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ABSTRACT

We show that we can easily design a single adversarial perturbation P that changes
the class of n images X1, X2, . . . , Xn from their original, unperturbed classes
c1, c2, . . . , cn to desired (not necessarily all the same) classes c∗1, c

∗
2, . . . , c

∗
n for

up to hundreds of images and target classes at once. We call these multi-attacks.
Characterizing the maximum n we can achieve under different conditions such
as image resolution, we estimate the number of regions of high class confidence
around a particular image in the space of pixels to be around 10O(100), posing a
significant problem for exhaustive defense strategies. We show several immediate
consequences of this: adversarial attacks that change the resulting class based
on their intensity, and scale-independent adversarial examples. To demonstrate
the redundancy and richness of class decision in the pixel space, we look for its
two-dimensional sections that trace images and spell words using particular classes.
We also show that ensembling reduces susceptibility to multi-attacks, and that
classifiers trained on random labels are more susceptible.
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(b) A 2D section of the pixel
space spelling AGI and outlining
a tortoise.

Figure 1: (Left panel): A single, small adversarial perturbation (in orange) to the pixels of many
images at once (5 in this example, in blue) can change their classification to arbitrarily chosen classes
(that are not necessarily the same). The partitioning of the space of inputs into classes is extremely
rich and redundant, and allows for optimization of very constrained problems, such as finding a
simultaneous attack on O(100) images at once. (Right panel): To demonstrate the richness of the
space of inputs, we simultaneous attack 288 neighboring images on a 2D slice of the pixel space
(starting at a CIFAR-10 image of a biplane) with 2 adversarial perturbations, Px and Py, defining
a 2D affine subspace around it. We optimize the subspace to spell AGI in the ImageNet class 620
(laptop) and draw a tortoise in the class 37 (turtle), with a background of class 985 (daisy).

1 INTRODUCTION

The problem of adversarial examples is typically framed in the classification setting (Szegedy
et al., 2013), where a small, specifically tailored adversarial perturbation P to the input data X
changes the classification decision from a class c, c = argmax f(X), to a different class c∗, c∗ =
argmax f(X + P ), while the magnitude of P (typically measured by its L2 or L∞ norms) remains
very small compared to X . In other words, the classification decision about an input image X is
changed from one class to a confident prediction of another class (chosen by the attacker) by a
small, often human-imperceptible change P to the image X . This problem is omnipresent in image
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classification, starting from small models and data (Szegedy et al., 2013), all the way to current large
models such as CLIP (Radford et al., 2021), as described for example in (Fort, 2021). Adversarial
vulnerability applies not only to the classification setting but is a prominent issue in other domains, e.g.
for near out-of-distribution detection (Chen et al., 2021; Fort, 2022). Despite the tremendous success
of deep learning, the persistent presence of adversarial vulnerabilities points towards a potentially
deeply ingrained problem with the approach.

In this paper, we investigate the limits of adversarial attacks. The key question we are addressing is
whether multiple attacks can be carried out by the same adversarial perturbation. For n images, e.g.
an image X1 of a cat, an image X2 of a tortoise, and an image X3 of a house, can we can design a
single change P to all n images at once such that X1 + P is classified as e.g. a tree, X2 + P is a
plane and X3 + P is a dinosaur?

Our key contribution is to show that such attacks do exist and are in fact easy to find. We call these
multi-attacks. Multi-attacks are easy to find using standard methods, and the higher the resolution
of the image, the more images we can attack at the same time. We demonstrate that models trained
on randomly permuted labels are more susceptible to multi-attacks, and that ensembling multiple
models decreases their susceptibility to multi-attacks. Using a simple toy model theory, we estimate
the number of distinct class regions around each image in the space of pixels to be 10O(100), which
poses a major challenge to any adversarial defence strategies that rely on exhaustion. To show the
flexibility and richness provided by the 10O(100) class regions around each image in the space of
pixels, we show that we can easily find two-dimensional sections of the input space that show images
and spell words in arbitrary classes.

2 METHOD

For a classifier f : X → y, n inputs X1, X2, . . . , Xn, and n target classes c∗1, c
∗
2, . . . , c

∗
n, the goal is to

produce an adversarial perturbation P such that argmax f(X1+P ) = c∗1, argmax f(X2+P ) = c∗2,
. . . argmax f(Xn + P ) = c∗n. A standard adversarial attack takes a single image X and finds a
single perturbation P such that X + P is misclassified as the target class the attacker chose. In this
paper, we are looking for single perturbation P that is simultaneously capable of changing many
images to many distinct classes. We call these perturbations multi-attacks.

2.1 GENERATING A MULTI-ATTACK

To find a multi-attack P , we are using the simplest method available. Given n target labels y∗i ∈
{0, 1, . . . , C − 1}n, and n input images X ∈ {X1, X2, . . . , Xn}, we get the classifier logits zi =
f(Xi) for each image, and compute the cross-entropy loss against the desired target labels as

L =
1

n

n−1∑
i=0

CE(zi, y
∗
i ) , (1)

where CE is the standard cross-entropy loss

CE(z, y) = −
C−1∑
j=0

yj log

(
exp zj∑C−1

k=0 exp zk

)
, (2)

and C is the total number of classes. We use the Adam optimizer (Kingma & Ba, 2014) to get the
attack P by using the gradient of the loss L with respect to the perturbation P . This is the same way
adversarial examples, first described in (Szegedy et al., 2013), were generated. More robust methods
exist, such as Fast Gradient Sign Method in (Goodfellow et al., 2014) that only uses the signs of the
gradient instead of the gradient itself, however, we found that simply taking the gradient itself and
doing the most straightforward thing worked well enough.

Starting from the input images X of the shape [batch, channels, resolution, resolution] and the
target labels y∗ of the shape [batch], we are gradually getting updates to the perturbation P of the
shape [1, channels, resolution, resolution]. The standard gradient descent approach would look like

Pt+1 = Pt − η
∂L(f(X + P ), y∗)

∂P P=Pt

, (3)

2
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where η is the learning rate. We are using the Adam optimizer with an arbitrarily chosen learning rate
of 10−2.

2.2 ENSEMBLES

Adversarial robustness of classifiers has been shown to improve with the use of ensembles (Tramèr
et al., 2020; Kariyappa & Qureshi, 2019). This has also been the case with adversarial attacks against
strong out-of-distribution detectors (Fort, 2022). We wanted to see if the number of simultaneously
attackable images in a multi-attack showed any signs of dependence on the size of an ensemble.
To do that, we took models f1, f2, . . . , fm, and averaged their logit outputs to form a single model
fensemble(x) = (1/m)

∑m
i=1 fi(x). The results of these experiments are shown in Section 4.3.

3 SIMPLE THEORY

Figure 2: Illustration of the
input space partitioning into
classes (different colors) and
the simultaneous attack (black
arrow) on images (blue cir-
cles) changing all their classes
at once to where their shifted
versions (red circles) lie.

Let us sketch a simple geometric model of the neighborhood of a
particular image X in the space of inputs (the space of pixels). For
CIFAR-10 (Krizhevsky & Hinton, 2009), this would be a din =
32× 32× 3 = 3072 dimensional space of pixels and their channels.
Let’s imagine that a particular image X is surrounded, within a
certain distance, by N cells – regions of a high probability value of
some class. We would like to estimate this number N . The particular
locations of these cells around two inputs X1 and X2 will generically
be very different. If we perturb the input X1 by a perturbation v,
X1 + v might be a high confidence class 542, while X2 + v might
be in a high confidence region of a wholly different class, or not a
high confidence region of any class altogether.

For simplicity, let’s consider a random perturbation v that for all
Xi + v reaches a high-confidence class area for some class. We
illustrate the situation in Figure 2. The probability of it reaching
the correct class c∗i on the ith image is 1/C, where C is the total
number of classes (in our experiments C = 1000 since we are using
models pretrained on ImageNet (Deng et al., 2009), or 10 for our
CIFAR-10 trained models and experiments). To reach the target
class for each i = 1, 2, . . . , n, the probability decreases to (1/C)n.
In our toy model, for a vector v to exist such that the predicted classes are c∗1, c

∗
2, . . . , c

∗
n, we need

there to be at least N regions around each input X where N(1/C)n ≥ 1. The maximum number of
images we can attack at once, nmax, is then approximately

nmax ≈ log (N) / log (C) . (4)

Given the maximum number of images we can attack at once, nmax, the number of regions surround-
ing an image is approximately N ≈ exp (nmax log(C)). For nmax = O(100) and C = 1000, this
works out to be N = 10O(100). For CIFAR-10 models with C = 10, the difference in the order of
magnitude is small.

4 EXPERIMENTS

In our experiments, we primarily used an ImageNet (Deng et al., 2009) pretrained ResNet50 (He
et al., 2016) from the PyTorch (Paszke et al., 2019) torchvision hub1. This model has 1000
output classes and uses the 224× 224× 3 input resolution. As inputs, we were using images from
the CIFAR-10 dataset (Krizhevsky & Hinton, 2009), however, working with random Gaussian noise
yielded equivalent results. To study the effect of resolution, we would first change the resolution
of the input image to the target resolution r × r, add the attack of the same resolution, and then
rescale the result to 224× 224 before feeding it into the classifier. The default learning rate we used

1https://pytorch.org/vision/main/models/generated/torchvision.models.
resnet50.html
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Figure 4: The number of successfully attacked images out of 1024 randomly chosen but fixed samples
of CIFAR-10 with 1024 randomly chosen but fixed ImageNet classes (1000 in total) as a function
of the size of the adversarial perturbation and optimization step (left-most panel). The higher the
resolution of the image, the easier it is to attack a large number of them simultaneously even with a
smaller L∞ norm perturbation.

for finding the adversarial attacks was 10−2 with the Adam (Kingma & Ba, 2014) optimizer. All
experiments were done on a single A100 GPU in a Google Colab in a matter of hours.

To see what the effect of architecture is, we also used a ResNet18 from the same source. For
experiments where we trained models on CIFAR-10 ourselves, we removed the final linear layer from
the original architecture and replaced it with a randomly initialized linear layer with 10 outputs. We
also trained a small CNN architecture we call a SimpleCNN with 4 layers of 3× 3 convolutional
kernels followed by ReLU and mean pooling, with channel numbers 32, 64, 128, and 128, followed
by a linear layer to 10 logits.

4.1 NUMBER OF SIMULTANEOUS ATTACKS VS PERTURBATION STRENGTH

2 4 6 8 10
Ensemble size

60

65

70

75

80

85

90

95
At

ta
ck

s a
t o

nc
e 

(o
ut

 o
f 1

28
)

Figure 3: Successfully at-
tacked images out of 128 with
a single multi-attack for en-
sembles of CIFAR-10-trained
SimpleCNN models. The
larger the ensemble, the fewer
images we can successfully at-
tack at the end of the 500 steps
of attack optimization.

We are measuring the strength of the adversarial perturbation by the
L∞ and L2 norms. L∞ is the maximum value of the perturbation
P over all pixels and all channels. We are using pixel values in
the 0 to 255 range. Starting with a fixed batch of 1024 images (an
arbitrary choice large enough to be challenging at the 224× 224 res-
olution but also fast enough to experiment with), we track how many
have been classified as the randomly chosen but fixed target classes
(from the 1000 ImageNet classes) as a function of the iteration of
the adversary finding step, and the L2 and L∞ norms of the attack
perturbation. The results are shown in Figure 4. The higher the res-
olution of the image, the more images we can attack successfully at
once. In addition, the L∞ norms of the higher resolution images are
smaller (though still pretty large compared to the standard 8/255).
The L2 norms are roughly equivalent at the end of optimization.
Interestingly, it seems (by visual inspection alone) the number of
successfully attacked images scales linearly with the logarithm of
the resolution, as nmax ∝ log r (as shown in the right-most panel of
Figure 4. It is possible that the numbers we obtained is an overes-
timate of the actual number of images attackable at once to 100%
accuracy, since the images that are in some sense easier to attack
might be chosen first from the full batch of 1024 images available.
We discuss this further in Section 4.2.

4.2 ATTACKING A BATCH AT ONCE

In our experiments, e.g. in Figure 4, we start with a batch of images (1024 in that Figure), and
optimize the cross-entropy of the classifier predictions against the target labels, as shown in Eq. 1.
There are two disadvantages to this approach: 1) having the argmax f(Xi + P ) = c∗i does not stop
the optimization, and 2) an easier subset of images can be chosen by the optimizer. The first problem
is a standard mismatch between minimizing a loss and maximizing accuracy. In our case it can mean
that the optimizer can over-focus on a particular image that has already been misclassified correctly as

4
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Figure 5: Attacks on different numbers of 224 × 224 images at once. Large batches get more
successful attacks in the 200 optimization steps we ran the experiment for, likely by focusing on
the easier images in the batch. For batches of ≈ 160 and below, we get 100% success for the
simultaneous multi-attack.

the target class, while ignoring the ones that have not been successfully attacked yet. To see the effect
of batch size, Figure 5 shows the success of attacks on different batch sizes of 224 × 224 images
after 200 steps of optimization. The larger batches lead to more images successfully attacked, likely
focusing on the easier subset of them. Small batches, in this case 160 and below, get 100% success
rate.

4.3 MULTI-ATTACKS AGAINST ENSEMBLES

We trained 10 independently initialized SimpleCNN models on CIFAR-10 and developed multi-
attacks against ensembles of subsets of them (averaging their output logits for a given input) at the
resolution 32 × 32 × 3. We used 500 steps of the attack optimization at the learning rate of 10−2

with the Adam optimizer, and checked the number of images we successfully attacked at t he end of
the optimization. Each ensemble size is run 3 times and the resulting average and standard deviation
are shown in Figure 3. The larger the ensemble, the fewer images we can attack at the same time,
which is consistent with a broad trend of ensembling increasing out-of-distribution (Fort, 2022) and
adversarial robustness (Tramèr et al., 2020).

4.4 STARTING AT NOISE

We experiment with starting with real images X1, X2, . . . , Xm is any different from starting with
random noise samples. In Figure 6 we show that, at least visually, the number of successful attacks
as a function of iteration and L2 and L∞ distances seems very similar between real images and
noise samples of the same mean and standard deviation. The experiment was done with 224× 224
images, 1024 images in total, and for 200 iterations of a 10−2 learning rate with Adam. We can
take O(100) samples of noise, and with a single perturbation P change their classification to equally
many arbitrarily chosen classes.

In Section A.1 we show that instead of starting from n independent realizations of noise, we can
instead start with a single image and add random realizations of noise as a perturbation to it. For a
sufficient amount of noise, these images act as distinct for the purpose of designing a multi-attack
against them.

4.5 MODELS TRAINED ON RANDOM LABELS

The structure of the space of pixels and the way it is partitioned into classes is what allows multi-
attacks and adversarial attacks in general to exist. To see what the effect of training on real data and
labels vs training on randomly permuted but fixed labels is, we trained a ResNet50 on CIFAR-10
first with real labels, and then with labels randomly permuted and fixed. As (Zhang et al., 2016)
shows, a large enough network can fit to 100% precision a training set with randomly assigned labels.
Such learning is, however, distinct from training on semantically meaningful labels in many ways,
and in our experiments we see a clear signal that models trained on random random labels are more
susceptible to multi-attacks. Figure 7 shows the result of multi-attacks with 500 optimization steps at
the learning rate of 10−2 against a batch of 128 32 × 32 images of CIFAR-10. Models trained on

5
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Figure 6: The number of successfully attacked images out of 1024 randomly chosen but fixed samples
of CIFAR-10 with 1024 randomly chosen but fixed ImageNet (1000 in total) classes as a function of
the size of the adversarial perturbation as compared to images of random noise of the same mean and
standard deviation. Real images and noise samples do not differ in their susceptibility to multi-attacks
against them. The plots show two random experiments for each type.
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Figure 7: Multi-attacks against ResNet50 trained on real vs random labels of CIFAR-10. Models
trained on random labels are easier to attack and allow for multi-attacks on more images at once.

random labels are easier to attacks given a perturbation strength, and also allow for more simultaneous
attacks.

4.6 LONG LINES OF ADVERSARIES

The very high number of distinct high-confidence regions surrounding each image allows for si-
multaneous satisfaction of many constrains. A particularly interesting situation is to attack a series
of images that all derive from the same original, X0, but to which the adversarial perturbation is
progressively applied with an increasing multiplicative factor.

(X0, P,m) : (X0 + P,X0 + 2P,X0 + 3P, . . . ,X0 +mP ) . (5)

In a geometric sense, we are creating a straight line through the pixel space, starting at an image
X0 and gradually, in integer steps of P , moving in the P̂ direction. The ith image in the line is
X0 + iP and we can optimize P such that it gets mapped to a desired class c∗i of our choosing,
argmax f(X0 + iP ) = c∗i . These target classes can be arbitrary, or we can choose them all to be the
same target class. If we choose them to be the same, we would have identified a direction P in which
the scale of the adversarial attack preserves its function as discussed in Section 4.7

Figure 8 demonstrates an attack, P , that starts at an image, X , of an airplane and gradually changes
the classification to classes 111, 222, 333, 444, and 555 for X + P , X + 2P , X + 3P , X + 4P ,
and X + 5P respectively. The class decision in between the integer values of the αP is filled with
the respective classes, showing that the attack is not fragile to small changes of α outside of the
directly optimized for integer multiples. The attack shown is to a 32× 32 image, and therefore the
magnitude of the perturbation is large. Were we to use 224× 224, the perturbation would be much
less prominent, as discussed in Section 4.1. Figure 9 shows a second case of such a line of adversaries,
this time at a higher resolution and lasting for 9 steps.

6
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c=111 nematode

Figure 8: The same attack, P , when applied with different strength, leads to the image X being
classified as classes 111, 222, 333, 444, and 555 for X + P , 2P , 3P , 4P and 5P respectively. The
figure on the left shows the resulting attack perturbations and the corresponding perturbed images,
while the right-hand side shows the probabilities of the classes (including class 364, the original class
of X) as a function of the strength of the perturbation. The x-axis shows α for f(X + αP )

Figure 9: The starting image X0 is classified as class 510 (container ship). We optimized an attack P
that makes X0 + P , X0 + 2P ,. . . ,X0 + 10P classified as classes 0, 100, 200, 300, ..., 900. On the
left panel, examples of progressively more corrupted images are shown that are classified as such. On
the right panel, the probability of the target classes are shown, peaking around the multiples of the
adversarial attack that corresponds to them.

4.7 SCALE-INDEPENDENT ATTACKS

A particular consequence of being able to find lines of adversarial attacks is that we can find such
lines where the target class does not change with the scale α of the attack αP . Figure 10 shows the
result of such an attack. A picture of a bird is attacked with a perturbation P that is optimized such
that X + P,X + 2P, . . . ,X + 60P are all classified as class 111 (nematode). The right panel of
Figure 10 shows that the class decision holds in between the integer values of α, and also that, while
only directly optimized up to X + 60P , the predicted class stays at 111 all the way to X + 160P ,
showing an amount of generalization of this scale-independent attack.

4.8 FINDING SHAPES IN THE PIXEL SPACE

Using the very large number of regions surrounding each image in the pixel space, we decided
to optimize for pairs of attacks Px and Py that, together with a starting image X0, define a two-
dimensional affine space (a ”plane”) in the pixel space. This is related to the cutting-plane method
used in (Fort et al., 2022), however, there the bases are randomly chosen (and as such O(10) are
needed to find high-confidence adversarial attacks). Here, we optimize for Px and Py such that
the affine subspace they trace out in the space of pixels spells out words and draws images of our
choosing, demonstrating the flexibility of the input-space partitioning of deep neural networks.

(Skorokhodov & Burtsev, 2019) shows that in the space of weights and biases of deep neural networks
(also known as the loss landscape), there exists a vast richness of two-dimensional sections where the
loss value traces various shapes and images, and where we can optimize for finding particular ones,
such as the shape of a bat, a skull, a cow, or the planet Saturn. (Czarnecki et al., 2020) extends this
work and show that this a general property of sufficiently large and deep neural networks.

Inspired by this experiment and given the rich nature of the class boundaries in the space of pixels
that we demonstrated by creating multi-attacks on many images and towards many labels at once, we
find similarly suggestive shapes in the space of images and their classification decisions.
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Figure 10: The starting image X0 is classified as class 98 (red-breasted merganser). We trained
an attack P that makes the X0 + P , X0 + 2P ,. . . ,X0 + 60P classified as class 111 (nematode).
On the left panel, examples of progressively more corrupted images are shown. On the right panel,
the probability of the target class 111 is shown. The class 111 remains the highest for the full 60
multiples of the attack, and continue to be so until ≈160 multiples, demonstrating an amount of
generalization.

α x

β x

Figure 11: A picture of a tortoise drawn by the ImageNet class c=37 turtle with a background of class
c=985 daisy, found on a two-dimensional slice of the space of inputs around a CIFAR-10 image of an
airplane. By finding two adversarial perturbations Px and Py, we were able to optimize for these
classes on a two-dimensional slice of the pixel space starting at the plane image X0. This further
demonstrates the richness and flexibility of the class partitioning of the pixel space.

Starting at an image X0, we optimize for two adversarial attacks, Px and Py, defining a two-
dimensional affine subspace X0+αPx+βPy . For integer values of the parameters α = 0, 1, . . . ,W−
1 and β = 0, 1, . . . ,H − 1, we force the classifier to classify X0 + αPx + βPy as the class specified
by a target image T [α, β]. T [α, β] is a bitmap of the image we would like to discover in the pixel
space in the neighborhood starting at the image X0, specifying a target class for each (α, β). In
Figure 2 we show a random illustration of a particular section of the space of inputs. Here, we
optimize its orientation to look in a particular way.

In Figure 1b we show a result of this optimization: the word AGI spelled in the ImageNet class laptop,
an outline of a tortoise drawn in the class turtle and the background of this image being made of
the class daisy. Figure 11 shows the grid of images X0 + αPx + βPy spanned by the two trained
adversarial attacks Px and Py .

5 DISCUSSION AND CONCLUSION

In this work, we have demonstrated the existence of multi-attacks – we show that we can take a
large number of images (e.g. > 100 for images of the 224× 224 resolution and an ImageNet-trained
classifier) and optimize for a single adversarial perturbation P that we call a multi-attack and that,
when added to each of the images, makes them misclassified as arbitrarily chosen target classes.
Given this, we estimate the number of distinct high-confidence class regions in the pixel space around
every image to be approximately 10O(100) using a simple toy theory, which links the maximum
number of simultaneously attackable images nmax and the number of classes C to the number of
regions N as N ≈ exp (nmax log(C)).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Exploiting this flexibility, we show that we can find two-dimensional sections of the pixel space that
trace words and images in whatever class we choose. This can be understood as a consequence of
the sheer number of two-dimensional patterns that hide in a high-dimensional space partitioned into
10O(100) cells reachable from each point. We can also find adversarial attacks αP that change the
image attacked to a different class based on their strength α and that can change them to the same
class regardless of the scale α for a range of αs.

We show that classifiers trained on randomly assigned labels are easier to design multi-attacks against
as compared to classifiers trained on labels that are semantically connected to their corresponding
images. Interestingly, whether we are modifying real images or samples of noise does not seem to
have any effect on how easy it is to design a multi-attack.

Every strategy designed to defend against adversarial attacks has to deal with this issue: around each
image there are very many, e.g. 10100 neighboring images that, to a human, differ only slightly from
the original image, and yet are classified very different by a learned classifier. Making sure that
each of these gets classified correctly is a difficult task. For example, it is virtually impossible to
add all of them to the training set with the correct (to a human) label, as some strategies attempt to
do. Unless we can somehow do this exponentially effectively, defending against attacks might be a
very hard task. The key problem is the dimensionality of the input space and how small a cell each
high-confidence region seems to be.

Our findings open several directions for future work. More rigorous theory is needed to tightly
characterize the scale of this redundancy. Study of failure cases and images resistant to multi-
attacks could inspire new defensive techniques. And development of fast algorithms to find minimal
multi-attacks could enable applications.

By exposing the scale of redundancy in neural network classifiers, we hope these results will inspire
further investigation – both of the root causes of this extreme flexibility, and of potential solutions to
make models more robust.
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Figure 12: Left panel: The relative probability of the original argmax class of images perturbed by
Gaussian noise of different standard deviations. Right panel: The number of successful attacks on a
batch of 64 images comprising the same image + noise of different scale (x-axis) towards 64 randomly
selected target classes, divided by the number successful attacks starting from 64 distinct images.
If the perturbation is too small, we basically have 64 copies of the same image and cannot get it to
change towards 64 random classes with the same perturbation. If we go far enough (σ ≈ 3× 10−1),
the noisy images work as well as 64 random images.

A APPENDIX

A.1 INDEPENDENT IMAGES VS NOISE PERTURBATIONS OF A SINGLE IMAGE

We wanted to understand at what scale of a noise perturbation n do noisy versions of the same image
X0 act as independent in the sense that we can optimize each realization of the noise added to the
image towards a different class. Instead of independent starting images X1, X2, . . . Xn, we take the
same image and add different realizations of noise drawn from a Gaussian distribution with 0 mean
and standard deviation σ as Xi = X0 + si for si ∼ N (0, σ).

For a small perturbation σ, the resulting images are essentially the same and we therefore cannot
change them 64 different classes with a single perturbation. However, if σ is sufficiently large,
the 64 images effectively behave as if they were 64 random, distinct images and we are be able to
convert each of them to a different class with a multi-attack. In Figure 12 we show the fraction of
the images we were able to attack successfully after 20 optimization steps starting from X with
different realizations of the noise, divided by the number we reach starting from 64 random images.
For σ ≈ 3 × 10−1 we reach parity. In other words, taking a single image X and adding a normal
noise from N (0, 3× 10−1) effectively renders the perturbed images independent for the purposes
of simultaneous adversarial multi-attacks. Unfortunately, on the left panel of Figure 12 we also
show that by that point, the images are so noisy that the probability in the original argmax class
drops to effectively zero. These effects seem to be independent of the image resolution. (Fort et al.,
2021) generates multiple differently augmented copies of the same image within a batch and finds
that this increases the speed of training as well as the final accuracy on several image classification
benchmarks, which is a related idea.
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