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Abstract

The learning with noisy labels has been addressed with both discriminative and1

generative models. Although discriminative models have dominated the field due2

to their simpler modeling and more efficient computational training processes, gen-3

erative models offer a more effective means of disentangling clean and noisy labels4

and improving the estimation of the label transition matrix. However, generative5

approaches maximize the joint likelihood of noisy labels and data using a complex6

formulation that only indirectly optimizes the model of interest associating data7

and clean labels. Additionally, these approaches rely on generative models that8

are challenging to train and tend to use uninformative clean label priors. In this9

paper, we propose a new generative noisy-label learning approach that addresses10

these three issues. First, we propose a new model optimisation that directly asso-11

ciates data and clean labels. Second, the generative model is implicitly estimated12

using a discriminative model, eliminating the inefficient training of a generative13

model. Third, we propose a new informative label prior inspired by partial label14

learning as supervision signal for noisy label learning. Extensive experiments on15

several noisy-label benchmarks demonstrate that our generative model provides16

state-of-the-art results while maintaining a similar computational complexity as17

discriminative models. Code will be available once paper is accepted.18

1 Introduction19

Deep neural network (DNN) has achieved remarkable success in computer vision [13, 21], natural20

language processing (NLP) [10, 51] and medical image analysis [24, 38]. However, DNNs often21

require massive amount of high-quality annotated data for supervised training [9], which is chal-22

lenging and expensive to acquire. To alleviate such problem, some datasets have been annotated via23

crowdsourcing [46], from search engines [35], or with NLP from radiology reports [38]. Although24

these cheaper annotation processes enable the construction of large-scale datasets, they also introduce25

noisy labels for model training, resulting in performance degradation. Therefore, novel learning26

algorithms are required to robustly train DNN models when training sets contain noisy labels.27

The main challenge in noisy-label learning is that we only observe the data, represented by random28

variable X , and respective noisy label, denoted by variable Ỹ , but we want to estimate the model29

p(Y |X), where Y is the hidden clean label variable. Most methods proposed in the field resort30

to two discriminative learning strategies: sample selection and noise transition matrix. Sample31

selection [1, 12, 22] optimises the model pθ(Y |X), parameterised by θ, with maximum likelihood32

optimisation restricted to pseudo-clean training samples, as follows33

θ∗ = argmaxθ EP (X,Ỹ )

[
clean(X, Ỹ )× pθ(Ỹ |X)

]
, where clean(X = x, Ỹ = ỹ) =

{
1, if Y = ỹ

0, otherwise
,

(1)
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and P (X, Ỹ ) is the distribution used to generate the noisy-label and data points for the training34

set. Note that EP (X,Ỹ )

[
clean(X, Ỹ )× pθ(Ỹ |X)

]
≡ EP (X,Y ) [pθ(Y |X)] if the function clean(.)35

successfully selects the clean-label training samples. Unfortunately, clean(.) usually relies on the36

small-loss hypothesis [2] for selecting R% of the smallest loss training samples, which offers little37

guarantees of successfully selecting clean-label samples. Approaches based on noise transition38

matrix [44, 6, 32] aim to estimate a clean-label classifier and a label transition, as follows:39

θ∗ = argmaxθ EP (X,Ỹ )

[∑
Y p(Ỹ |X)

]
= argmaxθ1,θ2 EP (X,Ỹ )

[∑
Y pθ1(Ỹ |Y,X)pθ2(Y |X)

]
, (2)

where θ = [θ1, θ2], pθ1(Ỹ |Y,X) represents a label-transition matrix, often simplified to be class-40

independent with pθ1(Ỹ |Y ) = pθ1(Ỹ |Y,X). Since we do not have access to the label transition41

matrix, we need to estimate it from the noisy-label training set, which is challenging because of42

identifiability issues [27], making necessary the use of anchor point [32] and regularisations [6].43

On the other hand, generative learning models [3, 11, 50] assume a generative process for X and44

Y , as described in Fig. 1. These methods are trained to maximise the data likelihood p(Ỹ , X) =45 ∫
Y,Z

p(X|Y,Z)p(Ỹ |Y,X)p(Y )p(Z)dY dZ, where Z denotes a latent variable representing a low-46

dimensional representation of the image, and Y is the latent clean label. This optimisation requires a47

variational distribution qϕ(Y,Z|X) to maximise the evidence lower bound (ELBO): with48

θ∗1 , θ
∗
2 , ϕ

∗ = argmaxθ1,θ2,ϕ Eqϕ(Y,Z|X)

[
log

(
pθ1(X|Y,Z)pθ2(Ỹ |X,Y )p(Y )p(Z)/qϕ(Y, Z|X)

)]
, (3)

where pθ1(X|Y,Z) denotes an image generative model, pθ2(Ỹ |X,Y ) represents the label transition49

model, p(Z) is the latent image representation prior (commonly assumed to a standard normal50

distribution), and p(Y ) is the clean label prior (usually assumed to be a non-informative prior based51

on a uniform distribution). Such generative strategy is sensible because it disentangles the true and52

noisy labels and improves the estimation of the label transition model [50]. A limitation of the53

generative strategy is that it optimises p(Ỹ , X) instead of directly optimising p(X|Y ) or p(Y |X).54

Also, compared with the discriminative strategy, the generative approach requires the generative55

model pθ1(X|Y, Z) that is challenging to train. This motivates us to ask the following question:56

Can we directly optimise the generative goal p(X|Y ), with a similar computational cost as the57

discriminative strategy and accounting for an informative prior for the latent clean label Y ?58

In this paper, we propose a new generative noisy-label learning method to directly optimise p(X|Y ) by59

maximising Eq(Y |X) [log p(X|Y )] using a variational posterior distribution q(Y |X). This objective60

function is decomposed into three terms: a label-transition model Eq(y|x) [log p(ỹ|x,y)], an image61

generative model Eq(y|x)

[
log p(x|y)p(y)

q(y|x)

]
, and a Kullback–Leibler (KL) divergence regularisation62

term. We implicitly estimate the image generative term with the discriminative model q(Y |X),63

bypassing the need to train a generative model. Moreover, our formulation allows the introduction64

of an instance-wise informative prior p(Y ) inspired by partial-label learning [36]. This prior is65

re-estimated at each training epoch to cover a small number of label candidates if the model is certain66

about the training label. Conversely, when the model is uncertain about the training label, then the67

label prior will cover a large number of label candidates, which also serve as a regularisation of noisy68

label training. Our formulation only requires a discriminative model and a label transition model,69

making it computationally less expensive than other generative approaches [3, 11, 50]. Overall, our70

contributions can be summarized as follows:71

• We introduce a new generative framework to handle noisy-label learning by directly opti-72

mising p(X|Y ).73

• Our generative model is implicitly estimated with a discriminative model, making it compu-74

tationally more efficient than previous generative approaches [3, 11, 50].75

• Our framework allows us to place an informative instance-wise prior p(Y ) for latent clean76

label Y . Inspired by partial label learning [36], p(Y ) is constructed for maintaining high77

coverage for latent clean label and regularise uncertain sample training.78

We conduct extensive experiments on both synthetic and real-world noisy-label benchmarks that79

show that our method provides state-of-the-art (SOTA) results and enjoy a similar computational80

complexity as discriminative approaches.81
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2 Related Work82

Sample selection. The discriminative learning strategy based on sample selection from (1) needs83

to handle two problems: 1) the definition of clean(.), and 2) what to do with the samples classified84

as noisy. Most definitions of clean(.) resort to classify small-loss samples [2] as pseudo-clean [1,85

4, 12, 15, 22, 30, 34, 40]. Other approaches select clean samples based on the K nearest neighbor86

classification in an intermediate deep learning feature spaces [31, 39], distance to the class-specific87

eigenvector from the gram matrix eigen-decomposition using intermediate deep learning feature88

spaces [17], uncertainty measures [19], or prediction consistency between teacher and student89

models [16]. After sample classification, some methods will discard the noisy-label samples for90

training [4, 15, 30, 34], while others use them for semi-supervised learning [22]. The main issue with91

this strategy is that it does not try to disentangle the clean and noisy-label from the samples.92

Label transition model. The discriminative learning strategy based on the label transition model93

from (2) depends on a reliable estimation of p(Ỹ |Y,X) [6, 32, 44]. Forward-T [32] uses an additional94

classifier and anchor points from clean-label samples to learn a class-dependent transition matrix.95

Part-T [44] estimates an instance-dependent model. MEDITM [6] uses manifold regularization for96

estimating the label-transition matrix. In general, the estimation of this label transition matrix is97

under-constrained, leading to the identifiability problem [27], which is addressed with the formulation98

of anchor point [32], or additional regularisation [6].99

Figure 1: Generative noisy-label
learning models and their corre-
sponding optimisation goal, where
the red arrow indicates the dif-
ferent causal relationships be-
tween X and Y . Left is
CausalNL/InstanceGM [50, 11],
middle is NPC [3] and right is ours.

Generative modelling. Generative modeling for noisy-label100

learning [3, 11, 50] explores different graphical models (see101

Fig. 1) to enable the estimation of clean labels per image.102

Specifically, CausalNL [50] and InstanceGM [11] assume that103

the latent clean label Y causes X , and the noisy label Ỹ is gen-104

erated from X and Y . Alternatively, NPC [3] assumes that X105

causes Y and proposes a post-processing calibration for noisy106

label learning. One drawback of generative modeling is that107

instead of directly optimising the models of interest p(X|Y ) or108

p(Y |X), it optimises the joint distribution of visible variables109

p(X, Ỹ ). Even though maximising the likelihood of the visible110

data is sensible, it only produces the models of interest as a111

by-product of the process. Furthermore, these methods require112

the computationally complex training of a generative model,113

and usually rely on non-informative label priors.114

Clean label prior. Our clean-label prior p(Y ) constrains the115

clean label to a set of label candidates for a particular training sample. Such label candidates change116

aims to 1) increase clean label coverage, and 2) represent uncertainty of the prior. Increase coverage117

improve the chances of including latent clean label in supervision. For noisy samples, increase the118

number of candidates in p(Y ) regularise noisy label training. Such dynamic prior distribution may119

resemble Mixup [53], label smoothing [28] or re-labeling [22] techniques that are commonly used120

in label noise learning. However, these approaches do not simultaneously follow the two design121

principles mentioned above. Mixup [53] and label smoothing [28] are effective approaches for122

designing soft labels for noisy label learning, but both aim to increase coverage, disregarding label123

uncertainty. Re-labeling switches the supervisory training signal to a more likely pseudo label, so it124

is very efficient, but it has limited coverage.125

Partial label learning In partial label learning (PLL), each image is associated with a candidate label126

set defined as a partial label [36]. The goal of PLL is to predict the single true label associated with127

each training sample, assuming that the ground truth label is one of the labels in its candidate set.128

PICO [37] uses contrastive learning in an EM optimisation to address PLL. CAV [52] proposes class129

activation mapping to identify the true label within the candidate set. PRODEN [29] progressively130

identifies the true labels from a candidate set and updates the model parameter. The design of our131

informative clean label prior p(Y ) is inspired from PLL, but unlike PLL, there is no guarantee132

that the multiple label candidates in our prior contain the true label. Furthermore, the size of our133

candidate label set is determined by the probability that the training sample label is clean, where a134

low probability induces a prior with a large number of candidates for regularising training.135
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3 Method136

We denote the noisy training set as D = {(xi, ỹi)}|D|
i=1, where xi ∈ X ⊂ RH×W×C is the input137

image of size H × W with C colour channels, ỹi ∈ Y ⊂ {0, 1}|Y| is the observed noisy label.138

We also have y as the unobserved clean label. We formulate our model with generative model139

that starts with the sampling of a label y ∼ p(Y ). This is followed by the clean-label conditioned140

generation of an image with x ∼ p(X|Y = y), which are then used to produce the noisy label141

ỹ ∼ p(Ỹ |Y = y, X = x) (hereafter, we omit the variable names to simplify the notation). Below, in142

Sec. 3.1, we introduce our model and the optimisation goal. In Sec. 3.2 we describe how to construct143

informative prior, and the overall training algorithm is presented in Sec. 3.3.144

3.1 Model145

We aim to optimize the generative model log p(x|y), which can be decomposed as follows:146

log p(x|y) = log
p(ỹ,y,x)

p(ỹ|x,y)p(y)
. (4)

In (4), p(y) represents the prior distribution of the latent clean label. The optimisation of p(x|y) can147

be achieved by introducing a variational posterior distribution q(y|x), with:148

log p(x|y) = log
p(ỹ,y,x)

q(y|x)
+ log

q(y|x)
p(ỹ|x,y)p(y)

,

Eq(y|x) [log p(x|y)] = Eq(y|x)

[
log

p(ỹ,y,x)

q(y|x)

]
+ KL

[
q(y|x)||p(ỹ|x,y)p(y)

]
,

(5)

where KL[.] denotes the KL divergence, and149

Eq(y|x)

[
log

p(ỹ,y,x)

q(y|x)

]
= Eq(y|x) [log p(ỹ|x,y)] + Eq(y|x)

[
log

p(x|y)p(y)
q(y|x)

]
. (6)

Based on Eq. (5) and (6), the expected log likelihood of p(x|y) is defined as150

Eq(y|x) [log p(x|y)] = Eq(y|x) [log p(ỹ|x,y)]− KL [q(y|x)∥p(x|y)p(y)] + KL [q(y|x)∥p(ỹ|x,y)p(y)] .
(7)

In Eq. (7), we parameterise q(y|x) and p(ỹ|x,y) with neural networks, as depicted in Figure 2. The151

generative model p(x|y) usually requires to model infinite number of samples based on conditional152

label and a generative model is hard to capture such relationship. However, since noisy label learning153

is a discriminative task and classification performance is our primary goal, the generation can be154

approximated with with finite training samples, which is given training set. More specifically, we155

defines p(x|y) only on data points {xi}|D|
i=1 by maximising −KL [q(y|x)∥p(x|y)p(y)] for a fixed156

q(y|x), with the optimum achieved by:157

p(x|y) = q(y|x)∑|D|
i=1 q(y|xi)

. (8)

Hence, the generative conditional p(x|y) can only represent the values of x within training set given158

the latent labels in y. This allow us transform discriminative model into implicit generative model159

without additional computation cost.160

3.2 Informative prior based on partial label learning161

In Eq. (7), the clean label prior p(y) is required. As mentioned in Sec. 2, we formulate p(y) inspired162

from PLL [29, 37, 52]. However, it is worth noting that PLL has the partial label information available163

from the training set, while we have to dynamically build it during training. Therefore, the clean label164

prior p(y) for each training sample is designed so that the hidden clean label has a high probability165

of being selected during most of the training. On one hand, we aim to have as many label candidates166

as possible during the training to increase the chances that p(y) has a non-zero probability for the167

latent clean label. On the other hand, including all labels as candidates is a trivial solution that does168
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Figure 2: Training pipeline of our method. Shaded variables x and ỹ are visible, and unshaded
variable y is latent. p(y) is constructed to approximate y.

not represent a meaningful clean label prior. These two seemingly contradictory goals target the169

maximisation of label coverage and minimisation of label uncertainty, defined by:170

Coverage =
1

|D|

|D|∑
i=1

|Y|∑
j=1

1 (yi(j)× pi(j) > 0) , and Uncertainty =
1

|D|

|D|∑
i=1

|Y|∑
j=1

1 (pi(j) > 0) ,

(9)
where 1(.) is the indicator function. In (9), coverage increases by approximating p(Y ) to a uniform171

distribution, but uncertainty is minimised when the clean label yi is assigned maximum probability. In172

general, training samples for which the model is certain about the clean label, should have p(yi) = 1,173

while training samples for which the model is uncertain about the clean label, should have p(yi) < 1174

with other candidate labels with probability > 0. Therefore, the clean label prior is defined by:175

pi(j) =
ỹi(j) + ci(j) + ui(j)

Z
, (10)

where Z is a normalisation factor to make
∑|Y|

j=1 pi(j) = 1, ỹi is the noisy label in the training set,176

ci denotes the label to increase coverage, and ui represents the label to increase uncertainty, both177

defined below. Motivated by the early learning phenomenon [25], where clean labels tend to be178

fit earlier in the training than the noisy labels, we maximise coverage by sampling from a moving179

average of model prediction for each training sample xi at iteration t with:180

C(t)
i = β × C(t−1)

i + (1− β)× ȳ
(t)
i , (11)

where β ∈ [0, 1] and ȳ(t) is the softmax output from the model that predicts the clean label from the181

data input xi. For Eq. (11), C(t)
i denotes the categorical distribution of the most likely labels for the182

ith training sample, which can be used to sample the one-hot label ci ∼ Cat(C(t)
i ). The minimisation183

of uncertainty depends on our ability to detect clean-label and noisy-label samples. For clean samples,184

p(yi) should converge to a one-hot distribution, maintaining the label prior focused on few candidate185

labels. For noisy samples, p(yi) should be close to a uniform distribution to keep a large coverage of186

candidate labels. To compute the probability wi ∈ [0, 1] that a sample contains clean label, we use187

the sample selection approaches based on the unsupervised classification of loss values [22]. Then188

the label ui is obtained by sampling from a uniform distribution of all possible labels proportionally189

to its probability of representing a noisy-label sample, with190

ui ∼ U (Y, round(|Y| × (1− wi))) , (12)
where round(|Y| × (1 − wi)) represents the number of samples to be drawn from the uniform191

distribution rounded up to the closest integer.192

3.3 Training193

We can now return to the optimisation of Eq. (7), where we define the neural networks gθ : X →194

∆|Y|−1 that outputs the categorical distribution for the clean label in the probability simplex space195

∆|Y|−1 given an image x ∈ X , and fϕ : X × ∆|Y|−1 → ∆|Y|−1 that outputs the categorical196

distribution for the noisy training label given an image and the clean label distribution from gθ(.).197

The first term in the right-hand side (RHS) in Eq. (7) is optimised with the cross-entropy loss:198

LCE(θ, ϕ,D) =
1

|D| ×K

∑
(xi,ỹi)∈D

K∑
j=1

ℓCE(ỹi, fϕ(xi, ŷi,j)). (13)
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where {ŷi,j}Kj=1 ∼ Cat(gθ(xi)), with Cat(.) denoting a categorical distribution. The second term in199

the RHS in Eq. (7) uses the estimation of p(x|y) from Eq. (8) to optimise the KL divergence:200

LPRI(θ,D) =
1

|D|
∑

(xi,ỹi)∈D

KL

[
gθ(xi)

∥∥∥ci × gθ(xi)∑
j gθ(xj)

⊙ pi

]
, (14)

where pi = [pi(j = 1), ..., pi(j = |Y|)] ∈ ∆|Y|−1 is the clean label prior defined in Eq. (10), ci201

is a normalisation factor, and ⊙ is the element-wise multiplication. The last term in the RHS of202

Eq. (7) is the KL divergence between q(y|x) and p(ỹ|x,y)p(y), which represents the gap between203

Eq(y|x) [log p(x|y)] and Eq(y|x)

[
log p(ỹ,y,x)

q(y|x)

]
. According to the expectation-maximisation (EM)204

derivation [8, 18], the smaller this gap, the better q(y|x) approximates the true posterior p(y|x), so205

the loss function associated with this third term is:206

LKL(θ, ϕ,D) =
1

|D|
∑

(xi,ỹi)∈D

KL
[
gθ(xi)

∥∥∥fϕ(xi, gθ(xi))⊙ pi

]
. (15)

Our final loss to minimise is207

L(θ, ϕ,D) = LCE(θ, ϕ,D) + LPRI(θ,D) + LKL(θ, ϕ,D). (16)

After training, a test image x is associated with a class with gθ(x). An interesting point about208

this derivation is that the implicit approximation of p(x|y) enables the minimisation of the loss209

in (16) using regular stochastic gradient descent instead of a more computationally complex EM210

algorithm [33].211

4 Experiments212

We show experimental results on instance-dependent synthetic and real-world label noise benchmarks213

with datasets CIFAR10/100 [20]. We also test on three instance-dependent real-world label noise214

datasets, namely: Animal-10N [35], Red Mini-ImageNet [15], and Clothing1M [46].215

4.1 Datasets216

CIFAR10/100 [20] contain a training set with 50K images and a testing of 10K images of size 32217

× 32 × 3, where CIFAR10 has 10 classes and CIFAR100 has 100 classes. We follow previous218

works [44] and synthetically generate instance-dependent noise (IDN) with rates in {0.2, 0.3, 0.4219

,0.5}. CIFAR10N/CIFAR100N is proposed by [43] to study real-world annotations for the original220

CIFAR10/100 images and we test our framework on {aggre, random1, random2, random3, worse}221

types of noise on CIFAR10N and {noisy} on CIFAR100N. Red Mini-ImageNet is a real-world222

dataset [15] containing 100 classes, each containing 600 images from ImageNet, where images223

are resized to 32 × 32 pixels from the original 84 × 84 to enable a fair comparison with other224

baselines [48]. Animal 10N [35] is a real-world dataset containing 10 animal species with five pairs225

of similar appearances (wolf and coyote, etc.). The training set size is 50K and testing size is 10K,226

where we follow the same set up as [5]. Clothing1M is a real-world dataset with 100K images and227

14 classes. The labels are automatically generated from surrounding text with an estimated noise228

ratio of 38.5%. The dataset also contains clean samples for training and validation but we only use229

clean test for measuring model performance.230

4.2 Practical considerations231

We follow commonly used experiment setups for all benchmarks described in Sec. 4.1. 1 For the232

hyper-parameter setup, K in (13) is set to 1, and β in Eq. (11) is set to 0.9. For w in Eq. (12), we follow233

the commonly used Gaussian Mixture Model (GMM) unsupervised classification from [22]. For234

warmup epochs, w is randomly generated from a uniform distribution. Note that the approximation235

of the generative model from (8) is done within each batch, not the entire the dataset. Also, the236

minimisation of LPRI(.) can be done with the reversed KL using KL
[
ci × gθ(xi)∑

j gθ(xj)
⊙ pi

∥∥∥gθ(xi)
]
.237

1Please see the supplementary material about implementation details.
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Method CIFAR10
20% 30% 40% 50%

CE 86.93±0.17 82.42±0.44 76.68±0.23 58.93± 1.54
DMI [47] 89.99± 0.15 86.87± 0.34 80.74± 0.44 63.92±3.92
Forward [32] 89.62±0.14 86.93±0.15 80.29±0.27 65.91±1.22
CoTeaching [12] 88.43±0.08 86.40±0.41 80.85±0.97 62.63± 1.51
TMDNN [49] 88.14± 0.66 84.55±0.48 79.71±0.95 63.33± 2.75
PartT [44] 89.33± 0.70 85.33±1.86 80.59±0.41 64.58± 2.86
kMEIDTM [6] 92.26± 0.25 90.73± 0.34 85.94± 0.92 73.77±0.82
CausalNL [50] 81.47± 0.32 80.38± 0.44 77.53± 0.45 67.39±1.24
Ours 92.65±0.13 91.96±0.20 91.02±0.44 89.94±0.45

Table 1: Accuracy (%) on the test set for CIFAR10-IDN. Most results are from [6]. Experiments are
repeated 3 times to compute mean±standard deviation. Top part shows discriminative and bottom
shows generative models. Best results are highlighted.

Method CIFAR100
20% 30% 40% 50%

CE 63.94±0.51 61.97±1.16 58.70±0.56 56.63±0.69
DMI [47] 64.72±0.64 62.8±1.46 60.24±0.63 56.52±1.18
Forward [32] 67.23±0.29 65.42±0.63 62.18±0.26 58.61±0.44
CoTeaching [12] 67.40±0.44 64.13±0.43 59.98±0.28 57.48±0.74
TMDNN [49] 66.62±0.85 64.72±0.64 59.38±0.65 55.68±1.43
PartT [44] 65.33±0.59 64.56±1.55 59.73±0.76 56.80±1.32
kMEIDTM [6] 69.16±0.16 66.76±0.30 63.46±0.48 59.18±0.16
CausalNL [50] 41.47±0.43 40.98±0.62 34.02±0.95 32.13±2.23
Ours 71.24±0.43 69.64±0.78 67.48±0.85 63.60±0.17

Table 2: Accuracy (%) on the test set for CIFAR100-IDN. Most results are from [6]. Experiments are
repeated 3 times to compute mean±standard deviation. Top part shows discriminative and bottom
shows generative models. Best results are highlighted.

Method CIFAR10N CIFAR100N
Aggregate Random 1 Random 2 Random 3 Worst Noisy

CE 87.77±0.38 85.02±0.65 86.46±1.79 85.16±0.61 77.69±1.55 55.50±0.66
Forward T [32] 88.24±0.22 86.88±0.50 86.14±0.24 87.04±0.35 79.79±0.46 57.01±1.03
T-Revision [45] 88.52±0.17 88.33±0.32 87.71±1.02 80.48±1.20 80.48±1.20 51.55±0.31
Positive-LS [28] 91.57±0.07 89.80±0.28 89.35±0.33 89.82±0.14 82.76±0.53 55.84±0.48
F-Div [42] 91.64±0.34 89.70±0.40 89.79±0.12 89.55±0.49 82.53±0.52 57.10±0.65
Negative-LS [41] 91.97±0.46 90.29±0.32 90.37±0.12 90.13±0.19 82.99±0.36 58.59±0.98
CORES2 [7] 91.23±0.11 89.66±0.32 89.91±0.45 89.79±0.50 83.60±0.53 61.15±0.73
VolMinNet [23] 89.70±0.21 88.30±0.12 88.27±0.09 88.19±0.41 80.53±0.20 57.80±0.31
CAL [55] 91.97±0.32 90.93±0.31 90.75±0.30 90.74±0.24 85.36±0.16 61.73±0.42
Ours 92.57±0.20 91.97±0.09 91.42±0.06 91.83±0.12 86.99±0.36 61.54±0.22

Table 3: Accuracy (%) on the test set for CIFAR10N/100N. Results are taken from [43] using methods
containing a single classifier with ResNet-34. Best results are highlighted.

This reversed KL divergence also provides solutions where the model and implied posterior are close.238

In fact, the KL and reversed KL losses are equivalent when
∑

j gθ(xj) has a uniform distribution239

over the classes in Y and the prior pi is uniform in the negative labels. We tried the optimisation240

using both versions of the KL divergence (i.e., the one in (14) and the one above in this section), with241

the reversed one generally producing better results, as shown in the ablation study in Sec. 4.4. For all242

experiments in Sec. 4.3, we rely on the reversed KL loss. For the real-world datasets Animal-10N,243

Red Mini-ImageNet and Clothing1M we also test our model with the training and testing of an244

ensemble of two networks. Our code is implemented in Pytorch and experiments are performed on245

RTX 3090.246

4.3 Experimental Results247

Synthetic benchmarks. The experimental results of our method with IDN problems on CIFAR10/100248

are shown in Tab.1 and Tab.2. Compared with the previous SOTA kMEDITM [6], on CIFAR10, we249
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Method Noise rate
0.2 0.4 0.6 0.8

CE 47.36 42.70 37.30 29.76
Mixup [53] 49.10 46.40 40.58 33.58
DivideMix [22] 50.96 46.72 43.14 34.50
MentorMix [14] 51.02 47.14 43.80 33.46
FaMUS [48] 51.42 48.06 45.10 35.50
Ours 53.34 49.56 44.08 36.70
Ours ensemble 57.56 52.68 47.12 39.54

Method Accuracy
CE 79.4
SELFIE [35] 81.8
JoCoR [40] 82.8
PLC [54] 83.4
Nested + Co-T [5] 84.1
InstanceGM [11] 84.6
Ours 82.7
Ours ensemble 85.7

Table 4: Test accuracy (%) on Red Mini-ImageNet (Left) with different noise rates and baselines
from FaMUS [48], and on Animal-10N (Right), with baselines from [5]. Best results are highlighted.

CE Forward [32] PTD-R-V [44] ELR [26] kMEIDTM [6] CausalNL [50] Our ensemble
68.94 69.84 71.67 72.87 73.34 72.24 74.35

Table 5: Test accuracy (%) on the test set of Clothing1M. Results are obtained from their respective
papers. We only use the noisy training set for training. Best results are highlighted.

achieve competitive performance on low noise rates and up to 16% improvements for high noise250

rates. For CIFAR100, we consistently improve 2% to 4% in all noise rates. Compared with the251

previous SOTA generative model CausalNL [50], our improvement is significant for all noise rates.252

The superior performance of our method indicates that our implicit generative modelling and clean253

label prior construction is effective when learning with label noise.254

Real-world benchmarks. In Tab.3, we show the performance of our method on the CIFAR10N/100N255

benchmark. Compared with other single-model baselines, our method achieves at least 1% improve-256

ment on all noise rates on CIFAR10N, and it has a competitive performance on CIFAR100N. The Red257

Mini-ImageNet results in Tab.4 (left) show that our method achieves SOTA results for all noise rates258

with 2% improvements using a single model and 6% improvements using the ensemble of two models.259

The improvement is substantial compared with previous SOTA FaMUS [48] and DivideMix [22]. In260

Tab.4(right), our single-model result on Animal-10N achieves 1% improvement with respect to the261

single-model SELFIE [35]. Considering our approach with an ensemble of two models, we achieve a262

1% improvement over the SOTA Nested+Co-teaching [5]. Our ensemble-model result on Clothing1M263

in Tab.5 shows a competitive performance of 74.4%, which is 2% better than the previous SOTA264

generative model CausalNL [50].265

4.4 Analysis266

Ablation The ablation analysis of our method is shown in Tab.6 with the IDN problems on CIFAR10.267

First row (LCE) shows the results of the training with a cross-entropy loss using the training samples268

and labels in D. The second row (LCE + LCE_PRI +LKL) shows the result of our method, replacing269

the KL divergence in LPRI as defined in (14), by a soft version of cross entropy loss. Next, the270

third row (LCE + LPRI + LKL) shows our method with the loss defined in (16). As mentioned in271

Sec. 4.2, these two forms provides similar solution where the model and implicit posterior are close272

and LPRI reverse generally performs better. In the fourth row (LCE + LPRI reversed) by optimising273

the lower bound to Eq(y|x)[log p(x|y)] and finally the last row by optimising the whole objective274

function from (16) in the last row (LCE + LPRI reversed + LKL (Ours)). In general, notice that the275

reversed LPRI improves the results; the KL divergence in LPRI works better than the CE loss; and276

the optimisation of the whole loss in (16) is better than optimising the lower bound, which justifies277

the inclusion of LKL(.) in the loss.278

Coverage and uncertainty visualisation We visualise coverage and uncertainty from Eq. (9) at each279

training epoch for IDN CIFAR10/100 and CIFAR10N setups. In all cases, label coverage increases as280

training progresses, indicating that our prior tends to always cover the clean label. In fact, coverage281

reaches nearly 100% for CIFAR10 at 20% IDN and 97% for 50% IDN. Furthermore, for CIFAR100282

at 50% IDN, we achieve 82% coverage, and for CIFAR10N "worse", we reach 92% coverage. In283

terms of uncertainty, we notice a steady reduction as training progresses for all problems, where the284

uncertainty values tend to be slightly higher for the problems with higher noise rates and more classes.285

For instance, uncertainty is between 2 and 3 for the for CIFAR10’s IDN benchmarks, increasing to be286

8



Method CIFAR10
20% 30% 40% 50%

LCE 86.93 82.42 76.68 58.93
LCE + LCE_PRI +LKL 85.96 82.74 78.34 73.72
LCE + LPRI + LKL 91.36 90.88 90.25 88.77
LCE + LPRI reversed 92.40 90.23 87.75 80.46
LCE + LPRI reversed + LKL (Ours) 92.65 91.96 91.02 89.94

Table 6: Ablation analysis of our proposed method. Please see text for details.

0 20 40 60 80 100
Epoch

0

20

40

60

80

100

Co
ve

ra
ge

0

2

4

6

8

10

Un
ce

rta
in

ty0.2 Cov
0.5 Cov
0.2 Unc
0.5 Unc

(a) CIFAR10-IDN

0 20 40 60 80 100
Epoch

0

20

40

60

80

100

Co
ve

ra
ge

0

20

40

60

80

100

Un
ce

rta
in

ty0.2 Cov
0.5 Cov
0.2 Unc
0.5 Unc
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Figure 3: Coverage (Cov) and uncertainty (Unc) for (a) CIFAR10-IDN (20% and 50%), (b)
CIFAR100-IDN (20% and 50%), and (c) CIFAR10N ("Worse" and "Aggre"). Y-axis shows coverage
(left) and uncertainty (right). The dotted vertical line indicates the end of warmup training.

CE DivideMix [22] CausalNL [50] InstanceGM [11] Ours
CIFAR 2.1h 7.1h 3.3h 30.5h 2.3h
Clothing1M 4h 14h 10h 43h 4.5h

Table 7: Running times of various methods on CIFAR100 with 50% IDN and Clothing1M using the
hardware listed in Sec. 4.2.

between 2 and 4 for CIFAR10N. For CIFAR100’s IDN benchmarks, uncertainty is between 20 and287

30. These results suggest that our prior clean label distribution is effective at selecting the correct288

clean label while reducing the number of label candidates during training.289

Training time comparison One of the advantages of our approach is its efficient training algorithm,290

particularly when compared with other generative and discriminative methods. Tab. 7 shows the291

training time for competing approaches on CIFAR100 with 50% IDN and Clothing1M using the292

hardware specified in Sec. 4.2 . In general, our method has a smaller training time than competing293

approaches, being 1.4× faster than CausalNL [50], 3× faster than DivideMix [22], and and 13×294

faster than InstanceGM [11].295

5 Conclusion296

In this paper, we presented a new learning algorithm to optimise a generative model represented by297

p(X|Y ) that directly associates data and clean labels instead of maximising the joint data likelihood,298

denoted by p(X, Ỹ ). Our optimisation implicitly estimates p(X|Y ) with the discriminative model299

q(Y |X) eliminating the inefficient generative model training. Furthermore, we introduce an informa-300

tive label prior for maintaining high coverage of latent clean label and regularise noisy label training.301

Results on synthetic and real-world noisy-label benchmarks show that our generative method has302

SOTA results, but with complexity comparable to discriminative models.303

A limitation of the proposed method that needs further exploration is a comprehensive study of the304

model for q(Y |X). In fact, the competitive results shown in this paper are obtained from fairly305

standard models for q(Y |X) without exploring sophisticated noisy-label learning techniques. In the306

future, we will use more powerful models for q(Y |X). Another issue of our model is the difficulty to307

estimate p(X|Y ) in real-world datasets containing images of high resolution. We will study more308

adequate ways to approximate p(X|Y ) in such scenario using data augmentation strategies to increase309

the scale of the dataset.310
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