
Falcon: Fast Visuomotor Policies via Partial Denoising

Haojun Chen * 1 2 Minghao Liu * 3 Chengdong Ma 1 Xiaojian Ma 2 Zailin Ma 4 Huimin Wu 2 Yuanpei Chen 1 5

Yifan Zhong 1 5 Mingzhi Wang 1 Qing Li 2 Yaodong Yang 1

Abstract
Diffusion policies are widely adopted in complex
visuomotor tasks for their ability to capture mul-
timodal action distributions. However, the mul-
tiple sampling steps required for action genera-
tion significantly harm real-time inference effi-
ciency, which limits their applicability in real-
time decision-making scenarios. Existing accel-
eration techniques either require retraining or
degrade performance under low sampling steps.
Here we propose Falcon, which mitigates this
speed-performance trade-off and achieves further
acceleration. The core insight is that visuomo-
tor tasks exhibit sequential dependencies between
actions. Falcon leverages this by reusing par-
tially denoised actions from historical informa-
tion rather than sampling from Gaussian noise at
each step. By integrating current observations,
Falcon reduces sampling steps while preserving
performance. Importantly, Falcon is a training-
free algorithm that can be applied as a plug-in
to further improve decision efficiency on top of
existing acceleration techniques. We validated
Falcon in 48 simulated environments and 2 real-
world robot experiments. demonstrating a 2-7x
speedup with negligible performance degradation,
offering a promising direction for efficient visuo-
motor policy design. The code is available at
https://github.com/chjchjchjchjchj/Falcon.

1. Introduction
Diffusion policies have demonstrated remarkable success in
addressing complex visuomotor tasks in robotics (Chi et al.,

*Equal contribution 1Institute for Artificial Intelligence, Peking
University 2National Key Laboratory of General Artificial In-
telligence, BIGAI 3School of Electronic Engineering and Com-
puter Science, Peking University 4School of Mathematical Sci-
ences, Peking University 5PKU-PsiBot Joint Lab. Correspon-
dence to: Qing Li <dylan.liqing@gmail.com>, Yaodong Yang
<yaodong.yang@pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2023; Reuss et al., 2023; Ze et al., 2024b;a; Ravan et al.,
2024; Yang et al.), thanks to their ability to model complex
multimodal distributions and maintain stable training dy-
namics. Essentially, diffusion policies rely on the reverse
sampling process of a stochastic differential equation (SDE)
(Song et al., b; Karras et al., 2022), where actions are itera-
tively sampled starting from a standard normal distribution.
Each sampling step involves drawing a sample from a Brow-
nian motion distribution, incrementally denoising the initial
sample to generate the final action. However, the iterative
sampling process required for action generation makes these
methods computationally slow, particularly when applied
to sequential decision-making in real-time environments
(Chen et al., b; Janner et al., 2022; Wang et al., b; Yang
et al., 2023; Hansen-Estruch et al., 2023; Chen et al., a).

To address these challenges, existing work (Song et al., a;b;
Lu et al., 2022; Zhang & Chen) reformulates the sampling
process as an ordinary differential equation (ODE) and uses
numerical solvers to reduce the number of denoising steps
(Song et al., a; Lu et al., 2022; Zhang & Chen). However,
these solvers often suffer from approximation errors when
using very few steps, degrading policy performance (Zhao
et al., 2024; Wang et al., a). Alternatively, distillation-based
approaches (Salimans & Ho; Song et al., 2023; Kim et al.;
Prasad et al., 2024; Wang et al., 2024) accelerate inference
via one-step generation. However, they typically require
task-specific retraining and may degrade multimodal expres-
siveness (Prasad et al., 2024), making them less flexible and
unsuitable as plug-and-play solutions for diverse tasks. An-
other related approach is Streaming Diffusion Policy (SDP)
(Høeg et al., 2024), which also uses partial denoising for
acceleration but requires task-specific retraining and a large
noise-time buffer, limiting flexibility and memory efficiency.

In this work, we introduce Falcon (Fast visuomotor policies
via partial denoising), a novel approach designed to bridge
the gap between acceleration and performance preservation
in diffusion-based visuomotor policies. The key insight be-
hind Falcon is that sequential dependencies in visuomotor
tasks can be exploited to accelerate action generation while
maintaining multimodal expressiveness. To effectively lever-
age this property, we first utilize the previous action predic-
tion as the reference action, then introduce a thresholding

1

https://github.com/chjchjchjchjchj/Falcon

Falcon: Fast Visuomotor Policies via Partial Denoising

mechanism combined with one-step estimation to evaluate
which partial denoising actions are dependent on current
timesteps in parallel. Using a temperature-scaled softmax,
we then select the most suitable partial denoising action
to continue the sampling process, preserving both perfor-
mance and efficiency. By avoiding the conventional practice
of starting the denoising process from a standard normal
distribution at each decision step, Falcon begins from partial
denoised actions derived from historical observations, sig-
nificantly reducing the number of sampling steps required.
Importantly, Falcon is a training-free method, which allows
it to be applied as a plug-in module, enhancing the efficiency
of existing diffusion-based policies without additional train-
ing or extensive modifications. It integrates seamlessly with
solvers like DDIM (Song et al., a) and DPMSolver (Lu et al.,
2022) to further enhance acceleration.

We evaluate Falcon in both simulated and real-world envi-
ronments. In simulation, we test Falcon across 48 tasks span-
ning five widely used benchmarks, including RoboMimic
(Mandlekar et al., 2022), RoboSuite Kitchen (Gupta et al.,
2020), BlockPush (Shafiullah et al., 2022), MetaWorld (Yu
et al., 2020) and Maniskill2 (Gu et al., 2023). For real-world
experiments, we deploy Falcon on a dual-arm robot plat-
form in two manipulation tasks—dexterous grasping and
high-precision insertion. In both settings, Falcon achieves a
2–7× acceleration in action sampling while preserving high
task success rates, validating its effectiveness and practical
applicability.

In summary, this work makes three main contributions:
First, we introduce Falcon, which leverages sequential de-
pendencies in visuomotor tasks to perform partial denoising,
significantly reducing the number of sampling steps while
preserving the ability to model multimodal action distribu-
tions. Second, Falcon functions as a training-free plug-in
that enhances existing diffusion-based policies, integrating
seamlessly with solvers like DDIM and DPMSolver to fur-
ther accelerate action generation. Third, we demonstrate
Falcon’s effectiveness across 48 simulated environments
and 2 real-world robot tasks, achieving a 2-7× speedup in
inference while maintaining high action quality.

2. Preliminaries
In this section, we briefly introduce the diffusion mod-
els, how the diffusion models are used for diffusion poli-
cies in visuomotor tasks, the acceleration techniques in the
diffusion-based models, and terminology.

Diffusion Models. Diffusion models, such as DDPM (Ho
et al., 2020), are generative models that learn data distri-
butions by progressively corrupting data through noise in
a forward process and then reconstructing it in a reverse
denoising process. In the forward process, a data point x0

is corrupted K timesteps, resulting in:

q(xk | x0) = N
(
xk;

√
ᾱtx0, (1− ᾱk)I

)
, (1)

where ᾱt =
∏t

i=1 αi. After K steps, xK becomes nearly
Gaussian. The reverse process reconstructs x0 by iteratively
denoising, modeled as

pθ(xk−1 | xk) = N
(
xk−1;µθ(xk, k), σ

2
t I

)
. (2)

where µθ is the predicted mean, σ2
t is fixed according to the

forward process, αi is the variance schedule in the forward
diffusion process.

Diffusion Policies. Diffusion policy (Chi et al., 2023)
extends diffusion models as a powerful policy for visuomo-
tor tasks. At timestep t, diffusion policy takes the latest
To steps of observation Ot as input, predicts Tp action se-
quence At and executes Ta action sequence. The action
sequence generation process is a conditional denoising diffu-
sion process modeled by pθ(At|Ot), where At ∈ RTp×Da

and Ot ∈ RTo×Do , Da and Do represent the action and
observation’s dimension respectively. Specifically, starting
from a pure Gaussian noise sample, diffusion policy lever-
age the noise prediction network εθ to predict and remove
noise at each denoising step, iterating for K steps to gen-
erate a clean sample A0

t . The action sequence generation
process is described as Eq. 3, where Ak

t is a partial de-
noising action in the timestep t with noise level k, Z is a
standard Gaussian random variable.

Ak−1
t =

1
√
αk

(
Ak

t − 1− αk√
1− ᾱk

ϵθ
(
Ot,A

k
t , k

))
+ σkZ.

(3)
The training loss is

L(θ) = Ek,A0
t ,ϵ

[∥∥ϵ− ϵθ
(
Ot,A

k
t , k

)∥∥2]
Ak

t =
√
ᾱk A

0
t +

√
1− ᾱk ϵ

(4)

Acceleration techniques in the diffusion-based mod-
els. Some popular works (Song et al., b; Karras et al., 2022;
Song et al., a; Lu et al., 2022) interpret the diffusion model
as an ODE. Specifically, DDIM (Song et al., a) generalizes
the Markov forward process in DDPM to a non-Markov
process, allowing the use of shorter Markov chains during
sampling. The iterative steps of its sampling process can be
rewritten in a form similar to Euler integration, which is a
discrete solution process for a specific ODE. DPMSolver
(Lu et al., 2022) accelerates sampling by analytically com-
puting the linear part of the diffusion ODE solution and
using an exponential integrator to approximate the nonlinear
part. But these methods can reduce the quality degradation
of few-step sampling (Shih et al., 2024). SDP (Høeg et al.,
2024) improves the sampling speed by generating partial
denoised actions with different noise levels, but relies on

2

Falcon: Fast Visuomotor Policies via Partial Denoising

handcrafted noise schedules and large buffers, limiting its
flexibility. Consistency Policy (CP) (Prasad et al., 2024)
distills a pretrained diffusion policy into a one-step sampler
via self-consistency on its probability flow ODE. While fast,
this requires retraining and may compromise multimodality.

We write [a, b) to denote the set {a, a+1, · · · , b− 1}, xa:b

to denote the set {xi : I ∈ [a, b)} and [K] to denote the
set {1, · · · ,K}. We define At = [at:t+Ta

, ãt+Ta:t+Tp
],

where at:t+Ta
is the executed part and ãt+Ta:t+Tp

is the
unexecuted part in timestep t.

3. Falcon: Fast Visuomotor Policies via Partial
Denoising

In this section, we will introduce the core principles of Fal-
con. First, we present the way of leveraging previously gen-
erated action sequences ãt:t−Ta+Tp

, based on the model’s
confidence in its prior predictions. Second, we describe the
thresholding mechanism that determines which partial de-
noised action from past timesteps serves as the initialization
for the current denoising process. Lastly, we outline the
implementation details of Falcon.

3.1. Reference Actions

Falcon first leverages the unexecuted action sequence
ãt:t−Ta+Tp

, predicted from the previous observation Ot−Ta
,

as a reference for denoising the current action sequence
at:t+Tp

at time step t. This approach is motivated by
our observation that the Euclidean distance ∥ãt:t−Ta+Tp

−
at:t−Ta+Tp∥2 between ãt:t−Ta+Tp and at:t−Ta+Tp exhibits
a high probability density near zero (see Fig. 2), indicating
that ãt:t−Ta+Tp

closely approximates at:t−Ta+Tp
in most

cases.

Furthermore, as shown in Eq. 4, diffusion policies take the
latest To observations as input and train to output the future
Tp action sequence At = [at:t+Ta

, ãt+Ta:t+Ta+Tp]. This
training paradigm provides confidence that the predicted
action sequence ãt:t−Ta+Tp ∈ At is sufficiently accurate
for use as a reference. Additionally, Falcon incorporates the
score vector field ∇At

log p(At|Ot), computed from the
current observation Ot, to guide the denoising process of
the partial denoised action at the current time step, ensuring
more precise and stable action refinement.

3.2. Thresholding Mechanism

To determine which partial denoised action from historical
observations should be used as the initialization for denois-
ing at the current timestep, we employ Tweedie’s approach
(Efron, 2011; Chung et al.; Kim & Ye, 2021). Given that
the forward process of diffusion policy follows

Ak
t =

√
ᾱkA

0
t +

√
1− ᾱkz, z ∼ N (0, I), (5)

We derive the posterior expectation, which serves as the one-
step estimation of the partial denoised actions aki

τ :τ−Ta+Tp
,

denoted by âki

τ :τ−Ta+Tp
:

âki

τ :τ−Ta+Tp
= E[a0

τ :τ−Ta+Tp
| Ot,a

k
τ :τ−Ta+Tp

]. (6)

This estimation is conditioned on the current observation
Ot, as formulated in Proposition 3.1. Here, τ < t represents
a historical decision step and k denotes the noise level of
the partial denoised action.

The dependency between past and current actions is mea-
sured by the Euclidean ∥âki

τ :τ−Ta+Tp
− ãt:t−Ta+Tp∥2 be-

tween âki

τ :τ−Ta+Tp
and the reference action ãt:t−Ta+Tp

. If
this distance falls below a predefined threshold ϵ, the par-
tial denoised action ak

τ :τ+Tp
is selected, as it is likely to

converge to the desired action at:t+Tp .

Proposition 3.1. (Tweedie’s formula for denoising) Let x
be a random variable with a probability distribution p(x),
and Let xσ := x + σz, where z ∼ N (0, ID) and σ > 0
is a known scalar. Then, the best estimate x̂σ of x in mean
squared error, given the noisy observation xσ, is given by
the formula:

x̂σ := Ep(x|xσ)[x] = E[x | xσ] = xσ+σ2∇xσ
log p (xσ)

(7)

Remark 3.2. In the context of DDPM (Ho et al.,
2020) whose diffusion forward process is xt ∼
N (

√
ᾱtx0, (1− ᾱt)ID), Tweedie’s formula can be rewrit-

ten as

E [x0 | xt] = (xt + (1− ᾱt)∇xt
log p (xt)) /

√
ᾱt. (8)

Since ∇Ak
t
log p

(
Ak

t | Ot

)
= − ε√

1−ᾱk
≈ εθ(Ot,A

k
t ,k)√

1−ᾱk

(Ho et al., 2020; Chi et al., 2023), we can obtain the posterior
expectation by

E[a0
τ :τ−Ta+Tp

| Ot,a
k
τ :τ−Ta+Tp

]

=
ak
τ :τ−Ta+Tp

−
√
1− ᾱkεθ(Ot,a

k
τ :τ−Ta+Tp

, k)
√
ᾱk

(9)

Finally, we define the set of candidate actions as S =
{ak

τ :τ+Tp
: ∥âk

τ :τ−Ta+Tp
− ãτ :τ−Ta+Tp∥2 < ϵ, ∀τ <

t, k ∈ [K]} and sample the starting point through the fol-
lowing distribution

P
(
Aks

τ = aki

τ :τ+Tp

)
=

exp
(
−ki1S

(
aki

τ :τ+Tp

)
/κ

)
∑
τ<t

k∈[K]

exp
(
−kj1S

(
a
kj

τ :τ+Tp

)
/κ

) ,
(10)

3

Falcon: Fast Visuomotor Policies via Partial Denoising

⨯ ⨯

Figure 1. Method Description a) Falcon begins denoising from historically generated partial denoised actions rather than a normal
distribution, requiring less than ks steps to produce the action sequence At. The process involves 2 steps: setting reference actions
and retrieving a partial denoised action sequence Ak

τ from the latent buffer B to start denoising through a thresholding mechanism. b)
Reference Action. Falcon uses unexecuted actions ãt:t−Ta+Tp from the previous step t− Ta as the desired action at:t+Ta , selecting a
partial denoised action from B as the starting point. c) Thresholding Mechanism. Falcon evaluates all actions in B in parallel, identifying
those close to the reference action after one-step estimation, and samples the starting point Aks

t based on the noise level.

0.000 0.008 0.016 0.024
Euclidean distance

0

100

200

300

400

D
en

si
ty

Robomimic

Can
Lift
Square
Transport

Figure 2. Probability density estimation of ∥ãt:t−Ta+Tp −
at:t−Ta+Tp∥2. ãt:t−Ta+Tp is nearly the same as at:t−Ta+Tp

since the majority of Euclidean distances between ãt:t−Ta+Tp and
at:t−Ta+Tp are concentrated within the range of less than 0.015.
Samples are collected by diffusion policy across four Robomimic
environments (Can, Lift, Square, and Transport), where 200 trajec-
tories were generated for each environment.

where κ is the temperature scaling factor and 1S(·) is the
indicator function of set S . Since exclusively sampling from
the latent buffer may result in idle actions, we introduce an
exploration rate δ, inspired by the ϵ-greedy method from
Reinforcement Learning (Sutton & Barto, 2018). With prob-
ability δ, we sample from the standard Gaussian distribution
instead, ensuring more diverse behavior.

3.3. Implementation Details

In Algorithm 1, we present the pseudocode of Falcon, in-
cluding threshold ϵ, exploration rate δ and latent buffer B.

In practice, we can’t store all the partial denoising action
generated from historical observations because of the lim-
ited GPU memory. Considering that earlier actions are
generally less relevant to the current decision and that we
aim to maximize efficiency, we designed a priority queue
to implement the latent buffer. Partial denoising actions
ak
τ :τ+Tp

with earlier timesteps τ and higher noise level k
are given priority for removal from the queue. To prevent
Falcon from repeating previous actions, we introduce kmin
and filter out partial denoised actions with k < kmin dur-
ing selection. This ensures that only actions with sufficient
noise levels are used in the iterative sampling process.

At timestep t = 1, where no prior information is available,
Falcon directly samples aK

t:t+Tp
from a Gaussian distribu-

tion N (0, I), and iteratively samples conditional on Ot by
Eq. 11 like DDPM (Ho et al., 2020) Line 7. During this
process, Falcon iteratively performs denoising and stores
resulting partial denoised actions ak

t:t+Tp
in a latent buffer

B on Line 5. This latent buffer records all partial denoised
actions generated during the sampling process.

ak−1
t:t+Tp

=
1

√
αk

(
ak
t:t+Tp

− C
)
+ σkz,

C =
1− αk√
1− ᾱk

ϵθ(Ot,a
k
t:t+Tp

, k),

z ∼ N (0, I)

(11)

For timestep t > 1, Falcon utilizes one-step estimation
according to Eq. 9 on all stored samples aki

τ :τ+Tp
in the

latent buffer B conditioned on the current observation Ot,
which is the most compute-intensive part of the algorithm
but can be efficiently parallelized. Line 13 obtains the partial

4

Falcon: Fast Visuomotor Policies via Partial Denoising

Lift SquareCan Tool hangTransport

Lift Can Square Transport ToolHang
ph mh ph mh ph mh ph mh ph

DDPM 1.00±0.00 0.95±0.07 0.98±0.13 0.97±0.15 0.91±0.07 0.85±0.35 0.80±0.39 0.65±0.47 0.52±0.49

DDPM+Falcon 1.00±0.00 0.97±0.18 0.97±0.17 0.97±0.17 0.95±0.23 0.82±0.38 0.85±0.36 0.66±0.48 0.55±0.50

SDP(DDPM) 1.00±0.00 0.98±0.12 0.97±0.17 0.94±0.24 0.88±0.32 0.80±0.40 0.81±0.39 0.46±0.49 0.58±0.50

DDIM 1.00±0.00 1.00±0.00 0.99±0.07 0.97±0.15 0.92±0.26 0.87±0.33 0.79±0.40 0.63±0.48 0.55±0.50

DDIM+Falcon 1.00±0.00 1.00±0.00 1.00±1.00 0.98±0.14 0.91±0.28 0.85±0.36 0.81±0.39 0.63±0.48 0.54±0.50

DPMSolver 0.98±0.12 0.95±0.20 0.97±0.21 0.97±0.17 0.93±0.25 0.84±0.36 0.70±0.45 0.55±0.49 0.58±0.49

DPMSolver+Falcon 0.98±0.14 0.96±0.20 0.96±0.20 0.98±0.14 0.94±0.24 0.90±0.30 0.74±0.43 0.54±0.50 0.56±0.48

Table 1. Success Rate in Robomimic. We present the success rate with 200 evaluation episodes in the format of (mean of success rate) ±
(standard deviation of success rate). Our results show that Falcon matches the original methods.

denoising action sequence, and Line 14 sets it as the starting
point of the rest of the iterative sampling process.

Falcon can also be compatible with other diffusion policy
acceleration techniques by replacing the solver in Line 7
and Line 18 with other SDE/ODE solvers like DDIM (Song
et al., a) and DPMSolver (Lu et al., 2022). The detailed
pseudocode is in the Appendix B.

Algorithm 1 Falcon
Require: Diffusion model ϵθ with noise scheduler ᾱk, variance

σ2
k, threshold ϵ, exploration probability δ, latest To observa-

tions Ot, latent buffer B, temperature scaling factor κ.
1: for t = 1, . . . , T do
2: if t = 1 then
3: aK

t:t+Tp
∼ N (0, I)

4: for k = K, . . . , 1 do
5: B ← B ∪ {ak

t:t+Tp
}.

6: z ∼ N (0, I) if k > 1, else z ← 0

7: Sample ak−1
t:t+Tp

according to Eq. 11
8: end for
9: end if

10: if t > 1 then
11: Compute one-step estimation âki

τ :τ−Ta+Tp
via Eq. 9.

12: S ← {ak
τ :τ+Tp

: ∥âki
τ :τ−Ta+Tp

− ãki
τ :τ−Ta+Tp

∥2 < ϵ}
13: Sample aks

τ :τ+Tp
according to Eq. 10

14: aks
t:t+Tp

← aks
τ :τ+Tp

15: for k = ks, . . . , 1 do
16: B ← B ∪ {ak

t:t+Tp
}.

17: z ∼ N (0, I) if k > 1, else z ← 0

18: Sample ak−1
t:t+Tp

according to Eq. 11
19: end for
20: end if
21: end for

Figure 3. Multimodal behavior. At the given symmetric config-
uration in the PushT task, DDPM+Falcon (right) preserves mul-
timodal behaviors by producing diverse reaching trajectories. In
contrast, the Consistency Policy (left) shows bias toward one mode.
Each line represents one rollout trajectory, plotted from 20 trajec-
tories sampled at the same state.

4. Experiments
Our experiments aim to address four key questions: (1)
Can Falcon accelerate diffusion policy, and does it further
enhance speed when integrated with other acceleration al-
gorithms (Section 4.3)? (2) Can Falcon effectively accel-
erate diffusion policies in real-world robotic settings while
preserving performance (Section 4.5)? (3) Does Falcon
maintain its acceleration advantage in long-sequence tasks
(Section E.3)? (4) Can Falcon retain the ability to express
multimodality while achieving speed improvements (Sec-
tion 4.6)?

4.1. Metrics

Our experiments are primarily evaluated by two metrics.
The first is the success rate, which measures the mean and

5

Falcon: Fast Visuomotor Policies via Partial Denoising

Lift Can Square Transport ToolHang
ph mh ph mh ph mh ph mh ph

DDPM 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

DDPM+Falcon 12.9±0.3 24.6±1.6 35.2±1.3 20.3±0.3 37.1±1.5 20.5±0.6 46.9±3.7 48.0±4.7 33.6±3.2

SDP(DDPM) 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0

DDIM 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0

DDIM+Falcon 7.5±0.2 7.7±0.2 6.5±0.3 7.6±2.1 7.6±1.0 7.2±1.2 10.5±2.0 9.0±1.1 10.1±1.4

DPMSolver 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0

DPMSolver+Falcon 6.4±0.1 10.4±2.0 14.7±0.8 10.9±1.8 14.4±0.5 7.8±0.9 11.0±1.2 12.8±1.4 12.1±1.3

Table 2. NFE in Robomimic. We present the NFE with 200 evaluation episodes in the format of (mean of NFE) ± (standard deviation of
NFE). Our results show that Falcon drastically reduces the denoising steps compared with the original methods.

standard deviation of task completion across all trials. The
second metric is generation time, quantified in terms of the
Number of Function Evaluations (NFE) (Prasad et al., 2024).
Since the inference cost for these models is primarily deter-
mined by NFE, and given that the network architectures are
kept constant across experiments, NFE serves as a reliable
indicator of relative performance. This metric effectively
captures the inference cost, unbiased by GPU imbalances,
and allows for a fair comparison across methods.

0.000 0.025 0.050 0.075 0.100
Epsilon

0.92

0.94

0.96

0.98

1.00

Sc
or

e

Ablation of Epsilon

Score

1.2

1.8

2.4

3.0

Sp
ee

du
p

Speedup

0.00 0.25 0.50 0.75 1.00
Exploration Rate

0.0

0.2

0.4

0.6

0.8

Sc
or

e

Ablation of Exploration Rate

Score

1.5

3.0

4.5

6.0

Sp
ee

du
p

Speedup

Figure 4. Left: Ablation analysis on threshold ϵ. The effect of
varying the ϵ threshold on both the score (red circles) and speedup
(blue squares), demonstrating the trade-off between performance
and speed as ϵ changes. Right: Ablation analysis on exploration
rate δ. The score (red circles) increases sharply with δ and then
stabilizes, while the speedup (blue squares) decreases as the ex-
ploration rate rises. This study highlights the balance between
exploration and exploitation.

4.2. Simulation and Real-World Environments

We evaluate Falcon across diverse simulated and real-world
environments to demonstrate its generality and effectiveness.
Simulation benchmarks include RoboMimic (Mandlekar
et al., 2022), Franka Kitchen (Gupta et al., 2020), Block-
Push (Shafiullah et al., 2022), PushT (Chi et al., 2023),
MetaWorld (Yu et al., 2020), and ManiSkill2 (Gu et al.,
2023), covering short- and long-horizon tasks, as well as
multimodal behavior tasks. For real-world evaluation, we
deploy Falcon on a dual-arm robot platform in two manipu-
lation tasks: dexterous grasping and high-precision insertion.
Details of simulation settings, network architectures, and
hardware platforms are provided in the Appendix A.

4.3. Falcon is a Plug & Play Acceleration Algorithm

In the first experiment, we examine our algorithm on the
Robomimic benchmarks. We present the success rates, NFE,
and speedup for both the original diffusion models, their
Falcon-enhanced counterparts, and SDP in Table 1, Table
2, and Table 4, respectively. To better understand Falcon’s
impact, we categorize the tasks into simpler and more com-
plex ones based on the level of fine-grained manipulation
required. In the Robomimic benchmark, Lift and Can are
relatively simple tasks, while the remaining tasks, Square,
Transport, and ToolHang, are more complex.

Simple tasks. The Lift and Can tasks involve smooth and
predictable movements. In Lift, the robotic arm moves
downward to grasp a small cube and then upward to lift it,
with minimal variation in action within each phase. Can
follows a similar pattern, where the robot picks up a coke
can from a bin and places it in a target bin, primarily involv-
ing steady translational motion. Both tasks exhibit strong
dependencies between consecutive actions, which makes
them ideal for Falcon acceleration. As shown in Fig. 13
(left), Falcon starts denoising with low noise, significantly
speeding up the process. Table 4 shows Falcon achieving
a 7x speedup in Lift and 2-3x in Can, demonstrating its
efficiency in structured motion tasks.

Difficult tasks. Square, Transport, and ToolHang are more
complex and involve finer, more precise movements. For
example, in the Transport task, two robot arms must work
together to transfer a hammer from a closed container on a
shelf into a target bin on another shelf. One arm retrieves
the hammer from the container, while the other arm first
clears the target bin by removing trash. Then, one arm
hands over the hammer to the other, which must place it
in the target bin. These actions are dynamic and entail
larger changes between consecutive movements. As a result,
Falcon can’t start denoising actions with a low noise level
(see Fig. 13 (right)). Consequently, Falcon’s speedup is not
as pronounced as in simpler tasks. However, even in these
more challenging scenarios, as shown in Table 4, Falcon still

6

Falcon: Fast Visuomotor Policies via Partial Denoising

Lift Can Square Transport ToolHang
ph mh ph mh ph mh ph mh ph

DPMSolver* 1.00±0.00 0.95±0.20 0.94±0.23 0.96±0.20 0.84±0.37 (↓10.6%) 0.58±0.50 (↓35.6%) 0.69±0.46 (↓6.8%) 0.54±0.50 0.53±0.50

DPMSolver+Falcon 0.98±0.14 0.96±0.20 0.96±0.20 0.98±0.14 0.94±0.24 0.90±0.30 0.74±0.43 0.54±0.50 0.56±0.48

Table 3. Reduced-step DPMSolver. We report the success rate across 200 evaluation rollouts in the format of (mean ± std). DPMSolver*
uses the same number of sampling steps as NFE of DPMSolver(16 steps)+Falcon. Entries marked with ↓ indicate performance drops
compared to DPMSolver(16 steps)+Falcon. The percentage drop is computed as (Falcon score− DPMSolver* score)/Falcon score×
100%.

Lift Can Square Transport ToolHang
ph mh ph mh ph mh ph mh ph

DDPM+Falcon 7.78±0.19 4.07±0.23 2.84±0.01 4.93±0.06 2.70±0.10 4.88±0.13 2.14±0.13 2.10±0.16 2.86±0.26

SDP(DDPM) 2.00±0.00 2.00±0.00 2.00±0.00 2.00±0.00 2.00±0.00 2.00±0.00 2.00±0.00 2.00±0.00 2.00±0.00

DDIM+Falcon 2.13±0.03 2.08±0.06 2.45±0.11 2.15±0.24 2.15±0.22 2.27±0.32 1.57±0.24 1.88±0.18 1.61±0.20

DPMSolver+Falcon 2.48±0.02 1.60±0.32 1.09±0.07 1.51±0.25 1.11±0.04 2.09±0.21 1.48±0.17 1.27±0.13 1.32±0.12

Table 4. Speedup in Robomimic. We present the speed with 200 evaluation episodes in the format of (mean of speedup) ± (standard
deviation of speedup). Speed for X+Falcon is calculated by NFE of X / NFE of X+Falcon.

achieves around 2x speedup while maintaining performance
close to that of the original models.

We further evaluate Falcon in MetaWorld environments us-
ing 3D Diffusion Policy (Ze et al., 2024b). The architecture
follows the same setup as 3D Diffusion Policy, with a DDIM
scheduler using 10-step discretization. As shown in the Ap-
pendix C, Falcon achieves a 3-4× acceleration on top of
DDIM, further demonstrating its effectiveness in accelerat-
ing existing diffusion-based policies across different tasks.

4.4. Falcon mitigates performance degradation in
reduced-step solvers

To further demonstrate Falcon’s compatibility with exist-
ing acceleration techniques, we compare Falcon-enhanced
DPMSolver with a reduced-step DPMSolver baseline (de-
noted as DPMSolver*), where both use the same number of
denoising steps. As shown in Table 3, DPMSolver* exhibits
significant performance drops in several tasks when the
number of steps is aggressively reduced (e.g., −10.6% in
Square ph, −35.6% in Square mh), while Falcon maintains
high success rates with the same number of steps. These
results highlight Falcon’s ability to recover performance in
low-step regimes and demonstrate its practical value as a
plug-and-play solution to boost efficiency without sacrific-
ing accuracy.

4.5. Real-World Evaluation of Falcon

To validate the practicality of Falcon beyond simulation,
we evaluate it in two real-world robotic manipulation tasks:
Dexterous Grasping (Fig. 5) and Square Stick Insertion (Fig.
6).

Dexterous Grasping. The first task involves dexterous

grasping to pick up the blue object placed on a table. Falcon
is deployed on top of DDPM without any additional retrain-
ing. We compare Falcon+DDPM against SDP(DDPM) and
DDPM alone. As shown in Table 5, Falcon achieves a 3.07×
speedup over DDPM and outperforms SDP in both runtime
(0.145s vs. 0.233s) and CPU memory usage (3730MB vs.
3808MB).

High-Precision Insertion. The second task involves in-
serting a square stick into a tall cylindrical chip can. This
task requires precise 3D alignment; even slight deviations
in height or angle result in failure. Falcon is again applied
as a plug-in to DDPM. We train both DDPM and SDP using
50 human demonstrations. As shown in Table 6, Falcon
matches DDPM in 90% success rate while being 2.86×
faster and more memory efficient.

These results confirm that Falcon not only accelerates dif-
fusion policy inference in simulation but also effectively
transfers to real-world robotic applications.

4.6. Falcon retains the ability to express multimodality
policy

We further evaluate Falcon in the PushT task under a sym-
metric configuration, where multimodality can be visual-
ized directly through trajectory diversity. As shown in
Fig. 3, DDPM+Falcon produces diverse reaching trajec-
tories, while Consistency Policy exhibits mode collapse,
predominantly favoring a single direction. This qualitative
difference demonstrates Falcon’s ability to maintain diverse
outputs even in symmetric settings, without retraining.

7

Falcon: Fast Visuomotor Policies via Partial Denoising

Figure 5. Real-world Dexterous Grasping with DDPM+Falcon. Top row (red): head camera view (RealSense D435). Bottom row
(green): wrist camera view (RealSense D405C). The sequence shows the successful execution of grasping using Falcon-accelerated policy.

Method Speedup NFE Run Time (s) GPU MEMS (MB) CPU MEMS (MB) Success rate

DDPM 1.0x 100.00± 0.00 0.43± 0.01 3730.17± 0.56 3737.06± 2.63 100%
SDP(DDPM) 1.86x 52.16± 2.18 0.23± 0.01 3733.11± 2.68 3808.67± 7.68 100%

Falcon+DDPM 3.07x 30.98± 1.33 0.14± 0.01 3730.19± 0.56 3746.67± 3.03 100%

Table 5. Dexterous Grasping in Real-world Environment. Each entry is evaluated with 20 rollouts in the mean ± standard deviation
format. DDPM and SDP(DDPM) are trained with 1000 epochs with 37 collected expert demonstrations. Our results show that Falcon
outperforms SDP in runtime reduction with lower memory usage.

4.7. Ablation analysis: sensitivity to the threshold ϵ

We explore how the threshold ϵ influences Falcon’s perfor-
mance in the Square ph task. The threshold ϵ determines
the confidence in reusing partial denoised actions toward
the desired action at:t+Tp guided by ∇Ak

t
log p

(
Ak

t | Ot

)
.

We conducted 50 evaluations using a range of ϵ values:
{10−4, 5× 10−3, 8× 10−3, 10−2, 3× 10−2, 5× 10−2, 8×
10−2, 10−1}. As shown in Fig. 4 (left), when ϵ is small,
Falcon is highly selective about using partial denoised ac-
tions, leading to slow denoising because Falcon frequently
samples from the standard normal distribution. This re-
sults in no significant improvement. When ϵ is large, Fal-
con becomes overly confident in the partial denoised ac-
tions, leading to selecting many incorrect actions that do not
align with at+Ta:t+Tp

, which causes a sharp drop in Score.
The optimal range of ϵ lies in the middle, where Falcon
can achieve speedup without sacrificing task performance,
demonstrating that a balanced ϵ allows Falcon to maintain
both efficiency and accuracy.

4.8. Ablation analysis: sensitivity to exploration rate δ

We assess the impact of the exploration rate δ on Falcon by
running 50 evaluations on the Transport ph task, using δ ∈
{0.001, 0.05, 0.0625, 0.076, 0.1, 0.2, 0.33, 1}. Exploration
Rate δ controls the probability that Falcon starts denoising
from N (0, I) rather than the partial denoised action. This
exploration mechanism allows Falcon to fill the latent buffer
with more partial denoised actions, increasing exploration
and preventing over-reliance on the reference action. As
shown in Fig. 4 (right), when δ is set to 0, Falcon primarily
aligns with the reference action at each step. Since the

reference action is not perfectly aligned with the desired
action At, errors accumulate over time, causing Falcon to
generate incorrect actions, resulting in a significant drop in
score. As δ increases, Falcon samples more diverse actions,
improving score by reducing the accumulation of errors.
However, further increasing δ results in a decrease in speed,
as the model becomes less reliant on the history of denoised
actions and starts exploring more random samples from the
normal distribution.

4.9. Ablation analysis: sensitivity to selection
mechanism

We evaluate Falcon’s partial denoised action selection mech-
anism. Falcon adaptively selects partial denoised actions
based on ϵ and the one-step estimation, estimating whether
each action can be denoised to At. We compare this with
the case where Falcon is fixed to always sample from ac-
tions with noise levels of K/2 or K/5 (represented by the
red and green bars), without considering the adaptive selec-
tion mechanism. Fig. 7 (left) shows a significant decrease
in Score when Falcon is restricted to these fixed actions,
demonstrating that not leveraging the selection mechanism
compromises performance. This confirms that Falcon’s Se-
lection Mechanism is crucial for ensuring accurate action
choices, allowing the model to maintain high performance
while accelerating the denoising process.

5. Related Work
Diffusion policies are widely used for modeling complex
behaviors in robotics. 3D Diffusion Policy (Ze et al., 2024b;

8

Falcon: Fast Visuomotor Policies via Partial Denoising

Figure 6. Real-world Square Stick Insertion with DDPM+Falcon. Top row (red): head camera view (RealSense D435). Bottom row
(green): wrist camera view (RealSense D405C). The sequence shows the successful execution of insertion using Falcon-accelerated policy.

Method Speedup NFE Run Time (s) GPU MEMS (MB) Success rate

DDPM 1.0x 100.00±0.00 0.43±0.01 3735.76±0.48 90%
SDP(DDPM) 1.95x 50.00±0.00 0.22±0.01 3743.28±1.26 85%

Falcon+DDPM 2.86x 25.57±7.10 0.15±0.12 3731.50±5.08 90%

Table 6. Square Stick Insertion in Real-world Environment. Each entry is evaluated with 20 rollouts in the mean ± standard deviation
format. Falcon is set with Tp = 32, Ta = 16, To = 1, ϵ = 0.02, |B| = 20.

0.0

0.4

0.8

1.2

Sc
or

e

Score Comparison
0.0

1.5

3.0

4.5

Sp
ee

du
p

Speedup Comparison

Falcon
Falcon w/ K/2
Falcon w/ K/5

Ablation of Selection Mechanism

Figure 7. Ablation analysis on selection mechanism. This figure
compares Falcon’s performance with different partial denoised
action selection configurations. Restricting Falcon to choose ac-
tions with fixed noise levels (K/2, K/5) significantly reduces score,
highlighting that the selection mechanism ensures accurate action
choices while accelerating denoising and maintaining high perfor-
mance.

Ke et al.) improves visuomotor performance by integrating
3D visual data from sparse point clouds. Large-scale models
like Octo (Team et al., 2024) and RDT (Liu et al., 2024)
scale diffusion policy parameters to build vision-language-
action foundation models. However, their high computa-
tional cost limits real-time applications, necessitating accel-
eration techniques.

To speed up inference, ODE-based sampling methods like
DDIM (Song et al., a) and DPMSolver (Lu et al., 2022)
reduce denoising steps, while ParaDiGMS (Shih et al.,
2024) leverages parallel computing to accelerate sampling
on GPUs. Distillation-based methods further improve ef-
ficiency by training models for single-step inference. CP
(Prasad et al., 2024) builds on the Consistency Trajectory

Model (Kim et al.), enabling a pre-trained diffusion policy
to generate actions within a few steps. ManiCM (Lu et al.,
2024) extends this approach to 3D robotic tasks. OneDP
(Wang et al., 2024) and SDM (Jia et al., 2024) introduce
score-based distillation to reduce performance degradation.
However, these methods require task-specific training, lim-
iting adaptability. Streaming Diffusion Policy (SDP) (Høeg
et al., 2024) uses partial denoised action trajectories, similar
to Falcon. However, SDP requires task-specific training and
lacks compatibility with general acceleration techniques.

In contrast, Falcon is a training-free acceleration framework
that leverages sequential dependencies to improve sampling
speed while preserving multimodal expressiveness. It inte-
grates seamlessly with DDIM and DPMSolver, making it a
flexible, plug-and-play solution across various robotic tasks.

6. Conclusion
This paper introduces Falcon, the first diffusion policy ap-
proach to accelerate action generation in complex visuomo-
tor tasks by leveraging inter-step dependencies in decision-
making. Empirical results confirm that Falcon outperforms
strong baselines, such as DDIM and DPMSolver, in terms of
speed without sacrificing accuracy or expressiveness. Over-
all, Falcon offers a simple yet effective solution for real-time
robotic tasks, providing efficient action generation for com-
plex visuomotor environments. However, one limitation
of Falcon is that it does not use a single set of parameters
to accelerate all tasks, since different environments may
require task-specific parameter tuning. Future work will ex-
plore adaptive parameter selection strategies to enhance its
generalizability across diverse robotic applications further.

9

Falcon: Fast Visuomotor Policies via Partial Denoising

Impact Statement
Falcon removes the efficiency bottleneck of diffusion-based
visuomotor policies, making real-time action generation
feasible for robotic manipulation, autonomous navigation,
and interactive AI. By enabling fast, high-quality decision-
making in long-horizon tasks, Falcon expands the practical
use of diffusion policies in real-world robot applications.

Acknowledgements
This work is sponsored by National Natural Science Foun-
dation of China (62376013). We sincerely thank Tianjie
He for his invaluable support in setting up the hardware
platform used in our real-world experiments.

References
Chen, H., Lu, C., Wang, Z., Su, H., and Zhu, J. Score

regularized policy optimization through diffusion behav-
ior. In The Twelfth International Conference on Learning
Representations, a.

Chen, S.-F., Wang, H.-C., Hsu, M.-H., Lai, C.-M., and Sun,
S.-H. Diffusion model-augmented behavioral cloning. In
Forty-first International Conference on Machine Learn-
ing, b.

Chi, C., Xu, Z., Feng, S., Cousineau, E., Du, Y., Burchfiel,
B., Tedrake, R., and Song, S. Diffusion policy: Visuomo-
tor policy learning via action diffusion. The International
Journal of Robotics Research, pp. 02783649241273668,
2023.

Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and
Ye, J. C. Diffusion posterior sampling for general noisy
inverse problems. In The Eleventh International Confer-
ence on Learning Representations.

Efron, B. Tweedie’s formula and selection bias. Journal
of the American Statistical Association, 106(496):1602–
1614, 2011.

Florence, P., Lynch, C., Zeng, A., Ramirez, O. A., Wahid,
A., Downs, L., Wong, A., Lee, J., Mordatch, I., and
Tompson, J. Implicit behavioral cloning. In Conference
on Robot Learning, pp. 158–168. PMLR, 2022.

Gu, J., Xiang, F., Li, X., Ling, Z., Liu, X., Mu, T., Tang, Y.,
Tao, S., Wei, X., Yao, Y., Yuan, X., Xie, P., Huang, Z.,
Chen, R., and Su, H. Maniskill2: A unified benchmark
for generalizable manipulation skills. In International
Conference on Learning Representations, 2023.

Gupta, A., Kumar, V., Lynch, C., Levine, S., and Hausman,
K. Relay policy learning: Solving long-horizon tasks via
imitation and reinforcement learning. In Conference on
Robot Learning, pp. 1025–1037. PMLR, 2020.

Hansen-Estruch, P., Kostrikov, I., Janner, M., Kuba, J. G.,
and Levine, S. Idql: Implicit q-learning as an actor-
critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Høeg, S. H., Du, Y., and Egeland, O. Streaming diffusion
policy: Fast policy synthesis with variable noise diffusion
models. arXiv preprint arXiv:2406.04806, 2024.

Janner, M., Du, Y., Tenenbaum, J., and Levine, S. Planning
with diffusion for flexible behavior synthesis. In Interna-
tional Conference on Machine Learning, pp. 9902–9915.
PMLR, 2022.

Jia, B., Ding, P., Cui, C., Sun, M., Qian, P., Fan, Z., and
Wang, D. Score and distribution matching policy: Ad-
vanced accelerated visuomotor policies via matched dis-
tillation. arXiv preprint arXiv:2412.09265, 2024.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
Advances in neural information processing systems, 35:
26565–26577, 2022.

Ke, T.-W., Gkanatsios, N., and Fragkiadaki, K. 3d diffuser
actor: Policy diffusion with 3d scene representations. In
8th Annual Conference on Robot Learning.

Kim, D., Lai, C.-H., Liao, W.-H., Murata, N., Takida, Y., Ue-
saka, T., He, Y., Mitsufuji, Y., and Ermon, S. Consistency
trajectory models: Learning probability flow ode trajec-
tory of diffusion. In The Twelfth International Conference
on Learning Representations.

Kim, K. and Ye, J. C. Noise2score: tweedie’s approach to
self-supervised image denoising without clean images.
Advances in Neural Information Processing Systems, 34:
864–874, 2021.

Liu, S., Wu, L., Li, B., Tan, H., Chen, H., Wang, Z., Xu,
K., Su, H., and Zhu, J. Rdt-1b: a diffusion founda-
tion model for bimanual manipulation. arXiv preprint
arXiv:2410.07864, 2024.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J.
Dpm-solver: A fast ode solver for diffusion probabilistic
model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022.

Lu, G., Gao, Z., Chen, T., Dai, W., Wang, Z., and Tang,
Y. Manicm: Real-time 3d diffusion policy via consis-
tency model for robotic manipulation. arXiv preprint
arXiv:2406.01586, 2024.

10

Falcon: Fast Visuomotor Policies via Partial Denoising

Mandlekar, A., Xu, D., Wong, J., Nasiriany, S., Wang, C.,
Kulkarni, R., Fei-Fei, L., Savarese, S., Zhu, Y., and
Martı́n-Martı́n, R. What matters in learning from of-
fline human demonstrations for robot manipulation. In
Conference on Robot Learning, pp. 1678–1690. PMLR,
2022.

Prasad, A., Lin, K., Wu, J., Zhou, L., and Bohg, J. Consis-
tency policy: Accelerated visuomotor policies via con-
sistency distillation. arXiv preprint arXiv:2405.07503,
2024.

Ravan, Y., Yang, Z., Chen, T., Lozano-Pérez, T., and
Kaelbling, L. P. Combining planning and diffusion
for mobility with unknown dynamics. arXiv preprint
arXiv:2410.06911, 2024.

Reuss, M., Li, M., Jia, X., and Lioutikov, R. Goal-
conditioned imitation learning using score-based diffu-
sion policies. arXiv preprint arXiv:2304.02532, 2023.

Salimans, T. and Ho, J. Progressive distillation for fast sam-
pling of diffusion models. In International Conference
on Learning Representations.

Shafiullah, N. M., Cui, Z., Altanzaya, A. A., and Pinto, L.
Behavior transformers: Cloning k modes with one stone.
Advances in neural information processing systems, 35:
22955–22968, 2022.

Shih, A., Belkhale, S., Ermon, S., Sadigh, D., and Anari,
N. Parallel sampling of diffusion models. Advances in
Neural Information Processing Systems, 36, 2024.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In International Conference on Learning
Representations, a.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In International
Conference on Learning Representations, b.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models. In International Conference on Machine
Learning, pp. 32211–32252. PMLR, 2023.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Team, O. M., Ghosh, D., Walke, H., Pertsch, K., Black,
K., Mees, O., Dasari, S., Hejna, J., Kreiman, T., Xu, C.,
et al. Octo: An open-source generalist robot policy. arXiv
preprint arXiv:2405.12213, 2024.

Wang, G., Cai, Y., Peng, W., Su, S.-Z., et al. Pfdiff: Training-
free acceleration of diffusion models combining past and
future scores. In The Thirteenth International Conference
on Learning Representations, a.

Wang, Z., Hunt, J. J., and Zhou, M. Diffusion policies as an
expressive policy class for offline reinforcement learning.
In The Eleventh International Conference on Learning
Representations, b.

Wang, Z., Li, Z., Mandlekar, A., Xu, Z., Fan, J., Narang,
Y., Fan, L., Zhu, Y., Balaji, Y., Zhou, M., et al. One-step
diffusion policy: Fast visuomotor policies via diffusion
distillation. arXiv preprint arXiv:2410.21257, 2024.

Yang, J., Cao, Z., Deng, C., Antonova, R., Song, S., and
Bohg, J. Equibot: Sim (3)-equivariant diffusion policy for
generalizable and data efficient learning. In 8th Annual
Conference on Robot Learning.

Yang, L., Huang, Z., Lei, F., Zhong, Y., Yang, Y., Fang, C.,
Wen, S., Zhou, B., and Lin, Z. Policy representation via
diffusion probability model for reinforcement learning.
arXiv preprint arXiv:2305.13122, 2023.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
Conference on robot learning, pp. 1094–1100. PMLR,
2020.

Ze, Y., Chen, Z., Wang, W., Chen, T., He, X., Yuan, Y.,
Peng, X. B., and Wu, J. Generalizable humanoid manipu-
lation with improved 3d diffusion policies. arXiv preprint
arXiv:2410.10803, 2024a.

Ze, Y., Zhang, G., Zhang, K., Hu, C., Wang, M., and Xu,
H. 3d diffusion policy. arXiv preprint arXiv:2403.03954,
2024b.

Zhang, Q. and Chen, Y. Fast sampling of diffusion models
with exponential integrator. In The Eleventh International
Conference on Learning Representations.

Zhao, W., Bai, L., Rao, Y., Zhou, J., and Lu, J. Unipc: A
unified predictor-corrector framework for fast sampling
of diffusion models. Advances in Neural Information
Processing Systems, 36, 2024.

11

Falcon: Fast Visuomotor Policies via Partial Denoising

A. Experimental Setup

Figure 8. The hardware platform. Left: Task for Dexterous Grasping. Right: Task for inserting a stick into a chip can

A.1. Simulation Environments

Robomimic (Mandlekar et al., 2022) is a large-scale benchmark designed to evaluate robotic manipulation algorithms
using human demonstration datasets. Each task provides two types of human demonstrations: proficient human (PH)
demonstrations and mixed proficient and nonproficient human (MH) demonstrations. Each environment uses an action
prediction horizon Tp = 16 and an action execution horizon Ta = 8, and all tasks use state-based observations. We
construct a CNN-based Diffusion Policy (Chi et al., 2023) with DDPM scheduler using 100 denoising steps and the
DDIM/DPMSolver scheduler using 16 denoising steps. Models and are taken from the Diffusion Policy repository:
https://diffusion-policy.cs.columbia.edu/data/experiments/low dim/.

Franka Kitchen (Gupta et al., 2020) is designed for evaluating algorithms on long-horizon, multi-stage robotics tasks.
The task involves action sequences of dimension 112 and an episode length of 1200, with an action prediction horizon of
Tp = 16 and an action execution horizon of Ta = 8. We construct a transformer-based Diffusion Policy using a DDPM
scheduler with 100-step discretization.

Push-T is adapted from IBC (Florence et al., 2022) and involves pushing a block in the shape of a T to a fixed target using a
circular end effector. The task features randomized initial poses of the block and end-effector, requiring contact-rich, precise
motion. We use state-based observations.

Multimodel Block Pushing (Shafiullah et al., 2022) tests the policy’s ability to model multimodal action distributions by
pushing two blocks into two squares in any order. The demonstration data is generated by a scripted oracle with access to
groundtruth state info. This oracle randomly selects an initial block to push and moves it to a randomly selected square. The
remaining block is then pushed into the remaining square.

MetaWorld (Yu et al., 2020) is an open-source simulation benchmark for meta-reinforcement learning and multi-task
learning. It consists of 50 different robotic manipulation tasks categorized into different difficulty levels ranging from simple
to very challenging. We follow the setup and model training in the official 3D Diffusion Policy codebase (Ze et al., 2024b):
https://github.com/YanjieZe/3D-Diffusion-Policy.

ManiSkill2 (Gu et al., 2023) is a benchmark for robotic manipulation with 20 tasks, 2000+ objects, and 4M+ demonstrations.
It supports rigid/soft-body tasks and fast visual learning (2000 FPS).

A.2. Real-world Experiments

We conduct two real-world manipulation tasks—dexterous grasping and high-precision insertion. As shown in Figure 8,
our robot consists of a 7-DoF RealMan RM75-6F arm and a 6-DoF PsiBot hand. It is equipped with a wrist-mounted
RealSense D405C camera and a head-mounted RealSense D435 camera. Objects are placed on a table in front of the
robot for manipulation. For each real-world task, we collect 50 human demonstrations and use the open-source Diffusion
Policy implementation https://github.com/real-stanford/diffusion policy and SDP implementations https://github.com/
Streaming-Diffusion-Policy/streaming diffusion policy.

12

https://diffusion-policy.cs.columbia.edu/data/experiments/low_dim/
https://github.com/YanjieZe/3D-Diffusion-Policy
https://github.com/real-stanford/diffusion_policy
https://github.com/Streaming-Diffusion-Policy/streaming_diffusion_policy
https://github.com/Streaming-Diffusion-Policy/streaming_diffusion_policy

Falcon: Fast Visuomotor Policies via Partial Denoising

B. Pseudocode of Falcon with other sampling solvers
In this section, we provide the pseudocode for Falcon when integrated with alternative sampling solvers, such as DDIM
(Song et al., a) and DPMSolver (Lu et al., 2022).

B.1. Falcon with DDIM

DDIM’s sampling process follows Eq. 12, where xk represents the sample at noise level k, αk is the noise scheduler and ϵθ is
the noise prediction network. To integrate Falcon with DDIM, we replace xk with partial denoised action sequence ak

t:t+Tp

at time step t with noise level k and substitute ϵθ (xk, k) with ϵθ

(
Ot,a

k
t:t+Tp

, k
)

where Ot is the latest To observations.
This results in the modified sampling process for Falcon-enhanced diffusion policy (Eq. 13). The corresponding pseudocode
is provided in Algorithm 2.

xk−1 =
√
αk−1

(
xk −

√
1− αkϵθ (xk, k)√

αk

)
+
√
1− αk−1 − σ2

k · ϵθ (xk, k) + σkϵk, ϵk ∼ N (0, I) (12)

ak−1
t:t+Tp

=
√
αk−1

ak
t:t+Tp

−
√
1− αkϵθ

(
Ot,a

k
t:t+Tp

, k
)

√
αk

+
√
1− αk−1 − σ2

k · ϵθ
(
Ot,a

k
t:t+Tp

, k
)
+ σkz (13)

Algorithm 2 Falcon: Fast Visuomotor Policies via Partial Denoising (DDIM)
Require: Diffusion model ϵθ with noise scheduler ᾱk, variance σ2

k, threshold ϵ, exploration probability δ, latest To observations Ot,
latent buffer B, M + 1 denoising steps {ki}Mi=0.

1: for t = 1, . . . , T do
2: if t = 1 then
3: aK

t:t+Tp
∼ N (0, I)

4: for i = M, . . . , 1 do
5: B ← B ∪ {aki

t:t+Tp
}.

6: z ∼ N (0, I) if ki > 1, else z ← 0

7: a
ki−1

t:t+Tp
← √αki−1

(
a
ki
t:t+Tp

−
√

1−αki
ϵθ

(
Ot,a

ki
t:t+Tp

,ki

)
√

αki

)
+
√

1− αki−1 − σ2
ki−1

· ϵθ
(
Ot,a

ki
t:t+Tp

, ki
)
+ σkiz

8: end for
9: end if

10: if t > 1 then
11: âki

τ :τ−Ta+Tp
← 1√

αki

(
aki
τ :τ−Ta+Tp

−
√
1− ᾱkiϵθ(Ot,a

ki
τ :τ−Ta+Tp

, ki)
)
∀aki

τ :τ−Ta+Tp
∈ B

12: S ← {ak
τ :τ+Tp

: ∥âk
τ :τ−Ta+Tp

− ãk
τ :τ−Ta+Tp

∥2 < ϵ,∀τ < t, k ∈ {ki}Mi=0}
13: Sample aks

τ :τ+Tp
according to Eq. 10

14: aks
t:t+Tp

← aks
τ :τ+Tp

15: for i = s, . . . , 1 do
16: B ← B ∪ {aki

t:t+Tp
}.

17: z ∼ N (0, I) if ki > 1, else z ← 0

18: a
ki−1

t:t+Tp
← √αki−1

(
a
ki
t:t+Tp

−
√

1−αki
ϵθ

(
Ot,a

ki
t:t+Tp

,ki

)
√

αki

)
+
√

1− αki−1 − σ2
ki−1

· ϵθ
(
Ot,a

ki
t:t+Tp

, ki
)
+ σkiz

19: end for
20: end if
21: end for

13

Falcon: Fast Visuomotor Policies via Partial Denoising

B.2. Falcon with DPMSolver

Given a noise prediction network ϵθ, denoising steps {ki}Mi=0, DPMSolver’s sampling process follows Eq. 14, where hi−1 =

log
αki−1

σki−1
− log

αki

σki
. To integrate Falcon, we replace xki

with aki

t:t+Tp
and substitute ϵθ (xki

, ki) with ϵθ

(
Ot,a

ki

t:t+Tp
, ki

)
,

where Ot represents the latest To observations. This yields the sampling process in diffusion policy with DPMSolver, as
expressed in Eq. 15. The corresponding pseudocode is provided in Algorithm 3.

xki−1
=

αki−1

αki

xki
− σki−1

(
ehi−1 − 1

)
ϵθ (xki

, ki) (14)

a
ki−1

t:t+Tp
=

αki−1

αki

aki

t:t+Tp
− σki−1

(
ehi−1 − 1

)
ϵθ

(
Ot,a

ki

t:t+Tp
, ki

)
(15)

Algorithm 3 Falcon: Fast Visuomotor Policies via Partial Denoising (DPMSolver)
Require: Diffusion model ϵθ with noise scheduler ᾱk, variance σ2

k, threshold ϵ, exploration probability δ, latest To observations Ot,
latent buffer B and M + 1 denoising steps {ki}Mi=0.

1: for t = 1, . . . , T do
2: if t = 1 then
3: aK

t:t+Tp
∼ N (0, I)

4: akM
t:t+Tp

← aK
t:t+Tp

5: for i = M, . . . , 1 do
6: B ← B ∪ {aki

t:t+Tp
}.

7: hi−1 ← log
αki−1

σki−1
− log

αki
σki

8: a
ki−1

t:t+Tp
=

αki−1

αki
aki
t:t+Tp

− σki−1

(
ehi−1 − 1

)
ϵθ
(
Ot,a

ki
t:t+Tp

, ki
)

9: end for
10: end if
11: if t > 1 then
12: âki

τ :τ−Ta+Tp
← 1√

αki

(
aki
τ :τ−Ta+Tp

−
√
1− ᾱkiϵθ(Ot,a

ki
τ :τ−Ta+Tp

, ki)
)
∀aki

τ :τ−Ta+Tp
∈ B

13: S ← {ak
τ :τ+Tp

: ∥âki
τ :τ−Ta+Tp

− ãki
τ :τ−Ta+Tp

∥2 < ϵ,∀τ < t}
14: Sample aks

τ :τ+Tp
∼ P (aks

τ :τ+Tp
) = exp ks∑

exp ki
in S

15: aks
t:t+Tp

← aks
τ :τ+Tp

16: for i = s, . . . , 1 do
17: B ← B ∪ {aki

t:t+Tp
}.

18: hi−1 ← log
αki−1

σki−1
− log

αki
σki

19: a
ki−1

t:t+Tp
=

αki−1

αki
aki
t:t+Tp

− σki−1

(
ehi−1 − 1

)
ϵθ
(
Ot,a

ki
t:t+Tp

, ki
)

20: end for
21: end if
22: end for

14

Falcon: Fast Visuomotor Policies via Partial Denoising

C. Detail performance of Falcon with 3D Diffusion Policy
In this section, we provide a detailed results of Falcon’s acceleration performance when applied to 3D Diffusion Policy
(Ze et al., 2024b) in MetaWorld environments. Falcon is integrated with DDIM using 10-step discretization(we call 3D
FalconDDIM), following the original 3D Diffusion Policy architecture to ensure a fair comparison.

Tables 7, 8 and 9 present the success rates, NFE and speedup respectively, for both 3D Diffusion Policy and 3D FalconDDIM.
These results further validate Falcon’s effectiveness in reducing inference time while maintaining task performance across
different robotic manipulation tasks.

Table 7. Detailed results for 39 simulated tasks with success rates. We evaluated 39 challenging tasks using 50 random seeds and
reported the average success rate (%) and standard deviation for each task individually. The 3D FalconDDIM algorithm demonstrates
nearly no performance drop.

Meta-World (Easy)
Alg \ Task Button Press Coffee Button Plate Slide Back Side Plate Slide Side Window Close Window Open

3D Diffusion Policy 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0
3D FalconDDIM 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0

Meta-World (Easy)
Alg \ Task Button Press Topdown Button Press Topdown Wall Button Press Wall Peg Unplug Side Door Close Door Lock

3D Diffusion Policy 100± 0 99± 2 99± 1 75± 5 100± 0 98± 2
3D FalconDDIM 100± 0 100± 0 100± 0 75± 43 100± 0 96± 19

Meta-World (Easy)
Alg \ Task Door Open Door Unlock Drawer Close Drawer Open Faucet Close Faucet Open Handle Press

3D Diffusion Policy 99± 1 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0
3D FalconDDIM 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0

Meta-World (Easy)
Alg \ Task Handle Pull Side Lever Pull Plate Slide Plate Slide Back Dial Turn Reach

3D Diffusion Policy 85± 3 79± 8 100± 1 99± 0 92± 27 68± 46
3D FalconDDIM 87± 33 81± 39 86± 34 100± 0 89± 31 68± 46

Meta-World (Medium) Meta-World (Hard)
Alg \ Task Hammer Basketball Push Wall Box Close Sweep Sweep Into Assembly Hand Insert

3D Diffusion Policy 88± 32 98± 2 88± 32 56± 49 96± 3 15± 5 99± 1 12± 32
3D FalconDDIM 83± 37 100± 0 88± 32 55± 49 100± 0 13± 33 99± 9 26± 43

Meta-World (Hard) Meta-World (Very Hard)
Alg \ Task Push Shelf Place Disassemble Stick Pull Stick Push Pick Place Wall

3D Diffusion Policy 51± 3 52± 49 72± 44 68± 46 97± 4 80± 40
3D FalconDDIM 53± 49 47± 49 75± 43 68± 46 100± 0 87± 33

15

Falcon: Fast Visuomotor Policies via Partial Denoising

Table 8. Detailed results for 39 simulated tasks with NFE. We evaluated 39 challenging tasks using 50 random seeds and reported
the average Number of Function Evaluations (nfe) per action generation and standard deviation for each domain individually. The 3D
FalconDDIM algorithm reduces the nfe to a range of 2-4 compared to the 3D Diffusion Policy

Meta-World (Easy)
Alg \ Task Button Press Coffee Button Plate Slide Back Side Plate Slide Side Window Close Window Open

3D Diffusion Policy 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
3D FalconDDIM 2.12± 0.05 2.47± 0.09 3.91± 0.22 3.27± 0.68 2.54± 0.18 3.58± 0.90

Meta-World (Easy)
Alg \ Task Button Press Topdown Button Press Topdown Wall Button Press Wall Peg Unplug Side Door Close Door Lock

3D Diffusion Policy 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
3D FalconDDIM 2.48± 0.20 2.63± 0.40 3.36± 0.61 3.25± 0.38 2.81± 0.05 4.06± 1.00

Meta-World (Easy)
Alg \ Task Door Open Door Unlock Drawer Close Drawer Open Faucet Close Faucet Open Handle Press

3D Diffusion Policy 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
3D FalconDDIM 3.04± 0.26 4.70± 0.86 2.91± 0.47 3.90± 0.18 4.06± 0.62 4.94± 0.78 3.52± 0.43

Meta-World (Easy)
Alg \ Task Handle Pull Side Lever Pull Plate Slide Plate Slide Back Dial Turn Reach

3D Diffusion Policy 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
3D FalconDDIM 3.59± 0.51 3.79± 0.77 3.11± 0.15 3.49± 0.16 4.26± 1.16 2.85± 0.05

Meta-World (Medium) Meta-World (Hard)
Alg \ Task Hammer Basketball Push Wall Box Close Sweep Sweep Into Assembly Hand Insert

3D Diffusion Policy 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
3D FalconDDIM 3.25± 0.60 2.97± 0.14 3.35± 0.22 4.51± 1.12 3.09± 0.18 3.59± 0.19 2.44± 0.23 3.29± 0.19

Meta-World (Hard) Meta-World (Very Hard)
Alg \ Task Push Shelf Place Disassemble Stick Pull Stick Push Pick Place Wall

3D Diffusion Policy 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
3D FalconDDIM 2.88± 0.38 4.28± 2.33 3.25± 0.37 3.78± 0.73 3.41± 0.32 3.04± 0.15

16

Falcon: Fast Visuomotor Policies via Partial Denoising

Table 9. Detailed results for 39 simulated tasks with speedup. We evaluated 39 challenging tasks using 50 random seeds and reported
the average speedup and standard deviation for each task individually. The 3D FalconDDIM algorithm reduces the NFE to a range of 2-4
compared to the 3D Diffusion Policy

Meta-World (Easy)
Alg \ Task Button Press Coffee Button Plate Slide Back Side Plate Slide Side Window Close Window Open

3D FalconDDIM 4.71± 0.12 4.03± 0.14 2.55± 0.14 3.05± 0.60 3.93± 0.28 2.79± 0.66

Meta-World (Easy)
Alg \ Task Button Press Topdown Button Press Topdown Wall Button Press Wall Peg Unplug Side Door Close Door Lock

3D FalconDDIM 4.02± 0.32 3.80± 0.48 2.97± 0.47 3.07± 0.34 3.55± 0.06 2.46± 0.51

Meta-World (Easy)
Alg \ Task Door Open Door Unlock Drawer Close Drawer Open Faucet Close Faucet Open Handle Press

3D FalconDDIM 3.28± 0.26 2.12± 0.32 3.42± 0.36 2.55± 0.12 2.45± 0.35 2.02± 0.35 2.83± 0.30

Meta-World (Easy)
Alg \ Task Handle Pull Side Lever Pull Plate Slide Plate Slide Back Dial Turn Reach

3D FalconDDIM 2.77± 0.36 2.63± 0.44 3.21± 0.15 2.86± 0.14 2.34± 0.56 3.50± 0.06

Meta-World (Medium) Meta-World (Hard)
Alg \ Task Hammer Basketball Push Wall Box Close Sweep Sweep Into Assembly Hand Insert

3D FalconDDIM 3.25± 0.60 2.97± 0.14 3.35± 0.22 4.51± 1.12 3.09± 0.18 3.59± 0.19 2.44± 0.23 3.29± 0.19

Meta-World (Hard) Meta-World (Very Hard)
Alg \ Task Push Shelf Place Disassemble Stick Pull Stick Push Pick Place Wall

3D FalconDDIM 2.88± 0.38 2.33± 0.65 3.07± 0.30 2.64± 0.44 2.92± 0.25 3.28± 0.14

17

Falcon: Fast Visuomotor Policies via Partial Denoising

D. Experiment Details
In this section, we provide the detailed experimental setup for Robomimic and analyze Falcon’s memory cost compared to
the original samplers (DDPM, DDIM, and DPMSolver). Table 10 reports the hyperparameter settings and the peak memory
usage for each experiment.

To evaluate Falcon’s computational overhead, we measure the peak memory cost, denoted in the format (original sampler
cost) + (incremental cost due to Falcon integration). As shown in Table 10, Falcon introduces an additional 12 MB of
memory overhead, which is negligible compared to the original 1876 MB cost. This demonstrates that Falcon achieves
acceleration with minimal memory overhead, making it a practical and efficient enhancement to diffusion-based policies.

DDPM+Falcon DDIM+Falcon DPMSolver+Falcon

ϵ δ kmin |B| Peak Memory
Cost

ϵ δ kmin |B| Peak Memory
Cost

ϵ δ kmin |B| Peak Memory
Cost

Lift ph 0.04 0.1 20 50 1876+12 MB 0.05 0.2 15 50 1876+12 MB 0.08 0.2 20 50 1876+12 MB
Lift mh 0.04 0.1 20 50 1876+12 MB 0.03 0.25 10 50 1876+12 MB 0.005 0.2 20 50 1876+12 MB
Can ph 0.01 0.1 20 50 1876+12 MB 0.01 0.20 8 50 1876+12 MB 0.003 0.2 20 50 1876+12 MB

Can mh 0.01 0.1 20 50 1876+12 MB 0.005 0.20 8 50 1876+12 MB 0.003 0.2 20 50 1876+12 MB
Square ph 0.04 0.1 25 50 1876+12 MB 0.01 0.20 8 50 1876+12 MB 0.003 0.2 25 20 1876+12 MB

Square mh 0.04 0.1 25 50 1876+12 MB 0.005 0.20 3 50 1876+12 MB 0.005 0.2 20 20 1876+12 MB
Transport ph 0.01 0.2 25 50 1876+12 MB 0.001 0.33 8 50 1876+12 MB 0.005 0.2 20 20 1876+12 MB

Transport mh 0.01 0.2 25 50 1876+12 MB 0.01 0.33 5 50 1876+12 MB 0.003 0.2 60 50 1876+12 MB
ToolHang ph 0.01 0.1 20 50 1876+12 MB 0.003 0.33 5 50 1876+12 MB 0.003 0.2 60 50 1876+12 MB

Table 10. Hyperparameters and Memory Cost in Robomimic.

18

Falcon: Fast Visuomotor Policies via Partial Denoising

E. Additional Experiments
E.1. Acceleration on Vision-Language-Action Foundation Model (RDT)

To assess Falcon compatibility with pre-trained diffusion foundation models, we integrate it with RDT-1B (Liu et al.,
2024), a vision language action foundation model trained in ManiSkill2. Falcon is applied directly to RDT’s DPMSolver++
inference without retraining. The official model weights are obtained from the RDT repository on https://huggingface.co/
robotics-diffusion-transformer/maniskill-model.

As shown in Table 11, Falcon achieves substantial inference speedups (31x and 34x vs. DDPM) with no loss in success rate
on task PickCube (see Fig. 9) and task PushCube (see Fig. 10), demonstrating its plug-and-play compatibility with VLA
Foundation model.

Figure 9. RDT evaluated in PickCube with Falcon

Figure 10. RDT evaluated in PushCube with Falcon

PickCube
Method Success Rate NFE Time (s) Speedup GPU MEMS (MB)

DPMSolver++ (5 steps) 0.75 5.00 0.08 20x 15479
DPMSolver++ (5 steps)+Falcon 0.75 3.22 0.04 31x 15483

PushCube
Method Success Rate NFE Time (s) Speedup GPU MEMS (MB)

DDPMSolver++ (5 steps) 1.00 5.00 0.08 20x 15483
DPMSolver++ (5 steps)+Falcon 1.00 2.91 0.05 34x 15483

Table 11. Falcon improves inference speed for RDT on unseen ManiSkill tasks (Tp = 64, Ta = 32, To = 2, ϵ = 0.02, |B| = 2) using the
same pre-trained checkpoint. Speedup is relative to 100-step DDPM. Falcon achieves comparable performance with significantly fewer
denoising steps and lower runtime.

19

https://huggingface.co/robotics-diffusion-transformer/maniskill-model
https://huggingface.co/robotics-diffusion-transformer/maniskill-model

Falcon: Fast Visuomotor Policies via Partial Denoising

E.2. Additional Ablation on Threshold ϵ

0.000 0.015 0.030 0.045
Epsilon

0.30

0.45

0.60

0.75

Sc
or

e
Transport ph

Score

0.000 0.025 0.050 0.075 0.100
Epsilon

0.1

0.2

0.3

0.4

0.5

Sc
or

e

Tool hang ph

Score

1.6

2.4

3.2

4.0

4.8

Sp
ee

d

Speed

1.6

2.4

3.2

4.0

4.8

Sp
ee

d

Speed

Figure 11. Additional Ablation Analysis on threshold ϵ. We conduct extended experiments with DDPM+Falcon on Transport ph and
Tool hang ph, varying the threshold ϵ. Results show a trade-off between success rate (Score) and speedup.

E.3. Falcon achieves accelerating diffusion policy in long-horizon tasks

To evaluate Falcon’s effectiveness in long-horizon tasks, we apply it to the Franka Kitchen environment. As shown in Table
12, Falcon maintains the same high success rates as the original DDPM model, confirming that the acceleration introduced
by Falcon does not compromise task performance, even for long-horizon tasks. The key benefit of Falcon lies in its ability to
reduce NFE and accelerate the denoising process, which is evident in the speedup shown in Table 13. Falcon achieves a
5.25x speedup in Kitchen, which shows that Falcon can accelerate DDPM in long-horizon tasks and can be adopted into
transformer architecture.

Block Push Kitchen

BlockPush Kitchen
p1 p2 p1 p2 p3 p4

DDPM 0.99 0.94 1.00 0.99 0.99 0.96
DDPM+Falcon 0.99 0.97 1.00 0.99 0.99 0.96

Table 12. Success Rate in BlockPush and Kitchen. For BlockPush, px refers to the frequency of pushing x blocks into the targets. For
Kitchen, px refers to the frequency of interacting with x or more objects.

BlockPush Kitchen
NFE Speedup NFE Speedup

DDPM 100 1.0x 100 1.0x
DDPM+Falcon 32.7 2.8x 19.03 5.25x

Table 13. Speedup in BlockPush and Kitchen. Falcon can accelerate diffusion policy in long-horizon tasks.

20

Falcon: Fast Visuomotor Policies via Partial Denoising

E.4. More results of Multimodality

In this section, we provide a visualization of the multimodal action distributions generated by Falcon in the BlockPush
environment. As shown in Fig. 12, the frequency distribution of different action modalities in the BlockPush task, where
each modality corresponds to a distinct combination of blocks being pushed into two squares. The chart illustrates the
uniformity of the action modality frequencies, with the four modalities (1-2, 1-1, 2-1, and 2-2) being equally represented.
This visualization confirms that Falcon is capable of expressing multimodal actions, effectively handling different action
combinations without bias.

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

Action Modality
1-2
1-1
2-1
2-2

Figure 12. Action Modalities Distribution in BlockPush Task. The bar chart shows the frequency of different policy modalities for
pushing two blocks into two squares in any order. The modalities are represented as 1-2, 1-1, 2-1, and 2-2, where the numbers indicate
the block number and square number respectively. The chart illustrates the frequency distribution of the action modalities generated by
Falcon in the BlockPush task.

21

Falcon: Fast Visuomotor Policies via Partial Denoising

F. Visualization of Starting Points
This section visualizes where Falcon starts the denoising process at each time step, specifically from which past time step
and at what noise level the partial denoised actions originate. We analyze two tasks: Lift ph and Transport ph, representing
high and low acceleration scenarios, respectively.

As shown in Fig.13 (left), in the Lift task, Falcon consistently starts denoising from the partial denoised action of the
previous time step, with a low noise level. This indicates a significant reduction in sampling steps, leading to substantial
acceleration. In contrast, Fig.13 (right) shows that the Transport task starts from actions with higher noise levels, limiting
the acceleration effect. This suggests that Falcon’s speedup is more pronounced in tasks with smoother, more predictable
action transitions.

t0 t10 t20 t30 t40
Current Timesteps

t0

t10

t20

t30

t40H
is

to
ric

al
 T

im
es

te
ps

Visualization of starting point in Lift ph

t0 t20 t40 t60 t80
Current Timesteps

t0

t20

t40

t60

t80
H

is
to

ric
al

 T
im

es
te

ps

Visualization of starting point in Transport ph

0

20

40

60

80

100

N
oi

se
 L

ev
el

0

20

40

60

80

100

N
oi

se
 L

ev
el

Figure 13. Visualization of denoising starting point. This figure shows the heatmaps A ∈ RT×T in Lift ph task (left) and Transport ph
task (right). A[j, i] = k means that at time step i, Falcon starts denoising at the partial denoised actions ak

j:j+Tp
.

22

