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Abstract

Multi-turn dialogues are characterized by their001
extended length and the presence of turn-taking002
conversations. Traditional language models of-003
ten overlook the distinct features of these di-004
alogues by treating them as regular text. In005
this paper, we propose a speaker-enhanced pre-006
training method for long dialogue summariza-007
tion, which leverages the inherent structure of008
multiple-turn dialogues. To support our study,009
we curate a diverse dataset that includes tran-010
scripts from real-world scenarios, movie or TV011
show transcripts, and dialogues generated by a012
Large Language Model. We then perform a pre-013
training, which encompasses the detection of014
speaker changes, and masked utterance gener-015
ation. Experimental results of fine-tuned mod-016
els demonstrate that our model achieves state-017
of-the-art performance on downstream bench-018
marks with long context, surpassing baseline019
models and highlighting the effectiveness of020
our approach. Our findings highlight the im-021
portance of curating pre-training datasets that022
exhibit diversity and variations in length distri-023
bution to ensure effective alignment with down-024
stream datasets.025

1 Introduction026

Dialogue summarization has been a challenging027

task in natural language processing. First, dialogue028

inherently includes redundant verbal expressions029

and often excludes certain mentions from the dia-030

logue history. Consequently, dialogue summariza-031

tion typically requires a broader context window032

to effectively handle complex long dependencies.033

Second, to gain a thorough comprehension of the034

content in a conversation, it is essential to take into035

account the details of the speaker and the signals036

from the sequential turns of utterances, as these fac-037

tors significantly influence the interpretation of the038

information being shared. Thirdly, dialogue data039

varies greatly in terms of quality, length, and the040

presence or absence of speaker information. Find-041

Figure 1: The proposed approach implements a speaker-
enhanced learning objective within an encoder-decoder model.
Two distinct forward paths are incorporated to enhance dia-
logue understanding. The first path involves only the encoder
component, which predicts speaker turn switches. The second
path integrates both the encoder and decoder components to
generate masked sentences within dialogues, further improv-
ing dialogue comprehension.

ing a method to utilize all these signals is indeed a 042

challenge. 043

To address the aforementioned issues, we intro- 044

duce SPECTRUM, a pre-training approach that 045

incorporates speaker information and leverages the 046

inherent structure of multi-turn dialogues, aiming 047

to enhance the effectiveness of models in interpret- 048

ing dialogues. Unlike traditional language models 049

that treat speaker information as plain text, our 050

methodology incorporates the turn-based structure 051

inherent to dialogues. Integrating speaker infor- 052

mation improves the model’s ability to focus on 053

speaker-specific traits, allowing for enhanced un- 054

derstanding of long-context dialogues. To address 055

long-context challenges, we utilize sparse atten- 056

tion networks as our backbone models, specifi- 057

cally LED (Beltagy et al., 2020) and PEGASUS- 058

X (Phang et al., 2022). We collect multi-turn dia- 059
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logues from diverse sources including two newly060

collected datasets from YouTube and IMDB Movie061

Quotes as well as existing public datasets for ef-062

fective pre-training. We then classify them based063

on the presence or absence of turn-taking informa-064

tion and perform 2-stage pre-training. The second065

stage of pre-training is further tailored based on the066

diverse length distributions in the datasets.067

Overall, our work contributes to the advance-068

ment of dialogue understanding by introducing a069

speaker-enhanced pre-training method and offering070

a curated dataset for pre-training. We thoroughly071

analyze the experimental outcomes and provide072

insights into best practices for pre-training across073

different downstream datasets. The empirical re-074

sults validate the efficacy of our approach, show-075

casing its potential to enhance the performance of076

dialogue understanding models in various natural077

language processing applications. Our contribu-078

tions are summarized as follows:079

• We propose a two-stage multi-task pre-080

training approach to leverage the inherent081

multi-turn structure of dialogues.082

• We curate pre-training data from diverse083

sources and explore the effects of varying se-084

quence length distribution in the data.085

• We achieve state-of-the-art performance com-086

pared to models of similar sizes on various087

datasets and elucidate effective pre-training088

practices for diverse downstream datasets.089

2 Related Work090

Speaker Information in Dialogue. Incorporating091

speaker information in dialogues has been explored092

in numerous studies. Leveraging contextual models093

to accommodate distinct speaker roles is a practi-094

cal approach for enhancing the recognition of role095

patterns and aiding in the comprehension of dia-096

logues (Chi et al., 2017; Liu et al., 2020a,b). Fur-097

thermore, Lei et al. (2021) utilizes the hierarchical098

model, Chi et al. (2017) is based on the contrastive099

learning method, and Gu et al. (2020) uses another100

speaker embedding representation to discern the101

relationships between speakers and their respective102

utterances. In contrast to solely designing enhanced103

contextual models, various pre-training methods104

are employed to improve dialogue comprehension105

and generation. For instance, Bao et al. (2020) uti-106

lizes multi-task pre-training objectives for dialogue107

response generation and selection, while Zhong108

et al. (2022) employs diverse masking schemes to 109

effectively capture the dynamics within dialogues. 110

Efficient Transformers. Transformer (Vaswani 111

et al., 2017) was purposed to solve the sequence- 112

to-sequence tasks. However, it requires higher 113

computation for longer sequences due to the self- 114

attention operation being quadratic. Efficient trans- 115

formers (Tay et al., 2020) are purposed to reduce 116

the computation complexities while remain the 117

same performance. In specific, ETC (Ainslie et al., 118

2020), BigBird (Zaheer et al., 2021), and Long- 119

former (Beltagy et al., 2020) use local attentions 120

with attached global positions to reduce the compu- 121

tation. The PEGASUS-X (Phang et al., 2022) uses 122

block-wised attention. The LongT5 (Guo et al., 123

2022), on the other hand, implements Transient 124

global attention for the problem. In this work, we 125

employ Longformer-Encoder-Decoder(LED) (Belt- 126

agy et al., 2020) and PEGASUS-X (Phang et al., 127

2022) for handling long dialogues. 128

Pre-training Training Objectives. The training 129

objectives and the corresponding singles are cru- 130

cial for pre-training the models. For encoder- 131

only models, BERT (Devlin et al., 2019) first in- 132

troduces Masked Language Model Loss(MLM). 133

Subsequently, various models utilize distinct self- 134

supervision signals to enhance the understanding 135

of contextualized semantics in documents. For ex- 136

ample, ERNIE (Zhang et al., 2019) incorporates 137

entity knowledge, while SpanBERT (Joshi et al., 138

2020) utilizes span boundaries. For the decoder- 139

only model, GPT (Radford and Narasimhan, 2018; 140

Radford et al., 2019) uses language model loss, 141

which predicts the next tokens conditional on all 142

previous tokens. Similar to the decoder-only model, 143

encoder-decoder models employ conditional lan- 144

guage model loss, in which the output token is 145

also conditional on input tokens. More specifi- 146

cally, BART (Lewis et al., 2020) uses denoising 147

learning objectives to let the model reconstruct 148

the original text from the polluted input text. PE- 149

GASUS (Zhang et al., 2020), introduces sentence 150

masking loss on the decoder side. T5 (Raffel et al., 151

2020) uses a complementary mask for the input 152

and output. In this paper, we combined turn predic- 153

tion and masked sentence generation as learning 154

objectives for pre-training. 155

Long Dialogue Summarization. Typical Summa- 156

rization dataset like SAMSum (Gliwa et al., 2019) 157

contains only 94 input words on average. Similarly, 158

DialogSum (Chen et al., 2021) contains only 137 159
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input words on average. Unlike typical dialogue160

summarization datasets, long dialogue summariza-161

tion data is way harder to collect. Thus long di-162

alogue summarization data is usually on a small163

scale. QMSum (Zhong et al., 2021) contains 1,808164

summaries for meetings with an average of 9,161165

input words. AMI (McCowan et al., 2005) con-166

tains 137 summaries with around 6 thousand input167

words. ICSI (Janin et al., 2003) contains 59 sum-168

maries with more than 13 thousand averaged input169

words. SumScreen (Chen et al., 2022) contains an170

average of 5 to 6 thousand input tokens. In this171

study, our primary focus is on dialogues or meet-172

ings that extend beyond a few thousand words.173

3 Pre-training Objectives174

We formulate three learning objectives: Speaker175

Turn Prediction, Masked Language Modeling, and176

Masked Sentence Generation. Speaker Turn pre-177

diction enhances overall dialogue understanding,178

while MLM of coreferences, named entities, and179

verbs aims to enhance entity-level contextual repre-180

sentations in dialogues. Masked Sentence Genera-181

tion serves the dual purpose of facilitating dialogue182

understanding and fostering the ability to gener-183

ate coherent contextual content. Our pre-training184

methodology comprises two pathways: the first ex-185

clusively updates the encoder part of the model,186

whereas the second updates the entire encoder-187

decoder model. This pre-training approach im-188

proves the model’s understanding of contextual189

dialogues and its ability to generate high-quality190

sequences aligned with the provided context.191

3.1 Sentence Generation192

We explore two masking strategies in pre-training193

for models to learn the context of dialogues: word-194

level and sentence-level. Initial experiments using195

the masking methods are conducted and the results196

are presented in Table 6.3.2. Based on the observa-197

tion of the superior sentence-level masking strategy198

and drawing inspiration from the gap sentence gen-199

eration method (Zhang et al., 2020), we choose200

to employ sentence-level masking from a single201

speaker. In Figure 1, represented by the green202

arrow, randomly selected sentences are replaced by203

<utt_mask> tokens. The target sequence com-204

prises sequences of mask tokens preceding the se-205

lected sentences. Given the dialogues with masked206

tokens m, the objective is to generate the token207

sequence in the original sentence t = [w1, w2, . . . ]208

for m, where wi is the i-th token in t. The loss of 209

the generation step is computed as the negative log- 210

likelihood of the conditional language generation: 211

Lgen=−
∑
i

logPr(wi | w1 ,··· ,wi−1 ;m) (1) 212

3.2 Speaker Turn Prediction 213

Dialogues, being a natural form of conversation 214

driven by multiple speakers, present an opportunity 215

to enhance the model’s understanding of the contex- 216

tual nuances inherent in such interactions. In this 217

study, we aim to teach the model to develop a more 218

comprehensive understanding of dialogue context 219

by explicitly providing speaker-turn information. 220

By leveraging insights from previous works (Liu 221

et al., 2022; Sangwoo Cho and Yu, 2022), which 222

have demonstrated the benefits of segmenting arti- 223

cles for the summarization task, our model learns 224

to predict turn switches as a means of enhancing 225

dialogue comprehension. In Figure 1, illustrated by 226

the purple arrow, we prepend <s> tokens to each 227

sentence and utilize the resulting contextualized 228

representations for turn switch prediction. To facil- 229

itate this learning objective, a binary classification 230

approach is employed, leveraging the representa- 231

tions from the top encoder layer. 232

ŷi=σ(w⊤hi+b) (2) 233

where {hi}Ni=1 is contextualized output represen- 234

tations for N sentences in the input dialogues. ŷi is 235

the turn prediction score and yi is the ground-truth 236

turn switch label, which can be readily obtained 237

from the dialogues. 238

Lturn=− 1

N

N∑
i=1

(
yi logŷi+(1−yi)log(1−ŷi)

)
(3)

239

This objective can be effectively applied to data 240

containing speaker turns, available in numerous 241

real-world transcripts. 242

3.3 Masked Language Modeling (MLM) 243

We follow the practice of the BERT (Devlin et al., 244

2019) methodology. It is worth noting that dia- 245

logues often contain a higher frequency of pro- 246

nouns, and important information can often be in- 247

ferred from named entities or verbs. To utilize 248

this observation, we preprocess the datasets by an- 249

notating coreferences, named entities, and verbs 250
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Dataset Domain Turn #Turn #Wds(Total) #Wds #Insts #Wds (M) #Insts (M)
S1

OpenSubtitles Movie, TV show X - 2.857B - - 3146 908,068
Gutenburg-dialogue Books X - 295M 130 2,279,927 3400 86,882

S2

MediaSum Interview O 28.7 689M 1554 443,596 1088 633,547
YouTube-news News O 16.4 50M 759 66,312 923 54,495
YouTube-shows Talk shows O 42.4 26M 870 30,128 889 29,461
Movie Quotes Quotes O 2.9 45M 38 1,181,196 918 49,398
Soda Social dialogue O 7.6 146M 123 1,191,132 955 153,306

Table 1: Statistics of pre-training datasets. S1 and S2 represent datasets with and without turns, respectively. #Wds is the
abbreviation for number of words. #Insts is the abbreviation for number of samples. (M) indicates the corresponding statistics
after packing within each dataset. The max number of tokens is 4096 for S1 and 1400 for S2.

Dataset Max Target Tks #Tks-avg min max
S1 4096 4088.8 4080 4096

S2-short 1400 489.7 23 1400
S2-long 1400 1388.5 1381 1400
S2-both 1400 724.2 23 1400

Table 2: Statistics of various pre-training datasets. #Tks
indicates the number of tokens.

as candidate mask tokens1. Initially, we apply251

MLM with two additional pre-training objectives.252

Nevertheless, following preliminary experiments253

(Sec. 6.3.1), we observe that MLM results in detri-254

mental performance in downstream tasks. Conse-255

quently, we opt to exclude MLM from the final256

pre-training objective for our model, SPECTRUM.257

The final pre-training objective is as follows:258

L(Θ)=Lgen+βLturn (4)259

where β is a coefficient that balances sentence-260

level cross-entropy losses and masked sentence261

generation and Θ is the model parameters.262

4 Datasets263

4.1 Pre-training Corpus264

For our pre-training process, we utilize two sets265

of datasets: Stage1 (S1) without turn information;266

and Stage2 (S2) with turn information, as outlined267

in Table 1. The S1 data comprises the following268

two datasets:269

OpenSubtitles (Lison and Tiedemann, 2016) This270

dataset consists of subtitles extracted from movies271

and TV shows. The English portion contains an272

extensive corpus of over 2.8 billion words.273

Gutenberg-dialogue (Csaky and Recski, 2021)274

This dataset consists of dialogues extracted from275

public-domain books available through Project276

Gutenberg.277

The S2 dataset consists of five diverse datasets,278

including:279

1en_core_web_sm from SpaCy (Honnibal and Mon-
tani, 2017) with neuralcoref (Clark and Manning, 2016)

MediaSum (Zhu et al., 2021) This dataset com- 280

prises transcripts from media interviews, specifi- 281

cally from CNN and NPR. Speaker information is 282

provided alongside corresponding utterances. 283

YouTube-news and YouTube-shows We have 284

collected the datasets by crawling a variety of 285

YouTube channels, such as news, sports news for 286

YouTube-news; and variety shows, and talk shows 287

for YouTube-shows. Turn switch signals are ob- 288

tained from the transcripts. 289

Movie Quotes We have collected a dataset of 1.2 290

million memorable movie quotes from IMDB. This 291

dataset includes the characters, utterances, and 292

stage directions for each quote. 293

Soda (Kim et al., 2022) This dataset consists of 294

socially-grounded dialogues distilled from GPT- 295

3.5 (Ouyang et al., 2022), a large language model. 296

To enhance the model’s capability to process 297

longer inputs, we pack instances in each dataset 298

up to a maximum of 4096 tokens for S1 and 299

1400 tokens (the average token count across all S2 300

datasets) for S2. The packed S2 dataset is referred 301

to as S2-long. Nevertheless, we posit that consoli- 302

dating multiple contexts from different dialogues 303

into a single sequence may introduce confusion to 304

the model. Therefore, we create a S2-short dataset 305

concatenating all S2 datasets without packing to 306

attain coherent context in each sequence. Finally, 307

we construct S2-both by concatenating S2-short 308

with the long-context S2-long dataset to incorpo- 309

rate diverse input sequence lengths. The statistics 310

of each pre-training dataset are presented in Ta- 311

ble 2. Note that we limit the max length of S2 312

datasets constrained to 1400, leading to the trun- 313

cation of sequences in S2-short and S2-both that 314

surpass this limit. Since the S1 dataset lacks turn 315

information, the speaker turn prediction objective 316

is exclusively applied to the S2 dataset. The exper- 317

imental results of various pre-training datasets on 318

downstream datasets are presented in Sec. 6.3.1. 319
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Dataset Domain #Dialogues #Wds #Wds (S)
QMSum Meetings 1,808 9161.1 69.7

AMI Meetings 137 6007.7 296.6
ICSI Meetings 59 13317.3 488.5

SS/FD TV show 4,348 5930.2 101.2
SS/TMS TV show 22,503 4599.6 344.2

Table 3: Statistics of summarization datasets based on dia-
logues. #Wds is the abbreviation for number of words. (S)
indicates words in target summary. The input and target length
are averaged across each dataset.

4.2 Summarization Datasets320

Table 3 shows the statistics for the downstream321

datasets. We select long dialogue datasets in dif-322

ferent domains given their inherent complexity and323

need for broad contextual understanding, suitably324

evaluating our pre-training strategy’s effectiveness.325

AMI and ICSI (McCowan et al., 2005; Janin et al.,326

2003) The meeting scripts used in datasets were327

generated by an Automatic Speech Recognition328

(ASR) system. The AMI corpus was collected from329

product design meetings in a company, while the330

ICSI corpus was collected from academic group331

meetings in a school.332

QMSum (Zhong et al., 2021) is a dataset specifi-333

cally designed for query-based meeting summariza-334

tion. It encompasses meetings from three domains:335

AMI, ICSI, and committee meetings of the Welsh336

Parliament and Parliament of Canada. Each query337

and sample is written by domain experts.338

SummScreen (Chen et al., 2022) consists of339

community-contributed transcripts of television340

show episodes obtained from The TVMegaSite, Inc.341

(TMS) and ForeverDream (FD). Each transcript is342

accompanied by a summary, which is either a re-343

cap sourced from TMS or a recap of the FD shows344

sourced from Wikipedia and TVMaze.345

5 Experimental Setup346

In our study, we employ sparse Transformer mod-347

els, specifically LED (Beltagy et al., 2020) and348

PEGASUS-X (Phang et al., 2022), to handle349

long input dialogues efficiently. Considering the350

considerable computational requirements for pre-351

training, we employ the pre-trained checkpoint352

from PEGASUS-X (568M) and LED-large model353

(459M). The experiments are performed using the354

PEGASUS-X model unless stated otherwise.355

5.1 Pre-training356

In our pre-training process, we follow the general357

recipe outlined in PEGASUS (Zhang et al., 2020)358

for sentence generation. Our pre-training involves 359

two stages, each utilizing distinct datasets. In the 360

first stage, we utilize the S1 data, which contains 361

approximately 3.3 times more words than the S2 362

data. This facilitates effective adaptation of the pre- 363

trained models to dialogue data. The maximum 364

lengths for input and output sequences are set at 365

4096 and 512 tokens, respectively, with an utter- 366

ance masking ratio of 12% for effective training. 367

We allocate 1% of the data for the validation set to 368

monitor the training progress. 369

The second stage involves dual-path training, 370

one for the encoder-only and the other for the 371

encoder-decoder, to compute the joint loss (Eq. 4) 372

on the S2 datasets. This approach allows for effec- 373

tive learning by improving the model’s ability to 374

understand dialogue sequences. In this stage, we 375

employ a maximum of 1400 input tokens and 256 376

output tokens, maintaining a masking ratio of 18% 377

to ensure that the ratio remains below 20%. We em- 378

ploy 1% data from the YouTube and Movie Quotes 379

datasets for the validation set, while employing a 380

standard validation set for the remaining datasets. 381

5.2 Fine-tuning 382

We evaluate our pre-trained models by fine-tuning 383

on the downstream summarization datasets as listed 384

in Table 3. Considering the average word counts 385

for each dataset, we fine-tune SPECTRUMwith an 386

input length of up to 16,384 tokens for QMSum and 387

ICSI, and 8,192 tokens for the remaining datasets. 388

Due to the limited maximum input length (4096 389

for S1 and 1400 for S2) used in pre-trining, the 390

parameters of positional embedding are repeated 391

up to the respective maximum input lengths for 392

fine-tuning. We configure the output length to 256 393

tokens for QMSum and SummScreen/FD, and 512 394

tokens for the other datasets. The turn prediction 395

loss is not employed during the fine-tuning pro- 396

cess. During inference, we employ a greedy search 397

method to produce all summaries, thereby eliminat- 398

ing the necessity to introduce new variables during 399

the decoding process. 400

We report the Rouge evaluation metric (Lin, 401

2004) by using the rouge-score library2. Our 402

evaluation results include Rouge-1 (R-1), Rouge-2 403

(R-2), Rouge-L (R-L)3, and the geometric average 404

of the three Rouge scores (R-G). 405

2https://pypi.org/project/rouge-score/
3Rouge-L is computed without considering newlines. The

summary-level Rouge-L score, which considers sentence split-
ting, is reported in other systems.
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AMI ICSI QMSum
Model R-1 R-2 R-L R-G R-1 R-2 R-L R-G R-1 R-2 R-L R-G
PGNet 42.60 14.01 22.62 23.81 35.89 6.92 15.67 15.73 28.74 5.98 25.13* -
BART+SCL 51.40 17.81 25.30 28.50 - - - - - - - -
HMNet 52.36 18.63 24.00 28.61 45.97 10.14 18.54 20.52 32.29 8.67 28.17* -
HAT-BART 52.27 20.15 50.57* - 43.98 10.83 41.36* - - - - -
DDAMS 53.15 22.32 25.67 31.23 40.41 11.02 19.18 20.44 - - - -
SummN 53.44 20.30 51.39* - 48.87 12.17 46.38* - 34.03 9.28 29.48* -
DialogLED 54.80 20.37 52.26* - 50.11 13.23 47.25* - 34.50 9.92 30.27* -
DialogLED† 54.45 20.20 26.03 30.58 50.28 13.27 20.16 23.78 34.09 9.91 20.34 19.01
PGS-X (568M) (50.57) (19.53) (25.14) (29.17) (48.65) (13.40) (18.26) (22.83) 33.2 9.6 21.6 19.02
LT5LG (770M) - - - - - - - - 35.1 12 23.3 21.414

LT5XL (3B) - - - - - - - - 34.9 11.8 23.5 21.314

SPECTRUM 55.12 21.72 26.73 31.75 50.04 14.5 19.81 24.31 35.86 12.34 23.53 21.84

Table 4: ROUGE scores on meeting summarization datasets: AMI, ICSI, and QMSum. R-G is the geometric average of R-1,
R-2 and R-L. * denote the ROUGE-L scores with sentence split. † indicates Rouge scores computed using outputs from the
author’s repository. The numbers in parentheses represent the fine-tuned results using PEGASUS-X. Our results are significantly
better than the baseline models (ρ < 0.05). SPECTRUM is the same size of PGS-X.

SummScreen/FD SummScreen/TMS
Model R-1 R-2 R-L R-G R-1 R-2 R-L R-G
BART-large 33.82 7.48 29.07* - 43.54 10.31 41.35* -
UniLM 33.29 6.74 28.21* - 44.07 9.96 41.73* -
SummN 32.48 6.12 27.14* - 44.64 11.87 42.53* -
DialogLED 36.70 8.68 31.38* - 45.22 11.69 42.86* -
DialogLED† 36.45 8.57 19.09 18.13 44.29 10.86 18.74 20.81
PGS-X 35.7 9.1 20.6 18.84 - - - -
LT5LG 35.6 9.2 21.2 19.07 - - - -
LT5XL 35.8 9.6 21.1 19.35 - - - -

SPECTRUM 35.77 9.54 21.22 19.35 45.01 12.21 19.11 21.90

Table 5: ROUGE scores on SummScreen: FD (ForeverDream-
ing) and TMS (TV MegaSite).

5.3 Implementation Details406

We implement our code with Huggingface-407

transformers 5 and Pytorch-lightning 6.408

During pre-training, we train PEGASUS-X for409

20 epochs with stage 1 and 2 strategies: S1 with410

sentence masking objective, S2 with joint objec-411

tives. We utilize 64 V100 GPUs with a total batch412

size of 256. We use Adam (Kingma and Ba, 2014)413

as our optimizer with a linearly decreased learn-414

ing rate schedule with 5% of warmup. The max-415

imum learning rate is 2e−4. We pre-train mod-416

els with fp32 for stable training and use gradient-417

checkpointing for only stage 1 to save GPU mem-418

ory. For the second stage of pre-training, we fix419

β=3. We experiment with an adaptive method by420

updating the parameter β at the end of each epoch,421

based on the average loss ratio between Lgen and422

Lturn of all steps. However, this approach under-423

performs in our experiments.424

During fine-tuning, we keep the same settings425

4https://www.scrolls-benchmark.com/leaderboard
5https://huggingface.co/docs/

transformers/index
6https://www.pytorchlightning.ai/index.

html

of hyper-parameters except for the optimizer. For 426

saving GPU memory, we use Adafactor (Shazeer 427

and Stern, 2018) and apply a cosine learning rate 428

decay schedule with 5% of warmup steps. 429

6 Results and Analysis 430

6.1 Baselines 431

We compare SPECTRUM with various baselines. 432

PGNet (See et al., 2017) uses copy mechanism 433

to balance between accurate and novel words for 434

the summarization task. BART+SCL (Geng et al., 435

2022) utilizes token, turn, and global-level of su- 436

pervised contrastive learning on short and long di- 437

alogue benchmarks. HMNet (Zhu et al., 2020) 438

employes hierarchical attention structure. It uti- 439

lizes cross-domain pre-training for meeting sum- 440

marization. HAT-BART (Rohde et al., 2021) in- 441

troduces a new hierarchical attention Transformer- 442

based architecture that outperforms standard Trans- 443

formers. DDAMS (Feng et al., 2020) uses a re- 444

lation graph to model the utterance interactions 445

in a meeting by using different discourse rela- 446

tion models. SummN (Zhang et al., 2022) pro- 447

poses a simple multi-stage summarization frame- 448

work by generating a coarse summary in multi- 449

ple stages and finally producing a fine-grained 450

summary. UniLM (Dong et al., 2019) is a pre- 451

trained model that employs a shared Transformer 452

and utilizes self-attention masks to control the 453

prediction context. DialogLED (Zhong et al., 454

2022) proposes pre-training strategies for dialogues 455

based on sparse attention and LED models. PGS- 456

X (Phang et al., 2022) utilizes block-based local at- 457

tentions for computational efficiency based on PE- 458
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QMSum
Data & Mask & Loss R-1 R-2 R-L R-G
S1-word masking (Lgen) 27.49 6.73 18.96 15.19
S1-sentence masking (Lgen) 29.94 7.42 19.42 16.28
S2-long (Lgen) 29.50 7.45 19.19 16.16
S2-long (Lgen+Lturn) 30.24 7.47 19.39 16.36
S2-long (Lgen+Lturn+LMLM ) 26.96 6.52 18.39 14.79

Table 6: ROUGE scores on QMSum with LED-large, compar-
ing word and sentence masking strategies and combinations
of learning objectives (Lgen, Lturn, LMLM ).

GASUS (Zhang et al., 2020) to incorporate long in-459

put. LT5 (Guo et al., 2022) integrates the extended460

efficient attention architecture from ETC (Ainslie461

et al., 2020) and pre-training strategies from PE-462

GASUS (Zhang et al., 2020).463

6.2 Results on Summarization Tasks464

Meeting Summairzation Table 4 presents a per-465

formance comparison of SPECTRUM, which is466

based on PGS-X, on three long meeting summa-467

rization tasks: AMI, ICSI, and QMSum. The per-468

formance of SPECTRUM is reported from the best469

results based on different pre-trained checkpoints.470

A more detailed analysis of different pre-trained471

checkpoints is provided in Section 6.3.1. In all472

datasets, we observe a significant improvement in473

Rouge scores with SPECTRUM compared to PGS-474

X. The R-G gains for AMI, ICSI, and QMSum475

are 2.58, 1.48, and 2.82, respectively. This high-476

lights the effectiveness of our pre-training strat-477

egy and the carefully curated data that aligns with478

the downstream tasks, resulting in improved per-479

formance. Furthermore, our SPECTRUM model480

outperforms other pre-trained models such as HM-481

Net and DialogLED by a large margin. Notably,482

SPECTRUM even surpasses larger-sized models483

with different efficient Transformers, LongT5-large484

and LongT5-xl, on the QMSum task. This high-485

lights the superior performance and efficiency of486

our approach in long meeting summarization tasks.487

Screenplay Summairzation In Table 5, we488

present the performance of the SPECTRUM mod-489

els on the SummScreen dataset. Our observations490

indicate that SPECTRUM surpasses all other mod-491

els in R-G on both subsets of the dataset. Addi-492

tionally, SPECTRUM demonstrates competitive493

performance when compared to the 3B-size model,494

LongT5-xl. These results highlight again the ef-495

fectiveness of SPECTRUM in achieving strong496

performance on the long dialogue summarization497

dataset.498

QMSum
CKPT R-1 R-2 R-L R-G
PGS-X 33.2 9.6 21.6 19.02
S1 35.54 11.74 23.05 21.26 (↑2.24)
S2-short 34.84 10.81 21.54 20.09 (↑1.07)
S2-short-ckpt 35.23 11.84 23.29 21.34 (↑2.32)
S2-long 35.08 11.73 22.72 21.07 (↑2.05)
S2-long-ckpt 36.06 11.52 22.95 21.20 (↑2.18)
S2-both-ckpt 35.86 12.34 23.53 21.84 (↑2.82)

Table 7: ROUGE scores on QMSum using different pre-
trained checkpoints.

ICSI
CKPT R-1 R-2 R-L R-G
PGS-X 48.65 13.40 18.26 22.83
S1 49.00 13.82 18.56 23.25 (↑0.42)
S2-short 49.82 14.16 19.38 23.91 (↑1.08)
S2-short-ckpt 49.00 12.63 17.75 22.23 (↓0.60)
S2-long 47.31 13.29 18.34 22.59 (↓0.24)
S2-long-ckpt 50.04 14.50 19.81 24.31 (↑1.48)
S2-both-ckpt 48.01 12.52 17.89 22.07 (↓0.76)

Table 8: ROUGE scores on ICSI using different pre-trained
checkpoints.

6.3 Analysis 499

6.3.1 Effect of Pre-training Objectives 500

A series of ablation studies are conducted to ana- 501

lyze the masking strategies of the generation learn- 502

ing objective and identify the optimal combina- 503

tion of three pre-training objectives. The effective- 504

ness of various pre-trained models using LED-large 505

is demonstrated through fine-tuning on QMSum, 506

as illustrated in Table 6. The first two rows indi- 507

cate that sentence-level masking outperforms word- 508

level masking with the Lgen loss pre-trained on S1. 509

The Subsequent rows show the result of the comple- 510

mentarity of each learning objective. We employ 511

the sentence-masking strategy for the Lgen loss and 512

set β to 1 in the experimental setup. Notably, the 513

joint computation of the turn prediction learning 514

objective (Lturn) leads to enhanced performance. 515

We additionally investigate the impact of the MLM 516

loss (LMLM ) on downstream performance. The 517

last row illustrates a notable degradation in perfor- 518

mance. We hypothesize that masking tokens in the 519

encoder input introduce confusion, impeding the 520

model’s accurate prediction of turns and exacerbat- 521

ing the learning process within the encoder path. 522

Consequently, LMLM is excluded from our final 523

model. 524

6.3.2 Effect of Pre-training Corpus 525

Table 7, 8 shows the fine-tuned results on QMSum 526

and ICSI datasets using different pre-trained check- 527

7



Figure 2: F1, precision, recall scores for the turn switch prediction. Each figure shows the performances with the corresponding
S2 pre-training data with (‘-ckpt’) or without parameter initialization pre-trained on S1.

points. PGS-X refers to the original PEGASUS-X528

checkpoint, S1 denotes pre-training on S1 with529

Lgen, and S2 corresponds to pre-training on differ-530

ent S2 data with or without initialization from the531

S1 checkpoint. Significant performance improve-532

ment is evident across all pre-trained checkpoints533

on QMSum. However, performance gains are com-534

paratively limited on ICSI. We postulate that this535

phenomenon is attributed to the small size of the536

ICSI dataset, comprising only 43 training instances,537

which poses a challenge for the model to align538

effectively. In contrast, the QMSum dataset con-539

tains 1,257 training samples, allowing the model to540

better adapt during fine-tuning. This observation541

aligns with the insights proposed by (Zhang et al.,542

2020), emphasizing the significance of aligning the543

domain of pre-trained models to facilitate more544

effective transfer to downstream tasks.545

6.3.3 Effect of Speaker Turn Prediction546

Figure 2 presents the F1, precision, and recall547

scores for turn switch prediction concerning vari-548

ous S2 data with the initialization of the S1 check-549

point. Several noteworthy observations can be de-550

rived from the results. Firstly, it is observed that551

stage2 pre-training attains high turn prediction per-552

formance even without initializing the model with553

the S1 checkpoint, as evidenced by the S2-short554

and S2-long cases. Furthermore, the S2-long-ckpt555

configuration exhibits notably high F1 scores. We556

posit that the consistent length of the S1 data aligns557

effectively with the characteristics of the S2-long558

data, thereby contributing to the observed high pre-559

diction performance.560

On the other hand, S2-short-ckpt and S2-both-561

ckpt, which involve different data distributions in562

terms of length, show degraded prediction perfor-563

mance during pre-training. This suggests that the564

deviation of data length in two-stage training ad-565

versely affects the model’s ability to accurately566

predict turns. Importantly, the model’s ability to 567

predict turn switches aligns closely with the down- 568

stream results on the ICSI dataset (Table 8), which 569

has a limited number of training samples. The 570

parameter initialization with a checkpoint trained 571

on a different data length distribution can impair 572

the fine-tuning performance on scarce data, con- 573

trasting with the opposite scenario observed with 574

a sufficiently large dataset (Table 7). Taken to- 575

gether, these findings highlight the importance of 576

pre-training methodologies, dataset characteristics, 577

and the alignment between the pre-training and 578

fine-tuning stages. 579

7 Conclusion 580

In this paper, we have introduced SPECTRUM, a 581

speaker-enhanced pre-training method that specifi- 582

cally addresses the challenges associated with dia- 583

logue summarization. Our two-stage pre-training 584

approach leverages the natural structure of dia- 585

logues with multiple turns, allowing the model to 586

better comprehend the intricacies of dialogue in- 587

teractions. To enable robust training of models, 588

we utilized a comprehensive dataset comprising 589

real-world transcripts, including dialogues from 590

movies, TV shows, and dialogues generated by 591

large language models. This diverse dataset with 592

turn-taking information provides solid signals for 593

training dialogue understanding models. Our ex- 594

perimental results demonstrate the effectiveness 595

of our speaker-enhanced pre-training method and 596

show significant performance gains over baseline 597

models. By capturing and leveraging speaker and 598

turn-based information, our approach enhances the 599

ability of models to generate accurate and coherent 600

summaries of dialogues. Moving forward, future 601

research endeavors can further explore and refine 602

our pre-training methods. 603
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8 Limitation604

While our work introduces novel learning objec-605

tives and exhibits promising results, it is not with-606

out limitations.607

Although our model is designed for long dia-608

logue summarization, it still encounters difficulties609

when dealing with exceptionally long dialogues.610

With the increase in length, the complexity of the611

dialogue also grows, and it becomes harder to main-612

tain the semantic coherence and continuity of the613

summarization output. This is a common problem614

in summarization tasks, but its impact is ampli-615

fied in long dialogue summarization due to the616

increased amount of data the model must process617

and understand.618

The current evaluation metrics we employ have619

their inherent limitations. While ROUGE scores620

have been widely used in summarization tasks, they621

may not fully capture the quality of generated sum-622

maries, such as the preservation of speaker-specific623

nuances or shifts in conversation topics. Also,624

given the lengthy dialogues, conducting human625

evaluation is both challenging and potentially inac-626

curate. The constraint on context length in Large627

Language Models often poses challenges for evalu-628

ating long dialogue summarization, and LLMs may629

potentially exhibit hallucination problems. There-630

fore, further research on better representative eval-631

uation metrics is needed.632

Another aspect of the proposed model is open633

to many potential risks such as loss of context in634

conversation, contextual inconsistency, biased sum-635

mary in dialogue, and ethical concerns in social636

interactions. Addressing these risks involves con-637

tinuous improvement of the summarization models,638

careful consideration of ethical implications, and639

user feedback to enhance the system’s performance640

in handling diverse and dynamic dialogues. Regu-641

lar updates and refinements to the underlying mod-642

els can contribute to mitigating these challenges643

over time.644

Lastly, the training and deployment of our model645

demand significant computational resources. This646

may limit the use of our method in real-world ap-647

plications, particularly in scenarios where compu-648

tational resources are constrained.649

Future work will aim to address these limitations.650

We plan to refine our approach to better handle651

lengthy and complex dialogues, improve its ability652

to generalize across various domains, and explore653

new ways to quantify the performance of our model654

more effectively. 655
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