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ABSTRACT

Continual learning (CL) is a setting in which a model learns from a stream of in-
coming data while avoiding to forget previously learned knowledge. Pre-trained
language models (PLMs) have been successfully employed in continual learning
of different natural language problems. With the rapid development of many con-
tinual learning methods and PLMs, understanding and disentangling their inter-
actions become essential for continued improvement of continual learning perfor-
mance. In this paper, we thoroughly compare the continual learning performance
over the combination of 5 PLMs and 4 CL approaches on 3 benchmarks in 2 typ-
ical incremental settings. Our extensive experimental analyses reveal interesting
performance differences across PLMs and across CL methods. Furthermore, our
representativeness probing analyses dissect PLMs’ performance characteristics in
a layer-wise and task-wise manner, uncovering the extent to which their inner lay-
ers suffer from forgetting, and the effect of different CL approaches on each layer.
Finally, our observations and analyses open up a number of important research
questions that will inform and guide the design of effective continual learning
techniques.

1 INTRODUCTION

Continual Learning (CL) methods aim at training a model from a stream of non-i.i.d. samples,
relieving catastrophic forgetting (CF) while limiting computational costs and memory footprint.
Throughout the years, many methods have been proposed to address the CL problem in computer
vision and robotics (Kirkpatrick et al., 2017; Serrà et al., 2018; Buzzega et al., 2020). CL in NLP is
still a nascent topic, as reflected by the relatively smaller number of proposed methods (Biesialska
et al., 2020; Li et al., 2021). However, it is not always easy to precisely measure the merits of these
works. This is partly due to the subtle differences in the way methods are evaluated: many state-
of-the-art approaches only stand out in the setting where they were originally conceived. Moreover,
pretrained language models (PLMs) have been widely applied in CL methods in NLP, and their
addition further complicates the clear understanding of model performance (Han et al., 2020; Wang
et al., 2019; Cao et al., 2020).

Although many works that apply PLM in CL point out the CF problem present in PLMs, there re-
main three significant issues that require further investigation. (1) Many existing CL works employ
specific PLMs such as BERT (Devlin et al., 2019; Rogers et al., 2020), whereas more recent and
sophisticated PLM structures, e.g. ALBERT (Lan et al., 2020) and XLNET (Yang et al., 2019),
have been developed afterwards. A natural question would be whether the later PLMs could better
mitigate CF in continual learning (Mosbach et al., 2021; Lee et al., 2020a). (2) The existing works
focus on input, output, and gradients information of PLMs while ignoring the effect of model archi-
tecture on CF (Biesialska et al., 2020). We believe opening up the black-box of PLMs may lead to
a deep understanding of their characteristics and thus better algorithmic design (Wallat et al., 2020).
(3) Some existing works focus on alleviating forgetting in a trivial setting, during knowledge trans-
fer between two tasks, which is not realistic in general continual learning with more tasks or even
without task boundary (Jiang et al., 2020).
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In this paper, we conduct an in-depth exploration of continual learning through extensive empirical
analysis of a number of PLMs and CL methods. We analyze not only the performance differences
across the combinations of PLMs and CL methods, but also the idiosyncrasies of each PLM.

Our main contributions are as follows:

• We design a rigorous benchmark for comprehensive study of continual learning in NLP.
We conduct experiments over (1) two primary continual learning setting, including task-
incremental learning and class-incremental learning; (2) three benchmark datasets with
different data distributions and task definitions, including relation extraction, event classifi-
cation, and intent detection; (3) four CL approaches with six baseline methods implemented
for systematic comparison; and (4) five pretrained language models.

• We evaluate and contrast the performance of the above combinations of settings, PLMs and
CL methods, providing a comprehensive comparative study from a number of perspectives.

• We dissect the performance characteristics of different PLMs with a number of layer-wise
probing analyses.

• Our observations and insights give rise to a number of open research questions that can
guide the design and optimization of better PLM-oriented continual learning methods and
CL-oriented pretraining strategies.

• To encourage more research on continual learning in NLP, we release the code and dataset
as an open-access resource on https://github.com/wutong8023/PLM4CL.
git.

2 BACKGROUND

In this section, we provide the required background on pre-trained language models as well as
continual-learning settings, methods and evaluation metrics.

2.1 PRETRAINED LANGUAGE MODELS

It now become the best practice to incorporate PLMs into NLP systems for many problems such
as question answering, machine reading comprehension, summarization, to name a few. Usually,
making use of PLMs in such systems leads to significant performance gains in (weakly) supervised
learning. In this work, we investigate the use of PLMs in continual learning. We now briefly
introduce five typical PLMs that are evaluated in our work.

BERT (Devlin et al., 2019) is the most representative PLM, which uses bi-directional deep Trans-
formers (Vaswani et al., 2017) as the backbone. BERT adopts the Masked Language Modeling
(MLM) and the Next Sentence Prediction (NSP) as the self-supervision tasks for pre-training.

ALBERT (Lan et al., 2020) ALBERT is a lite version of BERT which sets the parameters of all
Transformer blocks shared across all layers and factorizes the embedding matrices into two small
size of matrices. Instead of NSP, ALBERT predicts the order of two consecutive textual seg-
ments. Although ALBERT utilizes significantly less memory, fine-tuning it on downstream tasks
can achieve close performance to that of BERT.

RoBERTa (Liu et al., 2019) RoBERTa has almost the same architecture as BERT, while it differs in
terms of three training procedures. RoBERTa removes the NSP loss, trains a model with bigger size
and longer sequences, and creates dynamic MLM masks vs static ones used in BERT.

GPT2 (Radford et al.) Unlike the aforementioned PLMs which are all masked language models,
GPT2 is an autoregressive language model predicting one token at a time from left to right. GPT2
is often used for natural language generation, while the aforementioned PLMs are mostly used for
natural language understanding.

XLNET (Yang et al., 2019) Unlike the masked language models, GPT2 can not utilize the context
from the backward side. XLNET is an autoregressive language model as well, while it resolves this
problem by adopting a new objective called Permutation Language Modeling, enabling the model
to take advantage of both forward and backward contexts.
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2.2 CONTINUAL LEARNING SETTINGS

Continual learning (CL) focuses on the development of learning algorithms able to accumulate
knowledge on non-stationary data. CL approaches are benchmarked on their ability to learn a se-
quence of tasks without forgetting previously acquired knowledge. They are typically evaluated on
incremental classification settings.

Some popular incremental learning scenarios in CL (van de Ven & Tolias, 2019; Zeno et al., 2018)
include: class-incremental learning and task-incremental learning. In the training time of these in-
cremental learning settings, a CL algorithm experiences each task sequentially (only once), and is
informed about the distribution shift (aka the task boundary). They, however, differ in their assump-
tions about the evaluation. In task-incremental learning, the model relies on the task identity (or a
task label) to make its prediction. Conversely, in class-incremental learning, the methods have to
perform task inference, implicitly (Aljundi, 2019) or explicitly (Lee et al., 2020b). We will cover
both settings in our study. A lesser known setting, namely Domain-incremental learning, also re-
laxes the task-ID dependence, but shares the same output head for each task. For more details on
these settings, see (van de Ven & Tolias, 2019).

2.3 CONTINUAL LEARNING APPROACHES

Many continual-learning approaches have been proposed recently, e.g., see Delange et al. (2021) for
an overview, which can be categorised as follows:

Rehearsal-based Approach The simplest way to reduce forgetting is to store samples from the
past and reuse them to complement the learning of new tasks. In its simplest form, old samples are
replayed with new data. This strategy, known as experience replay (ER), (Rolnick et al., 2019) is
often a hard to beat baseline. Numerous rehearsal-based methods have been developed to increase
ER’s performance or efficiency (Aljundi et al., 2019a; Caccia et al., 2019; Hayes et al., 2018).
Instead of replays, some methods use the old sample to perform constrained optimization to prevent
increasing the loss on old tasks (Lopez-Paz & Ranzato, 2017; Aljundi et al., 2019b).

Regularization-based Approach Also know as prior-based approaches, these methods prevent
significant updates to the parameters that are deemed important for the previous tasks. Their first in-
stantiation appeared in the Elastic-Weight Consolidation (EWC) (Kirkpatrick et al., 2017), where the
previously learned weights are restrained from drifting via an L2 regularization loss. Regularization-
based strategy often rely on the task boundaries to consolidate their knowledge during training. They
often fail on long tasks sequences or settings where the task identity is not observable (Farquhar &
Gal, 2018; Lesort et al., 2019b; Chaudhry et al., 2018). Despite these findings, prior-focused meth-
ods are actively researched (Zeno et al., 2018; Nguyen et al., 2018).

Dynamic Architecture Approach Also know as parameter-isolation methods, this family of al-
gorithm alleviates forgetting by using different subset of parameters for fitting different tasks. One
popular approach, called Hard Attention to the Task (HAT) (Serrà et al., 2018), achieves parameter
freezing through an attention mask that is learned concurrently at every tasks. Other similar strate-
gies have also been proposed (Yoon et al., 2017; Schwarz et al., 2018). Similarly to regularization-
based methods, dynamic architectures usually assume the availability of test-time task labels, and
thus are not straightforwardly applicable in more realistic settings. A notable exception can be found
in Ostapenko et al. (2019).

Hybrid Approach Some hybrid strategy from different strategy also exist. E.g. Dark Experience
Replay (DERPP) Buzzega et al. (2020) proposes a method at the intersection of rehearsals and
regularization based methods.

The rapid growth of continual learning has lead researchers to work on empirical studies (De Lange
et al., 2019; Lesort et al., 2021b), surveys (Hadsell et al., 2020; Khetarpal et al., 2020; Lesort et al.,
2021a; Mundt et al., 2020; 2021) as well as CL-specific software (Normandin et al., 2021; Douillard
& Lesort, 2021; Lomonaco et al., 2021). Further approaches are detailed in Appendix A.
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3 BENCHMARKING CONTINUAL LEARNING OF PLMS

In this section, we first compare the performance of different combinations of CL methods and
PLMs on three benchmark datasets, and we explore the following three research questions: (1) Does
the catastrophic forgetting problem exist in PLMs during continual learning? (2) Which continual
learning approach is the most efficient for PLMs and why? (3) Which PLM is the most robust for
continual learning and why?

3.1 EXPERIMENTAL SETUP

Methods. We adopt 5 representative PLMs for evaluation, i.e., ALBERT (Lan et al., 2020),
BERT (Devlin et al., 2019), GPT2 (Radford et al., 2019), RoBERTa (Liu et al., 2019), and XL-
NET (Yang et al., 2019). By combining a PLM and a linear classifier as the backbone model,
we investigate the following 4 approaches for the comparative study: (1) Vanilla uses the model
learned on previous tasks as initialization and then optimizes the parameters for the current task.
This baseline greedily trains the model on each task without accessing data from previous tasks,
and is thus severely prone to catastrophic forgetting. It serves as a weak lower bound in terms
of the average accuracy. (2) Joint trains on the entire training set simultaneously in the conven-
tional supervised learning setup. Therefore, Joint does not suffer from forgetting and represents the
performance upper bound. (3) EWC (Kirkpatrick et al., 2017) is a regularization-based methods,
extending the loss function with a regularization term that slows down the updates of the impor-
tant network weights. (4) HAT (Serrà et al., 2018) is a dynamic architecture method, employing a
heuristic strategy to prevent intransigence by allocating additional units to the network when needed.
(5) ER is a rehearsal-based method, interleaving old samples with current data in training batches.
(6) DERPP (Buzzega et al., 2020) is a hybrid method, combining the strategy of rehearsal and reg-
ularization which prevents the prediction logits of memorized samples from changing. Following
DERPP (Buzzega et al., 2020), we simulate the sequence of tasks according to the class-incremental
learning setting (i.e. Class-IL or CIL) and task-incremental learning setting (i.e. Task-IL or TIL),
splitting the training dataset into partitions of classes/tasks. Training details and hyper-pearameters
are in Appendix C

Metrics. To measure the FWT and BWT abilities of the CL models, we assume access to a test set
for each task. After the model learning on the training set of task t, we present the evaluation results
on all T tasks. We adopt three evaluation metrics as in (Lopez-Paz & Ranzato, 2017): (1) Forward
transfer FWT = 1

T−1

∑T−1
i=2 AT,i − b̃i; (2) Backward Transfer BWT = 1

T−1

∑T−1
i=1 AT,i − Ai,i;

And average accruacy Avg. ACC = 1
T

∑T
i=1AT,i, where At,i is the accuracy of models on the test

set of ith task after model learning on the tth task and b̃i is the test accuracy for task i at random
initialization. In addition to FWT and BWT, we consider average accuracy as a key performance
measure, measuring the accuracy of past tasks after the model has moved on to learning new tasks.

Datasets. We evaluate our methods on 3 datasets with distinct label distributions, covering the
following domains. CLINC150 (Larson et al., 2019) is an intent classification dataset with labels
evenly distributed, including 150 classes and 100 instances per class. Maven (Wang et al., 2020) is
a long-tailed event detection dataset with 163 classes, each of which is labelled at least 15 instances,
reaching a total of 47,921 instances. WebRED (Ormandi et al., 2021) is a severely long-tailed
relation classification dataset with 243 classes, each of which is labelled with at least 15 instances,
reaching a total of 31,441 instances. Adhering to (Wu et al., 2021), we randomly split each dataset
into disjoint tasks, and each tasks contains 10 classes. For each class, we randomly split the dataset
set into train, validation and test set by 10:2:3. To reduce the amount of computation, we cap the
number of instances per class for both Maven and WebRED to 1000. The data distributions of the
three datasets is visualized in Appendix B.

3.2 RESULTS AND DISCUSSIONS

The main evaluation results over all studied PLMs and CL methods, in terms of accuracy, are sum-
marized in Table 1. For the Task-IL setting, Figure 1 shows a comparison between the PLMs (a–d)
and between CL methods (e–h) in terms of accuracy, backward transfer, forward transfer, and train-
ing time. Performance measure is averaged across the three datasets. From these results we can
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Settings Class-IL Task-IL

PLMs (Parameters) Vanilla EWC ER DERPP Joint Vanilla EWC HAT ER DERPP Joint

ALBERT(11.78M)
C 6.04 6.29 63.07 73.24 94.58 15.24 14.09 19.96 77.96 86.96 96.84
M 6.25 6.21 36.56 36.43 83.28 16.86 14.34 22.31 57.40 55.42 92.29
W 3.41 3.80 22.65 19.52 61.19 14.66 11.94 16.95 47.21 43.7 93.33

BERT(109.57M)
C 15.09 12.11 82.13 86.29 95.69 51.22 41.71 34.56 92.00 94.71 97.07
M 7.62 6.85 57.06 50.38 99.81 31.24 24.18 33.53 39.74 66.40 99.98
W 4.21 4.02 36.11 29.42 69.78 15.75 21.00 21.11 59.86 47.47 95.56

GPT2(124.53M)
C 9.78 9.76 74.47 83.67 95.18 32.11 30.76 27.62 86.58 92.20 97.00
M 6.27 6.26 50.17 46.31 93.39 20.99 23.54 20.25 69.70 62.82 99.24
W 4.10 4.53 29.77 22.64 66.06 19.60 20.50 16.81 58.26 46.83 93.41

RoBERTa(124.74M)
C 14.89 11.20 83.04 83.62 96.31 50.76 37.18 38.09 91.84 90.38 97.89
M 7.00 6.85 52.35 46.49 99.46 26.90 28.97 33.24 72.01 62.10 99.96
W 5.15 3.99 36.24 35.10 71.89 23.88 17.08 19.31 61.99 54.41 95.06

XLNET(116.81M)
C 8.53 10.20 72.22 78.67 95.64 36.51 35.71 48.67 87.64 89.38 97.38
M 6.40 8.98 53.26 46.81 99.69 24.76 32.15 39.74 75.12 61.19 99.96
W 4.90 4.13 39.36 30.13 68.81 22.82 20.73 24.43 64.28 44.49 95.28

Table 1: Accuracy on benchmark datasets with two continual learning setting, where “C” is sequen-
tial CLINC150 dataset, “M” is the sequential MAVEN dataset, and “W” is the sequential WebRED
dataset.

make the following observations on the three research questions that we posed previously. More
analysis can be found in D and F.

(a) Overall evaluation results in task-incremental learning grouped by PLM, including (1) accuracy↑, (2) back-
ward transfer↑, (3) forward transfer↑, and (4) time↓.

(b) Overall evaluation results in task-incremental learning grouped by continual learning method, including (1)
accuracy↑, (2) backward transfer↑, (3) forward transfer↑, and (4) time↓.

Figure 1: Performance comparisons between PLMs (first row) and CL methods (second row) under
the Task-incremental setting. For each row, the upper row is the results grouped by PLMs and the
lower row is the results grouped by CL methods. For each column, from left to right the y label is
accuracy, backward transfer, forward transfer, and time (in hours) respectively. Performance results
are averaged across the three datasets. Note that the time spent by Joint in (a) and (b) is the time
spent on training with the entire training set once.

For PLMs, catastrophic forgetting is serious. For each PLM, the performance gap between Vanilla
and Joint indicates the PLM’s tendency towards forgetting. For all PLMs on all three datasets, we
can consistently observe significant performance gaps between the two methods, where the gaps are
even more pronounced in Class-IL. This observation indicates that, without specialised algorithms,
a direct adoption of PLMs in a CL environment will result in severe performance penalty.

Imbalanced data is natural yet harder in continual learning than in conventional supervised
learning. Comparing the performance on different datasets, we notice that PLMs often achieve
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better performance on more evenly distributed data (i.e. CLINC150 better than Maven better than
WebRED). Compared to the conventional supervised setting (Joint), continual learning methods,
including the well-performing methods such as ER and DERPP, are much more negatively impacted
by data imbalance. This can be more easily observed in Figure 1(b-1).

Experience replay is the most robust method while regularization is not. Comparing the four dif-
ferent CL methods, as shown in Figure 1(a-2), we can observe that the methods adopting memory-
replay (ER and DERPP) achieve much higher accuracy and higher backward transfer than the others
(EWC and HAT). For dynamic architecture-based methods, HAT is the only method benefiting from
continual learning, as it shows the positive Forward Transfer (FWT) in Figure 1(a-3, b-3). However,
the higher training time, the lower accuracy, and the requirement for task label (thus inapplicable
for Class-IL) do limit the applicability of HAT. Counterintuitively, the regularization-based method
EWC shows the worst performance in our experimental setting. DERPP, which adopts both regu-
larization and experience replay, reaches the highest accuracy on CLINC150. Surprisingly, it per-
forms worse than ER on the other two imbalanced datasets (Figure 1(b-1,2)), which indicates that
regularization-based methods may not be as robust as those based on experience replay.

BERT is still a good option for continual learning. Comparing different PLMs, there is no obvious
difference on average accuracy and backward transfer, as shown in Figure 1(a-1,2). RoBERTa and
GPT2 show the lowest FWT values in Figure 1(a-3), which means that their representative ability has
been interfered the most during continual learning. For XLNET, Table 3 shows that it conducts the
lowest computation per instance yet Figure 1(a-4) shows that it spends the longest time in training.
In comparison, ALBERT has the least parameters and approx. equal time to obtain a competitive
performance. As shown in Figure 1(a), BERT is still a good choice for continual learning scenarios
as it achieves the highest accuracy while being competitive on the other three metrics.

3.3 NEW RESEARCH QUESTIONS

The above results show that among all PLMs, BERT is the most robust, and that among all CL
methods, those based on experience replay are the most performant.These observations lead to the
following important research questions.

(1) What happens inside the black box of BERT during continual learning?

(2) What is the performance difference across PLMs and across the layers inside each PLM?

(3) Why are replay-based methods more robust than regularization-based methods?

(4) In which layers does replay make the most contributions?

We further explore these research questions in Sections 4 and 5.

4 MINING THE SECRETS OF LAYERS IN BERT

In this section, we dive into BERT to provide a detailed analysis on the severity of forgetting on
each of its layers, addressing RQ (1) of Section 3.3. Performing such an analysis further allows
us to gain an understanding of the possible reasons of the robustness of experience replay-based
methods, addressing RQ (3) of Section 3.3.

Generally speaking, the representative ability of a PLM increases with the increase of layers since
such a bottom-up process can gradually gain more task-specific features. Hence, we put forward
two possible reasons to catastrophic forgetting on BERT. (1) The continual learning problem with
the PLM’s ability to retrain the inner representations, which leads to catastrophic forgetting. (2) The
continual learning of incremental tasks has minor influence on PLMs, but the classifier layer is the
bottleneck. To investigate the above assumptions, we designed the following probing experiments.

4.1 PROBING SETTINGS

To investigate the representation ability per layer of a PLM, we follow Saunshi et al. (2019) and
propose a prototype-based probing method (See Appendix E), which takes the layer-wise mean
representation of instances belonging to the same class in the test set as the prototype representation
of the class, and re-classify test instances by distance-based classification for the layer.
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(a) BERT + Vanilla (layer) (b) BERT + ER (layer) (c) BERT + DERPP (layer)

(d) BERT + Joint (layer) (e) BERT+Vanilla (task) (f) BERT + ER (task)

(g) BERT + DERPP (task) (h) BERT + Joint

Figure 2: Layer-wise and task-wise probing of PLMs during continual learning, where clf means
classifier illustrating the prediction accuracy, number k ∈ [1, 12] means representative of the k-th
layer in a PLM.

Hence, we can use the mean classification accuracy as a short-hand for the representative ability for
each layer, and obtain T × N results to track the performance per layer during continual learning,
where T is the number of learned tasks, i.e., time steps, and N is the number of layers in a PLM,
typically 12. To compare the the inner representative ability and the model output, we also track the
prediction accuracy per task, which is denoted by clf . Note that, by comparing layer 12 and clf , we
could learn the gap between the remaining representative ability of a PLM and the performance of a
backbone model. To provide a fair comparison, we obtain the results for joint multi-task training by
retraining a new backbone model from scratch at each time step, rather than retraining a model over
seen data sequentially.

Figure 2 shows the probing results, in which we probe BERT with Vanilla, Joint and two CL methods
based on experience replay, namely ER and DERPP. The analysis is done in two settings, layer-wise
and task-wise.

Layer-wise Probing. In row 1, (a–d), the x-axis is the layers of BERT, and each line represents the
accuracy after the model is trained with task t, as measured by the testsets of tasks 1 up to t.

Task-wise Probing. In row 2, (e–h), the x-axis represents the tasks, and each line represents the
representativeness of each inner layer as well as the backbone model (clf ), as measured by the
testsets of tasks 1 up to t after the model is trained with task t.

4.2 RESULTS AND DISCUSSIONS

Catastrophic forgetting occurs in both the last and middle layers. As shown in Figure 2(a–d), com-
paring the layer-wise performance of Vanilla to the other three methods, an obvious drop appears
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(a) ALBERT + Vanilla (b) GPT2 + Vanilla (c) RoBERTa + Vanilla (d) XLNET + Vanilla

(e) ALBERT + buffer size (f) GPT2 + buffer size (g) RoBERTa + buffer size (h) XLNET + buffer size

Figure 3: The buffer size analysis of ER. The first row is the detailed layer-wise analysis for different
PLMs with Vanilla; The second row is the averaged layer-wise probing for ER with various buffer
sizes. The color-scale represents the probing performance.

in Vanilla between layer 12 and the final classifier layer for all tasks except task 1. This result in-
dicates that although BERT still maintains a high representative ability at the last time step, yet the
classifier has already lost the ability to classify previously learned classes. Furthermore, as shown
in Figure 2(e), the bottom (i.e. earlier) layers of BERT are consistently less representative than the
top layers, and the drop is the most significant in the 6th and the classifier layers.

Regularization of outputs cannot prevent the forgetting in the bottom layers. Besides experience
replay, DERPP also adopts regularization on the final classifier layer. Comparing ER and DERPP in
Figure 2(f) and (g), DERPP can better constrain the clf layer to maintain the representativeness of
BERT, but it is less effective than ER on constraining the drop of the middle layers. Such differences
may partially explain why ER could be more robust than regularization-based methods.

The layer-wise and task-wise probing experiments give rise to the following research questions that
may shed lights on further improvements of CL methods. (1) The regularization of the middle
layers may improve continual learning performance. (2) The magnitude of the difference between
the last and penultimate layer shows that it is mostly a badly calibrated output layer that causes the
forgetting.

5 UNDERSTANDING THE EFFECTIVENESS OF EXPERIENCE REPLAY

In this section, we probe the possible reasons behind the effectiveness of experience replay. We do
so by trying to understand why BERT is robust among all PLMs (RQ (2) in Section 3.3), and by
analyzing the effect of replay on different layers of PLMs (RQ (4) in Section 3.3). See Appendix G
for more results.

5.1 PROBING SETTING

We extend the probing method in the above section to the following two probing settings.

Layer-wise Probing for Vanilla. As shown in Figure 3(a–d), we evaluate the layer-wise represen-
tativeness of different PLMs (except BERT) with Vanilla.

Averaged Layer-wise Probing for ER with Various Buffer Size. Figure 3(e–h) shows the mean
accuracy per layer across time steps for ER with different buffer sizes, i.e., the number of seen
training instances stored for the future replay. Doing so allows us to investigate on which layers do
experience replay make the most contributions.
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5.2 RESULTS AND DISCUSSION

The layer-wise representativeness varies significantly across PLMs. As shown in Figure 3(a-d),
although the prediction of clf is similar across PLMs, the performance characteristic of each PLM
on their inner layers varies a lot. For example, due to its parameter-sharing mechanism, the hidden
layers of ALBERT are more fragile than BERT (Figure 2(a)) and RoBERTa (Figure 3(c)), with
larger accuracy gaps across tasks. Figure 3(e-h) shows that which layers benefit the most from the
increase in buffer size differs across PLMs. ER improves the performance of layer 12 and clf layers
in XLNET, but for RoBERTa and GPT2 it is mainly the clf layer.

Compared with the classification layer, the representation of some inner layers maintains a high
performance. We notice a similar layer-wise performance curve in both BERT and RoBERTa, as
shown in Figure 2(a) and Figure 3(c). In both cases, layers 7 to 12 seems to be robust during
continual learning. For XLNET, the robust layers are 3 to 10, with a dramatic drop in layer 11.
Moreover, some fragile layers can be observed for each PLM, such as layer 6 of BERT in Figure 2(e)
and layer 12 for GPT2, and layer 11 for XLNET.

The robust layers in pretrained model may provide us the free lunch that we can extract features
for metric-based classification without extra computation and buffer memory. The probing over five
pretrained language model shows the existence of robust layer in BERT, XLNET, and RoBERTa.
However, the post-selection of pretrained model and configuration may not always feasible in real-
world applications, we believe it is an important direction to predict and dynamically detect the
robust layer for better continual learning performance.

6 CONCLUSION

In this paper, we conduct the first comprehensive comparative study that sheds light on the perfor-
mance characteristics of continual learning across representative language models and CL methods,
as well as a detailed layer-wise analysis within language models. The insights gained from this
study open up new research questions that will inspire further research on continual learning based
on pre-trained self-supervised models.

Our comparative study on pretrained language models for continual learning provides more in-
sights on different aspects of performance, uncovers new opportunities for the development of NLP-
specific continual learning methods in which language models play a central role. Broadly speaking,
the future impact of our work is threefold: (1) Criteria and strategies for selecting a PLM for con-
tinual learning. (2) Techniques for utilizing the layer-wise insights of a specific PLM for continual
learning. Given the fragile layer and robust layer of a PLM, novel dynamic adapter structures, replay
or regularization methods may be explored for more robust continual learning. (3) The open-source
toolkit and best practices for consistent evaluation of CL performance.
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A FURTHER RELEVANT APPROACHES TO CONTINUAL LEARNING

Instead of using previously-stored data for replay, some methods will train a generative model along-
side their classifier and perform the rehearsal on generated samples. These methods are often re-
ferred to as generative replay Shin et al. (2017); Lesort et al. (2019a); Ostapenko et al. (2019).

Furthermore, the field of meta-learning, now interrelating with continual learning, as provoked the
emergence of new methods. In meta-continual learning Javed & White (2019); Vuorio et al. (2018),
algorithms are learning how to continually learn. The hope is that the continual-learning problem
can be solved in a data-driven way by the learning algorithm itself. In continual-meta learning, the
task-agnostic CL setting, i.e., where the task boundaries aren’t provided during training, is tackled.
The algorithms perform fast adaptation Riemer et al. (2018) to adapt to the current task He et al.
(2019); Caccia et al. (2020).

B DATASET DISTRIBUTIONS

The distribution of each dataset are summarized as Figure 4.

(a) Training instances distribution in CLINC150

(b) Training instances distribution in MAVEN

(c) Training instances distribution in WebRED

Figure 4: Data distribution

C MODEL TRAINING AND HYPER-PARAMETERS

Hyperparameter selection. For each combination of PLM and CL scheme, we perform a com-
bined grid-search for Class-IL and Task-IL, choosing the configuration that achieves the highest
final accuracy averaged on the two settings.

Typically, we summarize the details of implementation as follows:

Training. To provide a fair comparison among CL methods, we train all the networks using the
AdamW Mosbach et al. (2021) optimizer, and select 10e-5 as the learning rate for all pretrained
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Method Key Value Note

Vanilla

EWC
num checkpoint 1 As the size of pretrained model is typically large, we only keep the check point from last task for regularization.

λ 1,000,000 The weight for panalty, selected from [0.1, 1, 10, 100, 1,000, 50,000, 1,000,000, 10,000,000]
γ 0.2 The weight for updating fisher information, selected from [0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 1].

ER buffer size 200 500 for MAVEN and WEBRED.
Sampling Method Reservoir Refer to DERPP

HAT

λ 0.7 The weight for panalty, selected from [0.1, 0.5, 0.7, 1, 10, 100, ]
smax 400 The scaling parameter for quantilization, refer to HAT.

coshthreshold 50 The threshold for clamping, refer to HAT
embedthreshold 6 The threshold for embedding clamping, refer to HAT

DERPP

buffer size 200 500 for MAVEN and WEBRED.
Sampling Method Reservoir Refer to DERPP

α 0.5 The weight for logits distillation, selected from [0.1, 0.5, 0.7, 1, 10, 100].
β 1 The weight for experience replay, selected from [0.1, 0.5, 0.7, 1, 10, 100].

Table 2: The hyper-parameters of each baseline method.

ALBERT BERT GPT2 RoBERTa XLNET

GMac 3.9 4.25 —— 4.25 2.83
Parameters 11.78M 109.57M 124.53M 124.74M 116.81M

Table 3: Experimental computation complexity per instance.

backbone models. We deliberately hold batch size and minibatch size out from the hyperparameter
space, thus avoiding the flaw caused by the different numbers of update steps for different methods.

D COMPUTATION COST

To provide a perspetive on computational complexity, we also measure the giga multiply-accumulate
operations (GMac) per instance (spans of 50 tokens randomly selected from Maven) for each PLM
and its number of parameters, as shown in Table 3.

E PROBING METHOD

As shown in Algorithm 1, we do layer-wise probing with the layer-wise prototype-based classifica-
tion on validation dataset.

F FINAL STAGE PROBING

As shown in Figure 5 and Figure 7, pretrained language models show different layer-wise robustness
at the last stage of task-incremental and class-incremental settings.

G OVERALL PERFORMANCE ON PLMS

As shown in Figure 7, pretrained language models demonstrate different task-wise representability
during continual learning.
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Algorithm 1: Function of Layer Evaluation Evaluate Layer(·)
Input: Classification model hθ; Validation Dataset Dval, Feature layers Af , Candidate Feature Layers

Ac.
1 Sample examples (xk, yk) ∈ K ⊆ Dval

2 Detach layer-wise hidden states hlk ∈ R|K|×|Ac|×d for xk ∈ K and l ∈ Ac
3 Get layer-wise prototype vlc via averaging hlk by class
4 Get layer-wise distance distlk ← σ(hlk · vlc) per example
5 Get layer-wise representability accAc ← 1

|K|
∑
k I(argmax[distlk], yk)

6 return accAc

(a) ALBERT (b) BERT

(c) RoBERTa (d) GPT2 (e) XLNET

Figure 5: The layer-wise performance of PLMs during task-incremental learning.
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(a) ALBERT (b) BERT

(c) RoBERTa (d) GPT2 (e) XLNET

Figure 6: The layer-wise performance of PLMs at the last stage of class-incremental learning.

(a) ALBERT (b) BERT

(c) RoBERTa (d) GPT2 (e) XLNET

Figure 7: The task-wise performance of PLMs during class-incremental learning.
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