 of actions 𝛼 to obtain a reward 𝑟. Standard RL methods take learning steps on the policy parameters
𝜃 using a loss function that reinforces actions which maximize reward (Sutton & Barto, 2018). In
the case of diversity-seeking RL methods, such as generative flow networks (GFlowNets; Bengio
et al., 2021; 2023) – a special case of entropy-regularized RL (Ziebart et al. (2008); see Tiapkin
et al. (2023); Deleu et al. (2024)) – the loss function may instead encourage the policy to sample
terminal states with probability proportional to their reward. In both cases, longer trajectories make
training more difficult due to the problem of credit assignment, i.e., the propagation of a learning
signal over long time horizons (Sutton & Barto, 2018).
The difficulty of credit assignment grows with trajectory length: it has been shown that temporal
difference learning methods require an exponential (in the trajectory length) number of updates to
correct learning bias, while Monte Carlo methods see the number of states affected by delayed re-
wards grow exponentially with the number of delay steps (Arjona-Medina et al., 2019). Previous
work addressed the challenge of credit assignment through long trajectories by propagating a learn-
ing signal to specific moments in the trajectory, skipping over intermediate actions and effectively
reducing the trajectory length (Ke et al., 2018; Liu et al., 2019; Hung et al., 2019; Sun et al., 2023).
Recent work has shown that trajectory compression improves credit assignment in RL. For instance,
Ramesh et al. (2024) show that it is beneficial to explicitly shorten trajectories by dropping the in-
termediate states which are highly predictable given their predecessors, related to the principle of
history compression (Schmidhuber, 1992). Other recent work used a similar compressibility crite-
rion directly as a reward term: by encouraging the policy to implicitly learn trajectories that could be
easily compressed or predicted (e.g., that contain repeating elements), the RL agents achieve better
sample efficiency (Saanum et al., 2023). These works suggest that the lower description length of
action sequences confers some benefit in terms of the credit assignment challenge.
Analogies exist between compression in artificial and natural learning systems. A long line of
research in psychology investigates “chunking”, a phenomenon whereby humans tend to record
smaller units of information as part of larger high-order units. Chunking is believed to reduce the
load on working memory when reasoning about complex problems which would take too many bits

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝑎1

𝑎2

𝑎3

𝑎4

𝑎1 𝑎4 𝑎3 𝑎2 𝑎2 𝑎4 ⊤ 𝑥 (1) =⇒ 𝑅
(
𝑥 (1)

)
𝑎4 𝑎3 𝑎2 𝑎4 𝑎4 ⊤ 𝑥 (2) =⇒ 𝑅

(
𝑥 (2)

)
𝑎2 𝑎4 𝑎1 𝑎2 𝑎4 𝑎2 𝑎3 ⊤ 𝑥 (3) =⇒ 𝑅

(
𝑥 (3)

)
...

...

𝑎4 𝑎3 𝑎4 𝑎3 𝑎1 𝑎1 ⊤ 𝑥 (𝑁) =⇒ 𝑅
(
𝑥 (𝑁)

)
rollouts(

on-policy or
exploratory

)

policy update

𝑎4 𝑎3

𝑎2 𝑎4

Policy network Sampled trajectories Terminal states

filter and compress
augment action space

Inner loop: Sampler training

Outer loop: Abstraction

Figure 1: Chunking procedure. Starting with a policy, we generate trajectories consisting of action sequences.
The trajectories are then filtered to retain only the high-reward samples, which are passed to a tokenizer. The
tokenizer identifies frequently occurring “chunks” which are added to the action space. The process is repeated
till convergence.

to encode using only lower-level units (Thalmann et al., 2019; Gobet et al., 2001; Miller, 1956;
Johnson, 1970).
In RL, options and macro-actions generalize primitive actions and allow for temporally extended
sequences of actions, or temporal abstractions, that facilitate more efficient exploration and enable
hierarchical learning. Macro-actions have inconsistently been found to speed-up learning in RL and
enhance credit assignment (Randlov, 1998; Sutton et al., 1999).
Drawing on the above work, we propose to abstract high-order “chunks” online from the trajectories
sampled by a GFlowNet or RL policy, producing an action space that grows during training. In
contrast to (Saanum et al., 2023), compressibility is not enforced through objectives – rather, we
harness the virtuous cycle of emergent compressibility of the policy’s trajectories and the accelerated
learning that results from shorter action sequences. In addition, we find that these high-order actions
accurately recover the latent structure of the underlying distribution.
Our contributions can be summarized as follows:

• We present ACTIONPIECE, a method for extracting high-order actions, or ”chunks,” from sampled
trajectories using tokenization techniques. ACTIONPIECE includes two variants: ACTIONPIECE-
INCREMENT and ACTIONPIECE-REPLACE. Both approaches are compatible with any sampler at
no significant cost.

• We introduce ShortParse, a new backward policy for the GFlowNet aimed at sampling short tra-
jectories.

• We evaluate our approach on multiple environments and determine that it accelerates mode dis-
covery, improves density estimation, and reduces description length of the samples.

• We demonstrate that learned chunks represent the latent structure of the target distribution and are
transferable to different algorithms and new tasks.

2 RELATED WORK

Macro-actions are a sequence of actions assembled from an atomic action set (Randlov, 1998), a
form of temporal abstraction, and have been the focus of a long line of work. The idea stems from
early proposals of automatic induction of macros for programs using various rules or heuristics
(Iba, 1989; Laird et al., 1986); see Sutton et al. (1999) on the related framework of options and a
review of macro-actions. In our context, a macro-action is a policy representing a series of atomic
actions to be executed at once, which in some cases has been shown to reduce the time required to
discover the optimal policy and action-value function in the RL context (McGovern & Sutton, 1998;
Laird et al., 1986). Previous work has proposed composing macro-actions from n-grams to speed up
search during planning (Dulac et al., 2013) and employing them to construct form of a hierarchy of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

policies with different temporal resolutions (Precup & Sutton, 1997; Dayan & Hinton, 1992). Such
methods have produced mixed results, either helping or hindering performance depending on the
appropriateness of the macro-actions to the task (McGovern et al., 1997; Jong et al., 2008). In cases
where macro-actions were helpful, their utility was explained by improved credit assignment and
exploration. Previous work has also used evolutionary algorithms for discovering macro-actions,
which was an effective approach on common Atari games (Chang et al., 2022). Others proposed to
learn macro-actions as either actions that are repeated a number of times, or commonly-occurring
sub-sequences of a fixed length (Durugkar et al., 2016) while training a deep RL policy. In this work,
speed of convergence is the most reliable improvement from the introduction of macro-actions, but
variance of returns is also decreased, and in some specific settings returns improved. The settings
where macro-actions are useful appear to contain more shared structure between the learned macros
and the latent structure of the environment and reward landscape.
Work on library learning in program induction (e.g., Ellis et al. (2018); Nye et al. (2020); Chaudhuri
et al. (2021)) has often sought to incrementally modify the domain-specific language of interest so
as to reduce the complexity of useful programs, following the minimum description length principle
(Rissanen, 1978). DreamCoder and related approaches (Ellis et al., 2021; Claire et al., 2023; Ellis
et al., 2018; Bowers et al., 2023) accomplish this by introducing new subroutines during a distinct
abstraction phase during training. These algorithms leverage a library of solutions to given problems
which serve as a prior (see also Tian et al. (2020); Liang et al. (2010)). Many other works in this
space only implicitly learn a library in the form of a policy which emits a program when conditioned
on a program (e.g., Ellis et al. (2019); Devlin et al. (2017)). Similar works exist in the related domain
of proof synthesis (e.g., Vyskočil et al., 2010; Zhou et al., 2024).
Credit assignment is a fundamental problem in sequential decision-making, known to arise from
a few properties of the Markov decision process (MDP) in which the learner acts: its depth (the
typical number of steps between the initiation of a trajectory and a reward); its density (the number
of nonzero rewards in the typical trajectory) and its breadth (the number of possible routes from the
initial state to a reward; for a review, see Pignatelli et al. (2024). In RL, Hindsight Credit Assignment
(HCA; Harutyunyan et al., 2019) introduces a new family of algorithms where credit is assigned to
past decisions based on the likelihood of them having led to the observed outcome. In GFlowNets,
the trajectory balance objectives (Malkin et al., 2022; Madan et al., 2023), which consist of a loss
depending on a whole action sequence rather than a single transition, and the forward-looking flow
parametrization (Pan et al., 2023), which is effective when the energy can be decomposed additively
into per-time-step components, are both motivated by the credit assignment challenge.

3 PRELIMINARIES

We begin by briefly introducing the concept of amortized sampling and summarize the learning
problem solved by GFlowNets and the objective used, then introduce the two RL algorithms on
which we also evaluate our action abstraction approach.
Amortized sampling refers to the process of sampling from a functional approximation of the target
distribution, where the computational cost of iterative sampling is shifted to the model’s optimization
process. This allows for efficient and rapid sampling once training is complete.
Let 𝐺 = (𝑆, 𝐴) be a directed acyclic graph. Nodes 𝑠 ∈ 𝑆 are called states and edges (𝑠 → 𝑠′) ∈ 𝐴
are actions, which define the relations “𝑠 is a parent of 𝑠′” and “𝑠′ is a child of 𝑠”. We assume
that there is a unique state 𝑠0 ∈ 𝑆 with no parents (initial state) and denote the set of states with
no children (terminal states) by 𝑋 . One interprets 𝑋 as the set of complete “objects” that one can
sample and the actions as constructive steps that incrementally build an object.
A key assumption needed to formulate action abstraction is that there is a correspondence between
the actions available at different states. This is a common assumption in RL – in MDPs, the action
space is typically the same at all states, but some actions may be “masked” or “invalid” at some
states – but is not a typical GFlowNet assumption. Here, we assume that there is a global set of
actions A and that at each nonterminal state 𝑠 a subset A𝑠 ⊆ A of these actions is available. We
fix a bijection between A𝑠 and the set of children of 𝑠; thus, applying action 𝑎 ∈ A𝑠 at state 𝑠
transitions to the child state corresponding to 𝑎, denoted 𝑠 + 𝑎. (For example, when constructing
sequences over some alphabet by adding one symbol at a time to the end, A may be the alphabet,
with A𝑠 = A for all 𝑠.)
A (forward) policy 𝑃𝐹 is a collection of distributions over A𝑠 (identified by the aforementioned
bijection with the set of children of 𝑠) for every non-terminal state 𝑠. A forward policy induces a dis-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

tribution over complete trajectories, or paths in the directed graph from 𝑠0 to a terminal state 𝑠𝑛 ∈ 𝑋:

𝑃𝐹 (𝜏 = (𝑠0
𝑎0−−→ 𝑠1

𝑎1−−→ . . .
𝑎𝑛−1−−−→ 𝑠𝑛)) =

𝑛−1∏
𝑖=0

𝑃𝐹 (𝑎𝑖 | 𝑠𝑖), (1)

where 𝑠𝑖
𝑎𝑖−→ 𝑠𝑖+1 indicates that 𝑠𝑖 + 𝑎𝑖 = 𝑠𝑖+1. The marginal likelihood of sampling a terminal state

𝑥 ∈ 𝑋 is then
𝑃⊤𝐹 (𝑥) =

∑︁
𝜏⇝𝑥

𝑃𝐹 (𝜏),

where the sum is over all complete trajectories ending in 𝑥. (Note that this sum may be intractable
to compute exactly if the number of trajectories leading to 𝑥 is large.)
Trajectory balance. GFlowNet training aims to approximate 𝑃𝐹 (for example, parameterized as
a neural network 𝑃𝜃

𝐹
(· | ·)) so as to make 𝑃⊤

𝐹
proportional to a given reward function 𝑅 : 𝑋 →

R+. Various objectives for achieving this exist; here, we use the trajectory balance (TB) objective
(Malkin et al., 2022). TB requires introducing two auxiliary objects: a learned scalar 𝑍𝜃 (which
estimates the normalizing constant 𝑍 =

∑
𝑥∈𝑋 𝑅(𝑥)) and a (fixed or learned) backward policy 𝑃𝐵,

which is a collection of distributions 𝑃𝐵 (· | 𝑠) over the parents of every non-initial state 𝑠. Similarly
to equation 1, 𝑃𝐵 induces a distribution over complete trajectories ending in 𝑥:

𝑃𝐵 (𝜏 = (𝑠0 → · · · → 𝑠𝑛 = 𝑥) | 𝑥) =
𝑛−1∏
𝑖=0

𝑃𝐵 (𝑠𝑖 | 𝑠𝑖+1).

The TB objective aims to make 𝑃𝐹 (𝜏) proportional to 𝑃𝐵 (𝜏 | 𝑥)𝑅(𝑥) for every trajectory 𝜏 ending
in 𝑥, a constraint that implies that 𝑃⊤

𝐹
(𝑥) ∝ 𝑅(𝑥). The training loss for a trajectory 𝜏 enforces this

proportionality:

L(𝜏; 𝜃) =
(
log[𝑍𝜃 · 𝑃𝜃𝐹 (𝜏)] − log[𝑃𝜃𝐵 (𝜏 | 𝑥) · 𝑅(𝑥)]

)2
. (2)

If L(𝜏; 𝜃) = 0 for all 𝜏, then the desired proportionality is satisfied and 𝑃⊤
𝐹
(𝑥) ∝ 𝑅(𝑥). The training

procedure takes gradient steps with respect to 𝜃 to minimize L(𝜏; 𝜃) over trajectories sampled from
some behaviour policy 𝜋(𝜏). As we aim to simultaneously minimize equation 2 to 0 for all trajecto-
ries, the behaviour policy can be any full-support distribution, such as 𝑃𝐹 itself (on-policy training)
or a distribution chosen to promote exploration (off-policy training).
RL algorithms. The above setting can be translated to RL terminology in a straightfoward
manner: one defines an MDP with states 𝑆, action space A, deterministic transition function
𝑇 (𝑠, 𝑎) = 𝑠 + 𝑎, and reward 𝑟 (𝑠 → 𝑠′) = log 𝑅(𝑠′) if 𝑠′ ∈ 𝑋 and 0 otherwise. (The log is nec-
essary for the equivalence of GFlowNet and RL algorithms in certain cases to hold; see Tiapkin
et al. (2023); Deleu et al. (2024).) We now recall two RL objectives, restricting to this sparse-reward
setting with discount factor 1.
The Advantage Actor-Critic (A2C) algorithm (Degris et al., 2012) combines policy-based and
value-based methods to improve training stability and efficiency. Two networks are learned jointly:
a policy network 𝑃𝜃

𝐹
, which plays the role of the actor, and a state-action value (or critic) network

𝑄 𝜃𝑤 to measure the ‘goodness’ of actions taken by the actor. The two objects are learned using the
following update:

𝜃 ← 𝜃 − 𝜆𝜃𝑄 𝜃𝑤 (𝑠𝑡 , 𝑎𝑡)∇𝜃 log 𝑃𝜃𝐹 (𝑎𝑡 | 𝑠𝑡)
𝑤 ← 𝑤 − 𝜆𝑤 (𝑟 (𝑠𝑡 , 𝑎𝑡) +𝑄𝑤 (𝑠𝑡+1, 𝑎𝑡+1) −𝑄𝑤 (𝑠𝑡 , 𝑎𝑡))∇𝑤𝑄𝑤 (𝑠𝑡 , 𝑎𝑡)

where 𝜆𝜃 and 𝜆𝑤 are learning rates. To further stabilize training, a baseline is usually used, and
𝑄(𝑠𝑡 , 𝑎𝑡) is replaced with 𝑄(𝑠𝑡 , 𝑎𝑡) −E𝑎𝑡∼𝑃𝜃

𝐹
[𝑄(𝑠𝑡 , 𝑎𝑡)], reducing the variance of the gradient with

respect to 𝑤 while keeping it unbiased.
The Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018) is an off-policy algorithm that is
trained to maximize a trade-off between the expected return and the entropy of the policy 𝑃𝐹 , the
latter encouraging more exploration. Using the notation introduced above, SAC’s objective is:

arg max
𝑃𝐹

E𝜏∼𝑃𝐹

[|𝜏 |−1∑︁
𝑡=0
(𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛼𝐻 (𝑃𝐹 (· | 𝑠𝑡))

]
, (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where 𝛼 is an entropy regularization parameter. To satisfy this objective, we train a state-value
function 𝑄𝑤 and a policy network 𝑃𝜃

𝐹
to satisfy :

𝑄𝑤 (𝑠𝑡 , 𝑎𝑡) = 𝑟 (𝑠𝑡 , 𝑎𝑡) + E(𝑠𝑡+1 ,𝑎𝑡+1)∼𝑃𝜃
𝐹

(
𝑄𝑤 (𝑠𝑡+1, 𝑎𝑡+1) − 𝛼 log 𝑃𝜃𝐹 (.|𝑠𝑡+1)

)
(Bellman equation)

𝜃 = arg min
𝜃

E𝑠𝑡∼𝑞DKL

(
𝑃𝜃𝐹 (· | 𝑠𝑡) ∥

exp(𝑄𝑤 (𝑠𝑡 , ·))
𝑍𝑤 (𝑠𝑡)

)
(𝑞 can be any off-policy distribution).

4 DISCOVERING ACTION ABSTRACTIONS FOR AMORTIZED SAMPLERS

Training amortized samplers in discrete compositional spaces becomes increasingly difficult as the
number of steps in trajectories grows. Consider sampling a graph one node at a time while connect-
ing them to previous nodes. For example, a graph with 𝑛 takes 𝑂 (𝑛2) sampling steps. Sampling
long strings autoregressively presents a similar challenge: sampling one character at a time makes
the process difficult due to the vast search space of full sequences, which are predominantly low-
likelihood samples. In the case of large language models, sampling subsequences (tokens) which
commonly occur in the text corpora instead of individual characters reduces the trajectory length re-
quired to encode high-likelihood sentences. This has generally been found to decrease both training
and inference costs (Wu, 2016; Kudo, 2018), and can be viewed a strategy for trading off reducing
the depth of the MDP in exchange for increased breadth, which potentially makes the task easier to
learn (Pignatelli et al., 2024).
Drawing inspiration from this observation, we propose a general approach for sampling discrete
objects that infers actions that effectively shorten the trajectory length while producing samples
from the target distribution. In particular, our approach consists of augmenting existing samplers
with an action abstraction discovery step, a form of “chunking” as originally described by cognitive
psychologists (Miller, 1956), which is applicable to any sampler, and consists of three major steps
(see Algorithm 1 for the overall approach):
1. Generating an action corpus: We first generate a set of 𝑁 action sequences from the sampler,

optionally also drawing a portion 𝑝 of these from a replay buffer of previously-drawn high-
reward trajectories.

2. Chunking: We apply a tokenization algorithm common in NLP, byte pair encoding (BPE; Gage,
1994), to the 𝑁 action sequences to obtain new tokens (“chunks”) to be added to the action space.

3. Augmenting the action space: Finally, we add the new abstracted actions to the action space.
Whenever the abstracted action is chosen, its constituent actions are executed in order1.

Algorithm 1 Training policies with chunking

1: Initialize A (action space), B (replay buffer), 𝑀 (maximum number of iterations), 𝑝 (pro-
portion to sample from the replay buffer if it exists) and 𝑁 (number of trajectories), and 𝑘 ,
(chunking frequency).

2: for 𝑛 = {1, 2, . . . , 𝑀} do
3: loss = train(A,B, 𝑛) ⊲ Train the amortized sampler
4: if 𝑛%𝑘 == 0 then
5: Sample ⌊𝑝𝑁⌋ from B to get action sequences {𝑎𝑖B}

⌊𝑝𝑁 ⌋
𝑖=1 .

6: Sample 𝑁 − ⌊𝑝𝑁⌋ from the sampler to get action sequences {𝑎𝑖}𝑁−⌊𝑝𝑁 ⌋
𝑖=1 .

7: S = {𝑎𝑖}𝑁−⌊𝑝𝑁 ⌋
𝑖=1 ∪ {𝑎𝑖B}

⌊𝑝𝑁 ⌋
𝑖=1

8: C = chunking(S) ⊲ Generate novel chunks
9: A ← A ∪ C ⊲ Update the action space

10: end if
11: end for

This approach is similar to the offline method proposed by Zheng et al., which learns a static set of
macro-actions from a dataset in the continuous control setting. In contrast, our work introduces a
method where the library of macro-actions is constructed online and updated iteratively within the
context of amortized sampling.

1This differs from the options framework where the agent is allowed to only partially execute the option.
If an abstracted action representing a sequence of actions is not possible to execute (i.e., would lead to the
application at some 𝑠 of an action not in A𝑠), the abstracted action is masked by the policy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Chunking mechanisms. We consider the following two approaches, comparing them to the
ATOMIC sampler (without action space compression):
• ACTIONPIECE-INCREMENT: We apply the tokenizer on the action corpus and add the most fre-

quent token found to the action space, which grows by one element each time this is performed.
This approach gradually builds up the action space but is susceptible to repetitions in chunks or
low quality set of action sequences used for checking.

• ACTIONPIECE-REPLACE: This method instead takes the 𝑀 most frequent tokens found by the
tokenizer from the action corpus (to be appended to the initial action space). Each time abstraction
is performed, the entire action space might be replaced by a new one (aside from the atomic to-
kens). This effectively reduces the chance of storing redundant chunks and allows us to potentially
discover many useful chunks in one step.

Chunking frequency. ACTIONPIECE require choosing “when to chunk” during training. A simple
approach (used in most experiments) is to simply chunk every 𝑘 iterations. The alternative is to
chunk based on some criterion being satisfied. In the case of GFlowNets, the TB loss can be used as
a proxy for the “fit” of the sampler to the current action space (see Appendix B), and we therefore
evaluated waiting for the loss to drop below a certain threshold before a round of chunking.

5 EXPERIMENTAL SETUP

We benchmark SAC, A2C and GFlowNet along with a random sampler baseline that samples uni-
formly at random a valid action at each step. For the GFlowNet, we use trajectory balance (Malkin
et al., 2022) and include three different choices for the backward policy:
• Uniform 𝑃𝐵: This backward policy chooses backward parents uniformly at random.
• MaxEnt 𝑃𝐵: This backward policy chooses backward trajectories uniformly at random. Note that

MaxEnt 𝑃𝐵 and Uniform 𝑃𝐵 are equivalent for Tree MDPs since there is only a single backward
action at each step (Tiapkin et al., 2023; Mohammadpour et al., 2024).

• ShortParse 𝑃𝐵: We introduce a new fixed backward policy aimed at sampling the most compact
backward trajectory in terms of the number of trajectory steps (see subsection B.6).

A policy parametrization for nonstationary action spaces. Dealing with a varying action space
as a result of chunking requires a compatible parameterization of the policy to handle the evolving
action space. Instead of a final layer that outputs logits for a fixed number of actions, the policy
instead takes as input the current state and outputs an action embedding qt ∈ R𝑑 where 𝑑 is the
action embedding dimension (similar to Chandak et al., 2019). Now let A = {𝑎𝑖} |A |𝑖=1 where |A| is
the number of actions in the action space A. We use an action encoder 𝑓𝜃 (𝑎𝑖) ∈ R𝑑 that computes
an embedding for the actions 𝑎𝑖 . We parametrize 𝑓𝜃 as an LSTM (Hochreiter & Schmidhuber,
1997) that takes the sequence of atomic actions making up a chunk as input (possibly of length 1 if
the chunk is a single atomic action). Let 𝑓𝜃 (A) ∈ R |A |×𝑑 denote the matrix of embeddings of all
actions in the action space. The logits given by the policy network are:

ℓ𝑡 =
𝑓𝜃 (A)qt√

𝑑
∈ R |A | (4)

Tasks. To understand the impact of chunking, we consider a diverse set of environments consisting
of three synthetic tasks and a practical task: bit sequence generation (Malkin et al., 2022), Fractal-
Grid (adapted from the standard hypergrid; Bengio et al., 2021), a graph generation environment,
and the practical task of RNA sequence generation (L14 RNA1; Sinai et al., 2020). We provide
further details about each environment in Appendix B.

6 RESULTS

6.1 DOES CHUNKING IMPROVE GENERATIVE MODELING?

Does chunking accelerate mode discovery? Figure 2 shows the number of modes discovered
throughout training as a function of the number of visited states. Note that we report the cumula-
tive number of modes, i.e., counting all modes sampled for a given number of visited states, and
the difficulty of the task (in terms of the size of the MDP) increases from left to right. Across all
tasks, ACTIONPIECE outperforms the ATOMIC counterpart for the GFlowNet sampler in terms of
the speed of mode discovery. Results for other algorithms are mixed. ACTIONPIECE helps A2C and
SAC in FractalGrid, but hurts performance for RNA binding. Moreover ACTIONPIECE-REPLACE
helps A2C in BitSequence, while ACTIONPIECE-INCREMENT hurts performance. The greedy be-
havior of both SAC and A2C provides a possible explanation: when a mode is discovered, it gets

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Number of visited states 1e6

0

5

10

15

N
um

be
r

of
 m

od
es

FractalGrid: 2572

(a) FractalGrid

0.0 0.5 1.0 1.5
Number of visited states 1e6

0

10

20

30

40

50

N
um

be
r

of
 m

od
es

RNA Binding: L14_RNA1

(b) RNA Binding

0.0 0.5 1.0 1.5
Number of visited states 1e6

0

10

20

30

40

N
um

be
r

of
 m

od
es

Bit Sequence - sequence length: 128
Atomic
ActionPiece-Increment
ActionPiece-Replace
GFN
A2C
Random Sampler
SAC
Option-Critic

(c) Bit sequence

Figure 2: Cumulative number of modes discovered during training. Chunking helps across all environ-
ments, especially in FractalGrid where all samplers get stuck in the first mode but chunking unlocks exploratory
abilities to fetch faraway modes. Shaded area represents the standard deviation across 6 seeds.

Atomic ActionPiece-Increment ActionPiece-Replace

2

4

6

8

10

(a) TB loss for all chunking mechanisms in FractalGrid for a grid size of 2572. All the losses are clipped to a
maximum value of 10 for ease of visualization.

0.0 0.5 1.0 1.5 2.0

100

L1
 d

is
ta

nc
e

0.0 0.5 1.0 1.5 2.0
10 3

10 2

10 1

100

JS
 D

iv
er

ge
nc

e

Atomic
ActionPiece-Increment
ActionPiece-Replace

0.0 0.5 1.0 1.5 2.0

10 1

101

E
LB

O
 G

ap

Size: 652

0.0 0.5 1.0 1.5 2.0
Number of visited states (x106)

100

L1
 d

is
ta

nc
e

0.0 0.5 1.0 1.5 2.0
Number of visited states (x106)

10 2

10 1

JS
 D

iv
er

ge
nc

e

0.0 0.5 1.0 1.5 2.0
Number of visited states (x106)

10 3

10 1

101

E
LB

O
 G

ap

Size: 1292

Reward landscape

(b) The evolution of sampling metrics for all chunking mechanisms during training. The top row is for Frac-
talGrid of size 652 whereas the bottom row corresponds to that of size 1292. On the right, we plot the reward
landscape for a grid of size 652 for ease of visualization.

0.0 0.2 0.4 0.6 0.8
Reward Threshold

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

 C
or

re
la

tio
n

Atomic
ActionPiece-Increment
ActionPiece-Replace

(c) Spearman correlation between the logreward and
the learned log-likelihood for the L14 RNA1 task.

0.0 0.2 0.4 0.6 0.8
Reward Threshold

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

 C
or

re
la

tio
n

Atomic
ActionPiece-Increment
ActionPiece-Replace

(d) Spearman correlation between the logreward and
the learned log-likelihood for the bit sequence task.

Figure 3: Effect of chunking on density estimation. Analysis of the effect of different chunking mechanisms
on density estimation in the FractalGrid, bit sequence, and RNA binding tasks.

sampled more often resulting in the addition of a large chunk (e.g., Figure 10,12). This chunk will
result in high-reward samples and consequently chunks added beyond this will contain parts of this
chunk hurting exploration. This is further supported by the the Option-Critic performance. This
issue is mitigated in GFlowNets due to the exploratory behavior imparted by the learning objec-
tive. The random sampler with ACTIONPIECE achieves strong performance only on simple tasks,
with a degradation in performance for harder problems, suggesting random sampling with action
abstraction produces meaningful chunks only in cases where the problem is sufficiently simple.
Does chunking improve density estimation? Next, we study the impact of chunking on density
estimation in the context of GFlowNets, which learn a policy to sample from a target distribution.
Figure 3a shows the trajectory balance loss for all chunking mechanisms over the 2D grid in the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Chunk Occurrence and Coverage for different samplers and chunking mechanisms for the L14 RNA1
environment across 6 seeds.

Sampler Mechanism Chunk Occurrence Chunk Coverage
Mean Median SD Mean Median SD

GFlowNet ACTIONPIECE-INCREMENT 1.11 1.00 0.98 0.69 0.73 0.25
ACTIONPIECE-REPLACE 0.28 0.00 0.55 0.24 0.10 0.28

MaxEnt-GFlowNet ACTIONPIECE-INCREMENT 1.11 1.00 0.98 0.69 0.73 0.25
ACTIONPIECE-REPLACE 0.26 0.00 0.47 0.24 0.18 0.23

ShortParse-GFlowNet ACTIONPIECE-INCREMENT 1.10 1.00 0.98 0.68 0.73 0.26
ACTIONPIECE-REPLACE 0.34 0.00 0.63 0.27 0.17 0.27

A2C ACTIONPIECE-INCREMENT 0.36 0.00 0.76 0.23 0.00 0.35
ACTIONPIECE-REPLACE 0.11 0.00 0.35 0.10 0.00 0.24

SAC ACTIONPIECE-INCREMENT 0.43 0.00 0.78 0.29 0.02 0.36
ACTIONPIECE-REPLACE 0.15 0.00 0.51 0.10 0.00 0.22

Random Sampler ACTIONPIECE-INCREMENT 0.46 0.00 0.79 0.31 0.12 0.36
ACTIONPIECE-REPLACE 0.36 0.00 0.70 0.27 0.04 0.34

FractalGrid environment. This serves as a visualization for how well each state is correctly learned
by the GFlowNet. Chunking, and particularly ACTIONPIECE-INCREMENT, positively reinforces
the inherent exploration of GFlowNets (as seen in the previous section), helping enable the sampler
to model the entire state space and sample accurately from the target distribution. This is further
supported by the L1 distance, JSD, and ELBO Gap (see subsection B.7) during training illustrated
in Figure 3b for both grid size 652 and 1292 and all chunking mechanisms. Across all sizes of
the task, chunking accelerates the training of the sampler. Figure 3c and 3d show Spearman’s rank
correlation coefficient between the target and the learned distribution for the L14 RNA1 and Bit
Sequence tasks respectively. The correlation is computed for a range of reward thresholds span-
ning all samples to only those with a reward larger than 0.93 to evaluate how well the sampler
captures the high reward regions. For L14 RNA1, ACTIONPIECE-INCREMENT performs on par
with ATOMIC, and even slightly better for high-reward objects, whereas ACTIONPIECE-REPLACE
lags behind. In the bit sequence task, however, chunking results in marginally worse performance.
Finally, Table 1, shows that ACTIONPIECE-INCREMENT improves density estimation in the graph
environment, while ACTIONPIECE-REPLACE is also competitive. With some exceptions, these re-
sults point towards chunking improving density estimation.

6.2 DO CHUNKS CAPTURE THE STRUCTURE IN THE UNDERLYING DISTRIBUTION?

Table 1: Comparison of chunking mechanisms based
on various metrics for the graph environment with 7
nodes. We use three seeds with the standard deviation
indicated in parentheses. We sample 10,000 graphs for
computing the ELBO Gap and draw 40 backward tra-
jectories for each graph to compute the JSD and L1 dis-
tance.
Mechanism ELBO Gap JSD L1 Distance
ATOMIC 0.72±0.39 0.38 1.44
ACTIONPIECE-INCREMENT 0.25±0.14 0.36 1.39
ACTIONPIECE-REPLACE 0.35±0.11 0.40 1.47

In this section, we analyze the discovered
chunks and study whether they capture some
structure in the underlying distribution. For in-
stance, RNA molecules are typically composed
of building blocks (or chunks in our terminol-
ogy) called codons that consist of sequences
of three nucleotides. We use the RNA Bind-
ing (L14 RNA1) task for all the analyses in this
section as we have access to a dataset of high-
reward objects.
Do chunks represent latent structure of the
distribution? Here, we dive into the structural relationship between chunks and the objects gen-
erated using the chunks. We consider a Chunk Occurrence metric where we compute the average
number of times a chunk occurs in objects in the dataset, and a Chunk Coverage metric where we
compute the number of objects in the dataset that contain a chunk, normalized over the total number
of objects.
The dataset we consider includes all RNA sequences with a reward of 0.85 or higher. From Ta-
ble 2, it is clear that ACTIONPIECE-INCREMENT consistently results in higher chunk occurrence
values for GFlowNet-based samplers (GFlowNet, MaxEnt-GFlowNet, and ShortParse-GFlowNet).
In contrast, A2C, SAC, and the random sampler exhibit moderate to low chunk occurrences un-
der ACTIONPIECE-INCREMENT, while ACTIONPIECE-REPLACE yields near-zero median values
across all samplers. A similar trend is observed when analyzing chunk coverage, where GFlowNet-
based samplers again dominate in terms of learned chunk representation within the high-reward
landscape. Moreover, ACTIONPIECE-INCREMENT also outperforms ACTIONPIECE-REPLACE, we

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

GFN MaxEnt-GFN ShortParse-GFN A2C SAC Random Sampler
0

2

4

6

8

10

Av
er

ag
e

Le
ng

th
 o

f S
ho

rt
es

t P
ar

se
BPE on the high reward samples

ActionPiece-Increment
ActionPiece-Replace

(a) Shortest parse of modes from L14 RNA1 reward distribution using L14 RNA1 learned chunks.

GFN MaxEnt-GFN ShortParse-GFN A2C SAC Random Sampler
0

2

4

6

8

10

Av
er

ag
e

Le
ng

th
 o

f S
ho

rt
es

t P
ar

se

BPE on the high reward samples

ActionPiece-Increment
ActionPiece-Replace

(b) Shortest parse of modes from L14 RNA2 reward distribution using L14 RNA1 learned chunks.

Figure 4: Shortest parse of modes using learned library. These plots show the average length of the shortest
parses for high-reward samples across different models (ShortParse-GFlowNet, MaxEnt-GFlowNet, GFlowNet,
SAC, A2C, and Random Sampler) when employing different chunking strategies, across 6 seeds (plotted sepa-
rately). Standard deviations are shown computed across all of the modes from a single seed. The dashed lines
indicate the Byte Pair Encoding (BPE) baseline on high-reward strings. Subfigure (a) shows the shortest parse
of the L14 RNA1 modes using learned chunks from the L14 RNA1 distribution whereas the second subfigure
(b) shows how far do the learned chunk generalize to parsing modes from the L14 RNA2 reward distribution.

speculate because the ACTIONPIECE-REPLACE strategy updates the library too rapidly, making it
hard for the policy to model it accurately. These findings suggest that GFlowNet-based samplers
augmented with the ACTIONPIECE-INCREMENT effectively capture latent structure of the distribu-
tion, particularly around the modes.
Do chunks reduce description length/complexity of samples? To evaluate the compressive abil-
ity of the chunks, we compute the shortest parse of the (known) modes of the distribution with the
learned library of chunks. This is defined as the average length of a trajectory required to sample
a mode. Note that the the longest parse of modes would be a trajectory using only atomic actions
(letters in string-based environments). We also compute a minimum attainable shortest parse of the
modes by performing BPE on the modes directly, which serves as a lower bound.
Figure 4 shows that GFlowNet-based approaches tend to have the lowest short parses of the modes,
indicating greater diversity in the learned chunks. In contrast, RL-based methods tend to have
higher average parse lengths, as their learned chunks focus on a smaller region of the state space,
suggesting that limited exploration can negatively impact the quality of the learned chunks. The
chunking mechanism also affects different samplers in opposite ways. For RL-based methods,
ACTIONPIECE-REPLACE learns a library that doesn’t compress samples very well as evident by the
average length of the shortest-parse as opposed to GFN-based methods that do indeed find libraries
that capture the latent structure of the distribution and result in a shorter average length compared
to ACTIONPIECE-INCREMENT.
Are chunks transferable to new models and new tasks? In this section, we study the down-
stream impact of discovered chunks. We evaluate the downstream performance along two axes:
generalization across different but related target distributions, and across different samplers. The
aim of this experiment is to identify whether the chunks themselves generalize and which samplers
provide the best chunks in terms of downstream performance.
Figure 5 shows that initializing samplers with a learned library of chunks improves the number of
modes found compared to not performing any chunking. We see this specifically when samplers
use learned library of chunks from L14 RNA1 to sample from L14 RNA2 and L14 RNA3, show-
ing that the chunks do generalize to structurally similar reward distributions. Zooming in on the
performances of each sampler, we see that GFlowNet-induced libraries provide on-average better
results in terms of mode-discovery than the libraries coming from other samplers. This can be ex-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

GFN

Max
Ent

-G
FN

Sho
rtP

ar
se

-G
FN

A2C SAC

Ran
do

m

GFN

A2C

SAC

RandomAc
tio

nP
ie

ce
-I

nc
re

m
en

t 48.0 48.0 44.33 28.67 42.67 31.67

29.67 29.67 29.0 10.33 31.67 11.0

9.33 9.33 11.0 5.33 3.67 6.0

22.33 22.33 26.0 8.0 13.33 10.33

L14_RNA1

GFN

Max
Ent

-G
FN

Sho
rtP

ar
se

-G
FN

A2C SAC

Ran
do

m

GFN

A2C

SAC

Random

40.67 40.67 40.67 31.75 40.33 33.0

31.0 31.0 33.0 6.48 32.0 13.33

5.0 5.0 10.0 2.0 1.33 4.0

17.67 17.67 24.33 6.0 10.33 9.67

L14_RNA2

GFN

Max
Ent

-G
FN

Sho
rtP

ar
se

-G
FN

A2C SAC

Ran
do

m

GFN

A2C

SAC

Random

51.67 51.67 53.33 49.03 44.29 46.33

40.33 40.33 34.33 1.0 27.33 30.67

2.67 2.67 0.0 0.0 0.0 0.67

5.0 5.0 3.0 0.33 0.33 3.33

L14_RNA3

GFN

Max
Ent

-G
FN

Sho
rtP

ar
se

-G
FN

A2C SAC

Ran
do

m

GFN

A2C

SAC

RandomAc
tio

nP
ie

ce
-R

ep
la

ce

24.15 33.3 28.0 19.0 38.84 29.2

10.0 8.33 2.0 4.0 7.33 13.43

4.33 6.0 4.67 4.33 0.33 7.33

5.0 12.0 10.67 4.0 0.33 11.67

GFN

Max
Ent

-G
FN

Sho
rtP

ar
se

-G
FN

A2C SAC

Ran
do

m

GFN

A2C

SAC

Random

27.33 29.33 28.33 20.67 36.0 26.33

9.0 10.0 0.0 1.0 3.67 15.33

1.0 1.67 4.33 0.67 0.67 5.33

5.0 7.67 9.67 2.0 1.33 10.33

GFN

Max
Ent

-G
FN

Sho
rtP

ar
se

-G
FN

A2C SAC

Ran
do

m

GFN

A2C

SAC

Random

45.96 47.67 50.67 45.33 40.85 43.0

23.67 29.0 30.67 16.67 4.33 27.6

1.67 1.33 2.0 0.33 0.67 0.0

3.0 5.0 8.0 3.33 0.0 2.33

0

10

20

30

40

50

Figure 5: Donwstream evaluation of discovered chunks. Each column represents a different environ-
ment (L14 RNA1, L14 RNA2, L14 RNA3) and each row presents a chunking mechanism (ACTIONPIECE-
INCREMENT and ACTIONPIECE-REPLACE). In each heatmap, we show the number of modes discovered by
samplers on the y-axis trained on chunks found by samplers on the x-axis. The color intensity represents the
number of modes, with darker shades indicating higher numbers. Average of three random seeds.
plained by the fact that RL-based methods tend to learn chunks specific to a prioritized subspace
of the state-space, which fail as a result to generalize to the entire space. While these remarks are
true for libraries learned using ACTIONPIECE-INCREMENT, the conclusions do not transfer well
to the ACTIONPIECE-REPLACE mechanism which achieves poor performance. We speculate that
this mechanism is too abrupt when updating the library, since it updates all chunks at once, whereas
ACTIONPIECE-INCREMENT adopts a more curriculum-like strategy of adding only one chunk at a
time, allowing the samplers enough time to adapt to the newly added chunk.

7 CONCLUSION

Abstraction and dynamic concept learning are critical in human cognition and should be modeled
in artificial learning systems. In this paper, we investigated dynamic action space learning in the
context of amortized samplers. We proposed ACTIONPIECE, an extensible approach which lever-
ages tokenizers to chunk action sequences, which can be viewed as a strategy for trading reduced
depth of the MDP in exchange for increased breadth (Pignatelli et al., 2024). We demonstrated
its effectiveness in improving the performance of samplers on a variety of domains with respect to
mode discovery and capturing the latent structure of the environment. Our empirical results also
indicate that the selected chunks for samplers like GFlowNets capture underlying structure in the
target distribution and can generalize to other target distributions. This approach has multiple pos-
sible utilities: the learned chunks capture the underlying structure of the reward distribution (and
are therefore potentially interpretable), can facilitate transfer to more complex problems where in-
dividual trajectories would grow too long if constructed only of atomic actions, and under the right
conditions, appears to facilitate exploration itself.
ACTIONPIECE builds on a long line of research into macro-actions (e.g., Durugkar et al. (2016);
Iba (1989); Chang et al. (2022); Dulac et al. (2013); Jong et al. (2008)), but previous results have
shown they have mixed utility in general. They have not until now been evaluated in the context
of diversity-seeking RL approaches such as GFlowNets. Our results suggest that the use of online
library construction works best in conjunction with methods that explicitly maximize diversity: they
learn libraries that allow for the shorter parse lengths and are more useful for discovering new
modes when transferred to new tasks. This points towards an intriguing interaction between the
trajectory sampling method and the ability to learn robust, general-purpose macro-actions. Our
results suggest that future studies on action abstraction for amortized samplers should explore the
interaction between the method for macro-action construction and exploration.
Limitations and future work. In this work, we perform chunking with the BPE tokenizer for
a fixed target distribution. Future work can study learning task-conditioned libraries, as well as
formulating the problem of learning abstractions as modelling the joint distribution 𝑝(X,L), where
L denotes a library of abstractions – that is, modeling a distribution over possible concept libraries.
Future work can also explore the application of the ideas of abstractions discussed in the paper
in the context of code generation, where the right abstractions can naturally make complex tasks
easier (Ellis et al., 2021; Stengel-Eskin et al., 2024).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We discuss all the details and hyperparameters used to reproduce the results in the paper in Ap-
pendix B. We also include the code to reproduce the experiments along with the submission:
https://anonymous.4open.science/r/Chunk-GFN-C3FF.

REFERENCES

Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brand-
stetter, and Sepp Hochreiter. Rudder: Return decomposition for delayed rewards. Neural Infor-
mation Processing Systems (NeurIPS), 2019.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow net-
work based generative models for non-iterative diverse candidate generation. Neural Information
Processing Systems (NeurIPS), 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
GFlowNet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

Matthew Bowers, Theo X Olausson, Lionel Wong, Gabriel Grand, Joshua B Tenenbaum, Kevin
Ellis, and Armando Solar-Lezama. Top-down synthesis for library learning. Proceedings of the
ACM on Programming Languages, 7(POPL):1182–1213, 2023.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? International
Conference on Learning Representations (ICLR), 2021.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas. Learning
action representations for reinforcement learning. International Conference on Machine Learning
(ICML), 2019.

Yi-Hsiang Chang, Kuan-Yu Chang, Henry Kuo, and Chun-Yi Lee. Reusability and transferability
of macro actions for reinforcement learning. ACM Transactions on Evolutionary Learning and
Optimization, 2(1):1–16, 2022.

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, Yisong
Yue, et al. Neurosymbolic programming. Foundations and Trends® in Programming Languages,
7(3):158–243, 2021.

Glanois Claire, Shyam Sudhakaran, Elias Najarro, and Sebastian Risi. Open-ended library learning
in unsupervised program synthesis. In ALIFE 2023: Ghost in the Machine: Proceedings of the
2023 Artificial Life Conference. MIT Press, 2023.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Neural Information Processing
Systems (NIPS), 1992.

Thomas Degris, Patrick M Pilarski, and Richard S Sutton. Model-free reinforcement learning with
continuous action in practice. In 2012 American control conference (ACC), pp. 2177–2182. IEEE,
2012.

Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, and Yoshua Bengio. Discrete prob-
abilistic inference as control in multi-path environments. Uncertainty in Artificial Intelligence
(UAI), 2024.

Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and Pushmeet Kohli. Neural
program meta-induction. Neural Information Processing Systems (NIPS), 2017.

Adrien Dulac, Damien Pellier, Humbert Fiorino, and David Janiszek. Learning useful macro-actions
for planning with n-grams. In 2013 IEEE 25th International Conference on Tools with Artificial
Intelligence, pp. 803–810. IEEE, 2013.

Ishan P Durugkar, Clemens Rosenbaum, Stefan Dernbach, and Sridhar Mahadevan. Deep reinforce-
ment learning with macro-actions. arXiv preprint arXiv:1606.04615, 2016.

Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama, and Josh Tenenbaum.
Learning libraries of subroutines for neurally-guided bayesian program induction. Neural Infor-
mation Processing Systems (NIPS), 2018.

11

https://anonymous.4open.science/r/Chunk-GFN-C3FF

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a REPL. Neural Information Processing Systems
(NeurIPS), 2019.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt,
Luc Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Bootstrapping in-
ductive program synthesis with wake-sleep library learning. In Proceedings of the 42nd acm
sigplan international conference on programming language design and implementation, pp. 835–
850, 2021.

Philip Gage. A new algorithm for data compression. C Users J., 12(2):23–38, feb 1994. ISSN
0898-9788.

Fernand Gobet, Peter CR Lane, Steve Croker, Peter CH Cheng, Gary Jones, Iain Oliver, and Julian M
Pine. Chunking mechanisms in human learning. Trends in cognitive sciences, 5(6):236–243,
2001.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. International Conference
on Machine Learning (ICML), 2018.

Anna Harutyunyan, Will Dabney, Thomas Mesnard, Mohammad Gheshlaghi Azar, Bilal Piot, Nico-
las Heess, Hado P van Hasselt, Gregory Wayne, Satinder Singh, Doina Precup, et al. Hindsight
credit assignment. Neural Information Processing Systems (NeurIPS), 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale,
Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by transporting
value. Nature communications, 10(1):5223, 2019.

Glenn A. Iba. A heuristic approach to the discovery of macro-operators. Mach. Learn., 3(4):
285–317, mar 1989. ISSN 0885-6125. doi: 10.1023/A:1022693717366. URL https:
//doi.org/10.1023/A:1022693717366.

Neal F Johnson. The role of chunking and organization in the process of recall. In Psychology of
learning and motivation, volume 4, pp. 171–247. Elsevier, 1970.

Nicholas K Jong, Todd Hester, and Peter Stone. The utility of temporal abstraction in reinforcement
learning. In AAMAS (1), pp. 299–306, 2008.

Nan Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Michael C Mozer, Chris Pal,
and Yoshua Bengio. Sparse attentive backtracking: Temporal credit assignment through remind-
ing. Neural Information Processing Systems (NIPS), 2018.

T Kudo. SentencePiece: A simple and language independent subword tokenizer and detokenizer for
neural text processing. arXiv preprint arXiv:1808.06226, 2018.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-
tinuous generative flow networks. International Conference on Machine Learning (ICML), 2023.

John E Laird, Paul S Rosenbloom, and Allen Newell. Chunking in soar: The anatomy of a general
learning mechanism. Machine learning, 1:11–46, 1986.

Percy Liang, Michael I Jordan, and Dan Klein. Learning programs: A hierarchical Bayesian ap-
proach. International Conference on Machine Learning (ICML), 2010.

Yang Liu, Yunan Luo, Yuanyi Zhong, Xi Chen, Qiang Liu, and Jian Peng. Sequence modeling of
temporal credit assignment for episodic reinforcement learning. arXiv preprint arXiv:1905.13420,
2019.

12

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1023/A:1022693717366
https://doi.org/10.1023/A:1022693717366

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei
Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from partial episodes
for improved convergence and stability. International Conference on Machine Learning (ICML),
2023.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Neural Information Processing Systems (NeurIPS),
2022.

Amy McGovern and Richard S Sutton. Macro-actions in reinforcement learning: An empirical
analysis. Computer Science Department Faculty Publication Series, pp. 15, 1998.

Amy McGovern, Richard S Sutton, and Andrew H Fagg. Roles of macro-actions in accelerating
reinforcement learning. In Grace Hopper celebration of women in computing, volume 1317, pp.
15, 1997.

George A Miller. The magical number seven, plus or minus two: Some limits on our capacity for
processing information. Psychological review, 63(2):81, 1956.

Sobhan Mohammadpour, Emmanuel Bengio, Emma Frejinger, and Pierre-Luc Bacon. Maximum
entropy GFlowNets with soft Q-learning. Artificial Intelligence and Statistics (AISTATS), 2024.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted Boltzmann machines.
International Conference on Machine Learning (ICML), 2010.

Maxwell Nye, Armando Solar-Lezama, Josh Tenenbaum, and Brenden M Lake. Learning compo-
sitional rules via neural program synthesis. Neural Information Processing Systems (NeurIPS),
2020.

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of GFlowNets with
local credit and incomplete trajectories. International Conference on Machine Learning (ICML),
2023.

Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van Hasselt, and Laura
Toni. A survey of temporal credit assignment in deep reinforcement learning. Transactions on
Machine Learning Research, 2024.

Doina Precup and Richard S Sutton. Multi-time models for temporally abstract planning. Neural
Information Processing Systems (NIPS), 1997.

Aditya A Ramesh, Kenny Young, Louis Kirsch, and Jürgen Schmidhuber. Sequence compression
speeds up credit assignment in reinforcement learning. International Conference on Machine
Learning (ICML), 2024.

Jette Randlov. Learning macro-actions in reinforcement learning. Neural Information Processing
Systems (NIPS), 1998.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

Tankred Saanum, Noémi Éltető, Peter Dayan, Marcel Binz, and Eric Schulz. Reinforcement learning
with simple sequence priors. Neural Information Processing Systems (NeurIPS, 2023.

Jürgen Schmidhuber. Learning complex, extended sequences using the principle of history com-
pression. Neural Computation, 4(2):234–242, 1992.

Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5149–5152, 2012. doi:
10.1109/ICASSP.2012.6289079. URL https://ieeexplore.ieee.org/document/
6289079.

Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks,
Alexandre Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion
samplers. Neural Information Processing Systems (NeurIPS), 2024.

13

https://ieeexplore.ieee.org/document/6289079
https://ieeexplore.ieee.org/document/6289079

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rico Sennrich, B. Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. Association for Computational Linguistics (ACL), 2015.

Sam Sinai, Richard Wang, Alexander Whatley, Stewart Slocum, Elina Locane, and Eric D. Kelsic.
AdaLead: A simple and robust adaptive greedy search algorithm for sequence design. arXiv
preprint arXiv:2010.02141, 2020.

Elias Stengel-Eskin, Archiki Prasad, and Mohit Bansal. ReGAL: Refactoring programs to discover
generalizable abstractions. International Conference on Machine Learning (ICML), 2024.

Chen Sun, Wannan Yang, Thomas Jiralerspong, Dane Malenfant, Benjamin Alsbury-Nealy, Yoshua
Bengio, and Blake Richards. Contrastive retrospection: honing in on critical steps for rapid
learning and generalization in rl. Neural Information Processing Systems (NeurIPS), 2023.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Mirko Thalmann, Alessandra S Souza, and Klaus Oberauer. How does chunking help working
memory? Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(1):37,
2019.

Lucas Tian, Kevin Ellis, Marta Kryven, and Josh Tenenbaum. Learning abstract structure for draw-
ing by efficient motor program induction. Neural Information Processing Systems (NeurIPS),
2020.

Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry Vetrov. Generative flow networks as
entropy-regularized RL. Artificial Intelligence and Statistics (AISTATS), 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations
(ICLR), 2017.

Jiřı́ Vyskočil, David Stanovský, and Josef Urban. Automated proof compression by invention of
new definitions. In Edmund M. Clarke and Andrei Voronkov (eds.), Logic for Programming,
Artificial Intelligence, and Reasoning, pp. 447–462. Springer, 2010.

Yonghui Wu. Google’s neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144, 2016.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding and
improving layer normalization. Neural Information Processing Systems (NeurIPS), 2019.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. ByT5: Towards a token-free future with pre-trained byte-to-byte
models. Transactions of the Association for Computational Linguistics (TACL), 2021.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for sam-
pling. International Conference on Learning Representations (ICLR), 2022.

Ruijie Zheng, Ching-An Cheng, Hal Daumé III, Furong Huang, and Andrey Kolobov. Prise: Llm-
style sequence compression for learning temporal action abstractions in control. In Forty-first
International Conference on Machine Learning.

Jin Peng Zhou, Yuhuai Wu, Qiyang Li, and Roger Grosse. REFACTOR: Learning to extract theo-
rems from pro. International Conference on Learning Representations (ICLR), 2024.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. Association for the Advancement of Artificial Intelligence (AAAI), 2008.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Additional related works 16

B Experimental details 16
B.1 FractalGrid . 17
B.2 RNA Binding . 17
B.3 Bit Sequence . 18
B.4 Graph . 18
B.5 Replay Buffer . 19
B.6 ShortParse . 20
B.7 Sampling quality metrics . 21

C Learned libraries of chunks 22
C.1 FractalGrid . 22
C.2 RNA Binding . 22
C.3 Bit Sequence . 22
C.4 Graph . 24

D The role of tokenization strategy 24

E Sampler effectiveness in sampling high-reward objects 24

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORKS

Tokenization. Our work builds on the principle of tokenization, which is a text pre-processing step
for natural language tasks and a critical piece for language models (LMs). A tokenizer produces a
vocabulary that can be used by the LLM in order to correctly process text in the language of the
training dataset2. Byte Pair Encoding (BPE) (Gage, 1994; Sennrich et al., 2015) starts with an initial
vocabulary of tokens and successively merges the most frequent pairs of adjacent tokens to get a
new composite one. WordPiece (Schuster & Nakajima, 2012) works similarly to BPE where a pair
is only merged if the ratio of the likelihood of its joint to that the product of its marginals is the
highest. For BPE and WordPiece both, the procedure is repeated until a maximum vocabulary size
is reached.

B EXPERIMENTAL DETAILS

FractalGrid reward landscape
1 def create_grid(R0, R1, R2, side_length):
2 grid = R0 * np.ones((side_length, side_length))
3 depth = int(np.log(side_length) / np.log(2)) - 2
4

5 def fill_r2(x, y, current_size, current_depth):
6 if current_depth == 0 or current_size < 1:
7 return
8

9 # Ensure we don't go out of bounds
10 max_y = min(y, side_length - 1)
11 max_x = min(x + current_size - 1, side_length - 1)
12

13 # Fill bottom-left cell
14 grid[max_y - 1, x + 1] = R0 + R1 + R2
15 grid[max_y - 1, x] = R0 + R1
16 grid[max_y, x + 1] = R0 + R1
17 grid[max_y, x] = R0 + R1
18

19 if current_depth < depth:
20 # Fill bottom-right cell
21 grid[max_y - 1, max_x - 1] = R0 + R1 + R2
22 grid[max_y - 1, max_x] = R0 + R1
23 grid[max_y, max_x - 1] = R0 + R1
24 grid[max_y, max_x] = R0 + R1
25

26 # Fill top-left cell
27 grid[y - current_size + 2, x + 1] = R0 + R1 + R2
28 grid[y - current_size + 2, x] = R0 + R1
29 grid[y - current_size + 1, x + 1] = R0 + R1
30 grid[y - current_size + 1, x] = R0 + R1
31

32 # Calculate the size and position of the next level
33 next_size = current_size // 2
34 next_x = x + next_size
35 next_y = y - next_size
36

37 # Recursive call for the next level
38 fill_r2(next_x, next_y, next_size, current_depth - 1)
39

40 # Start from the bottom-left corner
41 fill_r2(0, side_length - 1, side_length, depth)
42 grid = torch.from_numpy(grid[::-1].copy()).float()
43 return grid

Listing 1: Code for implementing the FractalGrid reward landscape.

2Token-free approaches (Xue et al., 2021) do exist and only make use of bytes/characters.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

In this section, we provide implementation details along with necessary the hyperparameters for
reproducing the experiments presented in the paper. All runs use a single GPU with runs taking up
to 36 hours maximum.

B.1 FRACTALGRID

Our implementation is inspired by hypergrid that was introduced in Bengio et al. (2021). In this
study, we consider only the 2D case and present results for three settings with increasing grid size:
652, 1292 and 2572. The main difference lies in the reward landscape which we have altered. We
show the code used to compute the reward landscape (see Code 1).
Environment. The starting state is 𝑠0 = (0, 0) ∈ R2 and the atomic action space consists of the
following actions: UP, RIGHT and <EXIT>. The sampler can choose to exit the trajectory at any
stage. We chose 𝑅0 = 0.1, 𝑅1 = 0.5 and 𝑅2 = 2. We run the samplers for a total of 31250 iterations
and a batch size of 64, adding up to a total of 2 million visited states during training.
Architecture. The forward policy in SAC, A2C, Option-Critic and GFlowNet is implemented
using a feedforward network with 3 layers and a hidden dimension of 128. The last layer produces
an action embedding of dimension 128 as well and a layer norm is applied just before (Xu et al.,
2019). For the activation function, we use ReLU (Nair & Hinton, 2010). For A2C, Option-Critic
and GFlowNet, the forward policy has a learning rate of 10−4 whereas for SAC, it is 3 × 10−4. For
GFlowNet, we use an initial value for the learnable log-partition value of 90 and a learning rate
of 10−3. The critic in A2C and Option-Critic is also parametrized by a feedforward network with
3 layers and a hidden dimension of 128 where a layer norm is applied before the last layer. The
critic in A2C and Option-Critic has a learning rate of 10−4 whereas in SAC, it has a learning rate of
3 × 10−4. The termination probability network is parametrized using a feedforward network with 3
layers and a hidden dimension of 128 with a learning rate of 10−4.
Samplers. Both GFlowNet and SAC are off-policy algorithms. For both, we use a prioritized
replay buffer with diversity constraints (see section on replay buffer). Our diversity criterion is the
hamming distance between final states and the threshold is set to 1. The replay buffer capacity is
set to 1000 due to the small size of the state space. During training, 55% of samples come from
the replay buffer and the rest from the sampler. We don’t use 𝜖-greedy exploration for SAC, but
for GFlowNet we linearly decay 𝜖 from 0.5 down to 0.1. SAC uses an entropy coefficient of 0.2
and A2C and Option-Critic use an entropy coefficient of 0.5. For GFlowNet, we use a reward
exponent of 1. We use 10 options for the Option-Critic and a coefficient of 0.01 for regularizing the
termination probability.
Chunking. We perform chunking every 1250 iterations to get 25 chunks at the end of training.

B.2 RNA BINDING

We consider sampling sequences of length 14 and sequences of length 50. The reward is scaled
between 10−10 and 1.
Environment The starting state is the empty string and the atomic action space consists of the
following actions: A, C, G, U which append the nucleobases to the current string and <EOS> for
End-Of-String. We run the samplers for a total of 25000 iterations and a batch size of 64, adding up
to a total of 1.6 million visited states during training.
Architecture The forward policy in SAC, A2C, Option-Critic and GFlowNet is implemented us-
ing an LSTM (Hochreiter & Schmidhuber, 1997) with 2 layers and a hidden dimension of 128
followed by a feedforward network with 2 layers. The last layer produces an action embedding
of dimension 128 as and a layer norm is applied just before (Xu et al., 2019). For the activation
function, we use ReLU (Nair & Hinton, 2010). For A2C, Option-Critic and GFlowNet, the forward
policy has a learning rate of 10−4 whereas for SAC, it’s 3 × 10−4. For GFlowNet, we use an initial
value for the learnable log-partition value of 11 for length 14 and 22 for length 50, the learning
rate is set to 10−3. The critic in A2C and Option-Critic is also parametrized by a two layer LSTM
followed by a two layer feedforward network of hidden dimension of 128 where a layer norm is ap-
plied before the last layer. The critic in A2C and Option-Critic has a learning rate of 10−4 whereas
in SAC, it has a learning rate of 3 × 10−4. The termination probability network is parametrized
LSTM (Hochreiter & Schmidhuber, 1997) with 2 layers and a hidden dimension of 128 followed by
a feedforward network with 2 layers and a learning rate of 10−4.
Samplers. Both GFlowNet and SAC are off-policy algorithms. For both, we use a prioritized
replay buffer with diversity constraints (see section on replay buffer). Our diversity criterion is the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

hamming distance between final states and the threshold is set to 3 for length 14 and 10 for length
50. The replay buffer capacity is set to 10000. During training, 55% of samples come from the
replay buffer and the rest from the sampler. We don’t use 𝜖-greedy exploration for SAC, but for
GFlowNet we linearly decay 𝜖 from 0.1 down to 0.01. SAC uses an entropy coefficient of 0.1 for
length 14 and 0.025 for length 50. A2C and Option-Critic use an entropy coefficient of 0.05 for
length 14 and 0.005 for length 50. For GFlowNet, we use a reward exponent of 10 for length 14 and
75 for length 50. We use 10 options for the Option-Critic and a coefficient of 0.01 for regularizing
the termination probability.
Chunking. We perform chunking every 1000 iterations which means that at the end of the training,
we have 25 chunks. For GFlowNet-based samplers we use a different approach where we apply
chunking once the TB loss gets below certain threshold. For length 14 the initial loss threshold is
set to 1 whereas for length 50 it is set to 5. Once chunking is applied, the loss threshold is multiplied
by 0.75.

B.3 BIT SEQUENCE

We modify the original bit-sequence task introduced in Malkin et al. (2022) to have a different
reward function. We first initialize a list of “words”: [00000000, 11111111, 11110000,
00001111, 00111100]. The reward function is then designed to favor strings that contain a
maximum number of these words (including repeated ones). As such, the reward function is:

𝑅(𝑠) = number of words in 𝑠
𝑁/8 (5)

Where 𝑁 is the sequence length and 8 is the size of the words. 𝑁/8 represents the maximum
number of words in a string of length 𝑁 . The numerator is computed using dynamic programming.
We consider two settings: Sampling sequences of length 64 and those of length 128.
Environment. The starting state is the empty string and the atomic action space consists of the
following actions: 0, 1 and <EOS> for End-Of-String. We run the samplers for a total of 25000
iterations and a batch size of 64, adding up to a total of 1.6 million visited states during training.
Architecture. The forward policy in SAC, A2C, Option-Critic and GFlowNet is implemented
using an LSTM (Hochreiter & Schmidhuber, 1997) with 2 layers and a hidden dimension of 128
followed by a feedforward network with 2 layers. The last layer produces an action embedding
of dimension 128 as and a layer norm is applied just before (Xu et al., 2019). For the activation
function, we use ReLU (Nair & Hinton, 2010). For A2C, Option-Critic and GFlowNet, the forward
policy has a learning rate of 10−4 whereas for SAC, it is 3 × 10−4. For GFlowNet, we use an initial
value for the learnable log-partition value of 40 for length 64 and 30 for length 128, the learning
rate is set to 10−3. The critic in A2C is also parametrized by a two layer LSTM followed by a two
layer feedforward network of hidden dimension of 128 where a layer norm is applied before the
last layer. The critic in A2C has a learning rate of 10−4 whereas in SAC, it has a learning rate of
3 × 10−4. The termination probability network is parametrized LSTM (Hochreiter & Schmidhuber,
1997) with 2 layers and a hidden dimension of 128 followed by a feedforward network with 2 layers
and a learning rate of 10−4.
Samplers. Both GFlowNet and SAC are off-policy algorithms. For both, we use a prioritized
replay buffer with diversity constraints (see section on replay buffer). Our diversity criterion is the
hamming distance between final states and the threshold is set to 8 for length 64 and 16 for length
128. The replay buffer capacity is set to 10000. During training, 55% of samples come from the
replay buffer and the rest from the sampler. We don’t use 𝜖-greedy exploration for SAC, but for
GFlowNet we linearly decay 𝜖 from 0.1 down to 0.01. SAC uses an entropy coefficient of 0.01
for length 64 and 0.005 for length 128. A2C and Option-Critic use an entropy coefficient of 0.05
for length 64 and 0.01 for length 128. For GFlowNet, we use a reward exponent of 100 for length
64 and 200 for length 128. We use 10 options for the Option-Critic and a coefficient of 0.01 for
regularizing the termination probability.
Chunking We perform chunking every 1000 iterations to get 25 chunks at the end of training.

B.4 GRAPH

In this paper, we departed from the usual way graph environments are set-up. Indeed, for chunking
to make sense and essentially work for a graph environment, we need to be careful about the design
of the MDP. For a modular structure to emerge in the action sequence, we need the action space
to reflect that. In previous work, actions for adding edges would be to select any two nodes and
connect them. However, connecting node 3 and 4 although similar in structure to connecting node 5

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

and 6, would be seen as different for the tokenizer. Let 𝑁 denote the maximum allowed number of
nodes in the graph, we build the action space and its constraints as follows:
1. For an empty graph:

• Only the ADD-NODE action is permitted.
2. For a non-empty graph:

(a) If the graph contains exactly one node:
• Choose between <EOG> (end of graph generation) or ADD-NODE.

(b) If the graph contains two or more nodes:
i. When the last added node is connected:

• Choose from <EOG>, ADD-NODE, or connect the last node to a previous node.
• Edge addition actions are formatted as ADD-EDGE-i, where 𝑖 ∈ {−1,−2, ...,−(𝑘 −
𝑗 + 1)}.

• Here, 𝑘 is the order of the last added node, and 𝑗 is the order of the farthest connected
node to the last one.

ii. When the last added node is not connected:
• You must connect it to one of the previous nodes.
• Allowed actions are ADD-EDGE-i, where 𝑖 ∈ {−1,−2, ...,−𝑘} where 𝑘 is the order

of the last node.
This structure ensures that edge additions are always relative to the last added node, creating a
consistent and potentially interpretable action space. For instance, ADD-EDGE-(-1) always means
connecting the last node to the previous one, regardless of their absolute node numbers. We speculate
that an objective of future work could be to explicitly produce chunks with interpretable properties,
for example, using predefined rules which favors the retention of particular chunks, or using scores
from human feedback. By defining actions in this relative manner, we create an action space that
is more amenable to finding recurring structure in it. The reward function is defined as the total
number of cycles divided by the maximum number of cycles that can be found in a graph with 𝑁
nodes where 𝑁 is the maximum number of nodes in the graph:

𝑅(𝑠) = number of cycles in graph 𝑠
𝑁 (𝑁−1)

2 − 𝑁 + 1
(6)

Environment. The starting state is the empty graph and the atomic action space consists of the
following actions: ADD-NODE, ADD-EDGE-k where an edge is added between the last node and
the k-th node before it. k takes values in the set {−1,−2, . . . ,−𝑁 + 1} where 𝑁 is the maximum
number of nodes. The last action is <EOG> for End-Of-Graph. We run the samplers for a total
of 25000 iterations and a batch size of 64, adding up to a total of 1.6 million visited states during
training.
Architecture. The forward policy in SAC, A2C and GFlowNet has two Graph Attention Layers
(Veličković et al., 2017; Brody et al., 2021) and a hidden dimension of 128 followed by a feedfor-
ward network with 2 layers. The last layer produces an action embedding of dimension 128 as and
a layer norm is applied just before (Xu et al., 2019). For the activation function, we use ReLU (Nair
& Hinton, 2010). For A2C and GFlowNet, the forward policy has a learning rate of 10−4 whereas
for SAC, it is 3 × 10−4. For GFlowNet, we use an initial value for the learnable log-partition value
of 10 for 𝑁 = 7 and 30 for length 𝑁 = 10, the learning rate is set to 10−3. The critic in A2C is also
parametrized by a two layer LSTM followed by a two layer feedforward network of hidden dimen-
sion of 128 where a layer norm is applied before the last layer. The critic in A2C has a learning rate
of 10−4 whereas in SAC, it has a learning rate of 3 × 10−4.
Samplers. Both GFlowNet and SAC are off-policy algorithms. For both, we use a prioritized
replay buffer with diversity constraints (see section on replay buffer). Our diversity criterion is the
hamming distance between the graphs adjacency matrices and the threshold is set to 3 for 𝑁 = 7 and
5 for 𝑁 = 10. The replay buffer capacity is set to 10000. During training, 55% of samples come
from the replay buffer and the rest from the sampler. We don’t use 𝜖-greedy exploration for SAC,
but for GFlowNet we linearly decay 𝜖 from 0.1 down to 0.01. SAC uses an entropy coefficient of
0.1. A2C uses an entropy coefficient of 0.05. For GFlowNet, we use a reward exponent of 1.
Chunking. We perform chunking every 1000 iterations to get 25 chunks at the end of training.

B.5 REPLAY BUFFER

In this section, we provide additional details about the replay buffer used throughout the paper
(see Algorithm 2). Our replay buffer maintains a balance between having high-reward samples and

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

diverse ones. When a new batch of elements is added, we only keep the ones that have a reward
higher than the minimal reward in the buffer. This ensures that the minimum reward in the buffer
never decreases, meaning that we don’t hinder the quality of the samples in the buffer.
Once the high-reward states of the batch are kept, we iterate through each state 𝑠:
• Let 𝑑 (𝑠, 𝐵) = min𝑠′∈𝐵 𝑑 (𝑠, 𝑠′) where 𝑑 is a distance metric. Given a cutoff distance 𝑑𝑐 that

controls how much diversity we want, we only add 𝑠 to the buffer 𝐵 if 𝑑 (𝑠, 𝐵) > 𝑑𝑐.
• If the state 𝑠 is not diverse enough, we look for the most similar state 𝑠𝑏 = arg min𝑠′∈𝐵 𝑑 (𝑠, 𝑠′) to

it in the buffer and if 𝑠 state has a higher reward than 𝑠𝑏, we replace 𝑠𝑏 by 𝑠.
Finally, we sort the buffer by the reward and truncate it to capacity.

Algorithm 2 Adding trajectories to the Prioritized Replay Buffer

Require: New experiences 𝐸 , buffer 𝐵, cutoff distance 𝑑𝑐
1: if |𝐵 | < capacity then
2: Add 𝐸 to 𝐵
3: Sort 𝐵 by log-reward
4: else
5: 𝐸 ′ ← 𝑒 ∈ 𝐸 : 𝑟𝑒 ≥ min(𝑟𝑏), 𝑏 ∈ 𝐵
6: for each 𝑒 ∈ 𝐸 ′ do
7: if min(distance(𝑒, 𝑏)) > 𝑑𝑐,∀𝑏 ∈ 𝐵 then
8: Add 𝑒 to 𝐵
9: else if 𝑟𝑒 > 𝑟𝑏 for 𝑏 = arg min(distance(𝑒, 𝑏)) then

10: Replace 𝑏 with 𝑒 in 𝐵
11: end if
12: end for
13: Sort 𝐵 by log-reward
14: Truncate 𝐵 to capacity
15: end if

B.6 SHORTPARSE

In this section, we describe in detail how ShortParse 𝑃𝐵 is computed. We only use ShortParse for
string-based environment for its tractability, so the focus will be on DAGs that generate strings. Let’s
introduce some notation first:

Notation:
• 𝐴: the alphabet of characters.
• 𝑉 : the set of tokens. We will not assume 𝐴 ⊆ 𝑉 unless stated, in which case the inclusion of
𝐴 in 𝑉 forms the set of “atomic tokens”.

• X: the set of terminal sequences.
• S ⊇ X: state space, the set of sequences that can be reached on the way to generating a

sequence in X.
• T : the set of trajectories (sequences of tokens that when concatenated give some 𝑥 ∈ X).
• T𝑠 (𝑠 ∈ S): the set of sequences of tokens that when concatenated give 𝑠. Note T =

⋃
𝑥∈X T𝑥 .

• |𝑠 | (𝑠 ∈ S or 𝑠 ∈ 𝑉): the length of 𝑠.
• |𝜏 | (𝜏 ∈ T): the number of tokens in trajectory 𝜏. Note that in general for 𝜏 ∈ T𝑠 , |𝜏 | ≤ |𝑠 |.
• 𝑠: 𝑖 (𝑠 ∈ S, 0 ≤ 𝑖 ≤ |𝑠 |): the initial substring of 𝑠 of length 𝑖.

Let 𝑁 (𝑠) := |T𝑠 |. For a given 𝑠, we can compute 𝑁 (𝑠:𝑖) for 𝑖 = 0, . . . , |𝑠 | by the following recurrence:
𝑁 (𝑠:0) = 1,

𝑁 (𝑠:𝑖) =
∑︁

𝑡 ∈ 𝑉 : 𝑠:𝑖 ends in 𝑡

𝑁 (𝑠:𝑖−|𝑡 |) (𝑖 > 0).

This computation is linear in the sequence length and can be done incrementally as 𝑠 is being con-
structed by apposition of tokens. That is, one maintains along with 𝑠 an array containing 𝑁 (𝑠:𝑖) for
0 ≤ 𝑖 ≤ |𝑠 |. When a token 𝑡 is appended to 𝑠, we append to this array the newly computed 𝑁 (𝑠:𝑖+ 𝑗)
for 𝑗 = 1, . . . , |𝑡 |.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

It is also possible to compute a weighted version. Let

𝑁𝜆 (𝑠) =
∑︁
𝜏∈T𝑠

𝑒𝜆 |𝜏 | ,

so 𝑁 (𝑠) = 𝑁0 (𝑠). This can be computed by the recurrence:
𝑁𝜆 (𝑠:0) = 1,

𝑁𝜆 (𝑠:𝑖) = 𝑒𝜆
∑︁

𝑡 ∈ 𝑉 : 𝑠:𝑖 ends in 𝑡

𝑁 (𝑠:𝑖−|𝑡 |) (𝑖 > 0).

A family of length-dependent Markovian backward policies For any 𝜆 ∈ R, we define a back-
ward policy 𝑃𝜆

𝐵
, as a conditional distribution over trajectories, by

𝑃𝜆𝐵 (𝜏 | 𝑥) =
𝑒𝜆 |𝜏 |

𝑁𝜆 (𝑥)
∝ 𝑒𝜆 |𝜏 | (𝑥 ∈ X, 𝜏 ∈ T§).

Proposition: This policy is Markovian, and its stepwise factorization is given by

𝑃𝜆𝐵 (𝑠 | 𝑠𝑡) =
𝑒𝜆𝑁𝜆 (𝑠)
𝑁𝜆 (𝑠𝑡)

(𝑠 ∈ S, 𝑡 ∈ 𝑉). (7)

Proof: First, we have to check that this stepwise policy is well-defined, that is, sums to 1 over
parents of any state 𝑠𝑡. This can be seen from the recurrence for 𝑁𝜆 above.
Now, suppose 𝑥 is the concatenation of tokens in a trajectory 𝜏 = 𝑡1𝑡2 . . . 𝑡𝑛. Then the expression for
𝑃𝐵 (𝜏 | 𝑥) given by the product of stepwise transitions is

𝑒𝜆𝑁𝜆 (∅)
𝑁𝜆 (𝑡1)

𝑒𝜆𝑁𝜆 (𝑡1)
𝑁𝜆 (𝑡1𝑡2)

. . .
𝑒𝜆𝑁𝜆 (𝑡1 . . . 𝑡𝑛−1)
𝑁𝜆 (𝑡1 . . . 𝑡𝑛)

=
𝑒𝑛𝜆

𝑁𝜆 (𝑥)
,

which exactly matches the trajectory-wise definition of 𝑃𝜆
𝐵

above. □
We note the following:
• The stepwise factorization of 𝑃𝜆

𝐵
can be useful, for example, if using a forward-looking objective.

• As a special case, with 𝜆 = 0 we have the maximum-entropy backward policy as studied in
Mohammadpour et al. (2024), which is uniform over trajectories conditioned on the terminal state
– notably different from the backward policy that is uniform at each transition. In that paper, the
numbers of trajectories to every state had to be learned, but in our setting, computation is efficient
(see above) and no learning is necessary.

• For 𝜆 < 0, shorter trajectories are preferred, and as 𝜆 → −∞, we approach a policy that is peaky
on optimal tokenizations. Conversely, if 𝜆 → +∞ and 𝐴 ⊆ 𝑉 , we approach a policy that only
tokenizes into atomic tokens.

For ShortParse, we use 𝜆 = −5 in all of the paper.

B.7 SAMPLING QUALITY METRICS

In subsection 6.1, we computed the quality of the learned distribution using three metrics. We detail
them here:
JSD. This is the Jensen–Shannon divergence, it measures the similarity between two distributions
and is symmetric and takes values in [0, 1]. Given two distributions 𝑝 and 𝑞, it is defined as follows:

𝐽𝑆𝐷 (𝑝 | |𝑞) = 1
2
𝐷𝐾𝐿 (𝑝 | |𝑀) +

1
2
𝐷𝐾𝐿 (𝑞 | |𝑀) (8)

Where 𝐷𝐾𝐿 is the Kullback-Leibler divergence and 𝑀 = 1
2 (𝑝 + 𝑞).

L1 distance. This computes the L1 norm between two distributions 𝑝 and 𝑞 and is double the total
variation distance:

| |𝑝 − 𝑞 | |1 =
∑︁
𝑥

|𝑝(𝑥) − 𝑞(𝑥) | (9)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 3: Number of modes discovered during training in the L14 RNA1 environment. The ATOMIC case serves
a baseline for comparing BPE, WordPiece and Uniform tokenizers for both mechanisms. Greener shades indi-
cate greater improvement over the ATOMIC baseline, while redder shades represent a decline in performance.

Sampler
ATOMIC ACTIONPIECE-INCREMENT ACTIONPIECE-REPLACE

— BPE Uniform WordPiece BPE Uniform WordPiece
GFlowNet 47.12±4.18 49.00 ±1.15 46.33 ±2.49 50.00 ±1.41 45.54 ±5.09 42.33 ±2.87 49.67 ±0.47

MaxEnt-GFlowNet 47.12±4.18 48.83 ±0.69 37.33 ±7.54 49.67 ±0.47 45.00 ±3.37 27.33 ±3.68 48.33 ±1.70

ShortParse-GFlowNet 47.12±4.18 48.97 ±1.34 39.00 ±7.12 49.67 ±0.94 43.01 ±6.89 22.00 ±8.60 50.33 ±0.47

A2C 36.67±180 23.50 ±0.96 23.67 ±4.78 26.67 ±0.47 18.00 ±3.51 25.67 ±0.94 19.67 ±2.49

SAC 19.50±3.49 1.17 ±1.34 0.00 ±0.00 1.67 ±1.25 3.50 ±2.22 4.33 ±2.05 1.33 ±1.25

Option-Critic 16.83±1.95 — — — — — —
Random Sampler 0.17±0.37 18.67 ±5.25 1.00 ±1.41 28.67 ±1.25 18.17 ±3.24 0.33 ±0.47 19.67 ±1.70

ELBO Gap. Following past work (Lahlou et al., 2023; Zhang & Chen, 2022; Sendera et al., 2024),
we compute a variational lower bound on the log-partition function log 𝑍 =

∑
𝑥 𝑅(𝑥):

log 𝑍 =
∑︁
𝑥

𝑅(𝑥)

= logE𝜏=(...→𝑥)∼𝑃𝐹

[
𝑅(𝑥)𝑃𝐵 (𝜏 |𝑥)

𝑃𝐹 (𝜏)

]
≥ E𝜏=(...→𝑥)∼𝑃𝐹

log
[
𝑅(𝑥)𝑃𝐵 (𝜏 |𝑥)

𝑃𝐹 (𝜏)

]
Where 𝑃𝐵 and 𝑃𝐹 are the backward and forward policy respectively. Thus log 𝑍̂ =

1
𝐾

∑
𝜏=(...→𝑥)∼𝑃𝐹

log
[
𝑅 (𝑥)𝑃𝐵 (𝜏 |𝑥)

𝑃𝐹 (𝜏)

]
that represents the lower bound estimate, is computed using

𝐾 = 10000 trajectories in this paper for all tasks. The ELBO gap is hence defined as:
ELBO Gap ≜

��log 𝑍 − log 𝑍̂
��

=

������log 𝑍 − 1
𝐾

∑︁
𝜏=(...→𝑥)∼𝑃𝐹

log
[
𝑅(𝑥)𝑃𝐵 (𝜏 | 𝑥)

𝑃𝐹 (𝜏)

] ������
Note that we only compute the above quantity for environments where the ground-truth partition
function is tractable to compute.

C LEARNED LIBRARIES OF CHUNKS

In this section, we show the chunks learned by each sampler for both chunking mechanisms.

C.1 FRACTALGRID

Figure 7 shows a subset of chunks found using the ACTIONPIECE-INCREMENT mechanism. All
samplers effectively learn diverse “paths” and these range from straight lines to a zigzag-like shape.
These zigzag shapes allow the sampler to get from the initial state to the first mode in the middle of
the grid. Note that straight UP and RIGHT chunks can also lead to the modes by composing them
together. This presents a straight-forward solution where the sampler can choose to first get the 𝑥
coordinates right by just using the straight line chunks towards the right and then switch to using
straight line chunks going up.

C.2 RNA BINDING

Figure 8 shows the frequency of usage of chunks for different samplers for both chunking mecha-
nisms. A big difference between both chunking mechanisms that seems to be true for all samplers, is
that the size of learned chunks is bigger which makes the learning not much more efficient than using
the original ATOMIC baseline. Indeed in Figure 8b, a lot of these chunks are rarely used compared
to ACTIONPIECE-INCREMENT. When it comes to samplers however, regardless of the chunking
mechanism, GFN-related approaches seem to learn shorter chunks on average compared to the other
samplers which in turn compresses the trajectories enough to cover the whole state-space as opposed
to RL-based methods.

C.3 BIT SEQUENCE

Figure 9 shows the frequency of use of learned chunks for the bit sequence task for GFN-related
approaches using the ACTIONPIECE-INCREMENT mechanism. We can see that most of the library
comprises of short chunks with the exception of GFN and ShortParse-GFN that seem to have “mem-

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8
Diversity

0.7

0.8

0.9

1.0

R
ew

ar
d

L14_RNA1

0 5 10 15 20 25
Diversity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L50_RNA1
GFN
A2C
Random Sampler
SAC
ActionPiece-Replace
Atomic
ActionPiece-Increment

(a) Average reward and diversity for the top 100 samples for the RNA Binding environment.

0 5 10 15 20 25
Diversity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ew

ar
d

Sequence length: 64

0 10 20 30 40 50
Diversity

0.4

0.6

0.8

1.0
Sequence length: 128

GFN
A2C
Random Sampler
SAC
ActionPiece-Replace
Atomic
ActionPiece-Increment

(b) Average reward and diversity for the top 100 samples for the Bit Sequence environment.

0 1 2 3 4
Diversity

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Maximum number of nodes: 7
GFN
A2C
Random Sampler
SAC
ActionPiece-Replace
Atomic
ActionPiece-Increment

(c) Average reward and diversity for the top 100 samples for the Graph environment.

Figure 6: Quality of high-reward samples. Average reward and diversity for the top 100 samples from 10000
generated objects from all samplers and all chunking mechanisms in the RNA Binding, Bit Sequence and Graph
environments.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

G
FN

A2
C

SA
C

R
an

do
m

 S
am

pl
er

Figure 7: Chunks visualization. Visualization of a subset of chunks learned by the samplers for the FractalGrid
environment of size 652 with the ACTIONPIECE-INCREMENT mechanism.

orized” one of the modes as part of their learned library. For A2C and SAC however, they seem to
have learned chunks that generate a single mode that contains only 1. This can be seen in Figure 10
where A2C doesn’t use the action 0 at all and SAC sampling mostly a big part of the same mode.
The Random Sampler given as a reference keeps a balance in exploration although it also seems
to have added one of the modes to its library. For the ACTIONPIECE-REPLACE mechanism, the
trend seems to be reversed, where GFN approaches discover shorter chunks than they had under the
ACTIONPIECE-INCREMENT mechanism (see Figure 11) and A2C being much more diverse under
ACTIONPIECE-REPLACE. Although SAC learned a diverse library of chunks, it stuck to one mode
for its last round of chunking as demonstrated in Figure 12.

C.4 GRAPH

In this section, we won’t show the frequency of all used graph chunks since it is harder to visualize.
Instead, we will show some examples of learned subgraphs. We can see from Figure 13 that all sam-
plers are able to learn structures that maximize the number of cycles in the generated graph, which
is the reward function we used. All samplers effectively learn meaningful fragments. However, we
can see that A2C already “overfits” the reward by seeking chunks that maximize the reward without
regards to the diversity whereas this is not the case for SAC, Random Sampler and GFN.

D THE ROLE OF TOKENIZATION STRATEGY

In this section, we ablate the role of the tokenization strategy by comparing Byte Pair Encoding
(BPE), WordPiece, and a uniform tokenizer as a baseline. The uniform tokenizer does not require a
dataset; it builds new chunks by randomly sampling two tokens from the library and concatenating
them. As shown in Table 3, the uniform tokenizer performs worse than both BPE and WordPiece in
terms of the number of modes discovered during training for the L14 RNA1 task. Its performance
deteriorates further with the ACTIONPIECE-REPLACE mechanism compared to ACTIONPIECE-
INCREMENT.
On the other hand, WordPiece outperforms BPE, showing particularly strong performance with the
ACTIONPIECE-REPLACE mechanism. We conclude that the choice of tokenization algorithm is
crucial, and extra care should be taken when selecting an appropriate tokenizer.

E SAMPLER EFFECTIVENESS IN SAMPLING HIGH-REWARD OBJECTS

In this section, we look at the top high-reward samples for all samplers as well as their diversity.
Starting with RNA Binding, we can see from Figure 6a, that RL-based methods see their average
reward of their distribution tail increase with chunking while the diversity of the samples decreasing.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

G C U A

<
E

O
S> G

G

G
C

C
C

G
U

C
U

G
C

C

G
G

G
G

G
G

G
G

G
C

C

0.0

0.1

0.2

Fr
eq

ue
nc

y

GFN

G C U A

<
E

O
S> G

G

G
C

C
C

G
U

C
U

G
C

C

G
G

G
G

G
G

G
G

G
C

C

0.0

0.1

0.2

MaxEnt-GFN

U A C

<
E

O
S> C

C G

G
G

G
C

G
U

G
C

C

G
G

G
G

G
C

G
C

G
G

G
G

G
C

C

0.0

0.1

0.2

ShortParse-GFN

<
E

O
S> G C
G

C
G

C
G

C
G

G
G

G
G

C
C

C
C

G
G

G
G

G
G

C
C

C
C

G
C

G
C

G
G

C
G

G
G

G
G

C
C

C
C

G
C

G U A
G

G
G

G
G

C
C

C
C

G
C

G
C

G
C

G
G

G
G

G
C

C
C

C
G

C
G

C
G

C
G

G
G

G
G

C
C

C
C

G
G

G
G

G
C

C
C

C
G

C
G

C
G

G
G

G
G

C
C

C
C

G
G

G
G

G
C

C
C

C
G

C
G

C
A

G
C

G
G

G
G

G
C

C
C

C
G

C
A

G
C

G
C

G
G

G
G

G
C

C
C

C
C

G
C

G
C

G
G

G
G

G
C

C
C

C
A

G
G

G
G

G
C

C
C

C
G

C
G

C
U

G
C

G
G

G
G

G
C

C
C

C
G

C
U

G
G

G
G

G
C

C
C

C
G

C
G

C
C

G
C

G
G

G
G

G
C

C
C

C
G

C
C

G
C

C
G

G
G

G
G

C
C

C
C

G
G

C
C

G
G

G
G

G
C

C
C

C
C

C
C

C

0.0

0.1

0.2

Fr
eq

ue
nc

y

A2C

<
E

O
S>

G
G

G
G

G
G

G
G

C
G

G
G

G
C

G
G

G
G

G
G

G
G

C
G

G
G

G
G

G
G

G
G

G
G

G
G

C
G

G
G

G
U

G
G

G
G

G
G

G
G

C
G

G
G

G
A

G
C

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
C

G
G

G
G

G
G

G
G

C
G

G
G

G C
C

G
G

G
G

G
G

G
G

C
G

G
G

G G U
G

G
G

G
G

G
G

C
G

G
G

G
G

G
G

G
G

G
G

G
C

G
G

G
G

G
G

G
G

C
G

G
G

G
G

G
G

C
G

G
G

G
G

C
G

G
G

G
G

G
G

G A
G

G
G

C
C

C
G

G
G

G
G

G
G

G
G

G
G

G
C

G
G

G
G

G
G

C
AC

G
G

G
G

G
U

0.0

0.1

0.2

SAC

<
E

O
S> U G C A
G

C
G

G
C

C
G

G
C

C
C

C
G

C
C

G
G

G
G

G
C

C
C

C
C

C
C

G
C

G
G

G
G

G
G

C
G

G
G

G
G

C
G

G
G

G
G

C
G

C
G

G
G

G
G

C
C

G
C

G
G

G
G

G
C

C
C

G
C

G
G

G
G

G
C

C
C

C
G

C
G

C
G

G
G

G
G

C
C

C
C

G
C

G
G

G
G

G
C

C
C

C
G

C
G

C
G

G
G

G
G

C
C

C
C

G
C

C
G

C
G

G
G

G
G

C
C

C
C

G
C

G
G

C
G

C
G

G
G

G
G

C
C

C
C

A
G

C
G

C
G

G
G

G
G

C
C

C
C

G
G

G
C

G
C

G
G

G
G

G
C

C
C

C
G

C
G

G
G

G
G

C
C

C
C

G
C

A
C

G
C

G
C

G
G

G
G

G
C

C
C

C

0.0

0.1

0.2

Random Sampler

(a) Frequency of use of chunks for the ACTIONPIECE-INCREMENT mechanism.

G C U
<

E
O

S>
A

C
C

C
U

U
C

G
C

G
G

G
C

C
C

C AC
G

G
U AU

G
C

G
G AA

G
G

G
U

G
C

C
C

G
AC

G
G

G
G

G
C

C
G

G
G

G
G

C
C

C
C

G
C

G
G

G
G

G
C

C
C

C
G

G
G

G
G

C
C

C
C

G
C

G
U

G
C

G
G

G
G

G
C

C
C

C
G

U
G

G
G

G
G

C
C

C
C

G
C

G
C

G
C

G
C

G
G

G
G

G
C

C
C

C
G

C
G

G
G

G
G

C
C

C
C

G
C

G
G

G
G

G
C

C
C

C
G

C
G

C
U

C
G

C
G

G
G

G
G

C
C

C
C

G
C

G
C

G
G

G
G

G
C

C
C

C
G

G
C

0.0

0.2

Fr
eq

ue
nc

y

GFN
G C U

<
E

O
S>

A
U

C
G

A
G

G
C

G
C

G
U

A
U

G
G

G
G

U
C

G
U

G
C

U
U

C
C

G
G

C
C

G
C

G
G

G
C

C
C

C
C

G
G

G
G

G
U

C
C

G
G

G
C

C
G

U
A

G
C

G
U

G
G

G
G

G
C

C
C

C
G

G
G

G
G

C
C

C
C

G
C

G
C

G
G

G
G

G
C

C
C

C
G

G
C

G
C

G
G

G
G

G
C

C
C

C
C

G
C

G
C

G
G

G
G

G
C

C
C

C
G

C
G

C
G

G
G

G
G

C
C

C
C

A
C

G
C

G
G

G
G

G
C

C
C

C
G

C

0.0

0.2

MaxEnt-GFN

<
E

O
S> G U C A
G

U
C

U G
C

G
A

C
G

G
G

G
G

G C
A

G
C

U
G

G
C

C
C

G
U

C
G

C
G

C
G

G
C

C
C

C AA
G

U
C

C
G

C
A

G
C

G
C

C
G

C
C

G
C

G
C

G
G

G
G

G
C

C
G

G
G

G
G

C
C

C
C

G
C

G
C

G
G

G
G

G
C

C
C

C
G

C
G

G
G

G
G

C
C

C
C

G
C

G
C

G
C

G
C

G
G

G
G

G
C

C
C

C
G

C
G

C
G

G
G

G
G

C
C

C
C

G
C

G
C

G
C

G
G

G
G

G
C

C
C

U

0.0

0.2

ShortParse-GFN

<
E

O
S>

G
G

G
G

G
C

C
C

C
G

C
G

C
G

G
C

G
C

G
G

G
G

G
C

C
C

C
G

G
C

G
G

G
G

G
C

C
C

C
G

C
G C

C
G

C
G

C
G

G
G

G
G

C
C

C
C G

C
C

G
C

G
C

G
G

G
G

G
C

C
C

G
C

G
G

G
G

G
C

C
C

C
G

G
G

G
G

C
C

C
C

G
C

G
C

A
G

C
G

G
G

G
G

C
C

C
C

G
C

A
C

G
C

G
G

G
G

G
C

C
C

C
G

C
G

G
G

G
G

C
C

C
C

G
C

G
C

U
G

C
G

G
G

G
G

C
C

C
C

G
C

U
G

C
G

C
G

G
G

G
G

C
C

C
C

U
G

G
G

G
G

C
C

C
C

G
C

G
C

C
G

C
G

C
G

G
G

G
G

C
C

C
C

C
G

G
G

G
G

C
C

C
C

G
C

G
U

G U
G

U
G

C
G

G
G

G
G

C
C

C
C

G
G

C
G

C
G

G
G

G
G

C
C

C
U

G
C

G
C

G
G

G
G

G
C

C A
G

C
C

G
G

C
G

U
G

C
G

G
G

G
G

C
C

C
C

U
G

C
G

C
G

C
G

G
G

G
G

C
C

G
G

U
G

G
G

G
G

G
G

G
G

G

0.0

0.2

Fr
eq

ue
nc

y

A2C

<
E

O
S>

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
C

G
G

G
G

G
G

G
G

G
G

G
G

G
G

C
G

G
G

G
G

G
G

G
G

G
G G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

C
G

G
G

C
G

G
G

G
G

G
G

G
G

G
G

G
G

C
G

G
G

G
G

G
G

G
G

G
G

G
C

G
G

G
G

G
G

G
G

G
G

G
G

C
G

G
G

G
G

G
G

G
G

G
C

G
G

G
G

G
G

G
G

C
G

G
G

C
G

G
G

G
G

G
G

G
G

G
C

G
G

G
G

G
G

C
G

G
G

G
G

C
G

G
G

G
G

G
G

C
G

G
G

G
G

G
G

G
G

G C
G

G
U

G
C

G
G

G
G

G
G

G
G

G
G

C
G

G
G

G
G

G
G

G
G

G
G

G
G

G
U

G
G

G
G

C A U
G

G
C

G
G

C
G

G
G

G
G

G
G

G
G

G
G

U
G

G
G

G
G

G
G

G
G

G
G

G
C

G
G

G
G

G
G

G
G

G
G

C
G

G
G

C
G

G
G

U
C

G
G

G
C

0.0

0.2

SAC

<
E

O
S> U C G A
G

C
C

U C
C

C
G

C
G

C
C

G
G

C
G

G
G

G
G

C
G

G
G

G
G

C
C

C
C

C
C

G
G

G
G

G
C

C
G

C
G

G
G

G
G

C
C

G
C

G
G

G
G

G
C

C
C

C
G

C
G

C
G

G
G

G
G

C
C

G
C

G
C

G
G

G
G

G
C

C
U

G
C

G
C

G
G

G
G

G
C

C
U

AU
G

C
G

C
G

G
G

G
G

C
C

C
C

A
G

C
G

G
G

G
G

C
C

C
C

G
C

G
G

C
G

C
G

G
G

G
G

C
C

C
C

G
G

C
G

G
G

G
G

C
C

C
C

G
C

A
G

C
G

C
G

G
G

G
G

C
C

U
AG

G
C

G
C

G
G

G
G

G
C

C
C

U
G

G
C

G
C

G
G

G
G

G
C

C
C

C
C

G
C

G
C

G
G

G
G

G
C

C
U

AA

0.0

0.2

Random Sampler

(b) Frequency of use of chunks for the ACTIONPIECE-REPLACE mechanism.

Figure 8: Frequency of use of chunks. Frequency of usage of chunks in the L14 RNA1 environment for both
chunking mechanisms.

This highlights a major flaw of chunking on RL-based methods: They create a negative feedback-
loop that harms diversity, which in turn gives chunks concentrated around a small region of the
search space which itself further harms exploration. While this is true for RL methods, it is clearly
not the case for GFlowNet since we can see from the figure that the diversity of the top-100 samples
doesn’t decrease with chunking. For bit sequence, the conclusion is similar. Indeed, one can see
from Figure 6b that chunking harms RL-methods diversity and increases the average reward. For
GFlowNet, the diversity actually increased with chunking. This may be attributed to the structure
of the reward distribution where modes (corresponding to a reward of 1) are themselves diverse.
For the Graph environment (see Figure 6c), the previous observations stands as well, although for
GFlowNet, it seems that diversity is hurt as well in this case.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 1 00 11
00

00
11

11
00

00
00

00
11

11
00

00
11

11
11

11
<

E
O

S>
00

00
11

11
11

11
11

11
11

11
11

11
00

00
00

00
00

00
11

11
11

11
00

00
00

00
11

11
11

11
11

11
11

11
11

11
00

00
11

11
00

00
11

11
00

00
00

00
00

00
00

00
00

00
11

11
11

11
11

11
00

00
00

00
11

11
11

11
00

00
00

00
00

00
11

11
00

00
00

00
00

00
00

00
11

11
00

00
11

11
11

11
11

11
11

11
00

00
00

00
00

00
11

11
11

11
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

GFN

0 1 00 11
11

11
00

00
<

E
O

S>
11

11
00

11
11

00
00

00
00

00
00

11
11

11
11

11
11

00
00

00
00

00
00

00
00

00
00

11
11

11
11

00
00

00
00

11
11

11
11

11
11

00
11

11
00

11
11

00
00

11
11

00
00

11
11

00
00

00
00

00
00

00
00

00
00

00
00

00
00

11
11

00
00

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

00
00

00
00

11
11

00
00

00
00

00
00

00
00

11
11

00
00

11
11

00
00

00
00

11
11

11
11

11
11

11
11

00
00

00
00

11
11

00
00

00
00

11
11

11
11

00
00

00
00

00
00

0.00

0.05

0.10

0.15

0.20

0.25 MaxEnt-GFN

00
00

11
11

11
11

<
E

O
S>

00
00

11
11

11
11

00
00

11
11

00
00

11
11

00
00

00
00

00
00

11
11

11
11

11
11

11
11

11
11

11
11

00
00

00
00

11
11

11
11

00
00

11
11

00
00

11
11

11
11

00
00

00
00

11
11

11
11

11
11

00
00

00
00

00
00

00
00

11
11

11
11

00
00

11
11

11
11

11
11

11
11

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

11
11

11
11

00
00

00
00

00
00

00
00 00 1 0

11
11

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00 11

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

0.00

0.05

0.10

0.15

0.20

0.25 ShortParse-GFN

Figure 9: Frequency of use of chunks for the ACTIONPIECE-INCREMENT mechanism for GFlowNet in bit
sequence for length 128.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1 11
11

11
11

11
11

11
<

E
O

S>
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11 00.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

A2C

<
E

O
S>

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11 01 10 00
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

10 11
11

11
00

00 0 1
11

0
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
00

00
00

00
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
00

00
00

00
00

00
00

00
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
00

00

0.00

0.05

0.10

0.15

0.20

0.25 SAC

<
E

O
S>

0 1 10 00 11 10
0

11
0

11
11

11
00

11
10

0
11

11
00

11
11

10
0

11
11

11
00

11
11

11
11

11
11

11
10

0
11

11
11

11
00

11
11

11
11

10
0

11
11

11
11

11
00

11
11

11
11

11
10

0
11

11
11

11
11

11
00

11
11

11
11

11
11

10
0

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

0.00

0.05

0.10

0.15

0.20

0.25 Random Sampler

Figure 10: Frequency of use of chunks for the ACTIONPIECE-INCREMENT mechanism for RL methods in bit
sequence for length 128.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

1 0 00
11

11 00
0

00
00

11
11

1
00

00
00

00
<

E
O

S>
11

11
00

10
00

0
11

11
11

11
11

11
11

00
00

11
11

00
00

0
11

11
00

00
00

00
00

00
00

00
00

00
00

11
11

00
00

00
00

11
11

11
00

00
11

11
11

11
00

00
00

00
00

00
00

00
00

00
00

00
11

11
11

11
00

00
0

11
11

10
00

00
00

0
11

11
11

11
00

00
00

00
11

11
10

00
00

00
00

00
0

11
11

11
11

11
11

10
00

0
11

11
11

11
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

GFN

1 0
00

00
11

11
00

<
E

O
S>

11
11

00
00

11
11

11
11

11
11

11
11

11
11

11
11

11
11

00
00

00
00

11
11

11
11

11
11

00
00

00
11

11
00

00
00

00
11

11
00

00
11

11
11

11
00

11
11

00
00

00
11

11
11

11
00

00
11

11
11

11
11

11
00

00
00

00
00

00
11

11
00

00
00

00
11

11
11

11
11

11
00

00
11

11
11

11
00

00
11

11
00

00
11

11
11

11
11

11
11

11
11

11
00

00
11

11
00

00
11

11
11

11
11

11
11

11
00

00
11

11
11

11
00

00
11

11
00

00
00

00
00

00
11

11
11

11
11

11
11

11
00

00
11

11
00

00
00

00
11

11
11

11
00

00
00

00
00

00
00

00
11

11
00

00
11

11
00

00
00

00
00

00
11

11
11

11
00

00
00

00
11

11
00

00
00

00
11

11
00

00
11

11
11

11
00

00
00

00
00

00
11

11
00

00
11

11
00

00
00

00
00

00
00

00
11

11
00

00
11

11
11

11
00

00
00

00
00

00
00

00

0.00

0.05

0.10

0.15

0.20

0.25 MaxEnt-GFN

<
E

O
S>

00
00

11
11

00
00

00
00

00
00

11
11

00
00

00
00

11
11

11
11 11

00
00

11
11

11
11

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

11
11

11
11

00
00

00
11

11
11

11
11

11
00

00
11

11
00

00
00

00
00

00
00

00
00

00
11

11
11

11
11

11
11

11
11

11
11

11
11

11
00

00
11

11
11

11
11

11
11

11
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
11

11
00

00
00

00
00

00
00

00
00

00
00

00
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11 0
00

00
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
11

11
00

11
11

11
11

00
00

11
11

11
11

11
11

11
11

11
11

11
11

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

11
11

11
11

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

11
11

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00 1

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

0.00

0.05

0.10

0.15

0.20

0.25 ShortParse-GFN

Figure 11: Frequency of use of chunks for the ACTIONPIECE-REPLACE mechanism for GFlowNet in bit
sequence for length 128.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

<
E

O
S>

1 11 0
11

11
00

00
11

11
11

11
11

11
11

11
00

00
00

00
00

00
00

00
00

00
11

11
00

00
00

00
00

00
11

11
11

11
00

00
00

00 00
11

11
11

11
11

11
00

00
11

11
11

11
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
11

11
11

11
11

11
00

00
00

00
00

00
11

11
00

00
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
00

00
00

00
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
00

00
11

11
11

11
11

11
00

00
11

11
11

11
11

11
00

00
00

00
00

00
00

00
00

00
11

11
11

11
00

00
00

00
00

00
00

00
00

00
00

00
11

11
00

00
11

11
00

00
11

11
11

11
11

11
11

11
11

11
00

00
00

00
11

11
00

00
11

11
11

11
11

11
11

11
11

11
00

00
00

00
00

00
11

11
00

00
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
00

00
11

11
11

11
11

11
11

11
11

11
11

11
00

00
00

00
11

11
00

00
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
00

00
11

11
00

00
11

11
11

11
11

11
11

11
11

11
11

11
11

11
00

00
11

11
00

00
11

11
00

00
11

11
11

11
11

11
11

11
0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

A2C

<
E

O
S>

11
11

00
00

00
11

11
11

11
00

00
00

11
11

11
00

00
00

00
00

11
11

00
00

00
11

11
11

11
00

00
00

11
11

11
00

00
00

00
00

11
11

00
00

00
11

11
11

11
00

00
00

11
11

11
00

00
00

00
00

11
11

10
01

11
11

00
00

00
11

11
10

00
01

11
10

00
00

01
11

11
00

00
00

00
11

11
00

00
11

11
00

00
00

11
11

10
00

01
11

10
00

00
01

11
11

00
00

00
00

11
11

00
00

11
11

00
00

00
11

11
10

00
01

11
10

00
00

11
11

00
00

00
11

11
11

11
00

00
00

11
11

11
00

00
00

00
00

11
11

00
00

00
11

11
11

11
00

00
00

11
11

11
00

00
00

00
00

11
11

00
00

00
11

11
11

11
00

00
00

11
11

11
00

00
00

00
00

11
11

00
00

11
11

00
00

00
11

11
10

00
01

11
10

00
00

01
11

11
00

00
00

00
11

11
00

00
11

11
00

00
00

11
11

10
00

01
11

10
00

00
01

11
11

00
00

00
00

11
11

00
00

11
11

00
00

00
11

11
10

00
01

11
10

00
0 0

11
11

00
00

00
11

11
11

11
00

00
00

11
11

11
00

00
00

00
00

11
11

00
00

00
11

11
11

11
00

00
00

11
11

11
00

00
00

00
00

11
11

00
00

00
11

11
11

11
00

00
00

11
11

11
00

00
00

00
00

11
11

10
00 1

10
00

01
11

10
00

00
01

11
11

00
00

11
11

00
00

00
11

11
10

00
01

11
10

00
00

01
11

11
00

00
11

11
00

00
00

11
11

10
00

00
00

01
11

10
00

01
11

10
00

00
01

11
10

00
00

01
11

11
10

00
0

11
11

11
11

00
00

00
11

11
10

00
01

11
10

00
00

01
11

11
00

00
11

11
00

00
00

11
11

11
11

00
00

00
11

11
11

00
00

00
00

00
11

11
10

0
11

11
00

00
00

11
11

11
11

00
00

00
11

11
11

00
00

00
00

11
11

00
00

00
11

11
10

00
01

11
10

00
00

01
11

11
00

00
00

00
11

11
00

00
11

11
00

00
00

11
11

10
00

01
11

10
00

00
01

11
11

00
00

00
00

11
11

00
00

11
11

00
00

00
11

11
11

11
11

00
00

00
11

11
10

00
01

11
10

00
00

01
11

11
00

00
11

11
00

00
00

11
11

10
00

01
11

10
00

00
01

11
11

00
00

11
11

00
00

00
11

11
10

00
00

00
01

11
10

00
01

11
10

00
00

01
11

10
00

00
01

11
11

10
00

01
11

10
00

11
11

10
0

11
11

00
00

10
00

01
11

10
00

00
01

11
11

00
00

11
11

00
00

00
11

11
10

00
0 11

11
11

00
00

00
11

11
10

00
0

11
11

00
00

00
11

11
10

00
01

11
10

00
00

01
11

11
00

00
00

00
11

11
00

00
11

11
00

00
00

11
11

11
11

00
00

00
11

11
11

00
00

11
11

00
00

00
11

11
00

00
00

11
11

11
00

00 00
11

11
00

00
00

11
11

11
11

11
00

00
00

11
11

11
11

00
00

00
11

11
11

00
00

00
00

00
11

11
00

00
00

11
11

11
00

00

0.00

0.05

0.10

0.15

0.20

0.25 SAC

<
E

O
S>

0 1 01 10
0

01
1

00
00

01
00

01
11

1
01

01
00

10
01

00
00

00
00

01
00

00
11

00
00

11
11

00
10

10
00

0
11

11
11

11
01

00
00

00
10

00
01

11
1

00
00

00
00

00
01

00
00

00
00

00
01

11
11

11
11

11
11

11
1

10
00

00
00

00
00

00
00

0
01

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
01

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

01
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

10.00

0.05

0.10

0.15

0.20

0.25 Random Sampler

Figure 12: Frequency of use of chunks for the ACTIONPIECE-REPLACE mechanism for RL methods in bit
sequence for length 128.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

G
FN

-1

-2 -3

-4

-5

A2
C

-1

-2

-3 -4

-5

SA
C

R
an

do
m

 S
am

pl
er

Figure 13: Visualization of a subset of chunks learned by the samplers for the Graph environment with maxi-
mum number of nodes of 7. Note for chunks where nodes connected to numbers, these represent the nodes in
the graph relative to the last node, that they would be added to.

30

	Introduction
	Related work
	Preliminaries
	Discovering action abstractions for amortized samplers
	Experimental setup
	Results
	Does chunking improve generative modeling?
	Do chunks capture the structure in the underlying distribution?

	Conclusion
	 Appendix
	Additional related works
	Experimental details
	FractalGrid
	RNA Binding
	Bit Sequence
	Graph
	Replay Buffer
	ShortParse
	Sampling quality metrics

	Learned libraries of chunks
	FractalGrid
	RNA Binding
	Bit Sequence
	Graph

	The role of tokenization strategy
	Sampler effectiveness in sampling high-reward objects

