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Abstract

Previous research on radiology report genera-001
tion has made significant progress in terms of002
increasing the clinical accuracy of generated003
reports. In this paper, we emphasize another004
crucial quality that it should possess, i.e., inter-005
report consistency, which refers to the capa-006
bility of generating consistent reports for se-007
mantically equivalent radiographs. This quality008
is even of greater significance than the overall009
report accuracy in terms of ensuring the sys-010
tem’s credibility, as a system prone to providing011
conflicting results would severely erode users’012
trust. Regrettably, existing approaches struggle013
to maintain inter-report consistency, exhibiting014
biases towards common patterns and suscepti-015
bility to lesion variants. To address this issue,016
we propose ICON, which Improves the inter-017
report CONsistency of radiology report gener-018
ation. Aiming at enhancing the system’s abil-019
ity to capture the similarities in semantically020
equivalent lesions, our approach involves first021
extracting lesions from input images and exam-022
ining their characteristics. Then, we introduce023
a lesion-aware mixup technique to ensure that024
the representations of the semantically equiva-025
lent lesions align with the same attributes, by026
linearly interpolating them during the training027
phase. Extensive experiments on three pub-028
licly available chest X-ray datasets verify the029
effectiveness of our approach, both in terms of030
improving the consistency and accuracy of the031
generated reports1.032

1 Introduction033

Being part of the diagnostic process, radiology re-034

port generation (Shin et al., 2016; Zhang et al.,035

2017; Jing et al., 2018) has garnered significant036

attention within the research community, due to037

its large potential to alleviate the heavy strain of038

radiologists. Recent research (Nishino et al., 2022;039

1We will release our codes and model checkpoints after
the review process.
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Figure 1: Given two semantically equivalent cases (i.e.,
Case A and Case B), an example to illustrate the differ-
ence between three radiology report generation systems:
a consistent and accurate system (i.e., System α) and a
consistently inaccurate system (i.e., System β), and an
inconsistent system (i.e., System γ).

Tanida et al., 2023; Hou et al., 2023b) has made 040

noteworthy progress in enhancing the clinical ac- 041

curacy of the generated reports. 042

However, constructing a credible report gener- 043

ation system goes beyond the overall accuracy. 044

There is another crucial quality for report genera- 045

tion systems that has been largely overlooked in 046

the existing literature of medical report generation, 047

which is, inter-report consistency (Elazar et al., 048

2021). To illustrate the disparity between accuracy 049

and inter-report consistency, we exemplify two se- 050

mantically equivalent cases as shown in Figure 1. 051

Specifically, System α demonstrates the ability to 052

maintain both inter-report consistency and factual 053

accuracy for two similar cases (i.e., "small bilat- 054

eral pleural effusions" for positive Pleural Effu- 055

sion), whereas other systems (i.e., β and γ) fail 056

to meet these criteria. These systems might have 057

overfitted to ordinary cases and could be vulnera- 058
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ble to noise or attack. In terms of enhancing the059

system’s credibility, inter-report consistency might060

even hold greater significance than the overall ac-061

curacy, since a system prone to providing conflict-062

ing results would severely undermine users’ trust063

(Qayyum et al., 2020; Asan et al., 2020). Regret-064

tably, existing report generation systems struggle065

to maintain this important quality. They tend to066

exhibit biases towards common patterns, primarily067

describing normal observations and are extremely068

susceptible to lesion variants and context noise069

(Chen et al., 2020; Qin and Song, 2022; Ma et al.,070

2021; Kaviani et al., 2022). We argue that this is071

largely due to their limited capability of capturing072

shared attributes of similar patterns, which arises073

from the data scarcity of distributed lesions and074

their semantically equivalent variants, rendering it075

challenging for neural models to accurately locate076

and describe abnormalities.077

In this paper, we propose ICON, which aims to078

Improves inter-report CONsistency of radiology re-079

port generation. Our proposed method involves080

first extracting lesions from given input images,081

followed by examining the attributes of these le-082

sions. Subsequently, both the radiographs and their083

associated attributes are utilized as inputs for re-084

port generation. To further enhance the inter-report085

consistency, we introduce a lesion-aware mixup086

technique by learning from linearly interpolated087

lesions and attributes that belong to the same obser-088

vation. In summary, the contributions of this paper089

are as follows:090

• To the best of our knowledge, we are the first091

to introduce inter-report consistency in radi-092

ology report generation. To this end, we have093

devised two metrics (CON and R-CON) to094

measure such consistency.095

• We propose ICON, which improves both the096

consistency and accuracy in radiology report097

generation by capturing abnormalities at the098

region level. ICON only requires coarse-099

grained labels (i.e., image labels) for train-100

ing to extract lesions2, in contrast to previous101

methods that require fine-grained labels (i.e.,102

bounding boxes).103

• Extensive experiments are conducted on three104

2In this context, the term "lesion" generally refers to a spe-
cific abnormality. It encompasses most observation categories,
excluding Support Devices, Cardiomegaly, and Enlarged Car-
diomediastinum. For simplicity, we consider all corresponding
regions as lesions.

publicly available datasets, and the results 105

demonstrate the effectiveness of ICON in 106

terms of improving both the consistency and 107

accuracy of the generated reports. 108

2 Preliminaries 109

2.1 Problem Formulation 110

Given a set of radiographs X = {X1, . . . , XL} 111

in one study, along with its historical records 112

X p = {Xp
1 , . . . , X

p
|p|} or X p = ∅, and its report 113

Y = {y1, . . . , yT }, the task of radiology report 114

generation (RRG) is formulated as p(Y|X ,X p). 115

We elaborate on the justification of using the his- 116

torical records as context in Appendix A.8. Our 117

proposed method, denoted as ICON, decomposes 118

the RRG task into two stages: Lesion Extraction 119

(Stage 1) and Report Generation (Stage 2). Specifi- 120

cally, given the input images X , ICON first extracts 121

lesions Z = {Z1, . . . , Z|O|} from X , where the 122

probability of a region Ri,j from image Xi being 123

identified as a lesion Zk is estimated as p(Zk|Xi). 124

Subsequently, in Stage 2, ICON generates a report 125

based on both the input images and the extracted 126

lesions, modeled as P (Y|X ,X p,Z). Finally, our 127

framework aims to maximize the following proba- 128

bility: 129

P (Y|X ,X p) ∝ p(Z|X )︸ ︷︷ ︸
Stage 1

·P (Y|X ,X p,Z)︸ ︷︷ ︸
Stage 2

.
130

2.2 Observation and Attribute Annotation 131

Observations for Lesion Extraction. Lesion ex- 132

traction requires report-level labels, and we adopt 133

CheXbert (Smit et al., 2020) for this purpose. 134

Specifically, CheXbert annotates a report with 14 135

observation categories O = {o1, . . . , o14} (refer to 136

Appendix A.1 for data statistics). Each observation 137

is assigned one of four statuses: Present, Absent, 138

Uncertain, and Blank. During training and evalu- 139

ation, Present and Uncertain are merged into the 140

Positive category, which represents abnormal ob- 141

servations. Note that for the observation category 142

No Finding, only two statuses, Present or Absent, 143

are applicable. Finally, observation information is 144

utilized for lesion extraction as described in §3.2. 145

Attributes for Lesion-Attribute Alignment. Af- 146

ter extracting observations, we further extract en- 147

tities that represent their characteristics. Specifi- 148

cally, we adopt the attributes released by Hou et al. 149

(2023a)3, which are entities (with a relation mod- 150

3The attributes are available at https://github.com/
wjhou/Recap.
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ify or located_at) extracted from RadGraph (Jain151

et al., 2021) using PMI (Church and Hanks, 1990).152

We select the top 30 attributes for each observation153

and list some of them in Appendix A.2 for a better154

understanding. These attributes are then utilized155

for lesion-attribute alignment as described in §3.3.156

2.3 Inter-Report Consistency Metrics157

To assess the inter-report consistency of a model,158

we introduce two metrics, CON and R-CON,159

inspired by Elazar et al. (2021). Semanti-160

cally equivalent samples should have high ob-161

servation and entity similarity, which we cal-162

culate using the Overlap Coefficient (Simpson,163

1943): Overlap(A,B) = |A∩B|
min(|A|,|B|) . For a164

report Qi and its semantically equivalent sam-165

ples Ki = {Ki,1, . . . ,Ki,N}, the observation166

similarity should meet Overlap(OQi , OKi,j ) ≥167

0.75 and the entity similarity should meet168

Overlap(Qi,Ki,j) ≥ 0.5. We collect the corre-169

sponding outputs of Ki from a model, denoted as170

K̂i = {K̂i,1, . . . , K̂i,N}. The similarity between171

two outputs Q̂i and K̂i,j is:172

Overlap(Q̂i, K̂i,j) =
|êi ∩ êj |

min(|êi|, |êj |)
,173

where êi and êj are entities and attributes in Q̂i174

and K̂i,j (mentioned in §2.2), respectively. The175

inter-report consistency is then defined as:176

CON(Q̂i, K̂i) =
1

N

N∑
j=1

Overlap(Q̂i, K̂i,j).177

Since CON only considers inter-report consistency178

without accounting for the reference quality, we179

introduce R-CON to consider both consistency and180

accuracy:181

R-CON(Q̂i, K̂i) = τi · CON(Q̂i, K̂i),182

where τi = Overlap(Q̂i, Qi) is the similarity be-183

tween the hypothesis and its reference.184

3 Methodology185

3.1 Visual Encoding186

Given an image Xl, an image processor is first187

utilized to split Xl into N patches. Then, a vi-188

sual encoder fθ (e.g., Swin Transformer (Liu et al.,189

2021d)) is employed to extract visual representa-190

tions Xl and the pooler output Pl ∈ Rh:191

[Pl,Xl] = fθ(Xl),192

where Xl = {xl,i, . . . ,xl,N} and xl,i ∈ Rh is the193

i-th visual representation.194

3.2 Stage 1: Extracting Lesions via 195

Observation Classification (ZOOMER) 196

Observation Classification. A ZOOMER is a vi- 197

sual encoder parameterized by θZ and trained to 198

classify a given input X into abnormal observa- 199

tions as mentioned in §2.2: 200

p(oi) = ZOOMER(X ). 201

Specifically, ZOOMER first encodes images X = 202

{X1, . . . , XL} as outlined in §3.1, and then takes 203

the averaged pooler output for classification, fol- 204

lowing these steps: 205

[Pl,Xl] = fθZ(Xl),

P =
1

L

∑
Pl,

p(oi) = σ(WiP + bi),

206

where Wi ∈ Rh is the weight for the i-th obser- 207

vation, bi ∈ R is its bias, and σ is the Sigmoid 208

function. 209

Zooming In for Lesion Extraction. Upon com- 210

pleting training ZOOMER, we can use it to extract 211

lesions without the need for object detectors (Ren 212

et al., 2015). It is worth noting that our method 213

does not require fine-grained labels, such as bound- 214

ing boxes (Tanida et al., 2023), making it easily 215

adaptable to other modalities, e.g., FFA images (Li 216

et al., 2021). 217

For an image Xl, a sliding window with a 0.375 218

ratio of Xl is applied to extract M region candi- 219

dates Rl = {Rl,1, . . . , Rl,M} from Xl, as shown 220

in the left side of Figure 2. These regions are then 221

sequentially fed into ZOOMER for classification. 222

Further details on the extraction of these regions 223

can be found in Appendix A.6. The probability 224

of a region Rl,j being classified as an abnormal 225

observation oi is: 226

pl,j(oi) = ZOOMER(Rl,j). 227

For each study, all images in X are iterated, and 228

only the region with the highest pl,j(oi) is chosen 229

as a lesion Zi corresponding to the observation 230

oi. Finally, the set of lesions is denoted as Z = 231

{Z1, . . . , Z|O|}. 232

Training ZOOMER. ZOOMER is optimized using 233

the binary cross-entropy (BCE) loss. To handle 234

the class-imbalanced issue (refer to Appendix A.1 235

for details), a weight factor αj is applied for each 236

abnormal observation, and the loss function LS1 is: 237

BCE(p(oj), oj) = − 1

|O|
∑
j

[αj · oj · log p(oj)

+(1− oj) · log(1− p(oj))] ,

238
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Figure 2: Overview of the ICON framework, which first extracts lesions and then generates reports. Attributes are
extracted from RadGraph (Jain et al., 2021).

where oj ∈ {0, 1} is the label, αj = 1 +239

log
(
|Dtrain|−wj

wj

)
, and |Dtrain| and wj are the num-240

ber of samples and the number of j-th observations241

in the training set, respectively.242

3.3 Stage 2: Inspecting Lesions (INSPECTOR)243

Inspecting Lesions with Attributes. Given that le-244

sions of the same observation can exhibit different245

characteristics, it is crucial to inspect each lesion246

and match it with corresponding attributes (§2.2)247

to differentiate it from other variations. Specifi-248

cally, an INSPECTOR is a visual encoder parameter-249

ized by θI , similar to §3.2. INSPECTOR(P p,P , Zj)250

takes prior and current visit chest X-rays as context,251

along with a lesion region as input:252

[PZj ,Zj ] = fθI (Zj),

pj(ak) = σ(MLP(P p,P ,PZj )),
253

where MLP is a two-layer perceptron with non-254

linear activation, and P p,P ,PZj ∈ Rh are pooler255

outputs of prior images, current images, and the256

lesion, respectively. The lesion features Z =257

{Z1, . . . ,Z|O|} are then collected for report gener-258

ation. For image encoding, we use another visual259

encoder fθV to encode X into X and X p into X p.260

By inspecting lesion-level features, ICON can cap-261

ture fine-grained details which are beneficial for262

generating consistent outputs.263

Lesion-aware Mixup. To further improve the con-264

sistency of the generated outputs, we adopt the265

mixup augmentation method (Zhang et al., 2018)266

and devise a Lesion-aware mixup during the train-267

ing phase. Specifically, for a lesion-attribute pair268
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Figure 3: Overview of our proposed lesion-aware mixup
augmentation.

(Zj , Aj), we retrieve a similar pair (Zk, Ak) with 269

the same observation from the training data based 270

on report similarity. These lesions are synthesized 271

by a linear combination, as illustrated in Figure 3: 272

Z∗
j = λZj + (1− λ)Zk, 273

where λ is set to 0.75. Note that during training, 274

Z∗
j is used for both INSPECTOR and GENERATOR. 275

Training INSPECTOR. Similar to §3.2, we adopt a 276

linearly interpolated BCE loss to optimize INSPEC- 277

TOR: 278

LI = λBCEj + (1− λ)BCEk, 279

where BCEj and BCEk take Aj and Ak as their re- 280

spective labels. Notably, only the attributes that 281

are shared between Zj and Zk are fully optimized. 282

Consequently, our lesion-aware mixup technique 283

facilitates the improvement of output consistency 284

for two semantically equivalent lesions. 285
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Dataset Model NLG Metrics CE Metrics
B-1 B-2 B-3 B-4 MTR R-L P R F1

MIMIC
-ABN

R2GEN 0.290 0.157 0.093 0.061 0.105 0.208 0.266 0.320 0.272
R2GENCMN 0.264 0.140 0.085 0.056 0.098 0.212 0.290 0.319 0.280
ORGAN 0.314 0.180 0.114 0.078 0.120 0.234 0.271 0.342 0.293
RECAP 0.321 0.182 0.116 0.080 0.120 0.223 0.300 0.363 0.305
ICON (Ours) 0.337 0.195 0.126 0.086 0.129 0.236 0.332 0.430 0.360

MIMIC
-CXR

R2GEN 0.353 0.218 0.145 0.103 0.142 0.270 0.333 0.273 0.276
R2GENCMN 0.353 0.218 0.148 0.106 0.142 0.278 0.344 0.275 0.278
M2TR 0.378 0.232 0.154 0.107 0.145 0.272 0.240 0.428 0.308
KNOWMAT 0.363 0.228 0.156 0.115 − 0.284 0.458 0.348 0.371
CMM-RL 0.381 0.232 0.155 0.109 0.151 0.287 0.342 0.294 0.292
CMCA 0.360 0.227 0.156 0.117 0.148 0.287 0.444 0.297 0.356
KiUT 0.393 0.243 0.159 0.113 0.160 0.285 0.371 0.318 0.321
DCL − − − 0.109 0.150 0.284 0.471 0.352 0.373
METrans 0.386 0.250 0.169 0.124 0.152 0.291 0.364 0.309 0.311
RGRG 0.373 0.249 0.175 0.126 0.168 0.264 0.380 0.319 0.305
ORGAN 0.407 0.256 0.172 0.123 0.162 0.293 0.416 0.418 0.385
RECAP 0.429 0.267 0.177 0.125 0.168 0.288 0.389 0.443 0.393
ICON (Ours) 0.429 0.266 0.178 0.126 0.170 0.287 0.445 0.505 0.464

Table 1: Experimental results of our model and baselines on the MIMIC-ABN and MIMIC-CXR datasets. The
best results are in boldface, and the underlined are the second-best results. The listed CE results are macro-weighted,
and example-based CE results are provided in Table 9.

3.4 Generating Consistent Radiology Reports286

(GENERATOR)287

Lesion-Attribute Alignment. To bridge the288

modality gap between lesion representations and289

text-based attributes, we leverage a BART (Lewis290

et al., 2020) encoder to extract attribute represen-291

tations. The attributes associated with each lesion292

are formulated as a prompt: <s> oj </s> Aj </s>,293

as depicted in the upper part of Figure 2. Then,294

a cross-attention module (Vaswani et al., 2017) is295

inserted after every self-attention module. This296

module aligns the lesion representations with the297

attribute representations by querying visual repre-298

sentations using attribute representations, similar299

to Q-Former (Li et al., 2023a):300

Ha
j = CrossAttention(Hs

j ,Zj ,Zj),301

where Ha
j ,H

s
j ∈ Rh are the aligned attribute rep-302

resentation and the self-attended representation of303

Aj , respectively. All prompts are encoded, and the304

attribute representations of Z are denoted as Ha.305

Report Generation. Given the input images X ,306

images of prior visits X p, the lesions Z , and at-307

tribute Ha, we utilize a BART decoder in conjunc-308

tion with the Fusion-in-Decoder (FiD; (Izacard and309

Grave, 2021)) that simply concatenates multiple310

context sequences for report generation. Then, the311

probability of the t-th step is expressed as:312

ht = FiD([X ;X p;Z;Ha],h<t),

p(yt|X ,X p,Z,Y<t) = Softmax(Wght + bg),
313

where ht ∈ Rh is the t-th hidden representation, 314

Wg ∈ R|V|×h is the weight matrix, bg ∈ R|V| is 315

the bias vector, and V is the vocabulary. 316

Training GENERATOR. The generation pro- 317

cess is optimized using the negative log- 318

likelihood loss, given each token’s probability 319

p(yt|X ,X p,Z,Y<t): 320

LG = −
T∑
t=1

log p(yt|X ,X p,Z,Y<t). 321

The loss function of Stage 2 is: LS2 = LI + LG. 322

4 Experiments 323

4.1 Datasets 324

Three public datasets are used to evaluate our 325

models, i.e., IU X-RAY4 (Demner-Fushman et al., 326

2016), MIMIC-CXR5 (Johnson et al., 2019), and 327

MIMIC-ABN6 (Ni et al., 2020). We follow previ- 328

ous research (Chen et al., 2020) to preprocess these 329

datasets, and provide other details in Appendix A.7. 330

• IU X-RAY consists of 3,955 reports. We fol- 331

low previous research (Chen et al., 2020) and 332

split the dataset into train/validation/test sets 333

with a ratio of 7:1:2. 334

• MIMIC-CXR consists of 377,110 chest X- 335

ray images and 227,827 reports. 336

4https://openi.nlm.nih.gov/
5https://physionet.org/content/mimic-cxr-jpg/

2.0.0/
6https://github.com/zzxslp/WCL
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Dataset Model NLG Metrics RadGraph
B-4 R-L RGE RGER RGER

IU
X-RAY

R2GEN 0.120 0.298 − − −
M2TR 0.121 0.288 − − −
TNLL 0.114 − 0.230 0.202 0.153
ICON 0.098 0.320 0.342 0.312 0.246

MIMIC
-CXR

TNLL 0.105 0.253 0.230 0.202 0.153
ORGAN 0.123 0.293 0.303 0.275 0.199
RECAP 0.125 0.288 0.307 0.276 0.205
ICON 0.126 0.287 0.312 0.278 0.197

Table 2: Radgraph evaluation results on the IU X-RAY
and MIMIC-CXR datasets. Results of TNLL are cited
from Delbrouck et al. (2022).

• MIMIC-ABN is modified from the MIMIC-337

CXR dataset and its reports only contain ab-338

normal part. We adopt the data-split as used339

in Hou et al. (2023a), and the data-split is340

71,786/546/806 for train/validation/test sets.341

Unlike previous research (Chen et al., 2020) which342

only used one view for report generation on343

MIMIC-CXR and MIMIC-ABN, we collect all344

views for each visit in experiments. The justifica-345

tion is provided in Appendix A.8.346

4.2 Evaluation Metrics and Baselines347

NLG Metrics. To assess the quality of generated348

reports, we adopt several natural language gener-349

ation (NLG) metrics for evaluation. BLEU (Pap-350

ineni et al., 2002), METEOR (Banerjee and Lavie,351

2005), and ROUGE (Lin, 2004) are selected as352

NLG Metrics, and we use the MS-COCO caption353

evaluation tool7 to compute the results.354

CE Metrics. Following previous research (Chen355

et al., 2020, 2021), we adopt clinical efficacy (CE)356

metrics to evaluate the observation-level factual357

accuracy, and CheXbert (Smit et al., 2020) is used358

in this paper. To measure the entity-level factual359

accuracy, we leverage the RadGraph (Jain et al.,360

2021; Delbrouck et al., 2022) and temporal entity361

matching (TEM) scores for evaluation.362

Consistency Metrics. CON and R-CON (§2.3)363

are utilized to measure the inter-report consistency.364

Note that entities used in measuring consistency365

are adopted from RadGraph (Jain et al., 2021). A366

MAJORITY baseline which outputs the same report367

for all inputs, is included.368

Baselines. We compare our models with the fol-369

lowing baselines: R2GEN (Chen et al., 2020),370

R2GENCMN (Chen et al., 2021), KNOWMAT371

(Yang et al., 2021), M2TR (Nooralahzadeh et al.,372

2021), CMM-RL (Qin and Song, 2022), CMCA373

(Song et al., 2022), CXR-RePaiR-Sel/2 (Endo et al.,374

7https://github.com/tylin/coco-caption

Model MIMIC-ABN MIMIC-CXR
CON R-CON CON R-CON

MAJORITY 1.000 − 1.000 −
R2GEN 0.280 0.072 0.137 0.042
R2GENCMN 0.302 0.091 0.155 0.049
ORGAN 0.338 0.127 0.345 0.126
RECAP 0.311 0.108 0.345 0.114

ICON (Ours) 0.316 0.140 0.351 0.163
ICON w/o ZOOM 0.183 0.073 0.175 0.066
ICON w/o INSPECT 0.253 0.100 0.245 0.090
ICON w/o MIXUP 0.286 0.119 0.334 0.156

Table 3: The CON score and the R-CON score. MAJOR-
ITY: outputs the same report for all inputs.

2021), BioViL-T (Bannur et al., 2023), DCL (Li 375

et al., 2023b), METrans (Wang et al., 2023c), KiUT 376

(Huang et al., 2023), RGRG (Tanida et al., 2023), 377

ORGAN (Hou et al., 2023b), and RECAP (Hou 378

et al., 2023a). 379

4.3 Implementation Details 380

The small and tiny versions of Swin Transformer 381

V2 (Liu et al., 2022) are used as the visual back- 382

bone for ZOOMER and INSPECTOR, respectively. 383

The GENERATOR is initialized with the base ver- 384

sion of BART pretrained on biomedical corpus 385

(Yuan et al., 2022). Other parameters are randomly 386

initialized. For Stage 2 training, the learning rate 387

is 5e − 5 with linear decay, the batch size is 32, 388

and the models are trained for 20 and 5 epochs on 389

MIMIC-ABN and MIMIC-CXR with early stop- 390

ping, respectively. Since the number of samples in 391

IU X-RAY is too small to train a multimodal model, 392

we only provide results produced by models trained 393

on MIMIC-CXR as a reference, similar to (Del- 394

brouck et al., 2022). For other training details (e.g., 395

training ZOOMER), and the resources used in this 396

paper, we list them in Appendix A.3. 397

5 Results 398

5.1 Quantitative Analysis 399

Inter-Report Consistency Analysis. Table 3 pro- 400

vides CON and R-CON scores of baselines, our 401

model, and its ablated variants. ICON achieves 402

the highest R-CON on both datasets, indicating 403

the best inter-report consistency. In terms of the 404

CON score, ICON demonstrates competitive per- 405

formance when compared with ORGAN. We also 406

notice that introducing mixup augmentation leads 407

to a large improvement on CON, demonstrating the 408

effectiveness of lesion-aware mixup. 409

NLG and Temporal Modeling Results. The NLG 410

results are presented in Table 1 and the Temporal 411
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Dataset Model Components NLG Metrics CE Metrics
ZOOM INSPECT MIXUP B-1 B-2 B-3 B-4 MTR R-L P R F1

MIMIC
-ABN

ICON ! ! ! 0.337 0.195 0.126 0.086 0.129 0.236 0.332 0.430 0.360
ICON w/o ZOOM − − − 0.310 0.181 0.119 0.084 0.120 0.243 0.306 0.353 0.306

ICON w/o INSPECT ! − − 0.315 0.182 0.117 0.081 0.121 0.236 0.338 0.401 0.352

ICON w/o MIXUP ! ! − 0.335 0.192 0.124 0.085 0.129 0.239 0.332 0.413 0.356

MIMIC
-CXR

ICON ! ! ! 0.429 0.266 0.178 0.126 0.170 0.287 0.445 0.505 0.464
ICON w/o ZOOM − − − 0.377 0.237 0.162 0.119 0.149 0.288 0.363 0.280 0.278

ICON w/o INSPECT ! − − 0.399 0.248 0.168 0.122 0.157 0.287 0.444 0.447 0.423

ICON w/o MIXUP ! ! − 0.427 0.264 0.176 0.124 0.169 0.285 0.444 0.502 0.462

Table 4: Ablation results of our model and its variants on the MIMIC-ABN and MIMIC-CXR datasets.

Model B-4 R-L CE-F1 TEM
CXR-RePaiR-2 0.021 0.143 0.281 0.125
BioViL-NN 0.037 0.200 0.283 0.111
BioViL-T-NN 0.045 0.205 0.290 0.130
BioViL-AR 0.075 0.279 0.293 0.138
BioViL-T-AR 0.092 0.296 0.317 0.175
RECAP 0.118 0.279 0.400 0.304
ICON (Ours) 0.120 0.279 0.468 0.335

Table 5: Progression modeling results on the MIMIC-
CXR dataset. Results of BioViL-* are cited from Ban-
nur et al. (2023).

Modeling results are listed in Table 5. Among all412

models, ICON achieves SOTA performance on413

the NLG and Temporal metrics. As shown in Ta-414

ble 1, our model demonstrates significant improve-415

ments on the MIMIC-ABN dataset and achieves416

competitive performance on the MIMIC-CXR417

dataset. Additionally, we provide experimental418

results on the IU X-RAY dataset as a reference419

in Table 2. Regarding temporal modeling, ICON420

exhibits significant improvements over other base-421

lines in terms of BLEU score, clinical accuracy,422

and TEM score while maintaining competitive per-423

formance on ROUGE, indicating its enhanced ca-424

pacity to effectively utilize historical records.425

Clinical Efficacy Results. In the right section of426

Table 1, we observe that ICON achieves SOTA427

clinical accuracy, increasing CE F1 from 0.393 to428

0.464 on the MIMIC-CXR dataset and rising by429

5.5% on the MIMIC-ABN dataset. These results430

indicate that our model is capable of generating431

accurate and consistent radiology reports. Further-432

more, Table 2 presents the RadGraph F1 on both433

the IU X-RAY and MIMIC-CXR datasets. Our434

model achieves competitive performance compared435

with the non-RL-optimized baselines.436

Ablation Results. The ablation results for MIMIC-437

ABN and MIMIC-CXR are listed in Table 3 and438

Table 4. We study three variants: (1) w/o ZOOM,439

where all components are removed, (2) w/o IN-440

SPECT, where both the INSPECTOR and MIXUP are441

removed, and (3) w/o MIXUP, where only MIXUP442

is removed. The performance of the ablated model 443

w/o ZOOM drops significantly for both datasets, 444

while the variant w/o INSPECT achieves compet- 445

itive results on clinical accuracy. This suggests 446

that the ZOOMER effectively extracts lesions and 447

provides relevant abnormal information for report 448

generation. In addition, the variant w/o MIXUP 449

further improves the performance, demonstrating 450

the effectiveness of INSPECTOR in transforming 451

concise lesion information into precise free-text 452

reports. Moreover, introducing lesion-aware mixup 453

augmentation strengthens the consistency of gener- 454

ated outputs, indicating the effectiveness of ICON. 455

5.2 Qualitative Analysis 456

Case Study. Figure 4 showcases two semanti- 457

cally equivalent cases, i.e., Case A and Case B, ex- 458

tracted from the test set of MIMIC-CXR. In both 459

instances, ICON successfully identifies abnormal 460

observations (e.g., Cardiomegaly, Pleural Effusion, 461

and Atelectasis) and generates consistent phrases 462

including "pulmonary vascular congestion", "bilat- 463

eral pleural effusions", and "compressive atelec- 464

tasis." Conversely, the variant w/o ZOOM fails to 465

produce these descriptions in Case A. This demon- 466

strates that ZOOMER plays a crucial role in identify- 467

ing lesions and highlights the ability of the mixup 468

augmentation to ensure the alignment of lesions 469

with their corresponding attributes. 470

Error Analysis. Figure 5 presents an error case 471

produced by ICON. Although ZOOMER success- 472

fully identifies Pneumonia in the given radiographs, 473

the GENERATOR fails to realize it into descriptions 474

like "multifocal pneumonia" (i.e., a false negative 475

observation). We notice that the region of this ob- 476

servation is inaccurately identified. Additionally, 477

ZOOMER outputs a false positive observation Lung 478

Opacity, leading to an inaccurate phrase "increased 479

opacity". To mitigate this issue, a better ZOOMER 480

trained with larger datasets could be beneficial. 481
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Ca
se
 A

Cardiomegaly

Pleural
Effusion

Atelectasis

Reference A: in comparison with the study of there is little overall change.
continued enlargement of the cardiac silhouette with pulmonary vascular congestion and

bilateral pleural effusions with compressive atelectasis. central catheter remains in place.

ICON w/o ZOOM: as compared to the previous radiograph the patient has received a right-sided
picc line. the course of the line is unremarkable the tip of the line projects over the mid svc.
there is no evidence of complications notably no pneumothorax. otherwise the radiograph is
unchanged.

ICON: in comparison with the study of there is little overall change.
continued enlargement of the cardiac silhouette with pulmonary vascular congestion and mild to

moderate cardiomegaly. small bilateral pleural effusions with areas of compressive atelectasis.
the right picc line has been removed. nasogastric tube remains in place.

Ca
se
 B

Cardiomegaly

Atelectasis

Pleural
Effusion

Reference B: in comparison with the study of there is again enlargement of the cardiac sil-
houette with extensive bilateral pleural effusions and compressive atelectasis combined with

pulmonary vascular congestion.

ICON w/o ZOOM: as compared to the previous radiograph there is no relevant change. moder-
ate cardiomegaly with bilateral pleural effusions and subsequent areas of atelectasis. moderate
pulmonary edema. no newly appeared focal parenchymal opacity suggesting pneumonia.

ICON: as compared to the previous radiograph there is unchanged evidence of moderate car-
diomegaly with pulmonary vascular congestion and moderate pulmonary edema. unchanged

moderate bilateral pleural effusions with areas of compressive atelectasis at the lung bases. no
new parenchymal opacities. no pneumothorax.

Figure 4: A case study of ICON on two semantically equivalent cases (i.e., Case A and Case B), given their
radiographs and lesions. Spans with the same color (Cardiomegaly, Pleural Effusion, Atelectasis, and Others)
represent the same positive observation. Consistent and accurate outputs are highlighted with underline.

Lung	Opacity Pneumonia

1⃝ Pneumonia/False Neg
2⃝ Lung Opacity/False POS

Reference: pa and lateral views of the chest.
there are new opacities in the superior seg-
ment of the left lower lobe and in the right
lower lobe most consistent with 1⃝ multifo-
cal pneumonia. no pleural effusion or pneu-
mothorax. cardiomediastinal and hilar con-
tours are normal.

ICON: . . . . . . the heart size remains un-
changed and is within normal limits. . . . the
pulmonary vasculature is not congested. no
signs of acute or chronic parenchymal infil-
trates are present and the lateral and poste-
rior pleural sinuses are free. no pneumotho-
rax in the apical area on frontal view. when
comparison is made with the next preceding
study there is a new area of 2⃝ increased
opacity in the left.

Figure 5: An error case produced by ICON. The span
and the span denote false negative observation and false
positive observation, respectively.

6 Related Works482

Radiology report generation (Jing et al., 2018; Li483

et al., 2018; Jing et al., 2019) has gained much484

attention. Prior research has either devised vari-485

ous memory mechanisms to record key informa-486

tion (Chen et al., 2020, 2021; Qin and Song, 2022;487

Wang et al., 2023c; Zhao et al., 2023) or proposed488

different learning methods to enhance performance489

(Liu et al., 2021c,a,b). In addition, Yang et al.490

(2021); Li et al. (2023b); Huang et al. (2023); Yan491

et al. (2023) proposed utilizing knowledge graphs492

for report generation. Liu et al. (2019); Lovelace493

and Mortazavi (2020); Miura et al. (2021); Nishino494

et al. (2022); Delbrouck et al. (2022) designed var-495

ious rewards for reinforcement learning to improve496

clinical accuracy. Tanida et al. (2023) proposed an497

explainable framework for report generation. Hou498

et al. (2023b) introduced observations to improve499

factual accuracy. Kale et al. (2023) proposed a 500

template-based approach to improve the quality 501

and accuracy of radiology reports. Additionally, 502

Ramesh et al. (2022); Bannur et al. (2023); Hou 503

et al. (2023a); Dalla Serra et al. (2023) focused 504

on exploring the temporal structure. Wang et al. 505

(2023b,a) utilized CLIP (Radford et al., 2021) to 506

bridge the modality gap. Mixup is also closely re- 507

lated to this research (Zhang et al., 2018), and this 508

method has been adopted in NLP research (Sun 509

et al., 2020; Yoon et al., 2021; Yang et al., 2022). 510

Although consistency has been studied in many 511

domains (Thimm, 2013; Ribeiro et al., 2019; Cam- 512

buru et al., 2019; Elazar et al., 2021), it remains 513

unexplored in medical report generation. 514

7 Conclusion and Future Works 515

In this paper, we propose ICON, comprising three 516

components to improve both accuracy and inter- 517

report consistency. ICON first extracts lesions 518

and then matches fine-grained attributes for report 519

generation. A lesion-aware mixup method is de- 520

vised for attribute alignment. Experimental results 521

on three datasets demonstrate the effectiveness of 522

ICON. In the future, we plan to explore incor- 523

porating large language models (LLMs) into our 524

framework, given their advanced capabilities in 525

planning and generation, to further enhance the 526

performance of radiology report generation. Lever- 527

aging the strengths of LLMs could provide more re- 528

fined signals to enhance the performance of ICON. 529
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Limitations530

Although ICON can improve the consistency of531

radiology report generation, it still exhibits some532

limitations. Since our lesion extraction method is533

based on coarse-grained labels (i.e., image labels),534

training such a model requires annotations for im-535

ages. However, obtaining these annotations can be536

challenging in some medical settings. Recent ad-537

vances in foundation vision models (Kirillov et al.,538

2023) and open-set learning (Zara et al., 2023)539

could be a potential direction to handle this is-540

sue. Additionally, since our framework consists of541

two stages, prediction errors can propagate through542

the pipeline, making the final performance of our543

framework largely dependent on Stage 1. Rein-544

forcement learning (Nishino et al., 2022) that takes545

factual improvement as a reward could be a solu-546

tion to optimize the framework in an end-to-end547

manner.548

Ethics Statement549

The IU X-RAY (Demner-Fushman et al., 2016),550

MIMIC-ABN (Ni et al., 2020), and MIMIC-551

CXR (Johnson et al., 2019) datasets are publicly552

available and have been automatically de-identified553

to protect patient privacy. Our goal is to enhance554

the inter-report consistency of radiology report gen-555

eration systems. Despite the substantial improve-556

ment of our framework over state-of-the-art base-557

lines, the performance still lags behind the require-558

ments for real-world deployment and could lead559

to unexpected failures in untested environments.560

Thus, we urge readers of this paper and potential561

users of this system to cautiously check the gen-562

erated outputs and seek expert advice when using563

it.564
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A Appendix992

A.1 Abnormal Observation Statistics993

The abnormal observation statistics of MIMIC-994

ABN, MIMIC-CXR, and IU X-RAY are listed in995

Table 6.

#Observation MIMIC-ABN MIMIC-CXR IU X-RAY
No Finding 5002/32/22 64,677/514/229 744/108/318
Cardiomegaly 16,312/118/244 70,561/514/1,602 244/38/61
Pleural Effusion 10,502/80/186 56,972/477/1,379 60/13/15
Pneumothorax 1,452/24/4 8,707/62/106 9/2/5
Enlarged Card. 5,202/40/90 49,806/413/1,140 159/29/28
Consolidation 4,104/36/96 14,449/119/384 17/1/3
Lung Opacity 22,598/166/356 67,714/497/1,448 295/35/57
Fracture 4,458/32/76 11,070/59/232 84/6/15
Lung Lesion 5,612/54/112 11,717/123/300 85/14/17
Edema 8,704/76/168 33,034/257/899 28/2/7
Atelectasis 19,132/134/220 68,273/515/1,210 143/15/37
Support Devices 9,886/58/196 60,455/450/1,358 89/20/16
Pneumonia 17,826/138/260 23,945/184/503 20/2/1
Pleural Other 2,850/30/62 7,296/70/184 32/4/7

Table 6: Observation distribution in train/valid/test split
of three datasets. Enlarged Card. refers to Enlarged
Cardiomediastinum.

996

A.2 Attributes of Observations997

We list top-5 attributes for each observation for a998

better understanding in Table 7.

Observation Top-5 Attributes
Cardiomegaly cardiomegaly, borderline, moderately, severely, mildly
Pleural Effusion layering, subpulmonic, thoracentesis, trace, small
Pneumothorax hydropneumothorax, apical, tiny, tension, component
Enlarged Card. mediastinum, widening, contour, widened, lymphadenopathy
Consolidation consolidative, collapse, underlying, developing, consolidations
Lung Opacity opacification, opacifications, patchy, heterogeneous, scarring
Fracture healed, fractured, healing, nondisplaced, posterolateral
Lung Lesion nodular, nodule, mass, nodules, mm
Edema indistinctness, asymmetrical, haziness, asymmetric, interstitial
Atelectasis atelectatic, atelectasis, collapsed, subsegmental, collapse
Support Devices sidehole, carina, coiled, tunneled, duodenum
Pneumonia infectious, infection, atypical, supervening, developing
Pleural Other fibrosis, thickening, biapical, blunting, scarring

Table 7: Top-5 attributes for each observation.

999

A.3 Additional Implementation Details 1000

For Stage 1, all three datasets use the same hyper- 1001

parameters for training ZOOMER, with a learning 1002

rate of 1e− 4, batch size of 128, and dropout rate 1003

of 0.1, and the number of training epochs is ad- 1004

justed accordingly. We train ZOOMER for 5, 10, 1005

and 15 epochs on MIMIC-CXR, MIMIC-ABN, 1006

and IU X-RAY, respectively. During training, sev- 1007

eral data augmentation methods are applied. The 1008

input resolution of Swin Transformer is 256× 256, 1009

and we first resize an image to 288× 288, and then 1010

randomly crop it to 256 × 256 with random hori- 1011

zontal flip. All experiments are conducted using 1012

one NVIDIA-3090 GTX GPU. For Stage 2, no data 1013

augmentation is applied, and we conduct experi- 1014

ments on MIMIC-ABN and IU X-RAY using two 1015

NVIDIA-3090 GTX GPUs, and on MIMIC-CXR 1016

using four NVIDIA-V100 GPUs, both with half 1017

precision. Our model has 328.38M trainable pa- 1018

rameters, and the implementations are based on the 1019

HuggingFace’s Transformers (Wolf et al., 2020). 1020

Here are the pretrained models we used: 1021

• Small version of Swin Transformer V2: 1022

https://huggingface.co/microsoft/ 1023

swinv2-small-patch4-window8-256 1024

• Tiny version of Swin Transformer V2: 1025

https://huggingface.co/microsoft/ 1026

swinv2-tiny-patch4-window8-256 1027

• Base Version of Biomedical BART: 1028

https://huggingface.co/GanjinZero/ 1029

biobart-v2-base 1030

A.4 Additional CE Results on the 1031

MIMIC-CXR and MIMIC-ABN Datasets 1032

Observation Image Classification Report Classification
P R F1 P R F1

Enlarged Card. 0.426 0.540 0.476 0.442 0.525 0.428
Cardiomegaly 0.635 0.838 0.722 0.630 0.822 0.714
Lung Opacity 0.535 0.725 0.616 0.542 0.563 0.552
Lung Lesion 0.318 0.187 0.235 0.321 0.177 0.228
Edema 0.471 0.851 0.607 0.464 0.784 0.583
Consolidation 0.283 0.227 0.251 0.275 0.162 0.204
Pneumonia 0.367 0.396 0.381 0.341 0.350 0.345
Atelectasis 0.541 0.660 0.595 0.539 0.620 0.577
Pneumothorax 0.392 0.481 0.432 0.400 0.444 0.421
Pleural Effusion 0.719 0.842 0.776 0.721 0.827 0.770
Pleural Other 0.289 0.440 0.349 0.295 0.315 0.304
Fracture 0.266 0.198 0.227 0.225 0.164 0.190
Support Devices 0.747 0.850 0.795 0.785 0.784 0.785
No Finding 0.366 0.459 0.407 0.263 0.535 0.352

Macro Average 0.454 0.550 0.491 0.445 0.505 0.464

Table 8: Experimental results of each observation on
the MIMIC-CXR dataset.
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Model MIMIC-ABN MIMIC-CXR
P R F1 P R F1

R2GEN 0.340 0.413 0.348 0.390 0.336 0.337
R2GENCMN 0.360 0.363 0.336 0.358 0.276 0.290
RGRG − − − 0.461 0.475 0.447
ORGAN 0.418 0.471 0.412 0.493 0.560 0.493
RECAP 0.366 0.468 0.382 0.447 0.558 0.464

ICON 0.512 0.428 0.436 0.513 0.597 0.522
ICON w/o ZOOM 0.397 0.406 0.372 0.440 0.362 0.373
ICON w/o INSPECT 0.430 0.479 0.424 0.506 0.553 0.500
ICON w/o MIX-UP 0.433 0.509 0.438 0.507 0.590 0.517

Table 9: Example-based CE results on the MIMIC-ABN
and MIMIC-CXR datasets.

A.5 Experimental Results of Stage 11033

The experimental results are provided in Table 10.1034

Results on the IU X-RAY dataset are only provided1035

for reference.1036

Dataset P R F1

IU X-RAY 0.223 0.243 0.225
MIMIC-ABN 0.379 0.472 0.411
MIMIC-CXR 0.454 0.550 0.491

Table 10: Abnormal observation prediction results of
ZOOMER at Stage 1.

A.6 Lesion Extraction1037

There are two steps in extraction lesions: candidate1038

generation and candidate classification. Given an1039

image with a resolution of 1024×1024, padding if1040

needed, we apply a sliding window of 384×384,1041

with a step size of 128 to extract candidates for1042

classification. This operation results in 36 regions.1043

Then, each region is fed into the ZOOMER for clas-1044

sification, and only the top-1 lesion is selected for1045

each observation. Note that before extracting le-1046

sions, each input case is first assigned with their1047

observations by ZOOMER, and as a result, the num-1048

ber of lesions corresponds to the number of obser-1049

vations.1050

The No Finding observation is excluded for le-1051

sion extraction, as it estimates the overall condi-1052

tions of a patient, which makes it difficult to locate1053

at specific regions.1054

A.7 Other Preprocessing Details1055

We adopt the same preprocessing setup used in1056

Chen et al. (2020), and the minimum count of1057

each token is set to 3/3/10 for IU X-RAY/MIMIC-1058

ABN/MIMIC-CXR, respectively. Other tokens1059

are replaced with a special token <unk>.1060

A.8 Justifications for Additional Data 1061

Processing 1062

Justification for Using Historical Records. As 1063

stated in Hou et al. (2023a), without historical infor- 1064

mation, it is unreasonable to generate reports with 1065

comparisons between two consecutive visits and 1066

will lead to hallucinations (Ramesh et al., 2022). 1067

As a result, we include historical records as context 1068

information for report generation. 1069

Justification for Using All Views. Prior research 1070

(Chen et al., 2020, 2021; Hou et al., 2023b,a) 1071

treated different views of radiographs in one visit 1072

as different samples. However, this is unreasonable 1073

to generate a report with only one view position, 1074

since different diseases could be observed from dif- 1075

ferent view positions. For example, most of the 1076

devices can not be observed from a Lateral view. 1077

Given a lateral view radiograph, writing a sentence 1078

of "A right chest tube is in unchanged position." is 1079

not acceptable. 1080

In addition, some reports describe how many 1081

views are provided at the beginning, e.g., "PA and 1082

lateral views are provided." Above all, we have 1083

justified reasons to use all the views in one visit 1084

of a patient to generate the target report. Note that 1085

previous work treated each image as a sample and 1086

their settings have more samples than ours. For a 1087

fair comparison, each generated output of a study 1088

with L images is duplicated L times so that the 1089

number of samples in evaluation is consistent with 1090

previous research. 1091
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