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Abstract
Scheduling under uncertainty is an area of interest in artificial
intelligence. We study the problem of Dynamic Controllabil-
ity (DC) of Disjunctive Temporal Networks with Uncertainty
(DTNU), which seeks a reactive scheduling strategy to satisfy
temporal constraints in response to uncontrollable action du-
rations. We introduce new semantics for reactive scheduling:
Time-based Dynamic Controllability (TDC) and a restricted
subset of TDC, R-TDC. We present a tree search approach
to determine whether or not a DTNU is R-TDC. Moreover,
we leverage the learning capability of a Graph Neural Net-
work (GNN) as a heuristic for tree search guidance. Finally,
we conduct experiments on a known benchmark on which
we show R-TDC to retain significant completeness with re-
gard to DC, while being faster to prove. This results in the
tree search processing fifty percent more DTNU problems in
R-TDC than the state-of-the-art DC solver does in DC with
the same time budget. We also observe that GNN tree search
guidance leads to substantial performance gains on bench-
marks of more complex DTNUs, with up to eleven times
more problems solved than the baseline tree search.

1 Introduction and Related Works
Temporal Networks (TN) are a common formalism to rep-
resent temporal constraints over a set of time points (e.g.
start/end of activities in a scheduling problem). The Simple
Temporal Network with Uncertainty (STNUs) introduced
by Vidal and Fargier (1999) explicitly incorporates quali-
tative uncertainty into temporal networks. Applications in-
clude control of robotic systems such as in Bhargava et al.
(2018) and Stegun, Chien, and Agrawal (2020), with limited
ethical concerns thus far. Considerable work has resulted in
algorithms to determine whether or not all timepoints can be
scheduled, either up-front or reactively, in order to account
for uncertainty (e.g. Morris and Muscettola (2005), Morris
(2014)). Dynamic Controllability (DC) is a form of schedul-
ing in which a controller agent integrates observed events as
they unfold to adapt the scheduling reactively. In particular,
an STNU is said to be DC if there is a reactive scheduling
strategy in which controllable timepoints can be executed
either at a specific time, or after observing the occurrence
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Figure 1: Two example DTNUs γ and γ′. Timepoints a1 and
a2 are controllable; u1 uncontrollable. Black arrows repre-
sent time constraints between timepoints; red arrows con-
tingency links. A detailed R-TDC strategy is displayed for
γ. Squares below γ are sub-DTNUs; the ∨ sign lists transi-
tional possibilities. Nodes Ni are R-TDC strategy nodes.

of an uncontrollable timepoint. Cimatti, Micheli, and Roveri
(2016) investigate the problem of DC for Disjunctive Tem-
poral Networks with Uncertainty (DTNUs), which general-
ize STNUs. Figure 1a shows two DTNUs γ and γ′ on the
left side; ai are controllable timepoints, uj are uncontrol-
lable timepoints. Timepoints are variables which can take on
any value in R. Constraints between timepoints characterize
a minimum and maximum time distance separating them,
likewise valued in R. The key difference between STNUs
and DTNUs lies in the disjunctions that yield more choice
points for consistent scheduling, especially reactively (e.g. if
an uncontrollable timepoint occurs early, a given constraint
could be satisfied, if it occurs late, another one, linked by a
disjunction, could be).

DC-checking for STNUs is O(N3) (Morris (2014)), how-
ever, it is PSPACE-complete for DTNUs (Bhargava and
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Williams (2019)), making this a highly challenging prob-
lem. The difficulty in proving or disproving DC arises
from the need to check all possible combinations of dis-
juncts to handle all possible outcomes of uncontrollable
timepoints. DTNUs are nonetheless more expressive than
STNUs, and many real world applications require time-
windows in which certain tasks can be scheduled either in a
given interval or another, making it a problem worth study-
ing. The best previously published approaches for this prob-
lem come from Cimatti, Micheli, and Roveri (2016) and use
timed-game automata and satisfiability modulo theories.

An emerging trend of neural networks, Graph Neural Net-
works (GNNs), has been proposed to extend convolutional
neural networks (Krizhevsky, Sutskever, and Hinton (2012))
to graph inputs. Recent variants based on spectral graph
theory include works from Defferrard, Bresson, and Van-
dergheynst (2016) and Kipf and Welling (2017). They lever-
age relational properties between nodes, but do not take
into account potential edge weights. In newer spatial-based
approaches, Message Passing Neural Networks (MPNNs)
from Battaglia et al. (2016), Gilmer et al. (2017) and Kipf
et al. (2018) use embeddings comprising edge weights
within each computational layer. We focus on these archi-
tectures as DTNUs can be formalized as graphs with edge
distances representing time constraints.

In this work, we pose DC-checking of DTNUs as a
search problem, express states as graphs, and use MPNNs to
learn heuristics based on previously solved DTNUs to guide
search. The key contributions of our approach are the follow-
ing. (1) We introduce new semantics for reactive scheduling:
Time-based Dynamic Controllability (TDC), and a restricted
subset of TDC, R-TDC. We present a tree search approach
to identify R-TDC strategies. (2) We describe an MPNN ar-
chitecture trained with self-supervised learning for handling
DTNU scheduling problems and use it as heuristic for guid-
ance in the tree search. (3) We carry out experiments on a
known benchmark showing that R-TDC retains significant
completeness compared to DC while being faster to prove.
This leads to 50% more DTNU instances processed in R-
TDC by the tree search than in DC with the state-of-the-
art DC solver in the same time budget. Moreover, we show
that the learned MPNN heuristic considerably improves the
tree search on benchmarks of harder DTNUs: performance
gains go up to 11 times more instances solved than the base-
line tree search within the same time frame. Our results also
highlight that the MPNN, which is trained on a set of solved
DTNUs, is able to generalize to larger DTNUs than those on
which it was trained.

2 Problem and Controllability Definitions
We next provide definitions necessary in the context of this
work: Dynamic Controllability (DC), Time-based Dynamic
Controllability (TDC) and Restricted TDC (R-TDC).

Definition 1 (DTNU and variants). A DTNU Γ is a tuple
{A,U,C,L}, where: A is a set of controllable timepoints;
U a set of uncontrollable timepoints; C a set of free con-
straints, each of the form ∨q

k=1vk,j − vk,i ∈ [xk, yk], for
some vk,j , vk,i ∈ V = A ∪ U , xk, yk ∈ R ∪ {−∞,+∞}

and q ∈ Z+; L a set of contingency links, each of the form
⟨ai,∨q′

k=1[x
′
k, y

′
k], uj⟩ where ai ∈ A, uj ∈ U , x′

k, y
′
k ∈

R ∪ {−∞,+∞}, 0 ≤ x′
k ≤ y′k ≤ x′

k+1 ≤ y′k+1 ∀k =

1, 2, ..., q′ − 1 and q′ ∈ Z+, indicating possible occurrence
time intervals of uj after ai. A DTNU without uncontrol-
lable timepoints is referred to as Disjunctive Temporal Net-
work (DTN). STNUs follow the same definition as DTNUs
but do not contain any disjunction inside constraints. Fi-
nally, an STNU without uncontrollable timepoints is a Sim-
ple Temporal Network (STN).
Definition 2 (DC & TDC). DC is a reactive form of
scheduling which incorporates occurrences of uncontrol-
lable events as they unfold and adapts to them. A problem
is DC if and only if it admits a valid dynamic strategy ex-
pressed as a map from partial schedules to Real-Time Ex-
ecution Decisions (RTEDs) (Cimatti, Micheli, and Roveri
(2016)). A partial schedule represents the current schedul-
ing state, i.e. the set of timepoints that have been scheduled
or occurred so far and their timing. RTEDs allow for two
possible actions: (1) The wait action, i.e. wait for an un-
controllable timepoint to occur. (2) The (t,X ) action, i.e.
if nothing happens before time t, schedule the controllable
timepoints in X at t. A strategy is valid if, for every possi-
ble occurrence of the uncontrollable timepoints, controllable
timepoints get scheduled in a way that all free constraints are
satisfied. A TDC strategy is a representation of a DC strat-
egy as a timed tree, i.e. a map from tree nodes to children
nodes. Tree nodes represent partial schedules, and their chil-
dren lead to the execution of one of the following actions: (1)
Schedule a set of controllable timepoints at current time; (2)
Wait a period of time or until an uncontrollable timepoint
occurs, whichever happens first.
Definition 3 (R-TDC). R-TDC is a finite subset of TDC. In
particular, actions associated to a partial schedule in R-TDC
are: (1) Schedule a set of controllable timepoints at current
time; (2) Wait an uninterruptible period of time, the wait
duration being defined by time discretization rules in § 4.2.

A TDC strategy can fully express a DC strategy which
has an infinite number of mappings from partial schedules
to RTEDs, given an infinite tree. In this work, we restrict
TDC to a finite search space, R-TDC, and weigh how loss
of search completeness results in increased efficiency. The
restrictions in R-TDC stem from the uninterruptible waits:
occurrence times of uncontrollable timepoints happening in
waits are only bounded. Thus, partial schedules in R-TDC
tree nodes do not carry exact occurrence times for uncon-
trollable timepoints which already occurred but only oc-
currence intervals. Moreover, time discretization rules are
used in R-TDC to inspect a partial schedule in order to
define a wait duration. The aim is to maximize the dura-
tion to speed up strategy search while limiting loss of pos-
sible strategies. Lastly, in order to improve completeness,
we augment R-TDC waits with the possibility of instanta-
neous reactive executions during strategy execution. These
are requests made to the waiting controller agent to imme-
diately execute some controllable timepoint(s) when it ob-
serves an uncontrollable timepoint occur. Associated waits
remain uninterruptible during strategy search however, re-
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Figure 2: Execution of waits by controllability type. Time-
point u is uncontrollable; a is controllable. A wait from t to
t+∆t is considered and corresponding behaviors are shown.

sulting in only bounded and not exact scheduling times of
controllable timepoints which are executed in such fashion,
as shown in Figure 2.

Definition 3a (R-TDC strategy structure). A R-TDC strat-
egy is a finite tree. This tree is comprised of a list of nodes
(N1,N2, ..., Nq−1, Nq). Each Ni is of the form:

Ni = (Nj , Oji, Ei, ⟨si, ei, Ri⟩)
where:

• Nj is the parent node of Ni in the tree.
• Time si is the start time of the wait in node Ni.
• Time ei is the end time of the wait in node Ni.
• Oji is the list of uncontrollable timepoints assumed to oc-

cur during the wait in node Nj . There exist as many Oji

as the number of combinations of uncontrollable time-
points that may occur during the wait in node Nj . There-
fore, in a R-TDC strategy, node Nj will have exactly the
same number of children nodes to account for all possible
outcomes of uncontrollable timepoints.

• Ri is a mapping which can associate to any uncontrol-
lable timepoint that may occur in the wait ⟨si, ei⟩ a set of
controllable timepoints to reactively execute by the agent
during strategy execution. The associated wait remains
uninterrupted during strategy search even if some uncon-
trollable timepoints are assumed to occur in the wait.

• Ei is a set of controllable timepoints to schedule at si.

Each path from the root node of a R-TDC strategy to any
leaf node satisfies the following properties:

• It covers the time horizon entirely (each new wait starts
at the same time as the end of the previous wait).

• It represents a unique outcome of the occurrence possi-
bilities of uncontrollable timepoints. Each uncontrollable
timepoint is bounded in an occurrence interval ⟨si, ei⟩.
All possible outcomes are included in the strategy.

• It assigns to every controllable timepoint a given time of
scheduling (or time interval for those reactively executed
in response to uncontrollable timepoints).

• All constraints are satisfied given the scheduling time,
scheduling time intervals and occurrence intervals of all
timepoints.

We explain next how a R-TDC strategy is executed.
R-TDC Strategy Execution. A R-TDC strategy is exe-
cuted in the following way by a controller agent. The agent
starts at the root R-TDC node. For each current node Ni =
(Nj , Oji, Ei, ⟨si, ei, Ri⟩), it executes at t = si the time-
points in Ei, and waits from time si to ei with the reactive
strategy Ri, i.e. if Ri stipulates it, the agent will immedi-
ately execute some controllable timepoints in response to
some uncontrollable timepoints that may occur during the
wait, as soon as they do. At the end of the wait, the agent
deduces from the list of uncontrollable timepoints that oc-
curred which child N ′

i of node Ni it transitioned to. It moves
to N ′

i and repeats the same process. Those guidelines are
followed recursively until all constraints are satisfied.

We give a simple example of a R-TDC strategy for a
DTNU γ in Figure 1. DTNU γ′ on the other hand is an
example of a DTNU which is DC and TDC but not R-
TDC. More precisely, it shows a clear limitation of R-TDC:
when a controllable timepoint a absolutely has to be sched-
uled a set time after an uncontrollable timepoint u occurs:
a − u ∈ [x, x], x ∈ R+. This is impossible in R-TDC as
occurrence time of u can only be bounded during strategy
search and not exact, because any wait interval, however
small, in which u is assumed to occur is bounded.

3 Tree Search Preliminaries
We introduce here the tree search algorithm. The root of the
search tree built by the algorithm is a DTNU, and other tree
nodes are either sub-DTNUs or logical nodes (OR, AND)
which respectively represent decisions that can be made and
how uncontrollable timepoints can unfold. At a given DTNU
tree node, decisions such as scheduling a controllable time-
point at current time or waiting for a period of time develop
children DTNU nodes for which these decisions are prop-
agated to constraints. In this tree, only one timepoint can
be scheduled per branch, rather than a set of timepoints,
simply for compatibility reasons with the heuristic func-
tion used for guidance. The R-TDC controllability of a leaf
DTNU node, i.e. a sub-DTNU for which all controllable
timepoints have been scheduled and uncontrollable time-
points are assumed to have occurred in specific intervals,
indicates whether or not this sub-DTNU has been solved at
the end of the scheduling process. We also refer to the R-
TDC controllability of a DTNU node in the search tree as
its truth attribute. Lastly, the search logically combines R-
TDC controllability of children nodes to determine R-TDC
controllability for parent nodes.

Let Γ = {A,U,C, L} be a DTNU. The root node of the
search tree is Γ. There are four different types of nodes in the
tree and each node has a truth attribute which is initialized to
unknown and can be set to either true or false. The different
types of tree nodes are listed below and shown in Figure 3.
DTNU nodes. Any DTNU node other than the original
problem Γ corresponds to a sub-problem of Γ at a given
point in time t, for which some controllable timepoints may
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have already been scheduled in upper branches of the tree,
some amount of time may have passed, and some uncon-
trollable timepoints are assumed to have occurred. A DTNU
node is made of the same timepoints A and U , constraints
C and contingency links L as DTNU Γ. It also carries a
schedule memory S of what time controllable timepoints
were scheduled during previous decisions in the tree, as
well as the occurrence time intervals of uncontrollable time-
points assumed to have occurred. Lastly, the node also keeps
track of the activation time intervals of activated uncontrol-
lable timepoints B (uncontrollable timepoints that have been
triggered by the scheduling of their associated controllable
timepoint). The schedule memory S is used to create an up-
dated list of constraints C ′ resulting from the propagation of
the scheduling time or occurrence time interval of timepoints
in constraints C. A non-terminal DTNU node, i.e. a DTNU
node for which all timepoints have not been scheduled, has
exactly one child node: a d-OR node.
OR nodes. When a choice can be made at time t, this tran-
sition control is represented by an OR node. We distinguish
two types of such nodes, d-OR and w-OR . For d-OR nodes,
the first type of choice is which controllable timepoint ai to
schedule at current time. This leads to a DTNU node. The
other type of choice is to wait a period of time, which leads
to a WAIT node. w-OR nodes can be used to list reactive wait
strategies, i.e. to stipulate that some controllable timepoints
will be set to be reactively executed to some uncontrollable
timepoints in waits during strategy execution. The parent of
a w-OR node is therefore a WAIT node and its children are
AND nodes, described below.
WAIT nodes. These nodes are used after a decision to wait
a certain period of time ∆t. The parent of a WAIT node is
a d-OR node. A WAIT node has exactly one child: a w-OR
node, which has the purpose of exploring different reactive
wait strategies. The uncertainty management related to un-
controllable timepoints is handled by AND nodes.
AND nodes. Such nodes are used after a wait decision is
taken and a reactive wait strategy is decided, represented re-
spectively by a WAIT and w-OR node. Each child node of
the AND node is a DTNU node at time t + ∆t, t being the
time before the wait and ∆t the wait duration. Each child
node represents an outcome of how uncontrollable time-
points may unfold and is built from the set of activated un-
controllable timepoints whose activation time interval over-
laps the wait. If there are l activated uncontrollable time-
points, then there are at most 2l AND node children, repre-
senting each element of the power set of activated uncontrol-
lable timepoints.

Figure 3 illustrates how a sub-problem of Γ, referred to
as DTNUO,P,t, is developed, where O ⊂ A is the set of
controllable timepoints that have already been scheduled,
P ⊂ U the set of uncontrollable timepoints which have oc-
curred, and t the time. Moreover, two types of leaf nodes ex-
ist in the tree. The first type is a node DTNUA,U,t for which
all controllable timepoints ai ∈ A have been scheduled and
all uncontrollable timepoints ui ∈ U have occurred. The
second type is a node DTNUA\A′,U,t for which all uncon-
trollable timepoints ui ∈ U have occurred, but some con-
trollable timepoints ai ∈ A′ have not been scheduled. The

Figure 3: Structure of the search tree. Red nodes are DT-
NUs; (O,P, t) is a DTNU for which O is the set of con-
trollable timepoints already scheduled, P the set of uncon-
trollable timepoints that have occurred, and t the time. Each
branch ai refers to a controllable timepoint ai, Ri to a reac-
tive strategy for the wait, and Λi to a combination of uncon-
trollable timepoints.

constraint satisfiability test of the former type of leaf node
is straightforward: scheduling times and occurrence time in-
tervals of all timepoints are propagated to constraints. For
any timepoint whose occurrence time is only bounded in in-
tervals and not exact, propagation is done in a way which
assumes it could have occurred anywhere inside the inter-
val to guarantee soundness. The leaf node’s truth attribute is
set to true if all constraints are satisfied, false otherwise. For
the latter type, we propagate the occurrence time intervals
of all uncontrollable timepoints as well as scheduling times
of all scheduled controllable timepoints in the same way,
and obtain an updated set of constraint C ′. This leaf node,
DTNUA\A′,U,t, is therefore characterized as {A′, ∅, C ′, ∅}
and is a DTN. We add the constraints a′i ≥ t, ∀a′i ∈ A′

and use a mixed integer linear programming solver (Cplex
(2009)) to solve the DTN. If a solution is found, the time
values for each a′i ∈ A′ are stored and the leaf node’s truth
value is set to true. Otherwise, it is set to false. After a truth
value is assigned to the leaf node, the truth propagation func-
tion defined in § 8.3 in the supplemental is called to log-
ically infer truth value properties for parent nodes. A true
value reaching the root node of the tree means a R-TDC
strategy has been found. The R-TDC strategy is a subtree
of the search tree obtained by selecting recursively from the
root, for each d-OR and w-OR nodes, the child with the
true attribute, and for each AND node, all children nodes
(which are necessarily true). A false attribute reaching the
root means there is no existing R-TDC strategy. As a result
of the structure of the search tree which explores all pos-
sible outcomes of uncontrollable timepoints, and constraint
propagation which enforces strict variable domain restric-
tions after an uncontrollable timepoint is bounded, the algo-
rithm will always return sound strategies. Lastly, the search
algorithm explores the tree in a depth-first manner. We de-
scribe some simplifications made in the exploration in §8.7
in the supplemental.
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4 Tree Search Characteristics
We describe in this section how wait periods are calculated
and how constraint propagation is performed. Moreover, we
will designate as a conjunct a constraint relationship of the
form vi − vj ∈ [x, y] or vi ∈ [x, y], where vi, vj are time-
points and x, y,∈ IR. We refer to a constraint where several
conjuncts are linked by ∨ operators as a disjunct.

4.1 Wait Action
When a wait decision of duration ∆t is taken at time t for
a DTNU node, two categories of uncontrollable timepoints
are considered to account for all transitional possibilities:

• Z = {ζ1, ζ2, ..., ζl} is a set of timepoints that could either
happen during the wait, or afterwards, i.e. the end of the
activation time interval for each ζi is greater than t+∆t.

• H = {η1, η2, ..., ηm} is a set of timepoints that are cer-
tain to happen during the wait, i.e. the end of the acti-
vation time interval for each ηi is less than or equal to
t+∆t.

There are q = 2l number of different possible combina-
tions (empty set included) Υ1,Υ2, ...,Υq of elements taken
from Z. For each combination Υi, the set Λi = H ∪ Υi is

created. The union
q⋃

i=1

Λi refers to all possible combinations

of uncontrollable timepoints which can occur by t +∆t. In
Figure 3, for each AND node, the combination Λi leads to
a DTNU sub-problem DTNUOi,P∪Λi,t+∆t

for which the
uncontrollable timepoints in Λi are considered to have oc-
curred between t and t + ∆t in the schedule memory S. In
addition, any potential controllable timepoint ϕ planned to
be instantly executed in a reactive wait strategy Ri in re-
sponse to an uncontrollable timepoint u in Λi will also be
considered to have been scheduled between t and t +∆t in
S. The only exception is when checking constraint satisfi-
ability for the conjunct u − ϕ ∈ [0, y] which required the
reactive execution, for which we assume ϕ will be executed
by the agent during strategy execution at the same time as u,
thus the conjunct is considered satisfied.

4.2 Wait Eligibility and Period
The way wait durations are defined holds direct implications
on the search space and the capability of the algorithm to
find strategies. Longer waits make the search space smaller,
but carry the risk of missing key moments where a decision
is needed. On the other hand, smaller waits can make the
search space too large to explore. We explain when the wait
action is eligible, and how its duration is computed.
Eligibility At least one of these two criteria has to be met
for a WAIT node to be added as child of a d-OR node. (1)
There is at least one activated uncontrollable timepoint for
the parent DTNU node. (2) There is at least one conjunct
of the form v ∈ [x, y], where v is a timepoint, in the con-
straints of the parent DTNU node. These criteria ensure that
the search tree will not develop branches below WAIT nodes
when waiting is not relevant, i.e. when a controllable time-
point necessarily needs to be scheduled. It also prevents the
tree search from getting stuck in infinite WAIT loop cycles.

Wait Period We define the wait duration ∆t at a given d-
OR node by examining the updated constraint list C ′ of the
parent DTNU and the activation time intervals B of its ac-
tivated uncontrollable timepoints. Let t be the current time
for this DTNU node. Wait duration is defined by comparing
t to elements in C ′ and B to look for a minimum positive
value defined by the next three rules. Each rule looks at the
current partial schedule to identify ’key milestones’ when ac-
tions should be taken, allowing to prefer longer waits when
nothing is likely to happen before a long time, or shorter
waits during critical moments. The purpose of the rules is
to make it likely for there to be an existing R-TDC strategy
when a DC one exists, while keeping the search space ex-
plored by the tree search algorithm as small as possible. (1)
For each activated time interval u ∈ [x, y] in B, we select
x − t or y − t, whichever is smaller and positive, and keep
the smallest value δ1 found over all activated time intervals.
This rule ensures the algorithm gets the opportunity to take
a decision at the very beginning (or end) of a time frame in
which an uncontrollable timepoint will occur. (2) For each
conjunct v ∈ [x, y] in C ′, where v is a timepoint, we se-
lect x − t or y − t, whichever is smaller and positive, and
keep the smallest value δ2 found over all conjuncts. This
rule gives the algorithm the opportunity to act at the very
beginning (or end) of a time frame in which it can satisfy a
constraint requiring a timepoint to be in a specific interval.
(3) We determine timepoints which need to be scheduled
ahead of time by chaining constraints together. Intuitively,
when a conjunct v ∈ [x, y] is in C ′, v has to be scheduled
when t ∈ [x, y] to satisfy this conjunct. However, v may
be linked to other timepoints by constraints requiring them
to happen before v. These timepoints may in turn be linked
to yet other timepoints in the same way, and so on. There-
fore, waiting until the time constraint window of v may re-
sult in the algorithm actually over-waiting and being too late
to tackle those constraint dependencies. The third rule con-
sists in chaining backwards to identify potential timepoints
starting this chain and potential time intervals in which they
need to be scheduled. The following mechanism is used: for
each conjunct v ∈ [x, y] in C ′ found in (2), we apply a recur-
sive chain function to both (v, x) and (v, y). We detail how
it is applied to (v, x), the process being the same for (v, y).
Conjuncts of the form v − v′ ∈ [x′, y′], x′ ≥ 0 in C ′ are
searched for. For each conjunct found, we add to a list two
elements, (v′, x− x′) and (v′, x− y′). We select x− x′ − t
or x− y′ − t, whichever is smaller and positive, as potential
minimum candidate. The chain function is called recursively
on each element of the list. We keep the smallest candidate
δ3. Figure 9 in the supplemental illustrates an application of
this process. Finally, we set ∆t = min(δ1, δ2, δ3) as the wait
duration. This duration is stored inside the WAIT node.

4.3 Reactive Executions during Waits
Scheduling of a controllable timepoint may be necessary in
some situations at the exact same time as when an uncon-
trollable timepoint occurs to satisfy a constraint. Therefore,
different reactive wait strategies are considered and listed as
children of a w-OR node after a wait decision, before the
start of the wait itself. If at any given DTNU node in the tree
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there is an activated uncontrollable timepoint u with the po-
tential to occur during the next wait and there is at least one
unscheduled controllable timepoint a such that a conjunct of
the form u − a ∈ [0, y], y ≥ 0 is present in the constraints,
a reactive wait strategy is available that will set a to be exe-
cuted as soon as u occurs during strategy execution.

If there are s controllable timepoints that may be set to
be reactively executed, there are 2s different reactive wait
strategies Ri, each of which is embedded in an AND child of
the w-OR node. Let Φ = {ϕ1, ϕ2, ..., ϕs} ⊂ A be the com-
plete set of unscheduled controllable timepoints for which
there are conjunct clauses u − ϕi ∈ [0, y]. We denote as
R1, R2, ..., Rm all possible combinations of elements taken
from Φ, including the empty set. The child node ANDRi of
the w-OR node resulting from the combination Ri has a re-
active wait strategy for which all controllable timepoints in
Ri will be immediately executed at the moment u occurs
during the wait, if it occurs.

4.4 Constraint Propagation
Decisions taken in the tree define when controllable time-
points are scheduled and also bear consequences on the oc-
currence time of uncontrollable timepoints. We explain here
how these decisions are propagated into constraints, as well
as the concept of ‘tight bound’.

Let C ′ be the list of updated constraints for a DTNU node
ψ for which the parent node is ω. We distinguish two cases.
Either ω is a d-OR node and ψ results from the scheduling
of a controllable timepoint ai, or ω is an AND node and ψ
results from a wait of ∆t time units. In the first case, let t be
the scheduling time of ai. The updated list C ′ is built from
the constraints of the parent DTNU ofψ in the tree. If a con-
junct contains ai and is of the form ai ∈ [x, y], this conjunct
is replaced with true if t ∈ [x, y], false otherwise. If the con-
junct is of the form vj − ai ∈ [x, y], we replace the conjunct
with vj ∈ [t+x, t+y]. The other possibility is thatψ results
from a wait of ∆t time units at time t, with a reactive wait
strategy R. In this case, the new time is t + ∆t for ψ. As
a result of the wait, some uncontrollable timepoints ui ∈ Λ
are assumed to have occurred, and some controllable time-
points ai ∈ AR may be executed reactively during the wait.
Let vi ∈ Λ ∪ AR be these timepoints occurring during the
wait. The occurrence time of these timepoints is assumed to
be in [t, t+∆t]. For uncontrollable timepoints u′

i ∈ Λ′ ⊂ Λ
for which the activation time ends at t + ∆′

ti < t + ∆t,
and potential controllable timepoints a′i instantly reacting to
these uncontrollable timepoints, the occurrence time is fur-
ther reduced and considered to be in [t, t+∆′

ti ].
We define a concept of tight bound to update constraints

which restricts time intervals in order to account for all
possible values vi can take between t and t + ∆t. For all
conjuncts vj − vi ∈ [x, y], we replace the conjunct with
vj ∈ [t + ∆t + x, t + y]. Intuitively, this means that since
vi can happen at the latest at t + ∆t, vj can not be allowed
to happen before t + ∆t + x. Likewise, since vi can hap-
pen at the earliest at t, vj can not be allowed to happen after
t+y. Finally, if t+∆t+x > t+y, the conjunct is replaced
with false . Also, the process can be applied recursively in
the event that vj is also a timepoint that occurred during

the wait, in which case the conjunct would be replaced by
true or false. In any case, any conjunct obtained of the form
aj ∈ [x′, y′] is replaced with false if t + ∆t > y′. Finally,
if all conjuncts inside a disjunct are set to false by this pro-
cess, the constraint is violated and the DTNU is no longer
satisfiable.

5 Learning-based Heuristic
We explain here how our learning model provides tree
search guidance. Our MPNN architecture stems from
Gilmer et al. (2017). It uses message passing rules enabling
it to process graph-structured inputs. This architecture was
originally designed for node classification in quantum chem-
istry and achieved state-of-the-art results on a molecular
property prediction benchmark. Here, we define a way of
converting DTNUs into graph data. Then, we process the
graph data with a fixed MPNN architecture and use the out-
put to guide the tree search.

Let Γ = {A,U,C, L} be a DTNU. We explain how we
turn Γ into a graph G = (K, E). First, we convert all time
values from absolute to relative by setting the current time
for Γ to t = 0. We search all converted time intervals [xi, yi]
in C and L for the highest interval bound value dmax, i.e.
the farthest point in time. We normalize every time value in
C and L by dividing them by dmax, yielding values between
0 and 1. Next, we convert each controllable timepoint a ∈ A
and uncontrollable timepoint u ∈ U into graph nodes with
corresponding controllable or uncontrollable node features.
Time constraints in C and contingency links in L are ex-
pressed as edges between nodes with 10 different edge dis-
tance classes (0 : [0, 0.1), 1 : [0.1, 0.2), ..., 9 : [0.9, 1]). We
also use additional edge features to account for edge types
(constraint, disjunction, contingency link, direction sign for
lower and upper bounds). Moreover, intermediary nodes are
used with a distinct node feature in order to map possible
disjunctions in constraints and contingency links. We add
a WAIT node with a distinct node feature which implicitly
designates the act of waiting a period of time. Figure 10 in
the supplemental shows an example of DTNU graph conver-
sion.

The graph conversion of DTNU γ contains three ele-
ments: the matrix of all node features Xκ, the adjacency
matrix of the graph Xϵ and the matrix of all edge features
Xρ. These features are processed by a fixed number of con-
secutive message passing layers from Gilmer et al. (2017)
which make the MPNN. Each layer takes an input graph,
consists of a phase during which messages are passed be-
tween nodes, and returns the same graph with new node fea-
tures. Edge features remain the same. The overall process
for a layer is as follows. For each node κi in the input graph,
a message passing phase creates new features for κi from
current features of neighboring nodes and edges. In detail,
for each neighbor node κj , a small neural network (termed
multi-layer perceptron, or MLP) takes as input the features
of the edge connecting κi and κj and returns a matrix which
is then multiplied by the features of κj to obtain a feature
vector. The sum of these vectors for the entire neighborhood
defines the new features for κi. The output of the message
passing layer consists of the graph updated with the new
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node features. In each message passing layer, the same MLP
is used to process every node, so it can be applied to input
graphs of any size, i.e. the MPNN architecture can take as
input DTNUs of any size. Moreover, each message passing
layer uses a different MLP and can thus be trained to learn a
different message passing scheme. Algorithm 3 in the sup-
plemental explains the workings of message passing.

Let f be the function for our MPNN and θ its param-
eters. Function f stacks 5 message passing layers coupled
with the ReLU(·) = max(0, ·) piece-wise activation func-
tion (Glorot, Bordes, and Bengio (2011)) after each layer,
except the last one. The first 4 layers have 32 abstract fea-
tures per node, the last layer has 1 abstract feature per node.
Each layer uses a trainable two-layer multi-layer perceptron
(with 128 neurons in the hidden layer) for the message pass-
ing. Moreover, we add skip connections (He et al. (2016)) to
link each layer to the previous one. The sigmoid function
σ(·) = 1

1+exp(−·) is used after the last layer to obtain a list
of probabilities π over all nodes in G : fθ(Xκ, Xϵ, Xρ) = π.
The probability of each node κ in π corresponds to the like-
lihood of transitioning into a R-TDC DTNU from the orig-
inal DTNU Γ by taking the action corresponding to κ. If κ
represents a controllable timepoint a in Γ, its corresponding
probability in π is the likelihood of the sub-DTNU result-
ing from the scheduling of a being R-TDC. If κ represents
a WAIT decision, its probability refers to the likelihood of
the WAIT node having a true attribute, We call these two
types of nodes active nodes. Otherwise, if κ is another type
of node, its probability is not relevant to the problem and
ignored. Our MPNN is trained on DTNUs generated and
solved in § 8.8 in the supplemental only on active nodes by
minimizing the binary cross-entropy loss:

1

m

m∑
i=1

q∑
j=1

−Yij log(fθ(Xi)j)− (1−Yij) log(1− fθ(Xi)j)

Here Xi = (Xiκ , Xiϵ , Xiρ) is DTNU number i among a
training set of m examples, Yij is the R-TDC controllabil-
ity (1 or 0) of active node number j for DTNU number i.
During training, we use batch normalization after each mes-
sage passing layer. We add a dropout regularization layer
with a keep rate 0.9 before the output layer to reduce over-
fitting. Training is done with the adagrad optimizer from
Duchi, Hazan, and Singer (2011) and an initial learning
rate 10−4 on a dataset comprised of 30K instances gener-
ated as described in § 8.8 in the supplemental. We split the
data into a training set comprised of 25K instances and a
cross-validation set comprised of 5K instances on which
we achieve 84% accuracy. Lastly, the MPNN heuristic is
used as follows in the tree search. Once a d-OR node is
reached, its parent DTNU node is converted into a graph and
the MPNN is called upon the corresponding graph elements
Xκ, Xϵ, Xρ. Active nodes in output probabilities π are then
ordered by highest values first, and the search visits the cor-
responding children nodes in the suggested order, preferring
children with higher likelihood of being R-TDC first.

Figure 4: Experiments on (Cimatti, Micheli, and Roveri
2016)’s benchmark. The X-axis shows the allocated time (s)
and the Y-axis the number of instances each solver can solve
within the corresponding allocated time. Timeout is set to 20
seconds per instance.

6 Experiments
We evaluate the efficiency of the tree search and the effect of
the MPNN’s guidance. We also compare them to the state-
of-the-art DC solver, PYDC-SMT-ordered, from Cimatti,
Micheli, and Roveri (2016) on a same computer. The tree
search algorithm, trained MPNN and benchmarks are avail-
able here. We use a laptop with the following specifications
for experiments: 9th gen. Intel Core i7, 16GB RAM and
nvidia GTX 1660 Ti. R-TDC is a subset of DC and TDC:
non-R-TDC controllability does not imply non-DC control-
lability. A R-TDC solver can thus be expected to offer bet-
ter performance than a DC one while potentially being un-
able to find a strategy when a DC algorithm would. In this
section, we refer to the tree search algorithm as TS and the
tree search algorithm guided by the trained MPNN up to the
15th (respectively Xth) d-OR node depth-wise in the tree as
MPNN-TS (respectively MPNN-TS-X).

First, we use the benchmark from Cimatti, Micheli, and
Roveri (2016) from which we remove DTNs and STNs. We
compare TS, MPNN-TS and PYDC-SMT on the resulting
benchmark which is comprised of 290 DTNUs and 1042
STNUs. Here, Limiting maximum depth use of the MPNN
to 15 offers a good trade off between guidance gain and cost
of calling the MPNN. Results are given in Figure 4. We ob-
serve TS solves roughly 50% more problem instances than
PYDC-SMT within the allocated time (20 seconds). In ad-
dition, TS solves 56% of all instances while the remaining
ones time out. Among solved instances, a strategy is found
for 89% and the remaining 11% are proved non-R-TDC. On
the other hand, PYDC-SMT solves 37% of all instances. A
strategy is found for 85% of PYDC-SMT’s solved instances,
the remaining 15% are proved non-DC. Finally, out of all in-
stances PYDC-SMT solves, TS solves 97% with the same
conclusion, i.e. R-TDC when DC and non-R-TDC when
non-DC, highlighting the significant completeness retained
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Figure 5: Experiments on benchmark B1. Axes are as in
Figure 4. Timeout is set to 30 seconds per instance.

by R-TDC. The use of the MPNN leads to an additional
+6% problems solved. We argue this small increase is es-
sentially due to the fact that most problems solved in the
benchmark are small-sized problems with few timepoints
which are solved quickly. Despite this fact, the MPNN still
provides performance boost on a benchmark generated with
another DTNU generator, suggesting the bias introduced by
our DTNU generator remains limited and the MPNN is able
to generalize to DTNUs created with a different approach.

For further evaluation of the MPNN, we create new
benchmarks with the DTNU generator from § 8.8 (supple-
mental) with varying number of timepoints. These bench-
marks have fewer quick to solve DTNUs and harder ones
instead. Each benchmark contains 500 random DTNUs
which have 1 to 3 uncontrollable timepoints. Moreover, each
DTNU has 10 to 20 controllable timepoints in the 1st bench-
mark B1, 20 to 25 in the 2nd benchmark B2 and 25 to 30 in
the last benchmark B3. Each disjunct in the constraints of
any DTNU contains up to 5 conjuncts. Experiments on B1,
B2 and B3 are respectively shown in Figure 5, 7c (in the
supplemental) and 6. We note that for all three benchmarks
no solver ever proves non-R-TDC or non-DC controllability
before timing out due to the larger size of these problems.

PYDC-SMT performs poorly on B1 and cannot solve any
instance on B2 and B3. TS underperforms on B2 and only
solves 2 instances on B3. However, we see a significantly
higher gain from the use of the MPNN, varying with the
maximum depth use. At best depth use, the gain is +91%
instances solved for B1, +980% for B2 and +1150% for
B3. The more timepoints instances have, the more worth-
while MPNN guidance appears to be. Indeed, the optimal
maximum depth use of the MPNN in the tree increases with
the problem size: 15 for B1, 60 for B2 and 120 for B3. We
argue this is due to the fact that more timepoints results in a
wider search tree overall, including in deeper sections where
MPNN use was not necessarily worth its cost for smaller
problems. Furthermore, the MPNN is trained on randomly
generated DTNUs which have 10 to 20 controllable time-

Figure 6: Experiments on benchmark B3. Axes are as in
Figure 4. Timeout is set to 180 seconds.

points. The promising gains shown by experiments on B2

and B3 suggest generalization of the MPNN to bigger prob-
lems than it is trained on.

The proposed tree search approach presents a good trade
off between search completeness and effectiveness: almost
all examples solved by PYDC-SMT in the benchmark of
Cimatti, Micheli, and Roveri (2016) are solved with the
same conclusion, and many more which could not be solved
are. Moreover, the R-TDC approach scales up better to prob-
lems with more timepoints, and the tree structure allows the
use of learning-based heuristics. Although these heuristics
are not key to solving problems of big scales, our experi-
ments suggest they can still provide a high increase in effi-
ciency.

7 Conclusion
We introduced new semantics for reactive scheduling: Time-
based Dynamic Controllability (TDC) and a restricted subset
of TDC, R-TDC. We presented a tree search approach for
solving Disjunctive Temporal Networks with Uncertainty
(DTNU) in R-TDC. Strategies are built by discretizing time
and exploring different decisions which can be taken at dif-
ferent key points, as well as anticipating how uncontrollable
timepoints can unfold. We showed experimentally that R-
TDC retains significant completeness, and enables the tree
search approach to process DTNUs more efficiently than the
state-of-the-art Dynamic Controllability (DC) solver does
in DC. Lastly, we created MPNN-TS, a solver which com-
bines the tree search with a heuristic function based on Mes-
sage Passing Neural Networks (MPNN) for guidance. The
MPNN enables steady improvements of the tree search on
harder DTNU problems, notably on DTNUs of bigger size
than those used for training the MPNN.

Acknowledgements
We would like to thank the reviewers whose feedback helped
significantly improve the quality and clarity of this paper.

9884



References
Battaglia, P.; Pascanu, R.; Lai, M.; Rezende, D. J.; et al.
2016. Interaction networks for learning about objects, re-
lations and physics. In Advances in neural information pro-
cessing systems, 4502–4510.
Bhargava, N.; Muise, C.; Stegun, T. V.; and Williams, B. C.
2018. Managing Communication Costs under Temporal Un-
certainty. In Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, 84–90.
Bhargava, N.; and Williams, B. C. 2019. Complexity
Bounds for the Controllability of Temporal Networks with
Conditions, Disjunctions, and Uncertainty. In Proceedings
of the Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, 6353 – 6357.
Chen, X.; Guo, J.; Zhu, Z.; Proietti, R.; Castro, A.; and Yoo,
S. 2018. Deep-RMSA: A deep-reinforcement-learning rout-
ing, modulation and spectrum assignment agent for elastic
optical networks. In 2018 Optical Fiber Communications
Conference and Exposition (OFC), 1–3. IEEE.
Cimatti, A.; Micheli, A.; and Roveri, M. 2016. Dynamic
controllability of disjunctive temporal networks: Validation
and synthesis of executable strategies. In Thirtieth AAAI
Conference on Artificial Intelligence, 3116–3123.
Cplex, I. I. 2009. V12. 1: User’s Manual for CPLEX. Inter-
national Business Machines Corporation, 46(53): 157.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information Pro-
cessing Systems, 3844–3852.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. Journal of machine learning research, 12(Jul): 2121–
2159.
Gasse, M.; Chételat, D.; Ferroni, N.; Charlin, L.; and Lodi,
A. 2019. Exact combinatorial optimization with graph con-
volutional neural networks. In Advances in Neural Informa-
tion Processing Systems, 15554–15566.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, 1263–1272. JMLR.
org.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Deep sparse
rectifier neural networks. In Proceedings of the fourteenth
international conference on artificial intelligence and statis-
tics, 315–323.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018.
Delfi: Online planner selection for cost-optimal planning.
IPC-9 planner abstracts, 57–64.
Kipf, T.; Fetaya, E.; Wang, K.-C.; Welling, M.; and Zemel,
R. 2018. Neural relational inference for interacting systems.
In International Conference on Machine Learning, 2688–
2697. PMLR.

Kipf, T. N.; and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In International
Conference on Learning Representations.
Kool, W.; van Hoof, H.; and Welling, M. 2018. Attention
solves your TSP, approximately. Statistics, 1050: 22.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Li, Z.; Chen, Q.; and Koltun, V. 2018. Combinatorial opti-
mization with graph convolutional networks and guided tree
search. In Advances in Neural Information Processing Sys-
tems, 536—-545.
Ma, T.; Ferber, P.; Huo, S.; Chen, J.; and Katz, M. 2020. On-
line planner selection with graph neural networks and adap-
tive scheduling. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, 5077–5084.
Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In Proceedings of the International Confer-
ence on AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, 464 – 479.
Morris, P.; and Muscettola, N. 2005. Temporal Dynamic
Controllability Revisited. In Proceedings of the 22nd

National Conference on Artificial Intelligence, volume 3,
1193–1198.
Osanlou, K.; Bursuc, A.; Guettier, C.; Cazenave, T.; and
Jacopin, E. 2019. Optimal Solving of Constrained Path-
Planning Problems with Graph Convolutional Networks
and Optimized Tree Search. In 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
3519–3525. IEEE.
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