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An In-depth Investigation of User Response Simulation for
Conversational Search

Anonymous Author(s)

Abstract
Conversational search has seen increased recent attention in both
the IR and NLP communities. It seeks to clarify and solve users’
search needs through multi-turn natural language interactions.
However, most existing systems are trained and demonstrated with
recorded or artificial conversation logs. Eventually, conversational
search systems should be trained, evaluated, and deployed in an
open-ended setting with unseen conversation trajectories. A key
challenge is that training and evaluating such systems both require
a human-in-the-loop, which is expensive and does not scale. One
strategy is to simulate users, thereby reducing the scaling costs.
However, current user simulators are either limited to only respond-
ing to yes-no questions from the conversational search system or
unable to produce high-quality responses in general.

In this paper, we show that existing user simulation systems
could be significantly improved by a smaller finetuned natural
language generation model. However, rather than merely reporting
it as the new state-of-the-art, we consider it a strong baseline and
present an in-depth investigation of simulating user response for
conversational search. Our goal is to supplement existing work with
an insightful hand-analysis of unsolved challenges by the baseline
and propose our solutions. The challenges we identified include (1)
a blind spot that is difficult for the model to learn, and (2) a specific
type of misevaluation in the standard empirical setup. We propose
a new generation system to effectively cover the training blind
spot and suggest a new evaluation setup to avoid misevaluation.
Our proposed generation system leads to significant improvements
over existing systems and large language models such as GPT-4.
Additionally, our analysis provides insights into the nature of user
simulation to facilitate future work.

CCS Concepts
• Information systems→ Users and interactive retrieval.

Keywords
conversational search, user response simulation

1 Introduction
A study by Spink et al. [47] suggested that almost 60% of web
search queries have fewer than three words. Conventional search
systems usually perform a single-turn result retrieval based on a
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potentially ambiguous user query, implicitly placing the burden on
users to go through the entire search result page to hopefully get the
information they need. User behavior analysis and advanced natural
language processingmodels havemade it easier to clarify and iterate
over complex user needs through conversations. This has led to the
development of interactive information-seeking systems, usually
referred to as Conversational Search systems [56]: an increasingly
popular research topic and an essential frontier of IR [3, 12].

Most research about conversational search [1, 2, 5, 44, 45, 51, 54]
is limited to training their system on datasets with observed or arti-
ficial conversation logs. Such a dataset would lack training signals
and evaluation references when a conversation veers away from the
dataset, especially when the system generates a question not listed
in the dataset and steers the conversation in an unseen direction.
We refer to this as the open-ended nature of a multi-turn conver-
sational system, as opposed to training and evaluating the system
with the recorded conversation trajectories from a dataset. Even-
tually, conversational search systems should be trained, evaluated,
and deployed in an open-ended setting.

However, training and evaluating them in such a setting is chal-
lenging; it requires humans to generate responses to open clarifying
questions, which can quickly get expensive and does not scale.

Past work [e.g., 40, 45] has demonstrated that a user response
simulator that automatically generates human responses can help
evaluate conversational search systems. Such a system aims to gen-
erate user-like answers to system-generated clarifying questions
based on a query and the user’s search intent. A user response sim-
ulation system can also enable studies such as training a multi-turn
conversational search system by generating synthetic conversa-
tions and rewards and perhaps using Reinforcement Learning from
Human Feedback (RLHF) [30].

The primary goal of this paper is to analyze and provide in-
sights into the task of user response simulation for conversational
search, focusing on the challenges with existing models and how
the challenges may be addressed and identifying what is left to
be solved. We conduct a manual analysis (Sec. 4) on a subset of
a widely-used conversational search dataset Qulac [2]. We study
all the low-scoring cases where a strong baseline model struggles.
From the analysis, we conclude a categorization of its failings. Our
analysis suggests that among all the low-scoring cases for our base-
line model: (1) 10% of them contain out-of-context information
either in the question or the reference response and therefore are
extremely hard to be simulated by any system. (2) 38% of the gen-
erations are bad because the baseline model generates answers of
the wrong type. (3) at least 45% of the generations are reasonable
but misevaluated by the existing evaluation setup that ignores an
important user variable, cooperativeness.

Then, we demonstrate a simple two-step generation system
(Sec. 5.1, 5.2) that aims to address the answer typing errors in
the abovementioned problem (2). Upon this, we are the first to
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suggest that the task of user response simulation for conversa-
tional search generally resembles the task of question answering
while also having distinguishing characteristics. We combine trans-
ferrable question-answering knowledge with an answer type pre-
dictor to jointly improve answer typing accuracy. In addition, we
propose a new cooperativeness-aware evaluation heuristic to re-
duce misevaluations described in the abovementioned problem (3).

We test and compare our proposed system and heuristic with
existing approaches and large language models (LLMs) in Sec. 6.
The evaluation of them is done from four perspectives. The first
is text generation metrics, such as BLEU [32], ROUGE [26], and
METEOR [4]. Then, we evaluate answer type correctness using
the classification F1. Next, we compare the document retrieval
performances of search after appending the clarifying question and
the generated response to the initial query, following [2, 40, 45].
Finally, we employ crowd workers to score the generated responses
regarding generation relevance and naturalness.

Our experiment results (Sec. 7) show that our proposed system
significantly outperforms existing approaches and LLMs. Human
judgments confirm that our proposed system generates more rele-
vant and natural responses. Our full experiment code and human
annotation results are published on Anonymous GitHub 1.

2 Related Work
This section gives a high-level overview of previous work from two
related fields: conversational search and user response simulation.
Other related work is introduced in their appropriate context.

Conversational Search Conversational search is a novel search
paradigm that aims to clarify and solve users’ complex search needs
through natural language conversations [56]. Recent work [e.g.,
3, 12] has identified it as one of the research frontiers of IR, and it
has been the focus of a large volume of seminars and surveys [e.g.,
3, 16–19, 56]. The most desired feature of conversational search
is that both the user and the system can take the conversational
initiative as suggested in the theoretical framework by Radlinski
and Craswell [36]. Zamani and Craswell [53] later proposed a con-
ceptual pipeline of such a mixed-initiative conversational search
system. In most existing conversational search systems [2, 39, 55],
system-initiative is implemented as proactively asking clarifying
questions about the search query. Evaluating these systems and
scaling their functions to multi-turn systems require an actual hu-
man to provide feedback for their clarifying questions. Because
human-in-the-loop is expensive and not scalable, evaluation and
scaling remain challenging for conversational search systems.

User Response Simulation for conversational systems User
Simulation for conversational systems has been broadly studied
by NLP and IR communities in the past [15, 23, 42, 43]. One of
the earlier user simulation methods is agenda-based simulation
[41], where users are assumed to generate responses around a
specific dialogue objective. It has been shown to be effective for
various close-domain tasks such as task-oriented dialogue systems
and conversational recommendation. In these tasks, a simple set
of rules can usually lead to highly realistic systems [20, 25, 57].

1https://anonymous.4open.science/r/UserSimulation-7091

Some recent work [7, 8, 58] used deep learning and reinforcement
learning to learn user simulation from data.

User simulation for open-domain conversational information
retrieval is relatively under-explored [31, 40, 45]. Salle et al. [40]
demonstrated a multi-turn search intent clarification process of
conversational search with a clarifying question selection model
and a user response generation model named CoSearcher. In their
system, the user simulator needs to respond to clarifying questions
in the form of whether the search intent is a guessed intent from
the clarifying question selection model. Their model also considers
various user parameters such as the user’s patience for engaging
in the conversation and cooperativeness for supplying the user re-
sponse with more information about the search intent. However,
their system is limited to only responding to ‘yes-no’ questions and
selects a response from the dataset instead of generating a response.
In this work, we propose to answer all types of clarifying questions;
Section 3.2 presents our categorization of clarifying question types.

Sekulić et al. [45] proposed a GPT-2-based [35] generative user
simulation model named USi, which can generate responses to any
clarifying question for open-domain conversational search. Their
model is shown to have human-like performance. Later, Owoicho
et al. [31] exploited a GPT-3-based few-shot prompting approach
to generate user answers to clarifying questions.

This paper shows that the similarity of user response simulation
to question answering (QA) can improve the former with knowl-
edge learned from QA, and better answer typing can bring further
improvements. We also show that zero-shot large language models
are inadequate for reliable user simulation. Further, we conduct an
in-depth investigation, propose solutions, and provide insights into
simulating user responses for conversational search.

3 User Response Simulation Task
This section defines the user response simulation task for conver-
sational search and briefly introduces the datasets we use.

3.1 Task Definition
A conversational search session starts with the user issuing a poten-
tially ambiguous search query to the search system. For example,
a user may look for an anti-spyware program called Defender and
type “Tell me about defender” in the search system. The word ‘de-
fender’ is ambiguous: it can also refer to other concepts, such as
a TV series, a vehicle model, or a video game. The conversational
search system may want to clarify whether the user is looking for
the TV series by “Are you interested in a television series?” Existing
work and datasets [1, 2, 13] show that the user could respond in
various ways, such as

No.
That is not related to my search.
Software.
No, I am looking for a software named Defender.
Despite their differences, all of them are consistent with the

original search intent. Therefore, we define our user response sim-
ulation task as follows: Formally, given the user search query 𝑞,
search intent 𝑖 , and clarifying question 𝑐𝑞, a user response simula-
tion system should generate an answer 𝑎 in natural language that
is consistent with 𝑖 . Specifically, in the above example,

2
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Table 1: Clarifying question distributions by answer type.

Answer Types Qulac/train ClariQ/train

yes—confirming 18.3% 19.6%
no—negating 57.9% 54.6%
open-answer 20.3% 22.3%
irrelevant 3.6% 3.5%
Dataset Size # 5273 8566

𝑖 = “I am looking for an anti-spyware program, Defender.”
𝑞 = “Tell me about defender”
𝑐𝑞 = “Are you interested in a television series?”
𝑎 = “No, I am looking for a software named Defender.”

3.2 Datasets and Challenges
User simulation is still an underexplored research area without
many sizable datasets. We use two publicly available datasets in
this work: Qulac [2], and ClariQ [1] for easier comparisons with
previous work about user simulation [40, 45]. Qulac dataset is built
based on faceted queries from TREC Web Track (Clueweb) 09-12
[11]. It contains rows of queries, facets, clarifying questions, and
answers representing one turn of conversational search, where the
clarifying questions and answers are generated by crowd work-
ers. The dataset can be seen as tree-structured, where each faceted
query has multiple facets and multiple reasonable clarifying ques-
tions. We use the Qulac training set for finetuning our systems,
the development set for studying the problem, and the test set for
evaluation. ClariQ extends Qulac with additional queries and facets
and creates a new test set with topics not included in Clueweb09-12.

Multiple Clarifying Types As we previously mentioned, the
CoSearcher [40] system only simulates a specific type of clarifying
questions that can be answered by ‘yes’ or ‘no’ (also referred to as
check [24] or verification [21] questions). However, we notice that
many clarifying questions in their datasets cannot be answered
by ‘yes’ or ‘no’. We find that questions not answerable by ‘yes’
or ‘no’ are mostly open questions or Wh-questions. In addition,
we notice many questions with answers expressing uncertainty or
irrelevancy, such as “I don’t know.” or “This is not related to my
search.”, etc. This category is necessary to respond to questions to
indicate that it is irrelevant and does not actually answer the ques-
tion. Therefore, we extend the heuristic rule used in CoSearcher
and categorize all the questions by their answer types into four
classes: {yes, no, open, irrelevant}, as we show their distribution
in Table 1. Our extended rules are shown in Alg. 1 in the appendix:

Unknown User Cooperativeness Whether a user provides extra
information besides minimally answering the clarifying question
with ‘yes’ or ‘no’ is defined as cooperativeness in [40]. In the example
in Sec. 3.1, the 1st and 2nd responses are uncooperative, while the
3rd and 4th are cooperative. After we inspect the two datasets, we
find that crowd-worker-generated responses seem to have random
cooperativeness, even when they have the same search intent or
they are answering the same clarifying question, i.e., the coopera-
tiveness is unpredictable given (𝑖, 𝑞, 𝑐𝑞). Because of this, using all of
the examples from the datasets indifferently to train a single system
as USi [45] to generate both types of answers could be challenging.

4 T5: A Strong Baseline
We now introduce the T5 baseline and its failings in user simulation.

4.1 T5 Model
Our baseline for this task is to finetune a pretrained T5 [37] check-
point on our training sets. T5 is a general-purpose text generation
model pretrained on extensive text-to-text tasks, including sum-
marization, machine translation, and question answering. Further,
T5 is the strongest open-source model we can finetune. T5 has the
same structure as a conventional encoder-decoder transformer [50],
with simplified layer norm and relative positional embeddings. As a
seq2seq generator, T5 is shown [37] to perform better than decoder-
only models like GPT-2 [35] that was used in existing user simulator
[45]. It first encodes the input text sequence and then generates an
output text sequence with step-by-step decoding. The input and
output sequence we present to T5 are formatted as follows:

input_seq = 𝑖 . 𝑞 . 𝑐𝑞

output_seq = 𝑎

Here, 𝑖 is the user search intent, 𝑞 is the user query, 𝑐𝑞 is the system-
generated clarifying question, and 𝑎 is the answer to the question.
During finetuning, we pass the input and output examples to pre-
trained T5 and tune it until convergence with cross-entropy loss.

Although the input and output of T5 and GPT-2 are almost
identical, they are structurally different. With a complete encoder-
decoder structure, T5 outperforms GPT-2, which only has a decoder.
The comparison of T5, GPT-2, and zero-shot GPT-3.5 is shown in
Table 2, where we see that finetuned T5 already outperforms current
user simulation systems [31, 45]. Yet these scores seem far from
being perfect. What is T5 missing for user simulation?

4.2 A Deep Dive into T5 Generations
To answer the above question, we conduct an in-depth investigation
of the task by studying the cases of T5with significantly lowROUGE
scores. Our analysis is done on the Qulac dev set with the output
from T5 finetuned on the Qulac train set. We intuitively keep all the
examples with ROUGE lower than 0.2, representing generations
that are unlike the human generations. This results in a subset of
the Qulac development set with 360 generation examples, which is
27.9% of the development set. We investigate these examples and
try to find out why the scores are so low. In doing so, we identify a
few common types of low-scoring examples, described below.

Type 1: Answering clarifying question requires extra infor-
mation. This class comprises questions that ask for user-specific
information such as address, age, preference, etc. For example, (In
examples for this section,𝐺 is the T5-generated responses, and 𝐻
is the human-generated response):

𝑖 = “Where can I find cheat codes for PlayStation 2 games?”
𝑞 = “PS 2 games”
𝑐𝑞 = “What types of PS 2 games do you like to play?”
𝐺 = “I want to find cheat codes for PlayStation 2 games.”
𝐻 = “Role playing.”

In this example, there is no explicit information about the user’s
preferred game genre. Thus the system does its best - to answer
with the user’s true intent. These examples are hard to be simulated

3
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Table 2: T5-small (finetuned) outperforms USi (finetuned) [45] and ConvSim (zero-shot) [31]. † indicates 𝑝 < 0.01 statistical
significance of improvements over GPT-3.5—four orders of magnitude larger than T5-small—using permutation test [14, 46].

Dataset Model Generation Metrics Retrieval Metrics
BLEU-3 BLEU-4 ROUGE-L METEOR nDCG1 nDCG5 nDCG20 P@1 MRR

Qulac
GPT-2 (USi[45]) 12.6 9.1 28.2 28.9 0.185 0.186 0.173 0.244 0.352
GPT-3.5 (ConvSim [31]) 13.5 9.8 29.1 29.0 0.195 0.193 0.177 0.255 0.365
T5-small 23.7† 19.0† 40.8† 43.2† 0.217† 0.210† 0.188† 0.281† 0.390†

ClariQ
GPT-2 (USi[45]) 13.5 9.8 28.8 28.6 0.135 0.122 0.106 0.160 0.233
GPT-3.5 (ConvSim [31]) 13.4 9.7 28.9 28.4 0.142 0.131 0.114 0.167 0.242
T5-small 24.3† 19.5† 41.0† 43.3† 0.150† 0.134† 0.118† 0.176† 0.249†

faithfully without additional information such as user profiles. We
find 37 examples in this class, about 10.3% of the studied set.

Type 2: Both generations are valid. The examples in this class
have equally valid T5-generated responses as human-generated
ones. However, they are not correctly evaluated by the current au-
tomatic evaluation metrics because the word-overlap-based metrics
cannot effectively evaluate paraphrases. For example:

𝑖 = “Find the homepage of the president of the United States.”
𝑞 = “President of the United States”
𝑐𝑞 = “Are you looking for a list of all US presidents?”
𝐺 = “No I want the homepage of the president.”
𝐻 = “I need to go to his web site.”

In this example, both the system and human-generated responses
are valid. However, because they almost do not share words in
common, the ROUGE score for the system generation is low. Among
all the cases, 50 examples fall into this class, which is about 13.9%.

Type 3: Cooperativeness mismatch. As briefly mentioned in
Sec. 3.2, Cooperativeness captures the following phenomenon: For
yes-no questions, users tend to answer the question in various ways,
with the difference in the amount of information. For example:

𝑖 = “How do I register to take the SAT exam?”
𝑞 = “SAT”
𝑐𝑞 = “Do you need information about the San Antonio Inter-
national Airport?”
𝐺 = “No I need to register to take the SAT exam.”
𝐻 = “No.”

Here, both the human-generated and T5-generated answers are
valid. The human-generated response represents an uncooperative
user who tends to answer with minimal effort. The T5-generated
response contains more information and represents a cooperative
user. Because the text generation metrics are sensitive to sentence
lengths, the generation gets low scores. This reason applies to 112
examples among all the low-scoring cases, which is about 31.1% of
the studied set.

Type 4: Generating wrong answer type. As mentioned in Alg. 1,
we introduced a 4-way categorization of answer types. This class
contains examples where the T5 generates the wrong answer type,
e.g., when it needs to say ‘yes’; instead, it says ‘no’ or vice versa.
When this type of mistake happens in answering clarification ques-
tions, the response mostly has the wrong meaning. For example:

𝑖 = “I’m looking for web sites that do antique appraisals”
𝑞 = “Appraisals”
𝑐𝑞 = “Do you need an antique appraised?”
𝐺 = “No I want to know about antique appraisals.”
𝐻 = “Yes.”

In this above example, the T5-generated response is a ‘no’-type
answer, which determines that the meaning of the answer is con-
trary to the human-generated answer. We find 122 examples of
such mistakes, which is 33.9% of all cases.

Type 5: Noise in data. The clarifying questions or the human-
generated responses can be of poor quality sometimes because
they are crowd-sourced. A bad clarifying question does not clarify
the search intent, and it can be challenging to generate a valid
response to it. A bad human-generated response can be incoherent
or inconsistent with the search intent and cause good generation
getting low evaluation scores. For example:

𝑖 = “Find information on various types of computer memory,
and how they are different.”
𝑞 = “Memory”
𝑐𝑞 = “Who was the first to study the brain and memory?”
𝐺 = “I want to know how different they are.”
𝐻 = “Herman Ebbinguaus.”

Herman Ebbinguaus is a pioneer of brain and memory studies.
However, the 𝑐𝑞 ‘Who was ...?’ is not a clarifying question for the
query. A valid clarifying question could be, ‘Do you want to know
who was ...?’. The human-generated response is also unnatural, as
the user is the information seeker, not the provider. Therefore it
would be hard for T5 to generate any meaningful response. There
are 21 examples in this class, which is about 5.8%.

Type 6: Miscellaneous. The rest of the examples are all in this
class, where we find the T5 generations are wrong for various
reasons but different from any of the abovementioned classes. Most
of them are isolated, wrong generations for a plethora of reasons.
There are 15 examples in this class, about 4.2% of the studied set.

4.3 A Summary of T5’s Failings
Table 3 shows the distribution of low-scoring causes of T5, where
the main reasons are generating the wrong answer type and cooper-
ative mismatch. A few other observations are worth noting: (1) At
least 45% of the low-scoring generations are good. This number is
obtained by adding the ‘Cooperativeness mismatch’ and ‘Both valid’

4
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Table 3: Categorization of reasons for low ROUGE

Reasons T5

Wrong answer type 33.9%
Cooperativeness mismatch 31.1%
Both valid 13.9%
Extra information 10.3%
Noisy reference 5.8%
Miscellaneous 4.2%
Total # ROUGE<0.2 360

cases. (2) Only 38% of the low-scoring generations are actually bad,
by summing up the ‘Wrong answer type’ and ‘Miscellaneous’ types.
This represents the actual spaces for improvement over T5. This
analysis eventually tells us that the most realistic way to improve
system performance is to address the answer type errors in the
system and to avoid cooperative mismatch during evaluation. Our
solutions to address these will be described next in Section 5.

5 QA-Enhanced User Simulation
This section describes our proposed models, which aim to address
the failings of T5 and the misevaluation.

5.1 Pretraining from Question Answering
Simulating user responses to clarifying questions is similar to ques-
tion answering (QA) tasks in NLP in that both require a response
to a question given contexts (search intent).

Can we improve user simulators from knowledge of these tasks
and QA tasks in general? We instantiate our experiments using
one of the current state-of-the-art models for QA—UnifiedQA [22],
which extends T5 by training on twenty QA datasets across four
formats. One examplary dataset in UnifiedQA is BoolQ [10], which
consists of yes-no questions with a short paragraph provided as con-
text. The verification-type clarifying questions in user simulation,
such as “Are you looking for X?”, can be considered a particular case
akin to the examples in BoolQ. As another examplary QA dataset in
UnifiedQA’s training set, SQuAD [38] contains reading comprehen-
sion questions with context. The wh-questions in SQuAD are also
similar to the open-type clarifying questions in user simulation.
Further, even questions that do not directly map to user simula-
tion can potentially increase the general reasoning ability of the
simulation system, according to the UnifiedQA paper.

We finetune the pretrained UnifiedQA on our dataset following
the format instructions in UnifiedQA. We treat the intent 𝑖 , query 𝑞
as the context, and 𝑐𝑞 as the question. During training, we found
that the query 𝑞 does not provide performance gain and can be
dropped from the context. Therefore, our final input and output
format for finetuning UnifiedQA is as follows:

input_seq = 𝑐𝑞 ? \𝑛 I am looking for 𝑖
output_seq = 𝑎

where ‘\n’ is a unique backslash-n character, as advised in Uni-
fiedQA. Adding ‘I am looking for’ is because most of the intents
from the dataset (the facet column) are imperative sentences such
as “Find information about human memory”. Therefore, we add the
prefix to mimic questions in the UnifiedQA training tasks. It can
also be considered as a form of prompting [27, 33, 35].

5.2 Answer-Type-Driven User Simulation
From the analyses in Section. 4.2, we find that the most common
error of the original T5 is generating wrong answer types. Naturally,
the most important word in the answer to a yes-no question will
be the ‘yes’ or ‘no’; it almost solely determines the semantics and
sentiment of the rest of the answer. Therefore, there should be a
higher priority to correctly generate the ‘yes’ or ‘no’ over the other
words in the response. However, we find that UnifiedQA is good
at generating various possible answers but may not be good at
predicting which answer type is correct.

Specifically, we find two incongruous cases of the top 10 beams
from UnifiedQA when the search intent is “I am looking for X.” and
the clarifying question is “Are you looking for Y?”. The first case
contains both “Yes, I am looking for Y” and “No, I am looking for X.”,
simultaneously. The second case contains both “Yes, I am looking
for X” and “No, I am looking for X”.

Therefore, we can leave the answer typing task to a specialized
model, such as a classification model. To this end, we propose to
train a RoBERTa [28] classifier that predicts answer types to guide
the UnifiedQA through constrained generation, as RoBERTa is a
representative state-of-the-art text classifier. We fine-tune a pre-
trained RoBERTa-base model on the answer-type classification task,
as defined in Table 1. During inference, we convert its prediction
to generator decoding constraints as follows: If the predicted an-
swer type is ‘yes’ or ‘no’, then the generation starts with ‘yes’ or
‘no’ correspondingly. If the predicted answer type is ‘irrelevant’,
the generation starts with ‘I don’t know’. Otherwise, we will not
place any constraints on the generator. We refer to this pipeline as
Type+QA in our later sections.

6 Experiments
Our experiments aim to test whether our proposed models can effec-
tively improve upon existing models and how well the challenges
we identify in our analyses can be resolved. All the experiments
are done on Qulac and ClariQ dataset.

6.1 Research Questions
Q1: CanQA and answer typing help user simulation? Our first
research question is whether QA knowledge and adding the extra
step of answer type prediction can improve user simulation quality.
To answer this question, we compare our proposed Type+QAmodel
with the finetuned T5 and QA-enhanced baselines.

Q2: Can cooperativeness-awareness evaluation reduce mise-
valuation? The analysis in Sec. 4 shows that a large proportion
of mis-evaluation is due to the cooperativeness mismatch from
the random cooperativeness challenge mentioned in Sec. 3.2. We
propose that the datasets, if they are to be used for user response
simulation, need a necessary column indicating the cooperativeness.
However, this issue is rarely mentioned in existing work [40].

Therefore, we propose a cooperativeness-aware heuristic to train
and evaluate user simulation systems. We partition the dataset
into two subsets: one with short generations of fewer than three
words as the uncooperative group and the rest as the cooperative
group. Next, we train two simulation systems on each partition and
evaluate them separately on each partition.
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Q3: How good are zero-shot LLMs for user simulation? Large
language models (LLMs) are models trained with numerous next-
token-prediction tasks to learn general-purpose language represen-
tations for nearly any language understanding or generation task.
Its applications, such as ChatGPT [29], are shown to exhibit human-
level performance on various benchmarks, with tasks similar to
the user simulation task. Therefore, we want to explore to what
extent can LLMs be directly used for user simulation. Because of the
enormous sizes of LLMs, we cannot fully download or train them.
Therefore, all these experiments are done in a zero-shot setting.

Our experiments with LLMs are divided into two groups: (1)
open models including Llama-2 [49] and Flan-T5 [52] and (2) com-
mercial models including GPT-3.5 and GPT-4 [29]. Open models are
significantly smaller and downloadable, which can facilitate repro-
ducibility. Commercial models are larger and better-performing but
are only accessible through APIs and unnecessarily reproducible.

Prompting is an important aspect of using these LLMs as it can
change their behaviors completely. In the experiments, we strictly
follow the exact same prompting formats from their paper. For GPTs,
we empirically choose the best-performing prompting instructions,
which are included in the appendix.

6.2 Evaluation
In this section, we investigate four evaluation paradigms and de-
scribe their limitations which are not mentioned by existing work.

Text Generation Metrics The text generation metrics measure
the similarity between generated response and the human reference
by word overlap, such as BLEU [32], ROUGE[26], and METEOR [4].
These overlap-based metrics are imperfect, as they are sensitive to
paraphrasing. As a result, a system-generated response could have
the same meaning as the human reference yet get low scores.

Answer Type As we have discussed in Sec 4.1, answer type is
an important reason for simulation failings. However, it could not
be properly measured by the above generation metrics, because
answer type is usually affected by a few keywords such as ‘yes’
or ‘no’. For example, against a human reference “No, that is not
what I am looking for.”, “No.” is still semantically better than “Yes,
that is what I am looking for.” The generation metrics could give
bad generations the exact opposite meaning higher scores than
good generations in this example. Therefore, we propose to include
classification F1 for answer type as an auxiliary metric. We use the
Alg. 1 in the appendix for classifying generated responses.

Retrieval Metrics Evaluating the document retrieval performance
using retrieval models like e.g., query-likelihood model [34] is a
standard paradigm in existing work [2, 31, 40, 45]. This evaluation
is based on the motivation and assumption of asking clarifying
questions in conversational search: the additional information from
the question and its responses should retrieve better results.

Human Judgement We hire crowd workers from Amazon MTurk
to evaluate the generated responses. The workers are required to
have at least 500 lifetime HITs approvals and 95+% approval rate.
We provide workers 200 randomly sampled tuples of Qulac query,
search intent, clarifying question, and generated response, with a
shuffled list of generations from different models without knowing
the source. We ask the workers to score the generated responses

according to two criteria, relevance and naturalness, from 1 to 5.
The workers get paid at twelve dollars per hour.

Relevance is defined as whether the response is consistent with
the search intent and whether it helps the search system better
understand the user’s unspecified intention. Relevant answers per-
fectly align with the intent, while irrelevant responses contradict
the search intent or can be randomly off-topic. Similar existing
metrics with different names have been seen in prior work, such as
adequacy [48], informativeness [9], and usefulness [45].

Naturalness measures whether the generated response is fluent,
grammatical, and human-like. In contrast, an unnatural answer
might have logical errors in them, or perhaps be impossible to
understand. Moreover, natural answers should not provide infor-
mation beyond what the question asks for.

7 Results and Analyses
We present the evaluation results for the oracle models, zero-shot
LLMs, and finetuned models including T5 and our proposed model
in Table 4 and 5, which are meant to be comparable with Table. 3 in
the Qulac paper [2], Table. 3 in the USi paper [45], and Table. 1 in
Cosearcher paper [40]. These results show that Human evaluation
results are shown in Table 6. Additional manual analyses in Table 7
show that our proposed system has significant reduced low-scoring
generations of corresponding reasons.

Observations from the Oracle Models. We include three ora-
cle models as baselines to provide insights for understanding the
numbers in our tables. The ‘Query-only’ row does not generate a
response, it shows the document retrieval performance of searching
without any interactions but only with the query. Unsurprisingly, its
result is always theworst. The ‘Human’ row is the human-generated
response. Thus it has the perfect score for text generation metrics.
The ‘Copy-intent’ row is an Oracle model that always copies the
search intent as the user response.

The goal of the ‘Copy-intent’ model is to represent an unnatural
baseline user simulator that only cares about leaking the true search
intent to the search system. Its generation scores are noticeably low,
showing that real humans tend to differ from simply repeating the
search intent. We can see from Table 4 and 5, the copy-intent model
consistently achieves better document retrieval performances than
humans, suggesting that the document retrieval metric does not
fully align with human likeness.

Type+QA improves the T5 baseline in automatic evaluation.
FromTable 4 and Table 5, Type+QA consistently outperforms the T5
baseline with statistical significance in most columns. In particular,
the F1 scores of the Type+QA model are significantly higher than
T5 and using UnifiedQA alone. This shows that the Type+QAmodel
effectively predicts the correct answer type, addressing the most
common error of the T5 baseline. Being the best in text generation
metrics also suggests it produces the most human-like generations.

The only columns where Type+QA does not outperform T5 are
nDCG1 and P@1. However, none of their performance differences
in document retrieval are significant, as they only differ in the third
decimal place. Both T5 and Type+QA document retrieval scores
are higher than humans and on par with the copy-intent baseline,
indicating that they have indistinguishable utilities for retrieval.
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Table 4: Our proposed Type+QA model outperforms the T5 model on Qulac dataset. Refer to Section 7 for detailed explanations.
Bold numbers indicate the highest performance of the column excluding the Oracles. † indicates 𝑝 < 0.05, and ‡ indicates
𝑝 < 0.01 statistical significance of improvements over finetuned T5-small using permutation test [14, 46].

Model Type Generation Metrics Document Retrieval
F1 BLEU-3 BLEU-4 ROUGE-L METEOR nDCG1 nDCG5 nDCG20 P@1 MRR

O
ra
cl
es Query-only - - - - - 0.133 0.146 0.153 0.190 0.294

Human 100.0 100.0 100.0 100.0 93.7 0.198 0.195 0.178 0.259 0.367
Copy-intent 8.3 17.3 13.8 31.4 29.4 0.216 0.212 0.193 0.283 0.391

ze
ro
-s
ho

t GPT-3.5 (ConvSim [31]) 42.1 13.5 9.8 29.1 29.0 0.195 0.193 0.177 0.255 0.365
GPT-4 45.6 11.6 7.9 28.6 28.6 0.210 0.202 0.183 0.270 0.376
Llama2 23.6 6.5 4.5 19.9 18.6 0.189 0.187 0.172 0.248 0.350
Flan-xxl 43.3 0.2 0.1 21.9 9.7 0.167 0.172 0.162 0.223 0.328

fin
et
un

ed GPT-2 (USi[45]) 24.4 12.6 9.1 28.2 28.9 0.185 0.186 0.173 0.244 0.352
T5-small 34.1 23.7 19.0 40.8 43.2 0.215 0.209 0.188 0.279 0.388
QA-Enhanced 41.7 23.3 18.7 40.9 43.4 0.215 0.210 0.188 0.279 0.390
Type+QA 43.3‡ 24.4‡ 19.6† 41.6‡ 43.5 0.214 0.210 0.189 0.277 0.390

Table 5: Our proposed Type+QAmodel outperforms the T5 model on ClariQ dataset. Refer to Section 7 for detailed explanations.
Bold numbers indicate highest performance of the column excluding the Oracles. † indicates 𝑝 < 0.05, and ‡ indicates 𝑝 < 0.01
statistical significance of improvements over finetuned T5-small using permutation test [14, 46].

Model Type Generation Metrics Document Retrieval
F1 BLEU-3 BLEU-4 ROUGE-L METEOR nDCG1 nDCG5 nDCG20 P@1 MRR

O
ra
cl
es Query-only - - - - - 0.118 0.109 0.089 0.132 0.202

Human 100.0 100.0 100.0 100.0 93.4 0.139 0.127 0.112 0.163 0.238
Copy-intent 8.71 18.1 14.4 31.7 29.9 0.149 0.137 0.121 0.175 0.250

ze
ro
-s
ho

t GPT-3.5 (ConvSim[31]) 41.9 13.4 9.7 28.9 28.4 0.142 0.131 0.114 0.167 0.242
GPT-4 45.5 10.5 7.3 28.7 34.8 0.146 0.134 0.117 0.170 0.245
Llama2 22.6 6.0 4.0 19.4 17.9 0.138 0.129 0.111 0.162 0.236
Flan-xxl 44.4 0.2 0.1 21.4 9.5 0.132 0.121 0.104 0.154 0.227

fin
et
un

ed GPT-2 (USi[45]) 22.8 13.5 9.8 28.8 28.6 0.135 0.122 0.106 0.160 0.233
T5-small 36.6 24.3 19.5 41.0 43.3 0.150 0.134 0.118 0.176 0.249
QA-Enhanced 45.9 24.3 19.4 41.6 43.6 0.148 0.135 0.119 0.170 0.247
Type+QA 46.3‡ 25.2† 20.2† 42.1‡ 43.1 0.149 0.136 0.119 0.172 0.249

Table 6: Our proposed Type+QA mode outperforms T5 in
crowd-source evaluation in both relevance and naturalness.
★ indicates 𝑝 < 0.01 statistical significance of improvements
over ‘copy-intent’, while † indicates 𝑝 < 0.05 statistical signif-
icance over T5 using paired t-test.

model Relevance Naturalness

T5-small 4.21 4.16★

Type+QA 4.35† 4.30★†
Copy-intent 4.64 3.57

Human evaluation confirms the improvements. Crowd-sourced
human evaluation from Table 6 shows that the copy-intent oracle
generates the most relevant responses while being poor in natural-
ness. This is strong evidence for our claim in Sec. 6.2 that document
retrieval is a biased metric as it could favor unnatural generations.
T5 simulator has higher naturalness over copy-intent, but lower
relevance. Our proposed Type+QA model further improves both

Table 7: Type distribution for low ROUGE generations. Our
proposed Type+QA and Cooperativeness-aware evaluation
effectively address T5’s main type of failings—wrong answer
type and cooperativenessmissmatch, respectively. † indicates
𝑝 < 0.05, and ‡ indicates 𝑝 < 0.01 statistical significance of
improvement over T5 using permutation test.

Reasons T5 w/ Coop T5 Type+QA

Wrong answer type 46.4% 33.9%→ 11.8%‡

Cooperativeness miss 2.4%‡ ← 31.1% 44.6%
Both valid 16.4% 13.9% 15.2%
Extra information 15.6% 10.3% 13.0%
Noisy reference 11.6% 5.8% 7.4%
Miscellaneous 7.6% 4.2% 7.1%
Total #ROUGE<0.2 250‡ 360 323†

metrics over T5 with statistical significance. In conclusion, our hu-
man evaluation results indeed show that the Type+QA simulator
improves T5 in terms of both generation relevance and naturalness.
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Manual analyses show that the reason for the improvements
of Type+QA is indeed better answer typing. We conduct a
similar manual analysis as Sec. 4 for Type+QA generations, shown
in Table 7. We find 323 low-scoring examples from the Type+QA
generations, which is significantly fewer than T5’s 360. Each row of
the table shows the percentages of low-scoring generations for one
specific reason among all the low-scoring generations, for T5 with
cooperativeness evaluation, T5, and Type+QA model. The first row
of the table shows that Type+QA reduces the percentage of wrong
answer types from 33.9% to 11.8% with statistical significance. This
result shows that question answering knowledge and answer typing
are useful for user simulation.

Cooperativeness-aware evaluation reduces misevaluation.
We show the cooperativeness-aware evaluation results for all the
finetuned-based methods in Table 8 and Table 9 in the appendix.
The numbers in the table are averaged, combining different coop-
erativeness. We see that all three finetuned models see significant
improvements with cooperativeness-aware evaluation. The manual
analysis in Table 7 also shows that cooperativeness mismatches
drop significantly from 31.1% to only 2.4%when evaluation accounts
for cooperativeness, and the total of low-scoring examples subse-
quently declines. These results jointly show that cooperativeness-
aware evaluation can effectively reduce misevaluation.

Open LLMs do not sufficiently understand the user simula-
tion task. From Table 4 and Table 5, we see finetuning smaller
generation models, in general, can achieve higher performance than
the zero-shot open LLMs (i.e., Llama2 and Flan). When we dive into
their generations, we see two main reasons for their failures:

(1) Llama2 struggles to understand user simulation tasks, instead,
it often generates relevant but out-of-role information although
prompted with persona instructions. Therefore, their scores are low
in all of the columns.

𝑖 = “How is workplace diversity achieved and managed?”
𝑞 = “Diversity”
𝑐𝑞 = “Are you looking for a definition of diversity?”
𝐻 = “No I am looking to achieve andmanage it in the workplace.”
𝐿𝑙𝑎𝑀𝑎2 = “Diversity means differences between people.”

(2) Flan-xxl generations are too short, such as ‘Yes.’ or ‘No.’.
Evidence is that human generations have 8.05 words on average,
while Flan-xxl only has 1.47 words. Such answers do not provide
enough information for document retrieval. Although Flan-xxl
achieves sufficiently high F1 in answer typing, which is even higher
than finetuned T5, it gets extremely low generation scores and
document retrieval scores.

In conclusion, all these open zero-shot LLMs cannot meet our
expectations for user simulation. Our observations and conclusions
about LLMs are aligned with recent findings about using LLMs for
generation and simulation tasks [6, 59]. As a result, our work on
better training user simulators is timely.

Commercial LLMs are good at answering clarifying ques-
tions, but are currently not human-like in their responses.
From Table 4 and Table 5, the main difference between GPTs and
other LLMs is that GPTs score higher on all metrics, particularly
on document retrieval metrics. While we have expected this result,

we are interested in why. Therefore, we randomly sampled 100
generated responses from GPT-4 and found that GPT-4 generations
are highly templated and highly cooperative. It never simply an-
swers a clarifying question as ‘yes’ or ‘no’ without explaining. Even
humans are not as cooperative and patient, which is why GPT-4 is
high on answer type F1 and document retrieval performance but
low on the generation metrics. For example:

𝑖 = “Find the sports section of the Milwaukee Journal Sentinel.”
𝑞 = “Milwaukee Journal Sentinel.”
𝑐𝑞 = “Which medium do you prefer the newspaper to be in?”
𝐻 = “I don’t know”
𝐺𝑃𝑇 = “Either a physical or digital format works for me. ”

Here, GPT-4 generates a good answer even when the human fails
to give any useful information. While GPT-4 has the potential to be
a perfect user simulator, we argue that it is inadequate since it does
not behave as a real human. Human users could be as ambiguous
in their responses as there were in the initial query; they may give
short and incomplete answers or fail to understand the clarifying
question. All of these behaviors should be expected by conversa-
tional search systems to generate clear questions that are easy to
answer. Therefore, unlike GPT-4, a good user simulator should be
able to simulate these human imperfections. This argument does
not mean that models like GPT-4 should be avoided. Instead, fu-
ture user simulation systems should view the task as more than
just question answering or sequence-to-sequence text generation.
Specifically, a good user simulator should both have good genera-
tion capability and be able to simulate human imperfections, which
involves perhaps another layer of latent variables.

8 Conclusion
In this paper, we study the task of simulating user responses for
clarifying questions in conversational search and provide insights
into the task, focusing on the challenges with existing models and
how the challenges may be addressed and identifying what is left to
be solved. We find that finetuned T5 can significantly outperform
existing user simulation systems. Rather than reporting it as the
new state-of-the-art, we cast the question of what can be learned
about user simulation. As part of the answering process, we conduct
an in-depth manual analysis of the low-scoring generations of T5.
It shows that aside from data noise, 38% of the generations are bad
because T5 cannot effectively learn to generate responses of the
correct answer type, and at least 45% of the ‘bad’ generations are
due to misevaluations. We then propose a simple two-step model
to correct the wrong answer types in generations, which is shown
to reduce the above answer type error significantly from 38% to
12%. Further, we propose a data partition heuristic to account for
an essential variable for user simulation, the cooperativeness, which
substantially improves upon the existing evaluation standard. In
the end, we compare our models with existing baselines and large
language models. We show that our proposed system is the best and
that existing large language models are inadequate for simulating
users for conversational search. As a result, our investigation and
work on better training user simulation models is timely.
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A Appendices

A.1 Answer Typing Algorithm

Algorithm 1 Typing(𝑐𝑞, 𝑆𝑖𝑑𝑘 ,𝑊𝑛𝑒 )
Input:A clarifying question 𝑐𝑞, a list 𝑆𝑖𝑑𝑘 of sentences expressing
uncertainty or irrelevancy, and a list𝑊𝑛𝑒 of negation words.
Output: Type of 𝑐𝑞
if 𝑐𝑞 ∈ 𝑆𝑖𝑑𝑘 then

return ‘irrelevant’
else if ‘yes’ ∈ 𝑐𝑞[:3] then

return ‘yes’
else if Any([w ∈ 𝑐𝑞[:3] for w in𝑊𝑛𝑒 ]) then
return ‘no’

end if
return ‘open’

A.2 GPT-4 Instruction

role: system
content: In this task, imagine a user who wants to find in-
formation online and unintentionally asks a search system
an ambiguous search query. To better understand their
search intention, the system asks a clarifying question.
Your goal is to generate answers to this clarifying question,
based on the user’s original search intent.

role: user
content: My search intent is: " + {query} + {intent} +
"The system clarifying question is: " + {cq} + "How should
I respond?

A.3 Full Cooperativeness-aware Full Evaluation
Results
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Table 8: Adding cooperativeness to all the finetuned models improve generation metrics on Qulac dataset. † indicate 𝑝 < 0.01
statistical significance of improvements over the cooperative-unawared version using permutation test [14].

Model Type Generation Metrics Document Retrieval
F1 BLEU-3 BLEU-4 ROUGE-L METEOR nDCG1 nDCG5 nDCG20 P@1 MRR

T5-small 34.1 23.7 19.0 40.8 43.2 0.215 0.209 0.188 0.279 0.388
+Cooperativeness 41.5† 27.8† 22.1† 47.7† 45.4† 0.206 0.203 0.182 0.268 0.377

UnifiedQA 41.7 23.3 18.7 40.9 43.4 0.215 0.210 0.188 0.279 0.390
+Cooperativeness 43.3† 28.3† 22.7† 47.8† 45.2† 0.203 0.205 0.183 0.263 0.376

Type+UQA 43.3 24.4 19.6 41.6 43.5 0.214 0.210 0.189 0.277 0.390
+Cooperativeness 50.1† 30.1† 24.3† 50.5† 46.7† 0.203 0.202 0.182 0.265 0.376

Table 9: Adding cooperativeness to all the finetuned models improve generation metrics on ClariQ dataset. † indicate 𝑝 < 0.01
statistical significance of improvements over the cooperative-unawared version using permutation test [14].

Model Type Generation Metrics Document Retrieval
F1 BLEU-3 BLEU-4 ROUGE-L METEOR nDCG1 nDCG5 nDCG20 P@1 MRR

T5-small 36.6 24.3 19.5 41.0 43.3 0.150 0.134 0.118 0.176 0.249
+Cooperativeness 41.8† 29.1† 23.4† 48.1† 45.4† 0.147 0.133 0.117 0.173 0.246

UnifiedQA 45.9 24.3 19.4 41.6 43.6 0.148 0.135 0.119 0.170 0.247
+Cooperativeness 48.1† 29.4† 23.5† 49.4† 46.7† 0.146 0.134 0.117 0.169 0.245

Type+UQA 46.3 25.2 20.2 42.1 43.1 0.149 0.136 0.119 0.172 0.249
+Cooperativeness 53.4† 30.4† 24.3† 50.0† 45.6† 0.141 0.133 0.116 0.163 0.242
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