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ABSTRACT

Proteins are dynamic molecular machines whose functionality emerges not merely
from their static structures but critically from their intrinsic conformational flex-
ibility. Understanding how a protein sequence encodes this flexibility is essen-
tial for deciphering the connection between sequence, dynamics, and biological
function. While recent advances in deep learning and protein language models
have significantly improved structural prediction, predicting sequence-encoded
dynamics remains challenging. In this work, we introduce ESMFLUC, a biL-
STM model trained on molecular dynamics simulation data, utilizing embeddings
from the Evolutionary Scale Modeling (ESM) architecture to predict local flexibil-
ity directly from protein sequences. Using fluctuation data derived from extensive
molecular dynamics simulations, ESMFLUC accurately identifies flexible residues
without computationally expensive simulations while providing interpretability
via attention maps. The model notably highlights distal flexible regions relevant
for allosteric regulation and drug targeting. Our approach demonstrates substantial
improvements over traditional flexibility proxies, offering researchers a computa-
tionally efficient method to reveal critical functional sites beyond active or binding
regions.

1 INTRODUCTION

Proteins are dynamic entities whose function critically depends on conformational changes and mo-
tion Henzler-Wildman & Kern (2007); Koshland Jr (1958). Dynamic fluctuations enable processes
such as allosteric regulation, molecular recognition, and enzymatic catalysis, which cannot be ex-
plained by static structures alone Frauenfelder et al. (1991); Alavi et al. (2024). Indeed, the impor-
tance of protein dynamics extends to practical applications; for example, in drug design a protein’s
flexibility can create transient cryptic binding pockets and influence ligand binding, meaning that
accounting for target dynamics is essential for “hitting a moving target” in structure-based drug
discovery Carlson (2002); Wei & McCammon (2024); Durrant & McCammon (2011).

Traditional experimental techniques for protein flexibility exist—X-ray crystallographic B-factors
report atomic displacement Sun et al. (2019), and NMR spectroscopy can measure backbone mo-
bility or provide ensembles of conformations Kleckner & Foster (2011)—but these approaches are
labor-intensive and limited in the timescales or conditions they can probe Carugo (2022); Li & Kang
(2017).

Molecular dynamics (MD) simulations offer an alternative means to capture protein motions in
silico. However, MD is computationally expensive and, until recently, large-scale standardized
databases of protein dynamics were unavailable, making it challenging to train learning-based mod-
els on simulation-derived flexibility data. The newly introduced ATLAS database addresses this gap
by curating all-atom MD trajectories for hundreds of proteins, providing a broad benchmark set of
residue-level flexibility measures derived from simulations Vander Meersche et al. (2024). Such
resources pave the way for data-driven models of protein dynamics.

Parallel to these developments in characterizing protein motion, the past few years have seen break-
throughs in static protein structure prediction as artificial intelligence (AI) has solved the decades-old
problem of how a protein’s sequence determines its structure. Last year, the Nobel Prize in Chem-
istry was awarded to David Baker for computational protein design, as well as to Demis Hassabis and
John Jumper, authors of the AlphaFold model for predicting protein structure Jumper et al. (2021);
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Varadi et al. (2022). However, a critical gap still exists- we lack a clear picture of the underlying
physics governing the dynamics of large conformational changes which are crucial for sustaining
life. Large-scale implementations of AlphaFold2 now provide high-confidence static models for
millions of proteins. Yet, AlphaFold’s predictions are rigid structures – essentially snapshots of the
lowest-energy conformation – and thus do not explicitly capture the flexibility or alternative states
that may be functionally relevant. The success of AlphaFold2 highlights that a protein sequence
contains rich information about structure; the question remains though whether the sequence can
also reveal a protein’s propensity for dynamics and disorder.

In this work, we introduce ESMFLUC, an ESM-powered biLSTM-attention network for predicting
residue-level flexibility from the amino acid sequence. ESMFLUC builds on the pre-trained ESM-2
model by training on residue-level flexibility metrics derived from MD simulations (in particular,
the ATLAS dataset’s entropy-based fluctuations per residue). By leveraging the rich contextual rep-
resentations of a state-of-the-art language model, ESMFLUC can learn the subtle sequence patterns
associated with backbone mobility, such as flexible loop motifs or hinge regions, which might be
missed by simpler descriptors. Our results show that ESMFLUC accurately identifies flexible regions
without requiring any structural input, outperforming baseline predictors that do not use MD-driven
data. Recent diffusion-based generators such as BioEmu Lewis et al. (2025) excel at reconstructing
global equilibrium ensembles, yet they come with substantial computational and data requirements.
In contrast, ESMFLUC focuses on mapping sequence to per-residue local flexibility, runs orders of
magnitude faster, and requires no structural templates or MD pre-computation. Therefore, ESM-
FLUC serves as a lightweight front-end that can identify hinge residues. In prospective pipelines,
ESMFLUC can guide where BioEmu’s costly ensemble generation should be focused, rendering the
two methods complementary rather than competing.

In summary, predicting protein dynamics from sequence is important for understanding function
and designing therapeutics, and deep learning models provide a powerful tool for this challenge.
ESMFLUC is, to our knowledge, one of the first sequence-based approaches trained directly on MD-
derived residue-level flexibility. By bridging the gap between sequence-based structure prediction
and dynamics, our approach offers a novel route to integrating protein motions into genomics-scale
analyses, helping to illuminate how proteins breathe, bend, and adapt, as governed by their se-
quences.

2 RELATED WORK

2.1 PROTEIN STRUCTURE PREDICTION AND REPRESENTATION LEARNING

If a deep learning model can encode structure, it is plausible that it also encodes signals of local
flexibility or disorder, since these properties are intertwined with sequence and structure evolu-
tion. Indeed, some studies have found that regions of high uncertainty or low confidence (such as
AlphaFold’s pLDDT or language-model perplexity) often correspond to flexible or disordered seg-
ments Alderson et al. (2023). Additionally, recent advances in protein language models (i.e., deep
learning models that learn semantic representations of amino acid sequences by treating proteins
analogously to natural language, where amino acids are treated like words) suggest that sequence-
based models can learn complex structure-function relationships. To facilitate progress in research
on protein embeddings, the Tasks Assessing Protein Embeddings (TAPE) were introduced in 2019
Rao et al. (2019), a set of five biologically relevant semi-supervised learning tasks spread across
different domains of protein biology. ProtBERT, a variant of BERT designed for protein sequences,
was used to generate protein embeddings Elnaggar et al. (2021).

More recently, the ESM family of Transformer-based language models (Evolutionary Scale Mod-
eling) demonstrated that by training on hundreds of millions of sequences and implicitly learning
aspects of protein structure and function Lin et al. (2023). This ability of large language mod-
els to generate accurate structures at scale—e.g., predicting structures for hundreds of millions of
metagenomic proteins in the ESM Metagenomic Atlas Lin et al. (2023)—indicates that the latent
representations of such models capture fundamental biophysical constraints. This suggests that large
pre-trained models are a promising foundation for predicting protein dynamics.

In a recent study, a tool named NetSurfP.3 was developed to predict protein structural disorder us-
ing embeddings from ESM Høie et al. (2022). Another example is SPOT-Disorder2 which used an
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ensemble of deep learning models (bidirectional LSTMs and convolutional networks) to predict per-
residue intrinsic disorder Hanson et al. (2019). Such computational predictors of protein disorder
from sequence provide a baseline to improve upon. These advances highlight that protein deep learn-
ing models can serve as versatile feature extractors, transferring effectively to downstream tasks in
protein biology. However, to date, most efforts have focused on predicting static or binary features,
such as structure and disorder, rather than continuous dynamics. No model has yet been specifically
fine-tuned to predict local flexibility values across the protein structure from the sequence alone.

2.2 MOLECULAR DYNAMICS SIMULATIONS

Molecular Dynamics (MD) simulations have long been used to capture the temporal behavior of
biomolecules Karplus & McCammon (2002). Classical force-field-based simulations, such as those
implemented in GROMACS Abraham et al. (2015) and AMBER Case et al. (2005), make it possible
to study millisecond-scale processes such as protein folding. While MD is powerful in principle, the
method is computationally expensive and often limited to nanosecond-to-microsecond timescales,
far shorter than biologically relevant processes.

2.3 MACHINE LEARNING FOR PREDICTING PROTEIN DYNAMICS

Recent work has explored combining MD with machine learning. For example, Reweighted Au-
toencoded Variational Bayes for Enhanced sampling (RAVE) Lamim Ribeiro & Tiwary (2018) in-
vestigated efficient ligand-protein unbinding. Tribello and Gasparotto used dimensionality reduction
techniques to analyze protein trajectories Tribello & Gasparotto (2019). More recently, graph neural
networks have been proposed to model residue-level interactions and dynamics Jing & Xu (2021),
and the Transformer architecture has been applied to MD trajectory data for coarse-grained confor-
mational modeling Mahmoud et al. (2022). Transformer-based variational autoencoders have also
been used for generating novel proteins Sevgen et al. (2023). While these studies illustrate that
deep learning can uncover meaningful dynamics, they typically rely on training directly on MD
simulations data rather than using pretrained protein embeddings, as in our work.

3 METHODS

3.1 SIMULATION-DERIVED DATASET

We train and evaluate on ATLAS; the first openly curated collection of standardized, fully solvated,
all-atom MD trajectories for a representative slice of the Protein Data Bank (PDB). It contains 1,390
unique proteins, selected for crystallographic resolution ≤ 2.5 Å, absence of missing loops, no
cofactors/ligands, and < 40% pairwise sequence identity to minimize redundancy. To create the
dataset, they placed each protein in a periodic triclinic box, solvated using TIP3P water molecules,
and neutralized with Na+/Cl- ions at a concentration of 150mM . Then energy-minimization was
done using the steepest descent algorithm for 5, 000 steps, followed by a two-step equilibration
(200ps NVT where Number of particles, Volume, and Temperature are kept constant, and 1ns NPT
where Number of particles, Pressure, and Temperature are kept constant). The final production
molecular dynamics simulations were carried out in three replicates, 100ns each with a time step of
2fs, using a different seed for the random starting velocities assigned from a Boltzmann distribution.
They then assessed the obtained MD trajectories and reported multiple parameters regarding the
overall behavior of the protein, including an entropy-based measure of flexibility which is defined
per residue as:

Neq = 2H (1)

where

H = −
16∑
i=1

pilog2(pi) (2)

and pi is the probability of the residue visiting protein block i during the simulation time. Protein-
blocks (PBs) are structural prototypes; in principle, any conformation of any amino acid could be
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represented by one of the 16 available PBs de Brevern et al. (2000); Barnoud et al. (2017). A Neq

of 1.0 means the amino acid is very rigid, and a Neq of 16 means it visits all possible PBs equally
frequently and thus is highly flexible. We chose Neq as the target for our classification task. Fig. 1
shows the distribution of Neq values. in the training set.

Figure 1: Histogram of Neq values in the training set.

3.2 DATA PROCESSING

The total dataset was split into 80% for training and 20% as a held-out test set to ensure a reliable
and unbiased assessment of the model’s generalization ability. This resulted in 256,304 residues for
training and validation and 62,895 residues held out for testing. To prepare the protein sequences
for model input, each sequence was first tokenized using the ESM tokenizer. Due to the 1024-token
input length limitation of ESM models, sequences exceeding this threshold cannot be processed
directly. As a result, longer sequences were excluded from the dataset for this study to ensure com-
patibility with the model’s input constraints. From the ESM-2 (t33/650M) backbone we extracted
residue-wise embeddings by taking the last hidden state of the final Transformer layer. For a se-
quence of length L this yields an L× 1280 matrix (one 1280-dimensional vector per residue token).

3.3 LABEL PREPARATION

Fig. 1 shows the long-tail distribution of Neq values in the training set. For binary classification,
amino acids with Neq = 1.0 are labeled as class 0, indicating a complete lack of flexibility as these
amino acids are stuck in one PB configuration, and amino acids with Neq > 1 are classified as class
1, indicating that these amino acids visit more configurations and thus are flexible.

3.4 MODEL ARCHITECTURE

We use the Hugging Face implementation of ESM2 (33 layers, 650M parameters), and extract per-
residue hidden states from the final transformer layer (dimension H=1280) as fixed features. Unless
specified otherwise, the ESM backbone is frozen. We study multiple heads on top of ESM embed-
dings including the following: ESM + FC (Linear probe): A single fully connected layer maps the
H-dimensional per-residue embedding to logits for two classes. This serves as a strong, capacity-
matched baseline. ESM + BiLSTM + Self-Attention: A 3-layer bidirectional LSTM Hochreiter &
Schmidhuber (1997) (hidden size 512) models local sequence context. A single-head token–token
self-attention layer is added after the BiLSTM to produce context-aware token representations, fol-
lowed by dropout and an FC classifier. This head yields token-level attention maps that we use for
qualitative interpretation. Figure 2 depicts the best-performing variant (ESM + BiLSTM + atten-
tion).

To address class imbalance, focal loss was implemented which is defined as Lin et al. (2017):

FL = − 1

|S|
∑
i∈S

(
1− pi,yi

)γ
log pi,yi (3)
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Figure 2: The full pipeline of ESMFLUC model, from ESM embedding extraction to the LSTM with
self attention and a final fully-connected layer for binary classification of Neq values.

where pi,yi denotes the softmax probability of the true class yi for token i and γ is the focusing
parameter. Unless noted, we train with batch size 4, weight decay 0.01, dropout 0.3 and focal loss
(γ=2).

4 RESULTS

4.1 PERFORMANCE OF ESMFLUC

We evaluated the performance of ESMFLUC model using precision, recall, and macro average F1
metrics on the held-out test set. We compared our model to baseline statistical classifiers, ran an
ablation study and grid search to tune our model’s hyperparameters, explored various loss functions,
and investigated how the performance improved as we increased the ESM embeddings’ dimension-
ality as well as batch size.

As shown in Table 1, a linear probe (ESM+FC) already performs strongly, indicating that frozen
ESM embeddings encode substantial information about residue dynamics. Sequence models on
top of ESM yield consistent gains in sensitivity to flexible residues (Class 1 recall), with BiL-
STM+Attention improving the recall–precision balance while providing token-level attention maps
for qualitative interpretation. The pure Transformer head underperforms in macro F1 in our setting,
trading higher Class 0 precision for lower Class 0 recall, likely reflecting over-confident decisions
without the inductive bias of recurrence on frozen features. Overall, the small but repeatable edge of
BiLSTM(+Attn) over the linear probe, coupled with interpretability, motivates its use as our primary
model.
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Table 1: Variants of ESMFLUC versus baselines using ESM2 (33 layers, 650M). Metrics are per-
chain and macro-averaged across valid chains. “Transformer” denotes a Transformer head following
Vaswani et al. (2017).

Method Class 0 Class 1 Macro F1 Epochs Ran
P R P R

FC 78.6 69.0 78.8 86.0 77.9 39
LSTM 78.10 73.2 80.9 84.7 79.2 18

BiLSTM 80.8 72.3 80.8 87.2 80.0 14
LSTM + Attention 80.0 70.6 79.9 86.9 79.1 29

BiLSTM + Attention 82.5 69.4 79.6 89.0 79.7 18
Transformer 78.8 70.2 79.5 85.9 78.0 16

4.2 CLASSICAL MODEL COMPARISON

For context, we also benchmarked classical scikit-learn baselines trained on the same training split.
Logistic Regression (LR) and Random Forest (RF) use frozen ESM2 embeddings with 33 layers and
650 million parameters as features, while Conditional Random Field (CRF) uses the charges, polar-
ity, and hydrophobic properties of amino acids as features. The one-hot Logistic Regression model
used a one-hot encoding of each amino acid, previous amino acid’s Neq value, the next amino acid’s
Neq value, and its relative position in the protein sequence. More details on feature engineering
and hyperparameters for LR/RF/CRF are provided in Appendix. The large gap between the one-hot
and embedding-based LR models demonstrates the importance of using the ESM embeddings. As
shown in Table 2, a simple logistic regression is already competitive in macro F1, underscoring how
linearly separable the frozen ESM representation is for this task. However, sequence models on
top of ESM (Table 1) consistently improve Class 1 recall (flexible residues) and offer token-level
interpretability via attention, which the classical baselines lack.

Table 2: Classical baselines trained on the same split. LR/RF use frozen ESM2 features; one-hot LR
uses hand-crafted one-hot/positional/neighborhood features; CRF uses physicochemical features.
Metrics are per-chain and macro-averaged across chains.

Method Class 0 Class 1 Macro F1 Time (s)
P R P R

CRF 66.2 43.9 65.8 82.8 63.1 2
LR (One-hot) 61.1 47.1 65.5 77.1 62.0 3
RF (One-hot) 52.5 51.7 63.4 64.1 57.9 26

LR (ESM) 78.5 72.9 80.3 84.7 79 85.42
RF (ESM) 77.0 58.7 73.2 86.5 72.9 932

4.3 SEQUENCE-ONLY VS. STRUCTURE-CONDITIONED: ESMFLUC VS NETSURFP

For our final experiment, we compared ESMFLUC model’s predicted probabilities to the predic-
tions from state-of-the-art NetSurfP, which predicts “disorder” from static structures. We evalu-
ate token-level predictions from ESMFLUC against per-residue ground truth dynamics (Neq) and a
structure-based baseline (NetSurfP disorder). For each test chain, our trained checkpoint (ESM2-
650M backbone with an BiLSTM+self-attention head) is applied to the raw amino-acid sequence
to produce per-residue logits ℓi ∈ R2 and flexible-class posterior probabilities pi = softmax(ℓi)1.
We align these predictions with ground truth Neq values and NetSurfP disorder probabilities. We
report two complementary metrics: AUROC for binary discrimination of flexible residues defined
by a threshold on Neq (Neq > 1.0), and Spearman correlation ρ between the continuous Neq values
and each method’s continuous score. AUROC captures threshold-free discrimination of flexible vs.
rigid residues under a biologically interpretable definition of flexibility (via Neq), while Spearman
ρ measures monotonic agreement with the magnitude of Neq , which is important because dynamics
are not purely binary.

Across chains, ESMFLUC substantially outperforms NetSurfP on both discrimination (AUROC)
and rank correlation (Spearman). This gap is expected: NetSurfP is trained to infer per-residue
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Table 3: A comparison of ESMFLUC model to state-of-the-art NetSurfP in terms of how well their
predictions correlate with the ground truth Neq values.

AUROC Spearman
ESMFLUC 0.857 0.618
NetSurfP 0.659 0.340

”disorder” from static structure features and thus treats regions that are hard to model structurally as
disordered. By contrast, ESMFLUC starts from sequence-only ESM representations and is trained
directly on a dynamics target (Neq-derived labels), enabling it to capture sequence motifs predictive
of conformational flexibility beyond what can be inferred from static structure surrogates. The
stronger Spearman ρ further indicates that ESMFLUC tracks the degree of flexibility: residues with
higher Neq tend to receive higher predicted probability, not just cross a binary threshold. Finally, we
note that using the posterior pi consistently matches or exceeds the raw logit as a scoring function,
aligning with probabilistic calibration objectives.

5 DISCUSSION

5.1 INTERPRETABILITY VIA ATTENTION

One advantage of using an attention-based head is that it gives us a window into how the model
makes predictions. In our self-attention layer, each residue position i is mapped to a query qi and
each position j to a key kj . The attention matrix α ∈ RL×L assigns, for every pair (i, j), a weight

αij = softmaxj
(
qik

⊤
j

)
,

L∑
j=1

αij = 1. (4)

Intuitively, the dot product qik
⊤
j scores how relevant residue j is for updating residue i, and the soft-

max turns these scores into a probability-like distribution over j for each query i. Because α is an
explicit, directed dependency map, we can use it to infer what the model relies on when predicting
flexibility. “Incoming” weights (α·i) highlight residues that most influence residue i’s prediction
(putative regulators or hinges), while “outgoing” weights (αi·) indicate residues that position i con-
sults broadly (information hubs). In practice, overlaying high-weight pairs (i ↔ j) on a structure
reveals putative mechanical pathways (hinges/relays) that underlie the learned flexibility signal. At-
tention is a powerful hypothesis generator, not a guaranteed causal explanation; combining it with
gradient/occlusion analyses or targeted perturbations strengthens mechanistic claims.

Figure3 shows the attention heat map for PDB: 1LRI, highlighting key residue–residue interactions;
Figure4 shows the corresponding crystal structure. The annotation bars indicate the predicted sec-
ondary structure (NetSurfP Høie et al. (2022)) and the predicted Neq class from ESMFLUC. The
heat map reveals residues that strongly influence each other, including positions that are far apart in
sequence (e.g., residues 38 and 78), consistent with long-range coupling important for flexibility.

5.2 QUANTIFYING ATTENTION HOMOPHILY

We measure how much a query residue attends to keys that share its secondary structure class. Let
sj ∈ {C,H,E} be the NetSurfP 3-state secondary structure of key j, encoded as one-hot vectors:

eC = (1, 0, 0), eH = (0, 1, 0), eE = (0, 0, 1).

For a query i, define its attention distribution over secondary structure (SS) classes as

−→
Ai =

L∑
j=1

αij e sj =
(
AC

i , A
H
i , AE

i

)
,

∑
k∈{C,H,E}

Ak
i = 1. (5)

Averaging over all queries that themselves belong to class ss ∈ {C,H,E},

a(ss) =
1

Nss

∑
i: si=ss

−→
Ai, (6)
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Figure 3: Residue level attention mechanism
in a test set sample (PDB 1LRI). Annotation
bars: top/left are secondary-structure predic-
tion (red=C,green=H,blue=E) obtained from
NetSurfP4. bottom/right are predicted Neq

class (orange=1, teal=0)

Figure 4: Crystal Structure of Sterol car-
rier protein Cryptogein (PDB 1LRI). Residues
marked in red are coils with predicted Neq

class of 1 (flexible) which act as informa-
tion hubs and are consulted broadly. Residues
marked in blue are helices with predicted Neq

class of 0 (rigid) which significantly influence
other helices.

yields the typical attention allocation for that class. Over the full test set, coils allocate ≈ 73%
of their attention to other coils, helices to helices (≈ 59%), and strands attend more to coils (≈
56%) than to strands (≈ 23%). This suggests the model learns SS-aware neighborhoods while still
consulting flexible coils as information hubs.

We perform an analogous analysis for the predicted flexibility class. Let nj ∈ {0, 1} be the Neq

class (0: rigid, 1: flexible) of key j, and encode it as

q0 = (1, 0), q1 = (0, 1).

For query i, define

−→
B i =

L∑
j=1

αij qnj
=

(
B0

i , B
1
i

)
, B0

i +B1
i = 1. (7)

Averaging over queries with ni = neq ∈ {0, 1},

b
(neq)

=
1

Nneq

∑
i:ni=neq

−→
B i, (8)

shows how each class distributes its attention across flexibility types. Queries with Neq = 0 devote
≈ 68% of their attention to rigid keys, while queries with Neq = 1 devote ≈ 91% of their attention
to flexible keys. In short, the model has internalized a modular view of proteins—residues pref-
erentially consult partners that share both structural state and dynamic behavior—even when those
partners are distant along the chain.

5.3 CONCLUSION

In this paper, we have demonstrated a novel technique using large ESM protein model embeddings
and LSTMs with attention to predict the dynamics of protein sequences and allowing quantitative
interpretation. While models like AlphaFold can predict the structure of proteins, to our knowledge
there are no models that can predict protein dynamics, which is critical for applications such as
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Table 4: Attention distribution over SS classes for a query residue of class si ∈ {C,H,E}. Entries
are proportions (∈ [0, 1]) of attention mass.

Query SS AC
i AH

i AE
i

C 0.735 0.151 0.114
E 0.558 0.215 0.227
H 0.309 0.595 0.095

Table 5: Attention distribution over flexibility classes ( Neq) conditioned on the query residue’s Neq

label. Entries are proportions (∈ [0, 1]).

Query Neq B0
i (to rigid) B1

i (to flexible)

0 0.679 0.321
1 0.092 0.908

drug design. Prior work using deep learning has focused on prediction of static structures, but the
movement of amino acids is critical for applications such as drug design. Typically, expensive, time-
consuming molecular dynamics simulations are required for predicting flexible protein regions; thus,
our approach would help physics and biology researchers by using our deep learning model instead
of having to run expensive MD simulations. In future work, we will explore multi-class classification
and regression for predicting finer-grained Neq values, which is more useful in practice than binary
predictions.
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8 APPENDIX

8.1 BASELINE MODELS

A set of classical models was chosen to represent a progression in complexity and are suitable for
binary classification and sequence-based tasks as baseline models.

• Logistic Regression (LR) classifier: A simple model for binary classification. It provides
a strong foundation for determining whether the relationship between features and target
labels is linearly separable. Based on the result, we can determine whether more complex,
non-linear models are required to achieve better results.

• Random Forest (RF) classifier: An ensemble learning classifier composed of multiple
decision trees Parmar et al. (2019). By averaging the results from different decision trees,
the model is resistant to noise and outliers and able to capture the complex interactions
between features.

• Conditional Random Field (CRF): A conditional random field was selected to address
the sequential nature of the data specifically. Unlike the previous models, which predict
the flexibility of each amino acid independently, a CRF models the conditional probability
of a label sequence given the input sequence. This allows it to capture the influence of
neighboring amino acids on a given residue’s flexibility.

For LR and RF, we engineered a vector of features that was concatenated of:

• Amino Acid Identity: one-hot encoding of the current, previous, and next amino acids.

• Positional Information: normalized position of the amino acid within the sequence (i/L,
where i is the amino acid index and L is the sequence length)

• Amino Acid Characteristics: numerical encodings for charges (neutral=0, positive=1,
negative=-1), polar (polar=1, non-polar=0), and hydrophobic (hydrophobic=1, non-
hydrophobic=0).

We also tested the final, high-dimensional embedding for each amino acid from the HuggingFace
ESM2’s last transformer layers to serve as the feature vector for LR and RF.

For the CRF model, the feature set included the current amino acid, the previous and next amino
acids, and a window size of 2 for contextual amino acids.

8.2 BATCH SIZE

As shown in Table 6, we investigated the effect of batch size on the performance and efficiency of our
ESMFLUC model using ESM2 embeddings with 12 layers and 35 million parameters. Increasing the
batch size from 1 to 32 leads to a significant reduction in training time, with the minimum observed
at a batch size of 32. However, once the batch size exceeds 32, training time increases. This decline
can be explained by exceeding GPU’s memory capacity, as indicated by the increase in maximum
memory allocated. Memory usage nearly doubles with each double batch size. In terms of model
performance, the highest performance was achieved with a batch size of 1. However, when the batch
size increases beyond 8, the macro F1 score decreases. This indicates that larger batches converge
to a sharp or local minimum, which performs well on the training data, but fails to generalize to the
validation set.

8.3 LOSS FUNCTION

Additionally, we examined the effect of different loss functions. In addition to standard cross-
entropy (CE) and focal loss, we experimented with a neural collapse (NC)-inspired loss, based on
a phenomenon observed in highly accurate deep neural networks for classification tasks, where
hidden representations in the last layer collapse to their class-specific mean embeddings Papyan
et al. (2020). In recent work, an NC-inspired loss function enforced neural collapse during training
on a long-tail imbalanced data problem similar to ours, where one term (i.e., NC1) encouraged
ESM embeddings from the same function to cluster tightly around a class mean (i.e., intra-class

10
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Table 6: The performance for different batch sizes using FairESM ESM2 with 12 layers.

Batch Size Time (s) Max Memory Allocated (GB) Macro F1
1 528 0.74 78
2 619 0.85 77
4 270 1.17 77
8 211 1.85 76
16 91 3.23 54
32 77 5.97 42
64 101 11.57 35
128 191 19.19 36

compactness) and the other (i.e., NC2) encouraged inter-class separation Luo & Luo (2025). Let
I = {i | yi ̸= −1} be the set of non-padded tokens, hi ∈ RD the per-token feature (pre-FC),
yi ∈ {0, . . . ,K−1} the class, and µk a learnable class mean. Define cosine similarity and distance:

cos sim(a, b) =
a⊤b

∥a∥ ∥b∥
, δ(a, b) = 1− cos sim(a, b). (9)

Let Nk =
∣∣{i ∈ I : yi = k}

∣∣, wk = 1√
max(Nk,1)

. The NC1 term encourages intra-class compact-

ness with
√
Nk scaling:

LNC1 =
1

K

K−1∑
k=0

wk√
max(Nk, 1)

∑
i∈I: yi=k

δ(hi, µk). (10)

NC2 promotes inter-class separation by maximizing the minimum angle between class means. Let
µ̄ = 1

K

∑
k µk, µ̃k = µk − µ̄, and µ̂k = µ̃k/∥µ̃k∥:

ckl = µ̂⊤
k µ̂l, θk = arccos

(
max
l ̸=k

ckl

)
, LNC2 = − 1

K

K−1∑
k=0

θk. (11)

We combined these with supervised losses on logits (zi) from the classifier head. The total loss is

L = λCELsup + λ1LNC1 + λ2LNC2, (12)

with Lsup ∈ {LCE,LFL}. In the NC-only setting with a centroid head (no logits), we set λCE = 0
and use nearest-centroid inference:

ŷi = argmax
k

cos sim(hi, µk). (13)

Table 7 shows the effect of loss choice on the performance of ESMFLUC. All rows in Table 7 were
trained with the ESM backbone frozen; only the BiLSTM+attention head (and class means for NC)
were updated. Under this constraints, the NC-only (centroid) objective underperforms markedly,
which is expected because with frozen features hi the model cannot reshape the representation
geometry; optimizing only the learnable class means {µk} provides limited capacity. Supervised
losses (CE or focal) achieve strong and very similar performance. If the downstream goal is to
recover flexible residues (class 1), the most relevant metric is class-1 recall. Focal loss attains the
best class-1 recall (87.6%), followed closely by NC+Focal (87.2%) and CE (86.8%). Adding NC to
supervised training (NC+CE or NC+Focal) is roughly on par with the supervised baselines when the
backbone is frozen; the supervised term dominates learning. We hypothesize that NC regularization
would be more beneficial once the ESM is partially or fully fine-tuned, where NC1/NC2 can actively
shape the feature space hi rather than only the classifier geometry.
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Table 7: A comparison of the performance of various loss functions for ESMFLUC.

Model Class Precision Recall F1-Score

Cross-Entropy

0 80.4 72.8 76.4
1 81.1 86.8 83.8

macro avg 80.7 79.8 80.1
weighted avg 80.8 80.8 80.7

Focal Loss

0 81.1 71.6 76.0
1 80.5 87.6 83.9

macro avg 80.8 79.6 80.0
weighted avg 80.8 80.7 80.5

NC only (centroid)

0 48.8 61.2 54.3
1 64.4 52.3 57.7

macro avg 56.6 56.7 56.0
weighted avg 57.8 56.1 56.3

NC + Focal

0 80.7 72.0 76.1
1 80.7 87.2 83.8

macro avg 80.7 79.6 80.0
weighted avg 80.7 80.7 80.5

NC + CE

0 76.9 77.1 77.0
1 82.9 82.8 82.8

macro avg 79.9 79.9 79.9
weighted avg 80.3 80.3 80.3
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