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Abstract

We are born with the ability to learn concepts by comparing diverse observations.
This helps us to understand the new world in a compositional manner and facilitates
extrapolation, as objects naturally consist of multiple concepts. In this work, we
argue that the cognitive mechanism of comparison, fundamental to human learning,
is also vital for machines to recover true concepts underlying the data. This
offers correctness guarantees for the field of concept learning, which, despite its
impressive empirical successes, still lacks general theoretical support. Specifically,
we aim to develop a theoretical framework for the identifiability of concepts with
multiple classes of observations. We show that with sufficient diversity across
classes, hidden concepts can be identified without assuming specific concept types,
functional relations, or parametric generative models. Interestingly, even when
conditions are not globally satisfied, we can still provide alternative guarantees
for as many concepts as possible based on local comparisons, thereby extending
the applicability of our theory to more flexible scenarios. Moreover, the hidden
structure between classes and concepts can also be identified nonparametrically.
We validate our theoretical results in both synthetic and real-world settings.

1 Introduction

Humans possess an innate ability to learn concepts by comparing diverse classes of observations,
a process foundational to cognitive development [1, 2]. For example, a child distinguishes between
different types of animals not by memorizing each species separately, but by observing and
comparing differences between various species, thereby identifying the unique concepts that define
each group (e.g., Fig. 1). This mechanism of learning through comparison has been extensively
studied and verified across various fields, including psychology and neuroscience, affirming its
universality and effectiveness [3].

Figure 1: The class “shark”
has concepts like “predator,”
“sleek body,” and “ocean.”

Meanwhile, in machine learning, the extraction of conceptual fea-
tures is crucial for the development of robust and interpretable mod-
els, illustrating the integration of cognitive principles into machine
intelligence [4, 5]. Recent research has achieved notable success in
deriving human-interpretable concepts from various data modalities
with different formulations of the problem [6–18]. These concepts
have proven beneficial for tasks such as extrapolation [19–21], ex-
planation [8, 22–24], and decision-making [25–27]. Furthermore,
advancements in this domain have significantly contributed to sci-
entific discovery, particularly in healthcare [28, 29].

While numerous methods have been developed to extract concepts from data, most provide only
empirical support and lack theoretical guarantees concerning the correctness of the recovered concepts.
With the help of specific parametric assumptions, few studies have explored the identifiability of
concept learning. For example, by assuming all concepts are linearly related, recent research [30] has
shown that the concept space can be identified up to a linear transformation. Another line of research
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has tackled object-centric learning, attempting to identify individual objects as groups of pixels (slots),
such as trees or dogs, while excluding more abstract concepts like lighting and styles. In addition to
these concept type restrictions, further assumptions are also required for the identifiability results,
such as no occlusion between objects [31, 32] or the additivity of the generating process [20, 32].
These studies mark significant exploration toward understanding concept learning. At the same
time, the constraints imposed on concept types and functional relationships may limit the confidence
to fully account for the empirical success observed in concept learning from real-world scenarios.
Therefore, despite significant empirical progress, a fundamental question in concept learning remains
unanswered:

In the most general cases, which concepts can we reliably recover?

We try to provide an answer by drawing inspiration from the fundamental cognitive mechanism
through which humans learn concepts, i.e., comparing diverse classes of observations. For an infant,
devoid of empirical world knowledge, it is impossible to learn new concepts from two classes of
observations if they share an identical set of concepts. It is only through discerning the differences
between these classes that humans can unravel and understand previously unseen concepts. As a
result, in the most general setting, the essential information for provably learning hidden concepts
must pertain to the diversity present among different classes.

Inspired by this cognitive process of learning by comparison, we establish a set of theoretical
guarantees on concept learning in the general setting. We show that hidden concepts can be identified
without relying on assumptions about the nature of the concepts or specific parametric models,
provided there is sufficient diversity across classes. Specifically, we first prove that for any pair
of classes, the unique part of the concepts for each class can be disentangled from the remaining
concepts (Thm. 1). This pairwise comparison1 serves as a foundational prototype for learning
concepts, enabling the flexible identifiability of as many concepts as possible, given that they exhibit
enough diversity, even when others do not. We then extend the pair-wise identifiability to learn unique
concepts from an arbitrary subset of classes (Prop. 1). Given that most related works rely on global
assumptions for all concepts and fail to offer guarantees when assumptions are partially violated for
some concepts, the proposed flexible identifiability by local comparisons provides unique practical
value, since real-world scenarios often do not perfectly conform to ideal conditions for all concepts.

Furthermore, with sufficient diversity across different classes of observations, we prove the non-
parametric identifiability for all class-related hidden concepts up to an element-wise transformation
and permutation (Thm. 2). For other invariant background concepts, such as "chromatic" that
remain consistent across all classes, we can also identify them under appropriate structural diversity
conditions (Prop. 3). Consequently, we introduce, to the best of our knowledge, one of the first
frameworks for concept identifiability in the general setting that does not confine itself to specific
concept types or parametric generative models. Moreover, the connective structure between classes
and concepts can also be recovered in a nonparametric way (Prop. 2). Our theoretical results are
substantiated through empirical validation on synthetic data and four different real-world datasets.

2 Preliminaries

Figure 2: The problem setting.

In this section, we introduce the problem setting as well as some
essential notations. Fig. 2 illustrates the key notations and relations
of the considered setting. We also provide a structured summary of
notations in Appx. A for a quick reference.

Data-generating Process. Let x = (x1, . . . ,xm) ∈ X ⊆ Rm

be a vector representing observed variables. We assume that the
observation x is generated by hidden concepts z = (zA, zB) ∈ Z ⊆
Rn. The generating process is as follows:

x := f(z), (1)

where we divide z into the class-dependent part zA =
(z1, . . . , znA

) ∈ ZA ⊆ RnA and class-independent part zB = (znA+1, . . . , zn) ∈ ZB ⊆ RnB .
The class-dependent part zA and class-independent part zB are conditionally independent given

1It might be worth noting that learning by comparison serves as an inspiration for our identifiability theory,
rather than being a specific estimation method like contrastive learning.
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classes c = (c1, . . . , cu), i.e., p(z|c) = p(zA|c)p(zB). We denote the number of classes as
k. The density p(z|c) is smooth and positive. Since zA depends on the classes c, we represent
zA := g(c, θ, ϵ), where θ denotes a set of other factors and ϵ denotes a potential noise term. Let Ai

denote the index set of concepts corresponding to class ci, with the associated concepts represented
as zAi

. Likewise, zAi\Aj
refers to the difference in the concept sets between classes ci and cj .

The generating function f is a general injective function that encodes potentially complex mixing
procedures to generate the observational data. Meanwhile, we do not constrain z to be of specific
distributions like Gaussian. Consequently, we consider a general formulation of the problem that
covers different types of concepts and nonparametric generative models.

Technical Notations. Throughout this work, for any matrix S, we use Si,: to denote its i-th
row, and S:,j to denote its j-th column. For any set of indices I ⊂ {1, . . . ,m} × {1, . . . , n},
analogously, we have Ii,: := {j | (i, j) ∈ I} and I:,j := {i | (i, j) ∈ I}. We also denote
the support of the matrix S ∈ Ra×b as supp(S) := {(i, j) | Si,j ̸= 0}. With a slight abuse of
notation, we reuse supp(·) to denote the support of a matrix-valued function S(Θ) : Θ → Ra×b,
i.e., supp(S(Θ)) := {(i, j) | ∃θ ∈ Θ,S(θ)i,j ̸= 0}. Then we define D as the support of Dcg, i.e.,
D = supp(Dcg), where Dcg represents the partial derivative of g w.r.t. c. Moreover, we define T as
a set of matrices with the same support of T in Dĉĝ:nA,: = TDcg:nA,:, where T is a matrix-valued
function. In addition, given a subset S ⊆ {1, . . . , n}, the subspace Rn

S is defined as:

Rn
S := {s ∈ Rn | si = 0 if i /∈ S}, (2)

where si is the i-th element of the vector s. Throughout the work, we use the hat symbol (e.g., ẑ) to
denote estimated quantities, such as ẑ for estimated concepts.

Connective Structure. Based on these, we define the structure M as a binary matrix with the
support D:nA,:. The class-dependent part zA can be further represented as

p(zA|c) =
nA∏
i=1

p(zi|Mi,: ⊙ c), (3)

where Mi,: is the i-th row of M . The operator ⊙ denotes the element-wise (Hadamard) product.
Since classes c are not connected to class-independent part zB , M illustrates the connective structure
between classes c and concepts z.

Supplementary details in the appendix. Due to space constraints, proofs (Appx. B), detailed discus-
sions on assumptions and implications (Appx. C), and experiments (Appx. D) are in the appendix.

3 Identifiability Theory

Without any assumptions on specific concept types, functional relations, or parametric generative
models, to what extent can we provably learn hidden concepts from diverse classes of observations?

To answer this, we first prove that the unique concepts in any pair of classes can be disentangled
from the remaining ones (Thm. 1). Based on this, we can fully leverage the diversity in the data and
provide flexible identifiability for any subset of concepts, as long as there exists sufficient diversity for
local comparison (Prop. 1). For the global identification, we prove the nonparametric identifiability
for all class-dependent hidden concepts (Thm. 2) under the structural diversity condition (Assump. 1).
Furthermore, we show that we can also recover the hidden connective structure between classes and
concepts (Prop. 2), providing further insights into the latent compositional relations. Together with a
sparsity condition for the remaining class-independent part, all hidden concepts can be identified up
to trivial indeterminacy (Prop. 3).

Learning Concepts by Local Comparison. Humans learn concepts by leveraging the diversity
across classes. We argue that the fundamental mechanism in this cognitive process is learning through
pair-wise comparison. Any two classes can only be distinguished by identifying their unique concepts.
Pairwise comparison thus serves as the basic unit for concept learning across multiple classes, as
comparisons among any set of classes can be reduced to pairs. In the following theorem, we prove
that the unique concepts between any pair of classes can be disentangled from the remaining concepts.

Theorem 1. Let the observed data be a sufficiently large sample generated by a model defined
in Sec. 2. Suppose for each i ∈ {1, . . . , nA}, there exist a set of points {(c, θ, ϵ)(ℓ)}|Di,:nA

|
ℓ=1 ,
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a point (c, θ, ϵ)(r), and a matrix T ∈ T s.t. span{Dcg((c, θ, ϵ)
(ℓ)):nA,i}

|D:nA,i|
ℓ=1 = RnA

D:nA,i
,[

TDcg((c, θ, ϵ)
(ℓ))
]
:nA,i

∈ RnA

D̂:nA,i
, and Dcg((c, θ, ϵ)

(r)):nA,: is of full row rank. Then for any

two classes ci and cj , there exists a permutation π that the estimated latent concepts for the set dif-
ference, ẑπ(Ai\Aj), do not depend on the latent concepts zAj

associated with class cj , and ẑπ(Aj\Ai)

do not depend on the latent concepts zAi
associated with class ci.

Theorem 1 demonstrates the process of learning through pair-wise comparison, which is funda-
mental to the learning mechanism. Additionally, we extend the theoretical guarantees of pairwise
comparisons to arbitrary class sets, facilitating more efficient learning in complex scenarios:
Proposition 1. Let the observed data be a sufficiently large sample generated by a model defined
in Sec. 2. Suppose that the assumptions in Thm. 1 hold. Then, for a set of classes cI and its
corresponding concept sets zAI

with a set of indices I , there exists a permutation π that the unique
part of a concept set for the class ci, i.e., ẑπ(Ai\AI\i), does not depend on the latent concepts
associated with other classes, i.e., zAI\i .

Insights. Theorem 1 and Proposition 1 show that as long as there exists any diversity between
different classes, we can identify the corresponding hidden concepts with theoretical guarantees.
This aligns with the fundamental cognitive mechanism of learning and offers a more flexible
method to locally exploit available information. In contrast, most prior identifiability conditions
focus on the entire system, often losing guarantees if any part violates the assumptions.

Learning Concepts by Global Comparison. Inspired by the mechanism of local comparison, we
have shown that it is possible to fully leverage the diversity among different classes of observations
to recover hidden concepts as much as possible. This naturally leads us to consider the conditions
required for identifying all hidden concepts in a global manner. We first prove that, under the
condition of Structural Diversity (Assump. 1), all class-dependent concepts are identifiable:
Assumption 1. (Structural Diversity) For any class-dependent concept zi, there exists a set of indices
J (|J | > 1) and j ∈ J where Mi,j ̸= 0 and Mi,k = 0 for all k ∈ J , k ̸= j, and Mi,J\{j} is the only
row with all zero entries in M:,J\{j}.
Theorem 2. Let the observed data be a sufficiently large sample generated by a model defined in Sec.
2. In addition to the assumptions in Thm. 1 and Assump. 1, suppose there exist two values of c, i.e.,
c(k) and c(v), s.t., for any set Az ⊆ Z with non-zero probability measure and cannot be expressed as
BzB

× zA for any BzB
⊂ ZB , it holds that∫

z∈Az

p(z | c(k))dz ̸=
∫
z∈Az

p(z | c(v))dz.

Then zA is identifiable up to an element-wise invertible transformation and a permutation, and zB is
identifiable up to a subspace-wise invertible transformation.

Insights. Theorem 2 demonstrates that, with sufficient diversity of the global structure, all class-
dependent concepts can be identified up to element-wise indeterminacies. Notably, this result
imposes no parametric constraints on the generative models or the nature of concepts, allowing for
concept learning in a fully nonparametric setting. It also provides key insights into understanding
nonlinear latent variable models without requiring additional prior knowledge.

Unlike previous work that relies on specific parametric constraints such as disjointness, linearity, and
additivity, our global guarantees are primarily based on Structural Diversity between classes and con-
cepts, and thus can be applied on general scenarios given sufficient diversity. Structural Diversity intu-
itively suggests that for each class-dependent concept zi, there exists a specific set of classes such that
zi is unique to one of these classes. In general, it necessitates the existence of diversity across classes
in a structural way. This aligns with the fundamental cognitive process of learning through compari-
son. In addition, our theory provides principled understanding of latent variable models, as it focuses
on the basic generative process between latent and observed variables. These insights may also be of
interest to disentanglement [33], causal representation learning [34], and object-centric learning [35].

Furthermore, we show that the hidden structure M , which encodes the dependency relations between
classes and concepts, can be identified based on multiple classes of observations (Prop. 2). This pro-
cess parallels human learning, where distinguishing between classes involves recovering underlying
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structures, such as aligning concepts with their corresponding classes. Though identifying hidden
structures in complex systems from observational data has remained an open problem for decades
[36], our findings offer potential insights into addressing this longstanding challenge.

Proposition 2. Let the observed data be a sufficiently large sample generated by a model defined in
Sec. 2. Suppose all assumptions in Thm. 1 hold, except Assump. 1. Then the ground-truth structure
M is identifiable up to a row permutation.

Insights. Proposition 2 establishes nonparametric identifiability for the hidden connective struc-
tures between classes and concepts, revealing the compositional structure underlying the nature.
By not relying on structural conditions, it is applicable to a broader range of scenarios. Moreover,
the uncovered structures offer independent insights relevant to fields like structure learning.

Class-independent concepts. In Thm. 2, we have established the nonparametric identifiability of
all class-dependent concepts. Similar to how infants learn about different objects by remembering
their unique features, learning all concepts that do not always remain invariant might be sufficient
for exploring the new world. However, we may still be interested in how to provably uncover the
remaining class-independent concepts, even though they may not stand out in the cognitive process due
to their invariance. Therefore, we provide the following result, which identifies all concepts, whether
class-dependent or class-independent, up to the same element-wise indeterminacy. For brevity, let
F and F̂ denote the support of the Jacobian Dzf and Dẑf̂ , respectively. Also, Tf refers to a set of
matrices with the same support of Tf in Dẑf̂ = DzfTf , where Tf is a matrix-valued function.

Proposition 3. Let the observed data be a sufficiently large sample generated by a model defined
in Sec. 2. In addition to assumptions in Thm. 2, further suppose that, for all zi ∈ zB , there
exists Ci s.t.

⋂
k∈Ci

supp(Dzi
f)nA+1: = {i}. Meanwhile, for each i ∈ {nA + 1, . . . , n}, there

exist {z(ℓ)}|Fi,nA+1:|
ℓ=1 and a matrix Tf ∈ Tf s.t. span{Dzf(z

(ℓ))i,nA+1:}
|Fi,nA+1:|
ℓ=1 = RnB

Fi,nA+1:

and
[
Dzf(z

(ℓ))Tf

]
i,nA+1:

∈ RnB

F̂i,nA+1:
. Then z is identifiable up to an element-wise invertible

transformation and a permutation.

Since classes c are not connected to class-independent concepts zB , the structural condition on M
does not help identify zB . Thus, we leverage the structural condition between these concepts and the
observed variables [37]. As verified empirically in previous work [37], this condition is likely to hold
in our setting where the number of observed variables x exceeds the number of class-independent
concepts zB . Consequently, if needed, we can provide nonparametric guarantees under appropriate
structural conditions for all types of concepts in general settings.

4 Conclusion

Drawing inspiration from the fundamental cognitive mechanism of learning through comparison,
we establish a set of theoretical guarantees for learning concepts in general nonparametric settings.
We provide a theoretical framework that potentially explains the impressive empirical successes
in many previous works. Specifically, we prove that hidden concepts can be identified up to trivial
indeterminacy from diverse classes of observations without any assumptions on the concept types,
functional relations, or parametric generating models. Interestingly, even in scenarios where the
structural conditions do not universally hold, we can still provide appropriate identifiability for a
subset of concepts with sufficient diversity based on the mechanism of local comparison, thereby
greatly broadening the applicability of the proposed theory. Furthermore, the connective structure
between classes and concepts can also be recovered in a nonparametric manner.

Our theoretical results have been validated through extensive experiments, including both previous
empirical studies and our own experiments on various synthetic and real-world datasets. Future work
involves exploiting the theory to a wider range of practical problems, such as compositional gener-
alization, decision-making, and controllable generation. The lack of application in more downstream
tasks is a limitation of this paper. To conclude, the proposed theory offers a potential framework for
understanding the compositionality of nature with theoretical guarantees, supporting prior empirical
successes in concept learning and introducing new insights into nonparametric identifiability.
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A Summary of Notation

We summarize the key notations used throughout the paper to provide a quick reference for readers.

Variables and Functions

• x = (x1, . . . ,xm) ∈ X ⊆ Rm : Observed variables.

• z = (zA, zB) ∈ Z ⊆ Rn, where n = nA + nB : Latent concept variables.

• zA ∈ RnA : Class-dependent concepts influenced by the classes c.

• zB ∈ RnB : Class-independent concepts, unaffected by c.

• c = (c1, . . . , cu) : Class variables represented as vectors, with u classes.

• f : Z → X : Injective generative function mapping latent concepts to observations.

• zA = g(c, θ, ϵ) : Class-dependent concept function parameterized by c, θ (factors), and ϵ
(noise).

• θ : Additional influencing factors in the function g.

• ϵ : Noise term in the function g.

• ẑ : Estimated latent concepts.

• f̂ : Estimated generative model.

Probabilities and Densities

• p(z | c) = p(zA | c)p(zB) : Conditional density of latent concepts z given classes c,
assuming conditional independence.

• p(zA | c) =
∏nA

i=1 p(zi | Mi,: ⊙ c) : Factorized density of class-dependent concepts zA.

• E[·] : Expectation operator.

• P : Probability measure.
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Indices and Sets

• Ai : Index set of concepts corresponding to class ci.

• zAi
: Concepts associated with class ci.

• zAi\Aj
: Difference in concept sets between classes ci and cj .

• I ⊂ {1, . . . ,m} × {1, . . . , n} : Set of indices for matrix elements.

• Ii,: = {j | (i, j) ∈ I} : Indices corresponding to row i in I.

• I:,j = {i | (i, j) ∈ I} : Indices corresponding to column j in I.

• S ⊂ {1, . . . , n} : Subset of indices.

• Rn
S = {s ∈ Rn | si = 0 if i /∈ S} : Subspace of Rn where components not in S are zero.

Matrices and Operations

• S ∈ Ra×b : An arbitrary matrix with the shape (a, b).

• Si,:, S:,j : i-th row, j-th column of matrix S.

• supp(S) = {(i, j) | Si,j ̸= 0} : Support of matrix S.

• supp(S(Θ)) = {(i, j) | ∃θ ∈ Θ,S(θ)i,j ̸= 0} : Support of a matrix-valued function S(Θ).

• Dcg : Partial derivative of g with respect to class labels c.

• D = supp(Dcg) : Support of the Jacobian of g with respect to c.

• T : Matrix-valued function representing a transformation between Dcg and Dĉĝ.

• T : Set of matrices sharing the same support as T.

• M ∈ {0, 1}nA×u : Binary structure matrix showing connections between classes and
concepts.

• ⊙ : Element-wise (Hadamard) product.

• span{·} : Linear span of a set of vectors.

• rank(·) : Rank of a matrix.

Data and Parameters

• {(x(i), c(i))}Ni=1 : Dataset of N samples with observed variables and corresponding classes.

• M : Mask applied to classes in the dataset.

• λ : Regularization parameter used in the estimation objective.

• R : Regularization term (e.g., ℓ1 norm applied to estimated supports).

• π : Permutation function used to align estimated concepts.

• Θ : Parameter space.

Conventions

• Bold lowercase letters (e.g., x) denote vectors; uppercase letters (e.g., S, M ) denote matrices.

• Calligraphic letters (e.g., X , Z) denote sets or spaces.

• Subscripts with colons denote slicing: Si,: represents the i-th row; S:,j represents the j-th
column.

• Estimated quantities are denoted with hats (e.g., ẑ for estimated latent concepts).

11



B Proofs

B.1 Proof of Theorem 1

Theorem 1. Let the observed data be a sufficiently large sample generated by a model defined
in Sec. 2. Suppose for each i ∈ {1, . . . , nA}, there exist a set of points {(c, θ, ϵ)(ℓ)}|Di,:nA

|
ℓ=1 ,

a point (c, θ, ϵ)(r), and a matrix T ∈ T s.t. span{Dcg((c, θ, ϵ)
(ℓ)):nA,i}

|D:nA,i|
ℓ=1 = RnA

D:nA,i
,[

TDcg((c, θ, ϵ)
(ℓ))
]
:nA,i

∈ RnA

D̂:nA,i
, and Dcg((c, θ, ϵ)

(r)):nA,: is of full row rank. Then for any

two classes ci and cj , there exists a permutation π that the estimated latent concepts for the set dif-
ference, ẑπ(Ai\Aj), do not depend on the latent concepts zAj

associated with class cj , and ẑπ(Aj\Ai)

do not depend on the latent concepts zAi
associated with class ci.

Proof. Since both Dcg:nA,: and Dĉĝ:nA,: are of full row rank, we have

Dĉĝ:nA,: = TDcg:nA,:, (4)

where T is an invertible matrix. According to the assumption, the span is nondegenerate in the sense
that

span{Dcg((c, θ, ϵ)
(ℓ)):nA:j}

|D:nA,j |
ℓ=1 = RnA

D:nA,j
. (5)

Then we can construct an one-hot vector ei0 ∈ RnA

D:nA,j
for any i0 ∈ D:nA,j as a linear combination

of vectors {Dcg((c, θ, ϵ)
(ℓ)):nA,j}

|D:nA,j |
ℓ=1 , i.e., ei0 =

∑
ℓ∈D:nA,j

βℓDcg((c, θ, ϵ)
(ℓ)):nA,j , where βℓ

denotes some coefficient. Note that we define D as the support of Dcg. Additionally, we define T as
a set of matrices that share the same support as T in the equation Dĉĝ:nA,: = TDcg:nA,:, where T
is a matrix-valued function and T ∈ T . Then we have

T:,i0 = Tei0 =
∑

ℓ∈D:nA,j

βℓTDcg((c, θ, ϵ)
(ℓ)):nA,j . (6)

According to the assumption, we have

TDcg((c, θ, ϵ)
(ℓ)):nA,j ∈ RnA

D̂:nA,j
. (7)

Therefore, Eq. (6) implies T:,i0 ∈ RnA

D̂:nA,j
, which is equivalent to

∀i ∈ D:nA,j ,T:,i0 ∈ RnA

D̂:nA,j
. (8)

This further indicates
∀(i, j) ∈ D:nA,:, T:,i × {j} ⊂ D̂:nA,:. (9)

Since T is invertible, we have

det(T) =
∑

σ∈SnA

sgn(σ)

nA∏
j=1

Tσ(j),j

 ̸= 0, (10)

where SnA
is a set of nA-permutations. Then there must exist at least one non-zero term in the

summation, which indicates that

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA}, sgn(σ)

nA∏
j=1

Tσ(j),j ̸= 0. (11)

Clearly, there cannot be any term in the product that equals zero, so we have

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA},Tσ(j),j ̸= 0. (12)

Thus, it follows that
∀i ∈ {1, . . . , nA}, σ(i) ∈ T:,i. (13)

Then it yields
∀(i, j) ∈ D:nA,:, (σ(i), j) ∈ T:,i × {j}. (14)

12



Because of Eq. (9), we have

∀(i, j) ∈ D:nA,:, (σ(i), j) ∈ D̂:nA,:. (15)

Let us denote π̃(D:nA,:) as a row permutation of D:nA,:, where ∀(i, j) ∈ D:nA,:, there must be

(σ(i), j) ∈ π̃(D:nA,:) (16)

and
|π̃(D:nA,:)| = |D:nA,:|. (17)

Furthermore, Eq. (15) indicates that

π̃(D:nA,:) ⊂ D̂:nA,:, (18)

According to the assumption, we have the following relation based on the sparsity regularization:

|D̂:nA,:| ≤ |D:nA,:|. (19)

Therefore, we have the following relation:

|π̃(D:nA,:)| = |D:nA,:| ≥ |D̂:nA,:|. (20)

Together with Eq. (18), it follows that

D̂:nA,: = π̃(D:nA,:). (21)

Let us denote the permutation indeterminacy in our goal as π s.t.

D̂:nA,: := {(π(i), j) | (i, j) ∈ D:nA,:}. (22)

Given two classes ci and cj , for any zk ∈ zAi
, we have

(k, i) ∈ D:nA,:. (23)

Because of Eq. (9), this further implies

T:,k × {i} ∈ D̂:nA,:. (24)

For any π(v) where zv ∈ zAj\Ai
, suppose we have

(π(v), k) ∈ T , (25)

which is equivalent to
π(v) ∈ T:,k. (26)

Then according to Eq. (24), we have

(π(v), i) ∈ T:,k × {i} ∈ D̂:nA,:. (27)

Based on Eq. (22), Eq. (27) is equivalent to

(v, i) ∈ D:nA,:, (28)

which indicates a contradiction since zv ∈ zAj\Ai
.

As a result, there must be (π(v), k) /∈ T . Similarly, for any zu ∈ zAj
, we can also show by

contradiction that there must be (π(u), j) /∈ T . Therefore, for any two classes ci and cj , there exists
a permutation π that the estimated latent concepts for the set difference, ẑπ(Ai\Aj), do not depend on
the latent concepts zAj

associated with class cj , and similarly, ẑπ(Aj\Ai) do not depend on of the
latent concepts zAi

associated with class ci.
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B.2 Proof of Proposition 1

Proposition 1. Let the observed data be a sufficiently large sample generated by a model defined
in Sec. 2. Suppose that the assumptions in Thm. 1 hold. Then, for a set of classes cI and its
corresponding concept sets zAI

with a set of indices I , there exists a permutation π that the unique
part of a concept set for the class ci, i.e., ẑπ(Ai\AI\i), does not depend on the latent concepts
associated with other classes, i.e., zAI\i .
Proof. Because all assumptions in Theorem 1 hold, according to the proof of it, we know that, for a
row permutation of D:nA,:, i.e., π̃(D:nA,:) where

π̃(D:nA,:) := {(σ(i), j)|(i, j) ∈ D:nA,:}. (29)

There must be a relationship that
D̂:nA,: = π̃(D:nA,:). (30)

Then we want to show that, there exists a permutation π that the unique part of a concept set for the
class ci, i.e., ẑπ(Ai\AI\i), does not depend on the latent concepts associated with other classes, i.e.,
zAI\i . For any zk ∈ zAI\i and its corresponding class cq ∈ cI and q ̸= i, we have

(k, q) ∈ D:nA,:. (31)

According to the proof of Theorem 1, we have

TDcg((c, θ, ϵ)
(ℓ)):nA,j ∈ RnA

D̂:nA,j
. (32)

Therefore, Eq. (31) further indicates that

T:,k × {q} ∈ D̂:nA,:. (33)

Define the permutation π as

D̂:nA,: := {(π(i), j) | (i, j) ∈ D:nA,:}. (34)

Then we consider any π(v) where we have

zv ∈ zAi\AI\i . (35)

Suppose we have
(π(v), k) ∈ T . (36)

This also implies that
π(v) ∈ T:,k. (37)

Based on Eq. (33), we further have

(π(v), q) ∈ T:,k × {q} ∈ D̂:nA,:. (38)

According to the definition of D̂:nA,:, this is equivalent to

(v, q) ∈ D:nA,:, (39)

Because zv ∈ zAi\AI\i , the above equation indicates that there must be cq = ci. which is a
contradiction since q ̸= i. Therefore, we have

(π(v), k) /∈ T . (40)

This implies that there exists a permutation π that the unique part of a concept set for the class ci, i.e.,
ẑπ(Ai\AI\i), does not depend on the latent concepts associated with other classes, i.e., zAI\i .

B.3 Proof of Theorem 2

Theorem 2. Let the observed data be a sufficiently large sample generated by a model defined in Sec.
2. In addition to the assumptions in Thm. 1 and Assump. 1, suppose there exist two values of c, i.e.,
c(k) and c(v), s.t., for any set Az ⊆ Z with non-zero probability measure and cannot be expressed as
BzB

× zA for any BzB
⊂ ZB , it holds that∫

z∈Az

p(z | c(k))dz ̸=
∫
z∈Az

p(z | c(v))dz.

Then zA is identifiable up to an element-wise invertible transformation and a permutation, and zB is
identifiable up to a subspace-wise invertible transformation.
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Proof. Consider the transformation h : z → ẑ between true concepts z and estimated concepts ẑ.
Using the chain rule, the derivative of ĝ with respect to ĉ can be expressed as:

Dĉĝ = DzhDcg. (41)

The Jacobian of h can be written as:

Dzh =

[
∂ẑA

∂zA

∂ẑA

∂zB
∂ẑB

∂zA

∂ẑB

∂zB

]
. (42)

According to steps 1, 2, and 3 in the proof of Theorem 4.2 in Kong et al. [38], the bottom-left block
of Dzh, i.e., DzhnA+1:,:nA

, consists of only zero entries. As a result, the Jacobian is equivalent to:

Dzh =

[
∂ẑA

∂zA

∂ẑA

∂zB

0 ∂ẑB

∂zB

]
. (43)

Since h is invertible, the determinant of Dzh is non-zero. Together with the structure of the Jacobian
matrix, we have

det(Dzh) = det(
∂ẑA
∂zA

) det(
∂ẑB
∂zB

), (44)

which further implies

det(
∂ẑA
∂zA

) ̸= 0, (45)

det(
∂ẑB
∂zB

) ̸= 0. (46)

Since det(∂ẑB

∂zB
) ̸= 0 and ∂ẑB

∂zA
= 0, it follows that ẑB depends solely on zB and not on zA, i.e., there

exists an invertible function hB : zB → ẑB s.t.,

ẑB = hB(zB). (47)

Since ẑA is independent of ẑB and ẑB = hB(zB), we further have ẑA is independent of zB , i.e.,

∂ẑA
∂zB

= 0. (48)

Then the Jacobian can be represented as

Dzh =

[
∂ẑA

∂zA
0

0 ∂ẑB

∂zB

]
. (49)

Thus, ẑB is identifiable up to a subspace-wise invertible transformation, and we have{
∂ẑi

∂zj
= 0 i ∈ {1, . . . , nA}, j ∈ {nA + 1, . . . , n},

∂ẑk

∂zv
= 0 k ∈ {nA + 1, . . . , n}, v ∈ {1, . . . , nA}.

(50)

This implies that
Dĉĝ:nA,: = Dzh:nA,:nA

Dcg:nA,:. (51)
According to the assumption, we have

span{Dcg((c, θ, ϵ)
(ℓ)):nA,j}

|D:nA,j |
ℓ=1 = RnA

D:nA,j
. (52)

Then we can construct an one-hot vector ei0 ∈ RnA

D:nA,j
for any i0 ∈ D:nA,j as a linear combination

of vectors {Dcg((c, θ, ϵ)
(ℓ)):nA,j}

|D:nA,j |
ℓ=1 , i.e., ei0 =

∑
ℓ∈D:nA,j

βℓDcg((c, θ, ϵ)
(ℓ)):nA,j , where βℓ

denotes some coefficient. Note that we define T as a set of matrices with the same support of T in
Dĉĝ:nA,: = TDcg:nA,:, where T is a matrix-valued function. Then we have

T:,i0 = Tei0 =
∑

ℓ∈D:nA,j

βℓTDcg((c, θ, ϵ)
(ℓ)):nA,j . (53)
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According to the assumption, we have

TDcg((c, θ, ϵ)
(ℓ)):nA,j ∈ RnA

D̂:nA,j
. (54)

Therefore, Eq. (53) implies T:,i0 ∈ RnA

D̂:nA,j
, which is equvalent to

∀i ∈ D:nA,j ,T:,i0 ∈ RnA

D̂:nA,j
. (55)

This further indicates
∀(i, j) ∈ D:nA,:, T:,i × {j} ⊂ D̂:nA,:. (56)

Since T is invertible, we have

det(T) =
∑

σ∈SnA

sgn(σ)

nA∏
j=1

Tσ(j),j

 ̸= 0, (57)

where SnA
is a set of nA-permutations. Then there must exist at least one non-zero term in the

summation, which indicates that

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA}, sgn(σ)

nA∏
j=1

Tσ(j),j ̸= 0. (58)

Clearly, there cannot be any term in the product that equals zero, so we have

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA},Tσ(j),j ̸= 0. (59)

Thus, it follows that
∀i ∈ {1, . . . , nA}, σ(i) ∈ T:,i. (60)

Then it yields
∀(i, j) ∈ D:nA,:, (σ(i), j) ∈ T:,i × {j}. (61)

Because of Eq. (56), we have

∀(i, j) ∈ D:nA,:, (σ(i), j) ∈ D̂:nA,:. (62)

Let us denote π̃(D:nA,:) as a row permutation of D:nA,:, where ∀(i, j) ∈ D:nA,:, there must be

(σ(i), j) ∈ π̃(D:nA,:), (63)

and
|π̃(D:nA,:)| = |D:nA,:|. (64)

Eq. 62 indicates that
π̃(D:nA,:) ⊂ D̂:nA,:. (65)

According to the sparsity regularization, we have the following relation based on the sparsity regular-
ization:

|D̂:nA,:| ≤ |D:nA,:|. (66)
Therefore, we have

|π̃(D:nA,:)| = |D:nA,:| ≥ |D̂:nA,:|. (67)
Together with Eq. (65), it follows that

D̂:nA,: = π̃(D:nA,:). (68)

Let us denote the permutation indeterminacy in our goal as π s.t.

D̂:nA,: := {(π(i), j) | (i, j) ∈ D:nA,:}. (69)

For a latent concept zi, according to the structural diversity assumption (Assump. 1), there exists a set
of column indices J , where Mi,J only has one non-zero entry. Let us denote that non-zero entry as
Mi,j . Since M is a binary matrix with the support D:nA,:, we have (i, j) ∈ D:nA,: and (i, k) /∈ D:nA,:

for any k ∈ J \ j.

Then, according to the assumption, for any other concept zv where v ̸= i, there must be a class cq s.t.
q ∈ J \ j s.t.

(v, q) ∈ D:nA,:. (70)
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Because of Eq. (56), it follows that

T:,v × {q} ∈ D̂:nA,:. (71)

For any π(i), suppose we have
(π(i), v) ∈ T , (72)

which is equivalent to
π(i) ∈ T:,v. (73)

Then according to Eq. (71), we have

(π(i), q) ∈ T:,v × {q} ∈ D̂:nA,:. (74)

Based on Eq. (69), Eq. (74) is equivalent to

(i, q) ∈ D:nA,:. (75)

This is a contradiction since (i, q) /∈ D:nA,: for any q ∈ J \ j. Thus, for any i ∈ {1, . . . , nA} and
k ∈ {1, . . . , nA} \ {i}, there must be

(π(i), v) /∈ T . (76)

Because T is invertible, all row must have at least one non-zero entry. Thus, Eq. (76) further implies

(π(i), i) ∈ T . (77)

Combining both Eqs. (76) and (77) for each i ∈ {1, . . . , nA}, the transformation between ẑA and zA
must be a composition of an element-wise invertible transformation and a permutation, which is our
goal.

B.4 Proof of Proposition 2

Proposition 2. Let the observed data be a sufficiently large sample generated by a model defined in
Sec. 2. Suppose all assumptions in Thm. 1 hold, except Assump. 1. Then the ground-truth structure
M is identifiable up to a row permutation.

Proof. Consider the transformation h : z → ẑ between true concepts z and estimated concepts ẑ.
Using the chain rule, the derivative of ĝ with respect to ĉ can be expressed as:

Dĉĝ = DzhDcg. (78)

The Jacobian of h can be written as:

Dzh =

[
∂ẑA

∂zA

∂ẑA

∂zB
∂ẑB

∂zA

∂ẑB

∂zB

]
. (79)

According to steps 1, 2, and 3 in the proof of Theorem 4.2 in Kong et al. [38], the bottom-left block
of Dzh, i.e., DzhnA+1:,:nA

, consists of only zero entries. As a result, the Jacobian is equivalent to:

Dzh =

[
∂ẑA

∂zA

∂ẑA

∂zB

0 ∂ẑB

∂zB

]
. (80)

Since h is invertible, the determinant of Dzh is non-zero. Together with the structure of the Jacobian
matrix, we have

det(Dzh) = det(
∂ẑA
∂zA

) det(
∂ẑB
∂zB

), (81)

which further implies

det(
∂ẑA
∂zA

) ̸= 0, (82)

det(
∂ẑB
∂zB

) ̸= 0. (83)
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Since det(∂ẑB

∂zB
) ̸= 0 and ∂ẑB

∂zA
= 0, it follows that ẑB depends solely on zB and not on zA, i.e., there

exists an invertible function hB : zB → ẑB s.t.,

ẑB = hB(zB). (84)

Since ẑA is independent of ẑB and ẑB = hB(zB), we further have ẑA is independent of zB , i.e.,

∂ẑA
∂zB

= 0. (85)

Therefore, the Jacobian of h is

Dzh =

[
∂ẑA

∂zA
0

0 ∂ẑB

∂zB

]
. (86)

Note that we have
Dĉĝ = DzhDcg, (87)

which is equivalent to

Dĉĝ:nA,: = (DzhDcg):nA,: = Dzh:nA,:Dcg. (88)

Because ∂ẑi

∂zk
= 0 for i ∈ {1, . . . , nA} and k ∈ {nA + 1, . . . , n}, the upper-right block of Dzh, i.e.,

Dzh:nA,nA+1:, consists of only zero entries. It further indicates that

Dĉĝ:nA,: = Dzh:nA,:nA
Dcg:nA,:. (89)

According to the assumption, we have

span{Dcg((c, θ, ϵ)
(ℓ)):nA,j}

|D:nA,j |
ℓ=1 = RnA

D:nA,j
. (90)

Then we can construct an one-hot vector ei0 ∈ RnA

D:nA,j
for any i0 ∈ D:nA,j as a linear combination

of vectors {Dcg((c, θ, ϵ)
(ℓ)):nA,j}

|D:nA,j |
ℓ=1 , i.e., ei0 =

∑
ℓ∈D:nA,j

βℓDcg((c, θ, ϵ)
(ℓ)):nA,j , where βℓ

denotes some coefficient. Then we have

T:,i0 = Tei0 =
∑

ℓ∈D:nA,j

βℓTDcg((c, θ, ϵ)
(ℓ)):nA,j . (91)

Note that we define D as the support of Dcg. Additionally, we define T as a set of matrices that share
the same support as T in the equation Dĉĝ:nA,: = TDcg:nA,:, where T is a matrix-valued function
and T ∈ T .

According to the assumption, we have

TDcg((c, θ, ϵ)
(ℓ)):nA,j ∈ RnA

D̂:nA,j
. (92)

Therefore, Eq. (91) implies T:,i0 ∈ RnA

D̂:nA,j
, which is equivalent to

∀i0 ∈ D:nA,j ,T:,i0 ∈ RnA

D̂:nA,j
. (93)

This further indicates
∀(i, j) ∈ D:nA,:, T:,i × {j} ⊂ D̂:nA,:. (94)

Since T is invertible, we have

det(T) =
∑

σ∈SnA

sgn(σ)

nA∏
j=1

Tσ(j),j

 ̸= 0, (95)

where SnA
is a set of nA-permutations. Then there must exist at least one non-zero term in the

summation, which indicates that

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA}, sgn(σ)

nA∏
j=1

Tσ(j),j ̸= 0. (96)
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Clearly, there cannot be any term in the product that equals zero, so we have

∃σ ∈ SnA
, ∀j ∈ {1, . . . , nA},Tσ(j),j ̸= 0. (97)

Thus, it follows that
∀i ∈ {1, . . . , nA}, σ(i) ∈ T:,i. (98)

Then it yields
∀(i, j) ∈ D:nA,:, (σ(i), j) ∈ T:,i × {j}. (99)

Because of Eq. (94), we have

∀(i, j) ∈ D:nA,:, (σ(i), j) ∈ D̂:nA,:. (100)

Let us denote π(D:nA,:) as a row permutation of D:nA,:, where ∀(i, j) ∈ D:nA,:, there must be

(σ(i), j) ∈ π(D:nA,:). (101)

And it also implies
|π(D:nA,:)| = |D:nA,:|. (102)

Furthermore, Eq. 100 indicates that

π(D:nA,:) ⊂ D̂:nA,:, (103)

We have the following relation based on the sparsity regularization:

|D̂:nA,:| ≤ |D:nA,:|. (104)

Therefore, we have
|π(D:nA,:)| = |D:nA,:| ≥ |D̂:nA,:|. (105)

Together with Eq. (103), it follows that

D̂:nA,: = π(D:nA,:). (106)

Thus, we have proved the identifiability of D:nA,: up to a permutation on the row indices. Since M is
a binary matrix with the support of D, we have proved the connective structure between classes and
concepts up to a row permutation.

B.5 Proof of Proposition 3

Proposition 3. Let the observed data be a sufficiently large sample generated by a model defined
in Sec. 2. In addition to assumptions in Thm. 2, further suppose that, for all zi ∈ zB , there
exists Ci s.t.

⋂
k∈Ci

supp(Dzif)nA+1: = {i}. Meanwhile, for each i ∈ {nA + 1, . . . , n}, there

exist {z(ℓ)}|Fi,nA+1:|
ℓ=1 and a matrix Tf ∈ Tf s.t. span{Dzf(z

(ℓ))i,nA+1:}
|Fi,nA+1:|
ℓ=1 = RnB

Fi,nA+1:

and
[
Dzf(z

(ℓ))Tf

]
i,nA+1:

∈ RnB

F̂i,nA+1:
. Then z is identifiable up to an element-wise invertible

transformation and a permutation.

Proof. We denote the transformation between the true and estimated concepts as h : z → ẑ.
According to the proof in Theorem 2, the Jacobian h is as follows:

Dzh =

[
∂ẑA

∂zA
0

0 ∂ẑB

∂zB

]
. (107)

Therefore, any variable in ẑA does not depend on any variable in zB , and any variable in ẑB does not
depend on any variable in zA. At the same time, by using the chain rule on h = f̂−1 ◦ f , we have

Dẑf̂ = DzfDẑh
−1, (108)

which is equivalent to
Dẑf̂ :,nA+1: = DzfDẑh

−1
:,nA+1:. (109)

Based on Eq. 107, this further indicates that

Dẑf̂ :,nA+1: = Dzf :,nA+1:Dẑh
−1

nA+1:,nA+1:. (110)

19



Then we have the following equation according to the assumption:

span{Dzf(z
(ℓ))i,nA+1:}

|Fi,nA+1:|
ℓ=1 = RnB

Fi,nA+1:
(111)

Then we can construct an one-hot vector ej0 ∈ RnB

Fi,nA+1:
for any j0 ∈ Fi,nA+1: as a linear combina-

tion of vectors {Dzf(z
(ℓ))i,nA+1:}

|Fi,nA+1:|
ℓ=1 , i.e.,

ej0 =
∑

ℓ∈Fi,nA+1:

βℓDzf(z
(ℓ))i,nA+1:, (112)

where βℓ denotes some coefficient. Then we have

Tf j0,nA+1: = ej0Tf :,nA+1: =
∑

ℓ∈D:nA,j

βℓDzf(z
(ℓ))i,nA+1:Tf :,nA+1: ∈ RnB

F̂i,nA+1:
. (113)

This further implies that, for any j ∈ Fi,nA+1:, we always have Tf j,: ∈ RnB

F̂i,nA+1:
. Thus, we have

the connection between support as follows:

(i, j) ∈ F:,nA+1:, {i} × Tf j,: ⊂ F̂:,nA+1:. (114)

Then, because of the invertibility of Tf , its determinant must not equal to zero, i.e.,

∑
σ∈Sn

(
sgn(σ)

nB∏
i=1

Tf (z
(ℓ))i,σ(i)

)
̸= 0, (115)

where S is the set of n-permutations. Therefore, there must be at least one term in the summation
that does not equal to zero, i.e.,

∃σ ∈ Sn, ∀i ∈ {1, . . . , nB}, sgn(σ)
nB∏
i=1

Tf (z
(ℓ))i,σ(i) ̸= 0. (116)

Because sgn(σ) ̸= 0, every term in the production must not equal to zero, i.e.,

∃σ ∈ Sn, ∀i ∈ {1, . . . , nB},Tf (z
(ℓ))i,σ(i) ̸= 0. (117)

This follows that
∀j ∈ {1, . . . , nB}, σ(j) ∈ Tf j,nA+1:. (118)

Based on Eq. (114), Eq. (118) further implies that, for any (i, j) ∈ F:,nA+1:, we have (i, σ(j)) ∈
F̂:,nA+1:. Let us denote σ(F) = {(i, σ(j)) | (i, j) ∈ F}, the above connection implies σ(F) ⊂ F̂ .
Together with the sparsity regularization on the estimated Jacobian, we have

|F̂ | ≤ |F| (119)

Because of the definition of σ(F), there must be

|F| = |σ(F)|, (120)

which follows that
|σ(F)| ≥ |F̂ |. (121)

Together with the relation that σ(F) ⊂ F̂ ,there must be

F̂ = σ(F). (122)

Suppose T:,nA+1: is not a composition of a permutation matrix and a diagonal matrix, then

∃j1 ̸= j2, Tj1,nA+1: ∩ Tj2,nA+1: ̸= ∅. (123)

Additionally, consider j3 ∈ {1, . . . , nB} for which

σ(j3) ∈ Tj1,nA+1: ∩ Tj2,nA+1:. (124)
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Since j1 ̸= j2, we can assume j3 ̸= j1 without loss of generality. Based on assumption, there exists
Cj1 ∋ j1 such that

⋂
i∈Cj1

Fi,nA+1: = {j1}. Because

j3 ̸∈ {j1} =
⋂

i∈Cj1

Fi,nA+1:, (125)

there must exists i3 ∈ Cj1 such that
j3 ̸∈ Fi3,nA+1:. (126)

Since j1 ∈ Fi3,nA+1:, it follows that (i3, j1) ∈ F:,nA+1:. Therefore, according to Eq. (114), we have

{i3} × Tj1,nA+1: ⊂ F̂:,nA+1:. (127)
Notice that σ(j3) ∈ Tj1,nA+1: ∩ Tj2,nA+1: implies

(i3, σ(j3)) ∈ {i3} × Tj1,nA+1:. (128)

Then by Eqs. (127) and (128), we have

(i3, σ(j3)) ∈ F̂:,nA+1:. (129)

This further implies (i3, j3) ∈ F:,nA+1: by Eq. (122), which contradicts Eq. (126). Therefore, we
have proven by contradiction that T:,nA+1: is a composition of a permutation matrix and a diagonal
matrix, which means that the invariant part zB is identifiable up to an element-wise invertible
transformation and a permutation. Together with the element-wise identifiability for concepts in
the changing part zA given by Theorem 2, we have proved that all latent concepts z = (zA, zB) is
identifiable up to an element-wise invertible transformation and a permutation.

C Detailed Discussions on Assumptions and Implications

C.1 Discussion on Theorem 1 and Proposition 1

Theorem 1. Let the observed data be a sufficiently large sample generated by a model defined
in Sec. 2. Suppose for each i ∈ {1, . . . , nA}, there exist a set of points {(c, θ, ϵ)(ℓ)}|Di,:nA

|
ℓ=1 ,

a point (c, θ, ϵ)(r), and a matrix T ∈ T s.t. span{Dcg((c, θ, ϵ)
(ℓ)):nA,i}

|D:nA,i|
ℓ=1 = RnA

D:nA,i
,[

TDcg((c, θ, ϵ)
(ℓ))
]
:nA,i

∈ RnA

D̂:nA,i
, and Dcg((c, θ, ϵ)

(r)):nA,: is of full row rank. Then for any

two classes ci and cj , there exists a permutation π that the estimated latent concepts for the set dif-
ference, ẑπ(Ai\Aj), do not depend on the latent concepts zAj associated with class cj , and ẑπ(Aj\Ai)

do not depend on the latent concepts zAi associated with class ci.

Proposition 1. Let the observed data be a sufficiently large sample generated by a model defined
in Sec. 2. Suppose that the assumptions in Thm. 1 hold. Then, for a set of classes cI and its
corresponding concept sets zAI

with a set of indices I , there exists a permutation π that the unique
part of a concept set for the class ci, i.e., ẑπ(Ai\AI\i), does not depend on the latent concepts
associated with other classes, i.e., zAI\i .

Discussion on Assumptions. The assumption here helps ensure the connection between the
dependency structure and the Jacobian of the function in the general nonlinear cases, following the
similar spirit in [39, 40]. In general, it avoids pathological cases where all samples originate from
highly restricted sub-populations that only cover a degenerate subspace. The first part makes sure that
there are at least |D:nA,i| data points such that the Jacobian function spans the support space, which
is almost guaranteed asymptotically. The second part is also mild since D̂:nA,i = TDcg((c, θ, ϵ)

(ℓ))
always resides in RnA

D̂:nA,i
. Even in some rare cases where the matrix does not fit the support due to

some generic combination of values, the assumption is still almost always satisfied asymptotically.
This is because it only necessitates the existence of one matrix in the entire space (T ∈ T , where T
denotes a set of matrices with the same support of T). The third part avoids rank-deficiency and has
been extensively employed in the literature [33].

For instance, suppose there exist two samples with their corresponding Jacobians given by
Dcg((c, θ, ϵ)

(1)):nA,i = (0, 1, 2) and Dcg((c, θ, ϵ)
(2)):nA,i = (0, 3, 4). Clearly, these two vec-

tors span a 2-dimensional subspace. We can also find a matrix T (e.g., a binary matrix with the
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same support as T) s.t.
[
TDcg((c, θ, ϵ)

(ℓ))
]
:nA,i

∈ RnA

D̂:nA,i
for ℓ ∈ {1, 2}. Any invertible function

satisfies the full rank condition. Since identifiability theory considers an infinite number of samples,
the requirement for several non-degenerate samples is almost always satisfied asymptotically.

Implications. Theorem 1 demonstrates that for any given pair of classes and their corresponding
sets of hidden concepts, the unique concepts in each class can be disentangled from all the remaining
concepts. This process is fundamental to the cognitive mechanism of learning through comparison.
Consider an infant with no prior experience of the world: when presented with two classes, such as
a cat and a dog, the infant learns and memorizes the unique concepts associated with each class, such
as "meows" for the cat and "barks" for the dog. The invariant concepts, like "furry" or "four-legged,"
cannot be distinctly learned because they do not provide distinguishing information between the
classes. From a cognitive science perspective, infants and young learners rely heavily on contrastive
features to form distinct categories and concepts [41]. For instance, if an infant repeatedly hears
a cat meow and a dog bark, they begin to associate these unique sounds with the respective animals.
In contrast, shared attributes like fur or four legs do not stand out because they do not help in differ-
entiating between the two animals. This emphasizes the role of unique concepts in early learning and
memory, highlighting how pair-wise comparisons are essential in the process of discovering the new
world. For machines to learn without prior knowledge, we argue that similar mechanisms also help.

Proposition 1 extends these theoretical guarantees from pair-wise comparisons to local comparisons
among multiple classes. Although pair-wise comparison is fundamental to the learning mechanism,
local comparison is more efficient in complex scenarios. For instance, when an infant is exposed to
a variety of stimuli, they do not learn by isolating pairs indefinitely. Instead, they begin to discern
patterns and unique features within a broader context, comparing multiple classes simultaneously. For
example, a child distinguishing between a cat, a dog, and a bird must identify unique concepts such as
"meows," "barks," and "chirp." As the child interacts with these animals in different contexts—perhaps
hearing a bird chirp in the park, a dog bark at home, and a cat meow in the neighbor’s yard—they
learn to associate specific sounds and behaviors with each animal. This local comparison ensures that
even as the number of classes increases, the child can efficiently disentangle and learn the unique
concepts of each class, providing a more complete understanding of the new environment.

Besides being the foundation for the learning process, the principles of local comparisons in both
Thm. 1 and Prop. 1 also enable partial identifiability for a subset of concepts when diversity is not
universally satisfied across all classes and concepts. Previous theoretical studies on concept learning
often assume that certain conditions, such as linearity or additivity, apply universally to all concepts.
While these assumptions can simplify the conceptual space and the generating process, they can
not offer any guarantees for any concepts when there exists any degree of violations. However, since
real-world scenarios are often complex and unpredictable, it is relatively rare for these assumptions
to hold true universally. Therefore, flexible identifiability results that can provide alternative or
partial guarantees when assumptions are not universally satisfied are crucial for practical applications.
Fortunately, with the proposed theory based on local comparisons (Thm. 1 and Prop. 1), we can
leverage the diversity in observations to recover the hidden system as much as possible, even when
the degree of diversity does not support global identifiability. For instance, in scenarios where some
classes are very similar and several concepts are shared across all classes, these concepts cannot
be learned through comparison. However, we can still achieve appropriate identifiability for the
other concepts with sufficient diversity. Notably, these flexible guarantees do not come with the cost
of more restrictive conditions—the identifiability theory still applies to most generating processes
without assumptions on specific concept types, functional relations, or parametric generative models.

C.2 Discussion on Theorem 2

Assumption 1. (Structural Diversity) For any class-dependent concept zi, there exists a set of
indices J (|J | > 1) and j ∈ J where Mi,j ̸= 0 and Mi,k = 0 for all k ∈ J , k ̸= j, and Mi,J\{j} is
the only row with all zero entries in M:,J\{j}.
Theorem 2. Let the observed data be a sufficiently large sample generated by a model defined in Sec.
2. In addition to the assumptions in Thm. 1 and Assump. 1, suppose there exist two values of c, i.e.,
c(k) and c(v), s.t., for any set Az ⊆ Z with non-zero probability measure and cannot be expressed as
BzB

× zA for any BzB
⊂ ZB , it holds that∫

z∈Az

p(z | c(k))dz ̸=
∫
z∈Az

p(z | c(v))dz.
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Then zA is identifiable up to an element-wise invertible transformation and a permutation, and zB is
identifiable up to a subspace-wise invertible transformation.

Discussion on Assumptions. Assumption 1, referred to as Structural Diversity, ensures sufficient
diversity across different classes of observations for the nonparametric identifiability of all class-
dependent concepts. Without any parametric assumptions such as concept types, functional relations,
or specific generative models, the only available information is the natural connective structure
between classes and concepts. As previously discussed, if there is no diversity between classes,
it becomes impossible to identify individual concepts without additional knowledge. Therefore,
the Structural Diversity condition is essential for providing correctness guarantees for all concepts
without relying on specific parametric assumptions or additional knowledge.

Figure 3: The Structural Di-
versity assumption, where the
matrix represents M . Green
lines indicate variables rele-
vant to the discussion, while
variables within the blue dot-
ted square represent the class-
independent variables zB .

The Structural Diversity intuitively suggests that for each class-
dependent concept zi, there exists a specific set of classes such that
zi is unique to one of these classes. For example, consider i = 1
(z1) in Fig. 3. There exists a set of class indices J = {1, 3} such
that M1,1 ̸= 0 and M1,3 = 0. This structural difference implies
that z1 can be distinguished by considering these class indices. Si-
multaneously, we have sufficient information for all the remaining
concepts, as the submatrix M:,J\1 encompasses the other concepts.
Consequently, it is possible to uniquely identify z1 among all the
class-dependent hidden concepts. Coupled with this sufficient diver-
sity for other concepts, we have the Structural Diversity assumption
for the nonparametric identifiability of all class-dependent hidden
concepts. In general, the proposed assumption necessitate the exis-
tence of diversity across classes in a structural way. Different from
various assumptions encouraging the sparsity of the structure in the
literature [42, 43], our assumption only ensures necessary variability
on the dependency structure and could also hold true with relatively
dense connections. At the same time, we permit arbitrary structures
between the class-dependent hidden concepts and the observed vari-
ables. This flexibility accommodates a general generative process,
thereby distinguishing our assumptions from others.

Of course, since we aim for the general nonparametric identifiability
for all class-dependent concepts, there are scenarios where it is
impossible to fully recover every hidden concept, even with the
help of the Structural Diversity condition. For instance, consider a
scenario where all classes correspond to the same set of concepts, such as different breeds of dogs
all sharing the concepts of "barks," "furry," and "four-legged." In this case, an infant or a machine
without any prior knowledge would find it impossible to distinguish between the breeds based solely
on these observational data. The lack of unique, distinguishing features for each breed means that
the Structural Diversity condition cannot be satisfied, making it impossible to identify each breed’s
unique concepts purely from observation. This example highlights the limitations of the Structural
Diversity condition in cases where inherent diversity across classes is absent. That being said, while
the condition encourages diversity and can hold true in dense structures, it will fail if all concepts and
classes are fully connected. In such a scenario, the lack of diversity between different classes makes it
impossible to distinguish them without any extra information. In these instances, previous assumptions
in provable concept learning—such as no occlusions between concepts (disjoint Jacobians), linear
concept representations, and additive generating functions—can provide the additional information
about the hidden process to ensure the identifiability of those concepts [31, 20, 32]. Given this
perspective, our assumption does not supersede the previous ones; rather, it offers a new direction
that can be helpful for learning hidden concepts with minimal prior knowledge about the system.

The other assumption introduced in Thm. 2 requires distributional variability across different classes.
Specifically, it necessitates the existence of at least two classes with differing conditional distributions.
As discussed and empirically verified in [38], the likelihood of all classes having identical probability
measures is exceedingly slim. Therefore, this assumption is highly likely to be satisfied in real-world
scenarios, as it is virtually impossible for the measures corresponding to all classes to be identical.
For instance, consider c as a 2-dimensional vector with c(k) = [1, 0] and c(v) = [0, 1]. Let Z = R2,
and Az = {(z1, z2) ∈ R2 : 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1}. The conditional densities are p(z | c =
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[1, 0]) = 1
2π e

− (z1−1)2+(z2−0)2

2 and p(z | c = [0, 1]) = 1
2π e

− (z1−0)2+(z2−1)2

2 . Evaluating the integrals

over Az, we have
∫ 1

0

∫ 1

0
1
2π e

− (z1−1)2+(z2−0)2

2 dz1dz2 ̸=
∫ 1

0

∫ 1

0
1
2π e

− (z1−0)2+(z2−1)2

2 dz1dz2. Note that
(k, v) can even be different for different Az, which further weakens the assumption.

Implications. Extending the results on a subset of concepts (Thm. 1 and Prop. 1), Thm. 2 provides
correctness guarantees for learning all class-dependent hidden concepts. Unlike previous work that
focuses on specific parametric constraints such as disjointness, linearity, and additivity, the proposed
global guarantees mainly rely on the Structural Diversity between classes and concepts, and thus
can be applied on general scenarios given sufficient diversity. As discussed before, this aligns with
the fundamental cognitive process of learning by comparison and ensures provably uncovering the
latent world in a nonparametric manner. Despite being one of the essential pieces on learning the
hidden concepts, our proposed theory also sheds light on understanding the latent variable models
without additional knowledge, since the formulation is just based on the basic generating process
between latent and observed variables. As a result, part of the proposed results might also be of
independent interest to other fields such as disentanglement [33], causal representation learning [34],
and object-centric learning [35].

Provably learning these hidden concepts is not only significant for understanding the world but
also offers valuable opportunities for various applications. For instance, the compositional nature
of the relation between classes and concepts facilitates the possibility of compositional generalization
or extrapolation [20, 21, 32]. The intuition here is that if we can recover the individual concepts
from the underlying data, we can combine them to generate new classes of objects that have not
been seen before. Similarly, it also provides a principled strategy for controllable data generation,
such as intervening on some specific concepts to generate particular images [44], videos [45], or
texts [46]. Moreover, the recovered concepts can significantly enhance fields beyond machine
learning. For instance, in healthcare, isolating specific genetic markers as hidden concepts can
lead to the development of precision medicine strategies [47]. By understanding these hidden
genetic markers, treatments can be customized based on an individual’s genetic profile, improving
efficacy and reducing side effects. Similarly, in physics, identifying and modeling distinct quantum
states as hidden concepts can enhance our understanding of quantum entanglement [48]. This
understanding can lead to advancements in quantum computing and cryptography by leveraging the
unique properties of these hidden quantum states. These applications underscore the broad potential
and transformative impact of our proposed theory across various domains.

C.3 Discussion on Proposition 2

Proposition 2. Let the observed data be a sufficiently large sample generated by a model defined in
Sec. 2. Suppose all assumptions in Thm. 1 hold, except Assump. 1. Then the ground-truth structure
M is identifiable up to a row permutation.

Discussion on Assumptions. All assumptions have been discussed in the previous sections.
Compared to the previous theories on the identifiability of latent concepts, the recovery of the hidden
connective structure does not necessitate the structural diversity assumption (Assump. 1). This allows
us to uncover the structure in even more general scenarios, if the identification of latent concepts
might not be of particular interest.

Implications. Proposition 2 indicates that, the recovered hidden structure between classes and
concepts is an isomorphism of the ground-truth structure. Intuitively, this helps the machine under-
stand which concepts correspond to a given class of observations. While this process may seem
straightforward to us, it can be challenging for infants or machines without prior experience, as
it aligns with an essential step of learning through comparison. For instance, consider an infant
presented with a set of objects like a cat, a dog, and a bird (the classes) and a set of concepts like
"furry," "barks," and "flies." Without proper knowledge, the infant might incorrectly assign "barks"
to the cat or "flies" to the dog, lacking the experience to accurately match these concepts with the
correct classes. The concept of "furry" might also be mistakenly assigned to the bird, despite its
inapplicability. Therefore, to distinguish different classes by their concepts and learn unique concepts
through comparison, the machine must first recover the underlying connective structure. This is
essential for provably learning from multiple classes of observations.
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Furthermore, if we consider the class variables c as exogenous to the system and the underlying
concept variables z as general hidden variables, the dependency structure between exogenous noises
and hidden variables encodes most of the structural information in the system, even if dependencies
exist among hidden variables (e.g., a hidden directed acyclic graph (DAG)). In structure learning,
similar strategies have been applied to recover the DAG among hidden variables by first recovering
the structure of how exogenous noises influence the system in both linear [49] and nonlinear [50]
cases—the DAG constraint ensures the correspondence between the Jacobian of the mixing function
and the adjacency matrix. It is worth noting that identifying the hidden structure in a general nonlinear
system from purely observational data (i.e., without interventions) is a challenging problem that has
been open for decades [36]. Although this is not the focus of our work, the insights provided here
may be of independent interest to researchers in related fields exploring this longstanding challenge.

D Experiments

In order to show the recovery of hidden concepts based on the proposed nonparametric identifiability
theory, we conduct experiments on both synthetic and real-world datasets. It is noteworthy that
an extensive body of research has empirically verified the ability to learn hidden concepts from
various data modalities [6–16]. Furthermore, the application range of concept learning is expanding
significantly with recent advancements in foundation models [17, 30, 18]. Our results complement
these empirical findings by verifying the proposed theory under the proposed conditions, and we refer
to the extensive previous research outlined above for more applications of concept learning across
various scenarios.

Setup. In the considered setting, different samples may correspond to different classes selected
by a mask. We structure the dataset as {(x(i), c(i))}Ni=1, where N denotes the sample size, and c(i)

is a multi-hot vector representing the classes for the data point x(i). A mask Mi,: ⊙ c(i) is applied
to account for the specific class for each sample. Using the estimated model f̂ with parameters θ,
we employ a regularized maximum-likelihood method during estimation, following the standard
approach in [51]. The objective function is defined as L(θ) = E(x,c)[log pf̂−1(x | Mi,: ⊙ c)− λR],

where λ ∈ [0, 1] is the regularization parameter, and R represents the ℓ1 norm applied to M̂ and,
if identifying class-independent concepts, also to the estimated F̂ . The regularization parameters
λ is set according to a search in λ ∈ {0.01, 0.1, 1}, and we select λ = 0.1 according to the average
metrics in the simulated datasets. The results are derived from 10 trials with different random seeds.

We generate the data following the process outlined in our theorems. For our model that identifies
only class-dependent concepts (Fig. 4), the connective structure between classes and concepts is
generated according to the Structural Diversity condition. For nA class-dependent concepts, we
sample from two multivariate Gaussian distributions with zero means and variances drawn from a
uniform distribution on [0.5, 3], consistent with parameters used in previous work [52, 51]. For our
model that identifies all hidden concepts, including class-independent ones (Fig. 5), the connective
structure between class-independent concepts and observed variables follows the structural condition
in Prop. 3. These class-independent concepts are sampled from a single multivariate Gaussian
distribution with zero means and variances drawn from a uniform distribution on [0.5, 3]. In the
base model, we remove the structural constraints on both types of connective structures to verify the
necessity of the proposed conditions. All other settings remain the same as our models.

We use Generative Flow [53] as the nonlinear generating function. For synthetic settings, the sample
size is set as 10, 000. Experiments are conducted using the official implementation of GIN2 [51] with
an additional ℓ1 condition and FrEIA3 [54] for the flow-based generative function. Moreover, all
experiments are conducted on 12 CPU cores with 16 GB RAM.

Evaluation Metric. In our model evaluation, we employ the Mean Correlation Coefficient (MCC) to
measure the alignment between the ground-truth and the recovered latent concepts. To calculate MCC,
we first compute the pairwise correlation coefficients between the true concepts and the recovered
concepts after applying a nonlinear component-wise transformation via regression. Following this,
we solve an assignment problem to match each recovered concept to the corresponding ground-truth

2https://github.com/VLL-HD/GIN
3https://github.com/vislearn/FrEIA
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Figure 4: Identification of class-dependent con-
cepts w.r.t. different number of concepts.
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Figure 5: Identification of all concepts w.r.t.
different number of concepts.

Figure 6: Identified concepts of pullovers:
The rows correspond to “sleeve length," “torso
length," and “shoulder width," respectively.

Figure 7: Identified concepts of ankle boots:
The rows correspond to “heel height," “ankle
width," and “toe box width," respectively.

concept with the highest correlation. MCC is a well-established metric in the literature for evaluating
identifiability, as it accommodates element-wise transformations [55].

Synthetic datasets. We conduct experiments on various synthetic datasets to verify the proposed
identifiability theory. Specifically, we focus on two settings: learning all class-dependent concepts
(Fig. 4) and learning all concepts, including class-independent ones, under appropriate conditions
(Fig. 5). For Ours, the observations are generated according to the assumptions required for the
theory; while for Base, no structural conditions on either M or F have been imposed. Moreover,
to measure the element-wise identifiability, we use the standard MCC between the ground-truth and
estimated hidden concepts. The results (Fig. 4 and Fig. 5) demonstrate that our models achieve
higher MCCs compared to the base model in both settings. This suggests that it is possible to identify
hidden concepts from purely observational data without making assumptions about the concept type,
functional relationships, or parametric generative models. Meanwhile, our models also provide lower
variances across different runs, which further verifies our theoretical findings. As suggested by these
results, hidden concepts can be identified up to an element-wise transformation and a permutation
under our conditions, while the base model fails to disentangle and recover most concepts from data,
further suggesting the necessity of the proposed conditions.

Real-world datasets. To assess the applicability of our proposed structural condition in real-world
contexts, we performed experiments using the Fashion-MNIST [56], EMNIST [57], AnimalFace [58],
and Flower102 [59] datasets. We highlight the top three identified concepts with the largest standard
deviations (SDs) for Fashion-MNIST (Figs. 6 and 7), EMNIST (Fig. 8), and AnimalFace (Fig. 9).
Each row in the figures shows reconstructed images with the corresponding concept value varying to
illustrate its effect. Additionally, the rightmost column features a heat map depicting the absolute
pixel differences to visualize the influence. Clearly, the semantics of the identified concepts align
with our understanding of the corresponding classes. For Flower102, we test the robustness of the
recovered concept by comparing the same concept across different angles and environments. As seen
in Fig. 10, the concept can be consistently identified from the same class across various conditions,
further supporting our theory. Therefore, these results indicate that hidden concepts can be identified
from observational data alone, without the need to specify the generative model, underscoring the
practical viability of the proposed nonparametric identifiability in real-world scenarios.
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(a) Angle (b) Height (c) Thickness

Figure 8: Results for each digit class in the EMNIST dataset, showing the identified concepts with
the top three standard deviations (SDs). Each subfigure represents a concept identified by our model.
These concepts can be interpreted as variations in “angle," “height," and “thickness."

Figure 9: Results on AnimalFace. The rows correspond to different concepts of a panda: “Ursid" and
“Monochrome," respectively.

Figure 10: Results on Flower102. Each row corresponds to the same concept (“Blooming") consis-
tently identified from different angles and environments.
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